2102.12013v2 [cs.LG] 13 Jun 2021

arxiv

Understanding and Mitigating Accuracy Disparity in Regression

Jianfeng Chi' Yuan Tian! Geoffrey J. Gordon?> Han Zhao>

Abstract

With the widespread deployment of large-scale
prediction systems in high-stakes domains, e.g.,
face recognition, criminal justice, etc., disparity
in prediction accuracy between different demo-
graphic subgroups has called for fundamental un-
derstanding on the source of such disparity and
algorithmic intervention to mitigate it. In this pa-
per, we study the accuracy disparity problem in
regression. To begin with, we first propose an
error decomposition theorem, which decomposes
the accuracy disparity into the distance between
marginal label distributions and the distance be-
tween conditional representations, to help explain
why such accuracy disparity appears in practice.
Motivated by this error decomposition and the
general idea of distribution alignment with statis-
tical distances, we then propose an algorithm to re-
duce this disparity, and analyze its game-theoretic
optima of the proposed objective functions. To
corroborate our theoretical findings, we also con-
duct experiments on five benchmark datasets. The
experimental results suggest that our proposed al-
gorithms can effectively mitigate accuracy dispar-
ity while maintaining the predictive power of the
regression models.

1. Introduction

Recent progress in machine learning has led to its
widespread use in many high-stakes domains, such as crim-
inal justice, healthcare, student loan approval, and hiring.
Meanwhile, it has also been widely observed that accuracy
disparity could occur inadvertently under various scenar-
ios in practice (Barocas and Selbst, [2016). For example,
errors are inclined to occur for individuals of certain un-
derrepresented demographic groups (Kim, [2016)). In other
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cases, Buolamwini and Gebru| (2018)) showed that notable
accuracy disparity exists across different racial and gender
demographic subgroups on several real-world image classifi-
cation systems. Moreover, Bagdasaryan et al.|(2019) found
out that a differentially private model even exacerbates such
accuracy disparity. Such accuracy disparity across demo-
graphic subgroups not only raises concerns in high-stake
applications but also can be utilized by malicious parties to
cause information leakage (Yaghini et al.l 2019} |Zhao et al.,
2020).

Despite the ample needs of accuracy parity, most prior work
limits its scope to studying the problem in binary classi-
fication settings (Hardt et al., 2016} [Zafar et al., |2017b;
Zhao and Gordon, [2019; Jiang et al.l 2019). Compared
to the accuracy disparity problem in classification settings,
accuracy disparit in regression is a more challenging but
less studied problem, due to the fact that many existing al-
gorithmic techniques designed for classification cannot be
extended in a straightforward way when the target variable
is continuous (Zhao et al.,[2019). In a seminal work, |Chen
et al.| (2018)) analyzed the impact of data collection on ac-
curacy disparity in general learning models. They provided
a descriptive analysis of such parity gaps and advocated
for collecting more training examples and introducing more
predictive variables. While such a suggestion is feasible in
applications where data collection and labeling is cheap, it
is not applicable in domains where it is time-consuming,
expensive, or even infeasible to collect more data, e.g., in
autonomous driving, education, etc.

Our Contributions In this paper, we provide a prescrip-
tive analysis of accuracy disparity and aim at providing al-
gorithmic interventions to reduce the disparity gap between
different demographic subgroups in the regression setting.
To start with, we first formally characterize why accuracy
disparity appears in regression problems by depicting the
feasible region of the underlying group-wise errors. Next,
we derive an error decomposition theorem that decomposes
the accuracy disparity into the distance between marginal
label distributions and the distance between conditional rep-

!"Technically, accuracy disparity refers to (squared) error dif-
ference in our paper. We would like to use accuracy disparity
throughout our paper since it is a more commonly used term in
fairness problems.
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Figure 1: Geometric interpretation of accuracy disparity
in regression. The green area corresponds to the feasible
region of Errp, and Errp, under the hypothesis class H.
For any optimal hypothesis i which is solely designed to
minimize the overall error, the best the hypothesis i can do
is to intersect with one of the two bottom vertices of the
green area, leading to accuracy disparity if the width of the
feasible region is nonzero. See section [3.1|for more details.

resentations. We also provide a lower bound on the joint
error across groups. Based on these results, we illustrate
why regression models aiming to minimize the global loss
will inevitably lead to accuracy disparity if the marginal la-
bel distributions or conditional representations differ across
groups. See Figure I]for illustration.

Motivated by the error decomposition theorem, we propose
two algorithms to reduce accuracy disparity via joint distri-
bution alignment with the total variation distance and the
Wasserstein distance, respectively. Furthermore, we ana-
lyze the game-theoretic optima of the objective functions
and illustrate the principle of our algorithms from a game-
theoretic perspective. To corroborate the effectiveness of our
proposed algorithms in reducing accuracy disparity, we con-
duct experiments on five benchmark datasets. Experimental
results suggest that our proposed algorithms help to mitigate
accuracy disparity while maintaining the predictive power
of the regression models. We believe our theoretical results
contribute to the understanding of why accuracy disparity
occurs in machine learning models, and the proposed algo-
rithms provides an alternative for intervention in real-world
scenarios where accuracy parity is desired but collecting
more data/features is time-consuming or infeasible.

2. Preliminaries

Notation We use X € R? and V C R to denote the
input and output space. We use X and Y to denote random
variables which take values in X and ), respectively. Lower
case letters x and y denote the instantiation of X and Y.
We use H(X) to denote the Shannon entropy of random

variable X, H(X | Y) to denote the conditional entropy of
X given Y, and I(X;Y") to denote the mutual information
between X and Y. To simplify the presentation, we use
A € {0,1} as the sensitive attribute, e.g., gender, race, etc.
Let H be the hypothesis class of regression models. In other
words, for h € ‘H, h : X — ) is a predictor. Note that
even if the predictor does not explicitly take the sensitive
attribute A as an input variable, the prediction can still be
biased due to the correlations with other input variables.
In this work we study the stochastic setting where there
is a joint distribution D over X,Y and A from which the
data are sampled. For a € {0,1} and y € R, we use D,
to denote the conditional distribution of D given A = «a
and DY to denote the conditional distribution of D given
Y = y. For an event E, D(FE) denotes the probability
of E under D. Given a feature transformation function
g : X — Z that maps instances from the input space X
to feature space Z, we define gD := Do g~ ! to be the
induced (pushforward) distribution of D under g, i.e., for
any event E' C Z, g4D(E') :== D({z € X | g(z) € E'}).
We define (-) 4 to be max{-,0}.

For regression problems, given a joint distribution D, the
error of a predictor h under D is defined as Errp(h) :=
Ep[(Y — h(X))?]. To make the notation more compact, we
may drop the subscript D when it is clear from the context.
Furthermore, we also use MSEp (Y, Y') to denote the mean
squared loss between the predicted variable ¥ = (X) and
the true label Y over the joint distribution D. Similarly,
we also use CEp (A || A) to denote the cross-entropy loss
between the predicted variable A and the true label A over
the joint distribution D. Throughout the paper, we make the
following standard boundedness assumption:

Assumption 2.1. There exists M > 0, such that for any
hypothesis H 2 h: X = Y, ||hlloc < M and [Y]| < M.

Problem Setup Our goal is to learn a regression model
that is fair in the sense that the errors of the regressor are
approximately equal across the groups given by the sensi-
tive attribute A. We assume that the sensitive attribute A is
only available to the learner during the training phase and
is not visible during the inference phase. We would like
to point out that there are many other different and impor-
tant definitions of fairness (Narayanan, 2018)) even in the
sub-category of group fairness, and our discussion is by no
means comprehensive. For example, two frequently used
definitions of fairness in the literature are the so-called statis-
tical parity (Dwork et al.||2012) and equalized odds (Hardt
et al.,|2016)). Nevertheless, throughout this paper we mainly
focus accuracy parity as our fairness notion, due to the fact
that machine learning systems have been shown to exhibit
substantial accuracy disparities between different demo-
graphic subgroups (Barocas and Selbst, 20165 Kim)| 2016;
Buolamwini and Gebrul [2018). This observation has already
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brought huge public attention (e.g., see New York Times,
The Verge, and Insurance Journal) and calls for machine
learning systems that (at least approximately) satisfy accu-
racy parity. For example, in a healthcare spending prediction
system, stakeholders do not want the prediction error gaps
to be too large among different demographic subgroups.
Formally, accuracy parity is defined as follows:

Definition 2.1. Given a joint distribution D, a predictor i
satisfies accuracy parity if Errp, (h) = Errp, (h).

In practice the exact equality of accuracy between two
groups is often hard to ensure, so we define error gap to
measure how well the model satisfies accuracy parity:

Definition 2.2. Given a joint distribution D, the error gap
of a hypothesis h is Agy(h) := |Errp, (h) — Errp, (h)].

By definition, if a model satisfies accuracy parity, Ag,,(h)
will be zero. Next we introduce two distance metrics that
will be used in our theoretical analysis and algorithm design:

* Total variation distance: it measures the largest possible
difference between the probabilities that the two probabil-
ity distributions can assign to the same event . We use
drv (P, Q) to denote the total variation:

drv(P, Q) := sup P(E) — Q(E)|.

* Wasserstein distance: the Wasserstein distance between

two probability distributions is
[ sar [ o
Q Q

where || f|| is the Lipschitz semi-norm of a real-valued
function of f and (2 is the sample space over which two
probability distributions P and Q are defined. By the
Kantorovich-Rubinstein duality theorem (Villani, 2008]),
we recover the primal form of the Wasserstein distance,
defined as

Wi(P,Q) = sup
fe{f:IfllL <1}

)

Wi (P,Q):= inf

d(X,Y)dy(X,Y),
Lt / (X,Y) dy(X,Y)

where I'(P, Q) denotes the collection of all couplings of
P and Q, and X and Y denote the random variables with
law P and Q respectively. Throughout this paper we use
L, distance for d(-, -), but extensions to other distances,
e.g., Lo distance, is straightforward.

3. Main Results

In this section, we first characterize why accuracy dispar-
ity arises in regression models. More specifically, given a
hypothesis h € H, we first prove a lower bound of joint
errors. Then, we provide an error decomposition theorem

which upper bounds the accuracy disparity and decompose
it into the distance between marginal label distributions and
the distance between conditional representations. Based on
these results, we give a geometric interpretation to visualize
the feasible region of Errp, and Errp, and illustrate how
error gap arises when learning a hypothesis / that minimizes
the global square error. Motivated by the error decomposi-
tion theorem, we propose two algorithms to reduce accuracy
disparity, connect the game-theoretic optima of the objective
functions in our algorithms with our theorems, and describe
the practical implementations of the algorithms. Due to the
space limit, we defer all the detailed proofs to the appendix.

3.1. Bounds on Conditional Errors and Accuracy
Disparity Gap

Before we provide the prescriptive analysis of the accuracy
disparity problem in regression, it is natural to ask whether
accuracy parity is achievable in the first place. Hence, we
first provide a sufficient condition to achieve accuracy parity
in regression.

Proposition 3.1. Assume both Ep_[Y] and Ep, [Y?] are
equivalent for any A = a, then using a constant predictor
ensures accuracy parity in regression.

Proposition [3.1] states if the first two order moments
of marginal label distributions are equal across different
groups, then using a constant predictor leads to accuracy
parity in regression. Proposition [3.1]is a relaxation of our
proposed error decomposition theorem (Theorem[3.2)) which
requires the total variation distance between group-wise
marginal label distributions to be zero. However, the con-
dition rarely holds in real-world scenarios and it does not
provide any insights to algorithm design. Next we provide
more in-depth analysis to understand why accuracy disparity
appears in regression models and provide algorithm inter-
ventions to mitigate the problem.

When we learn a predictor, the prediction function induces
x - Y, where Y is the predicted target variable given
by hypothesis h. Hence for any distribution Dy (Dy) of X,
the predictor also induces a distribution 3Dy (hyD1) of Y.
Recall that the Wasserstein distance is metric, hence the
following chain of triangle inequalities holds:

Wi (Do(Y), D1(Y)) < Wi (Do(Y), hyDo) + Wi(hyDo, hyD1)
+ Wi(hyD1, D1(Y))

Intuitively, W1 (Do (Y'), hyD,) measures the distance be-
tween the true marginal label distribution and the predicted
one when A = a. This distance is related to the prediction
error of function h conditioned on A = a:

Lemma 3.1. Let ¥ = A(X), then for a € {0,1},
Wi(Do(Y), h4Dy) < \/Errp, (h).
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Now we can get the following theorem that characterizes
the lower bound of joint error on different groups:

Theorem 3.1. Let ¥ = h(X) be the predicted variable,
then Errp, (h) + Errp, () > 3 [(Wi(Do(Y), D1(Y)) —

Wi(hyDo, hyD1)), |*.

In Theorem [3.1] we see that if the difference between
marginal label distributions across groups is large, then
statistical parity could potentially lead to a large joint error.
Moreover, Theorem 3.1 could be extended to give a lower
bound on the joint error incurred by £ as well:

Corollary 3.1. Let Y = A(X) and a = D(A =
0) € [0,1], we have Errp(h) > jmin{a,1 — o} -

[(W(Do(Y), D1 (Y)) — Wi (hsDo, D)), ]

Now we upper bound the error gap. We first relate the
error gap to marginal label distributions and the predicted
distributions conditioned on Y = y:

Theorem 3.2. If Assumption [2.1] holds, then for Vh € H,
let Y = h(X), the following inequality holds:

Ag(h) < 8M?dry(Do(Y), D1(Y))
+3M min{Ep, [[Epy[Y] — Epy [Y][]
Ep, [[Epy v] - Epy Y1}

Remark We see that the error gap is upper bounded by
two terms: the distance between marginal label distributions
and the discrepancy between conditional predicted distribu-
tions across groups. Given a dataset, the distance between
marginal label distributions is a constant since the marginal
label distributions are fixed. For the second term, if we
can minimize the discrepancy of the conditional predicted
distribution across groups, we then have a model that is free
of accuracy disparity when the marginal label distributions
are well aligned.

Geometric Interpretation By Theorem and Theo-
rem[3.2] we can visually illustrate how accuracy disparity
arises given data distribution and the learned hypothesis that
aims to minimize the global square error. In Figure[l] given
the hypothesis class H, we use the line Errp, +Errp, = B
to denote the lower bound in Theorem 3.1 and the two lines
|Errp, — Errp, | = A to denote the upper bound in Theo-
rem[3.2] These three lines form a feasible region (the green
area) of Errp, and Errp, under the hypothesis class H. For
any optimal hypothesis A which is solely designed to mini-
mize the overall error, the best the hypothesis h can do is to
intersect with one of the two bottom vertices. For example,
the hypotheses (the red dotted line and the blue dotted line)
trying to minimize overall error intersect with the two ver-
tices of the region to achieve the smallest Errp, -intercept
(Errp, -intercept), due to the imbalance between these two

groups. However, since these two vertices are not on the
diagonal of the feasible region, there is no guarantee that the
hypothesis can satisfy accuracy parity (Errp, = Errp,),
unless we can shrink the width of green area to zero.

3.2. Algorithm Design

Inspired by Theorem [3.2] we can mitigate the error gap by
aligning the group distributions via minimizing the distance
of the conditional distributions across groups. However,
it is intractable to do so explicitly in regression problems
since Y can take infinite values on R. Next we will present
two algorithms to approximately solve the problem through
adversarial representation learning.

Given a Markov chain X -2+ Z i> 17, we are inter-
ested in learning group-invariant conditional representa-
tions so that the discrepancy between the induced condi-
tional distributions DY (Z = g(X)) and DY (Z = g(X))
is minimized. In this case, the second term of the upper
bound in Theorem@]is minimized. However, it is in gen-
eral not feasible since Y is a continuous random variable.
Instead, we propose to learn the representations of Z to
minimize the discrepancy between the joint distributions
Do(Z = g(X),Y) and D1(Z = g(X),Y). Next, we will
show the distances between conditional predicted distribu-
tions DY (Z = g(X)) and DY (Z = g(X)) are minimized
when we minimize the joint distributions Dy (Z = ¢(X),Y’)
and Dy (Z = g(X),Y) in Theorem [3.3|and Theorem3.4]

To proceed, we first consider using the total variation dis-
tance to measure the distance between two distributions. In
particular, we can choose to learn a binary discriminator
f:+Z xY — A that achieves minimum binary classi-
fication error on discriminating between points sampled
from two distributions. In practice, we use the cross-entropy
loss as a convex surrogate loss. Formally, we are going to
consider the following minimax game between g and f:

%igm‘?x CEp(A | f(g(X),Y)) (1

Interestingly, for the above equation, the optimal feature
transformation g corresponds to the one that induces invari-
ant conditional feature distributions.

Theorem 3.3. Consider the minimax game in (I). The
equilibrium (g*, f*) of the game is attained when 1).
Z = ¢*(X) is independent of A conditioned on Y; 2).
f(2Y)=D(A=1]Y,2).

Since in the equilibrium of the game Z is independent of
A conditioned on Y, the optimal f*(Z,Y") could also be
equivalently written as f*(Z,Y) =D(A=1]|Y), i.e., the
only useful information for the discriminator in the equilib-
rium is through the external information Y". In Theorem [3.3]
the minimum cross-entropy loss that the discriminator (the
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equilibrium of the game) can achieve is H(A | Z,Y) (see
Proposition[AT]in Appendix [A). For any feature transform
g, by the basic property of conditional entropy, we have:

min CEp(4 || f(9(X), Y)) = H(A| Z,Y)

—H(A|Y)—I(A;Z]Y).

We know that H(A | Y) is a constant given the data dis-
tribution. The maximization of ¢ in (I) is equivalent to
the minimization of min,_,x) I(A;Z | Y), and it fol-
lows that the optimal strategy for the transformation g is
the one that induces conditionally invariant features, e.g.,
I(A;Z | Y) = 0. Formally, we arrive at the following
minimax problem:

min max MSEp (h(g(X)), Y)=A-CEp(A|| f(g(X

):Y))

In the above formulation, the first term corresponds to the
minimization of prediction loss of the target task and the
second term is the loss incurred by the adversary f. As a
whole, the minimax optimization problem expresses a trade-
off (controlled by the hyper-parameter A > () between
accuracy and accuracy disparity through the representation
learning function g.

Wasserstein Variant Similarly, if we choose to align joint
distributions via minimizing Wasserstein distance, the fol-
lowing theorem holds.

Theorem 3.4. Let the optimal feature transformation g* :=
arg ming W1 (Do(g(X),Y),D1(g9(X),Y)), then DY (Z =
" (X)) = DY (Z = g*(X)) almost surely.

One notable advantage of using the Wasserstein distance
instead of the TV distance is that, the Wasserstein distance is
a continuous functional of both the feature map g as well as
the discriminator f (Arjovsky et al.,[2017). Furthermore, if
both g and f are continuous functions of their corresponding
model parameters, which is the case for models we are
going to use in experiments, the objective function will
be continuous in both model parameters. This property
of the Wasserstein distance makes it more favorable from
an optimization perspective. Using the dual formulation,
equivalently, we can learn a Lipschitz function f : ZxY —
R as a witness function:

i MSEp(h(g(X)), Y
h,!J:ZoNQ%OI}ZlNgnDlfil\r;l\;liLXSl D( (g( )) )

+A- ’f(Z(%Y) _f(Zl7Y)|

Game-Theoretic Interpretation We provide a game-
theoretic interpretation of our algorithms in Figure [2] to
make our algorithms easier to follow.

External
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Figure 2: The game-theoretic illustration of our algorithms.
Bob’s goal is to guess the group membership A of each
feature Z sent by Alice with the corresponding labels Y
as the external information, while Alice’s goal is to find a
transformation from X to Z to confuse Bob.

As illustrated in Figure |Z|, consider Alice (encoder) and Bob
(discriminator) participate a two-player game: upon receiv-
ing a set of inputs X, Alice applies a transformation to the
inputs to generate the corresponding features Z and then
sends them to Bob. Besides the features sent by Alice, Bob
also has access to the external information Y, which corre-
sponds to the corresponding labels for the set of features
sent by Alice. Once having both the features Z and the
corresponding labels Y from external resources, Bob’s goal
is to guess the group membership A of each feature sent by
Alice, and to maximize his correctness as much as possible.
On the other hand, Alice’s goal is to compete with Bob,
i.e., to find a transformation to confuse Bob as much as she
can. Different from the traditional game without external
information, here due to the external information Y Bob
has access to, Alice cannot hope to fully fool Bob, since
Bob can gain some insights about the group membership
A of features from the external label information anyway.
Nevertheless, Theorem [3.3]and Theorem 3.4] both state that
when Bob uses a binary discriminator or a Wasstertein dis-
criminator to learn A, the best Alice could do is to to learn
a transformation g so that the transformed representation Z
is insensitive to the values of A conditioned on any values
of Y =y.

4. Experiments

Inspired by our theoretical results that decompose accuracy
disparity into the distance between marginal label distribu-
tions and the distance between conditional representations,
we propose two algorithms to mitigate it. In this section,
we conduct experiments to evaluate the effectiveness of our
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Figure 3: Overall results: R? regression scores and error gaps of different methods in five datasets. Our goal is to achieve
high R? scores with small error gap values (i.e., the most desirable points are located in the upper-left corner). Our proposed
methods achieve the best trade-offs in Adult, COMPAS, Crime and Insurance datasets.

proposed algorithms in reducing the accuracy disparity.

4.1. Experimental Setup

Datasets We conduct experiments on five benchmark
datasets: the Adult dataset (Dua and Graft],2017), COMPAS
dataset (Dieterich et al., [2016), Communities and Crime
dataset (Dua and Graff}, [2017), Law School dataset (Wight{
man and Ramsey, [1998) and Medical Insurance Cost
dataset (Lantz, 2013). All datasets contain binary sensi-
tive attributes (e.g., male/female, white/non-white). We
refer readers to Appendix [B] for detailed descriptions of the
datasets and the data pre-processing pipelines. Note that
although the Adult and COMPAS datasets are for binary
classification tasks, recent evidences (Que and Belkin, [2016;
Muthukumar et al., 20205 [Hui and Belkin, 202 1)) suggest that
square loss achieves comparable performance with cross-
entropy loss and hinge loss. In this regard, we take them as
regression tasks with two distinctive ordinal values.

Methods We term the proposed algorithms CENET and
WASSERSTEINNET for our two proposed algorithms respec-
tively and implement them using Pytorch (Paszke et al.|
2019)E| To the best of our knowledge, no previous study
aims to minimize accuracy disparity in regression using rep-
resentation learning. However, there are other similar fair-
ness notions and mitigation techniques proposed for regres-
sion and we add them as our baselines: (1) Bounded group
loss (BGL) (Agarwal et al.,[2019), which asks for the pre-
diction errors for any groups to remain below a predefined
level €; (2) Coefficient of determination (COD) (Komiyama!
et al., [2018)), which asks for the coefficient of determina-
tion between the sensitive attributes and the predictions to
remain below a predefined level e.

For each dataset, we perform controlled experiments by

2Qur code is publicly available at:
https://github.com/JFChi/Understanding—and
~Mitigating—Accuracy-Disparity-in-Regressi
on
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Figure 4: R? regression scores and error gaps when A changes in CENET and WASSERSTEINNET. The general trend is
that with the increase of ), the error gap values and R? scores gradually decrease, except the cases where A increases in
CENET in Adult, Crime and Insurance dataset. The exceptions are caused by the instability of the training processes of

CENET (Arjovsky and Bottou, 2017).

fixing the regression model architectures to be the same. We
train the regression models via minimizing mean squared
loss. Among all methods, we vary the trade-off parameter
(i.e., A in CENET and WASSERSTEINNET and ¢ in BGL
and CoD) and report and the corresponding R? scores and
the error gap values. For each experiment, we average
the results for ten different random seeds. Note that COD
cannot be implemented on the Adult dataset since the size
of the Adult dataset is large and the QCQP optimization
algorithm to solve COD needs a quadratic memory usage
of the dataset size. We refer readers to Appendix [B] for
detailed hyper-parameter settings in our experiments and
Appendix [C] for additional experimental results.

4.2. Results and Analysis

The overall results are visualized in Figure[3] The following
summarizes our observations and analyses: (1) Our pro-
posed methods WASSERSTEINNET and CENET are most
effective in reducing the error gap values in all datasets com-
pared to the baselines. Our proposed methods also achieve
the best trade-offs in Adult, COMPAS, Crime and Insurance

datasets: with the similar error gap values (R? scores), our
methods achieve the highest R? scores (lowest error gap
values). In the Law dataset, the error gap values decrease
with high utility losses in our proposed methods due the
significant trade-offs between the predictive power of the re-
gressors and accuracy parity. We suspect this is because the
feature noise distribution in one group differs significantly
than the others in the Law dataset. (2) Among our proposed
methods, WASSERSTEINNET are more effective in reducing
the error gap values while CENET might fail to decrease
the error gaps in Adult, Crime and Insurance datasets and
might even cause non-negligible reductions in the predictive
performance of the regressors in Adult and Crime datasets.
The reason behind it is that the minimax optimization in
the training of CENET could lead to an unstable training
process under the presence of a noisy approximation to the
optimal discriminator (Arjovsky and Bottou| 2017). We will
provide more analysis in Figure[d]next. (3) Compared to our
proposed methods, BGL and COD can also decrease error
gaps to a certain extent. This is because: (i) BGL aims to
keep errors remaining relatively low in each group, which
helps to reduce accuracy disparity; (ii) CoD aims to reduce
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the correlation between the sensitive attributes and the pre-
dictions (or the inputs) in the feature space, which might
somehow reduce the dependency between the distributions
of these two variables.

We further analyze how the trade-off parameter A in the
objective functions affect the performance of our methods.
Figure@] shows R? regression scores and error gaps when
A changes in CENET and WASSERSTEINNET. We see the
general trend is that with the increase of the trade-off pa-
rameter )\, the error gap values and R? scores gradually
decrease. Plus, the increase of A generally leads to the insta-
bility of training processes with larger variances of both R?
scores and error gap values. In Adult, Crime and Insurance
datasets, WASSERSTEINNET is more effective in mitigating
accuracy disparity when )\ increases, while CENET fails to
decrease the error gap values and might suffer from signif-
icant accuracy loss. The failure to decrease the error gap
values with significant accuracy loss and variance indicates
the estimation of total variation in minimax optimization for
CENET could lead to a highly unstable training process (Ar]
jovsky and Bottou} |2017)).

5. Related Work

Algorithmic Fairness In the literature, two main notions
of fairness, i.e., group fairness and individual fairness, has
been widely studied (Dwork et al.| 2012} Zemel et al.| 2013
Feldman et al.| 2015} |[Zafar et al., 2017a;; [Hardt et al., [ 2016;
Zafar et al., 2017b; Hashimoto et al., [2018; Madras et al.}
2019). In particular, |Chen et al.| (2018) analyzed the im-
pact of data collection on discrimination (e.g., false positive
rate, false negative rate, and zero-one loss) from the per-
spectives of bias-variance-noise decomposition, and they
suggested collecting more training examples and collect
additional variables to reduce discrimination. [Khani and
Liang| (2019) argued that the loss difference among differ-
ent groups is determined by the amount of latent (unob-
servable) feature noise and the difference between means,
variances, and sizes of the groups with an assumption that
there are a latent random feature and a noise feature that
are involved in the generation of the observable features.
Khani and Liang| (2020) further found out that spurious
features from inputs can hurt accuracy and affect groups
disproportionately. |[Zhao and Gordon|(2019) proposed an
error decomposition theorem which upper bounds accuracy
disparity in the classification setting by three terms: the sum
of group-wise noise, the distance of marginal input distri-
butions across groups and the discrepancy of group-wise
optimal decision functions. However, their error decompo-
sition theorem does not lead to any mitigation approaches
in classification: minimizing the distance of marginal input
distributions across groups does not necessarily mitigate ac-
curacy disparity since it could possibly exacerbate the noise

term and the discrepancy of group-wise optimal decision
functions in the meantime. Besides, the optimal group-wise
decision functions are unknown and intractable to approxi-
mate in the feature spaces, which also adds to the difficulty
of applying their upper bound directly. In comparison, our
work only assumes that there is a joint distribution where all
variables are sampled and precisely characterizes disparate
predictive accuracy in regression in terms of the distance be-
tween marginal label distributions and the distance between
conditional representations. Inspired by our theoretical re-
sults, we also propose practical algorithms to mitigate the
problem when collecting more data becomes infeasible.

Fair Regression A series of works focus on fairness under
the regression problems (Calders et al.| 2013} Johnson et al.|
2016}, Berk et al., 2018}; [Komiyama et al., 2018}; |Chzhen
et al., [2020b; [Bigot, [2020). To the best of our knowledge,
no previous study aimed to minimize accuracy disparity in
regression from representation learning. However, there
are different fairness notions and techniques proposed for
regression: |/Agarwal et al.| (2019) proposed fair regression
with bounded group loss (i.e., it asks that the prediction er-
ror for any protected group remains below some pre-defined
level) and used exponentiated-gradient approach to satisfy
BGL. Komiyama et al.|(2018)) aimed to reduce the coeffi-
cient of determination between the sensitive attributes be-
tween the predictions to some pre-defined level and used an
off-the-shelf convex optimizer to solve the problem. [Mary
et al.[(2019) used the Hirschfeld-Gebelein-Rényi Maximum
Correlation Coefficient to generalize fairness measurement
to continuous variables and ensured equalized odds (demo-
graphic parity) constraint by minimizing the x? divergence
between the predicted variable and the sensitive variable
(conditioned on target variable). Zink and Rose| (2020) con-
sidered regression problems in health care spending and
proposed five fairness criteria (e.g., covariance constraint,
net compensation penalization, etc.) in the healthcare do-
main. [Narasimhan et al.| (2020) proposed pairwise fair-
ness notions (e.g., pairwise equal opportunity requires each
pair from two arbitrary different groups to be equally-likely
to be ranked correctly) for ranking and regression models.
Chzhen et al.|(2020a) studied the regression problem with
demographic parity constraint and showed the optimal fair
predictor is achieved in the Wasserstein barycenter of group
distributions. In contrast, we source out the root of accu-
racy disparity in regression through the lens of information
theory and reduce it via distributional alignment using TV
distance and Wasserstein distance in the minimax games.

Fair Representation A line of works focus on building
algorithmic fair decision making systems using adversar-
ial techniques to learn fair representations (Edwards and
Storkey, [2015; Beutel et al., [2017} Zhao et al.,[2019). The
main idea behind is to learn a good representation of the
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data so that the data owner can maximize the accuracy while
removing the information related to the sensitive attribute.
Madras et al.|(2018]) proposed a generalized framework to
learn adversarially fair and transferable representations and
suggests using the label information in the adversary to
learn equalized odds or equal opportunity representations in
the classification setting. Apart from adversarial represen-
tation, recent work also proposed to use distance metrics,
e.g., the maximum mean discrepancy (Louizos et al.|[2015)
and the Wasserstein distance (Jiang et al.| 2019) to remove
group-related information. Prior to this work, it is not clear
aligning conditional distributions via adversarial represen-
tation learning could lead to (approximate) accuracy parity.
Our analysis is the first work to connect accuracy parity and
(conditional) distributional alignment in regression and we
also provide algorithm interventions to mitigate the problem
where it is challenging to align conditional distributions in
regression problems.

6. Conclusion

In this paper, we theoretically and empirically study ac-
curacy disparity in regression problems. Specifically, we
prove an information-theoretic lower bound on the joint
error and a complementary upper bound on the error gap
across groups to depict the feasible region of group-wise
errors. Our theoretical results indicate that accuracy dispar-
ity occurs inevitably due to the marginal label distributions
differ across groups. To reduce such disparity, we further
propose to achieve accuracy parity by learning conditional
group-invariant representations using statistical distances.
The game-theoretic optima of the objective functions in our
proposed methods are achieved when the accuracy dispar-
ity is minimized. Our empirical results on five benchmark
datasets demonstrate that our proposed algorithms help to
reduce accuracy disparity effectively. We believe our re-
sults take an important step towards better understanding
accuracy disparity in machine learning models.
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Appendix
In the appendix, we give the proofs of the theorems and claims in our paper, the experimental details and more experimental

results.

A. Missing Proofs

Proposition 3.1. Assume both Ep,_ [Y] and Ep, [Y?] are equivalent for any A = a, then using a constant predictor ensures
accuracy parity in regression.

Proof. Fora € {0, 1}, we have

Errp, (h)
= Ep,[(M(X) —Y)?]
= Ep,[(M(X) — Ep, (Y) +Ep,(Y) - Y)?]
= Ep,[(M(X) — Ep, (Y))?] + Ep,[(Y — Ep, (Y))*] - 2Ep, [(2(X) — Ep, (Y))(Y — Ep,(Y))].

It is easy to see the first two terms are equal across different groups since Ep, [Y], Ep, [Y2] and h(X) are the same across
different groups. For the third term, we have

Ep, [(M(X) —Ep,(Y))(Y —Ep,(Y))]
=Ep,x)[Ep,vix)[(M(X) —Ep,(Y))(Y —Ep,(Y)) | X]]
=Ep,x)[(M(X) —Ep,[Y | X])(Ep,[Y | X]) — Ep,[Y | X])]
=0.

Thus, the errors across different groups made by the constant predictor are the same if Ep, [Y] and Ep, [Y?] are equivalent
across different groups. ]

Lemma 3.1. Let Y = h(X), then for a € {0,1}, W1 (Do (Y), hsDa) < /Errp, (h).
Proof. The prediction error conditioned on a € {0, 1} is

Errpa(h) = E[(Y _ h(X))Q‘A _ a}
E2[|Y — h(X)||A = d]
(F(Da,(Y)i,rll)f{,,(h(x))) E[lY - h(X)H)

WE(Du(Y), hyDy).

v

v

Taking square root at both sides then completes the proof. |

Theorem 3.1. Let ¥ = h(X) be the predicted variable, then Errp, (h) + Errp, (k) > 1[(Wi(Do(Y),D1(Y)) —
Wi (hyDo, hyD1)), |”.

Proof. Since W1(+, ) is a distance metric, the result follows immediately the triangle inequality and Lemma

Wy (Do (Y)7 D, (Y)) < v/ Errp, (h) + Wl(hﬁ'Do, hﬁDl) + v/ Errp, (h)

Rearrange the equation above and by AM-GM inequality, we have

W1(Do(Y), D1(Y)) — Wi(hyDo, hyD1) < /Errp, (h) + /Errp, (h) < \/2(Errp, (h) + Errp, (h)).
Taking square at both sides then completes the proof. ]

Corollary 3.1. LetY = h(X) and a = D(A = 0) € [0, 1], we have Errp (h) > 2 min{a, 1—a}- [(W1(Do(Y), D1(Y))—
Wi(hyDo, hsD1)) , |*.
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Proof. The joint error is

Errp(h)
= aErrp,(h) + (1 — &) Errp, (h)
> min{w, 1 — a}(Errp, (k) + Errp, (h))

1 .
= min{a, 1 — a}[(Wi(Do(Y), D1(Y)) — Wi(hyDo, hyD1)) ,J*.  (TheoremB.1)
Theorem 3.2. If Assumptionholds, then for Vh € H, let Y = h(X), the following inequality holds:
Agn(h) < 8M?dry(Do(Y), D1 (Y)
+ 3M min{Ep, [Ep [7] - Epy [Pl
Ep, [[Epy [Y] — Epv[Y][]}.

Proof. First, we show that for a € {0,1}:
Errp, (h) = Ep, [(h(X) = Y)?] = Ep, [h*(X) = 2Y h(X) + Y?] = Ep,[h*(X) — 2V h(X)] + Ep, [Y].
Next, we bound the error gap:

|Errp, (h) — Errp, (h)
= |Ep, [h*(X) — 2Y'h(X)] + EDO [V?] = Ep, [W*(X) — 2Y h(X)] - Ep, [Y?]]
< [Ep, [R*(X) — 2Yh(X)] — Ep, [R*(X) — 2Y W(X)]| + |Ep, [Y?] — Ep, [Y?]|. (Triangle inequality)

For the second term, we can easily prove that
[Ep, [Y?] = Ep, [Y?]| = [(Y?,dDo — dD1)| < Y%, [|[dDo — dD1 |1 < 2M?dry(Do(Y), Di(Y)),

where the second equation follows Holder’s inequality and the last equation follow the definition of total variation distance.
Now it suffices to bound the remaining term:

[Ep, [h*(X) — 2Yh(X)] — Ep, [A*(X) — 2V h(X)]]

’/h x) = 2y) dpo(x, y) — /h )—Qy)dm(x,y)‘
'// —2y) dpo(x|y)duo(y // —2y) dpo(x|y)dus (y )’ (Triangle inequality)

// ) el ) — | | W60~ 20) o))

‘We upper bound the first term:

// — 2y) dpo(xly) dpo(y // = 2y) dpo(x|y) dp (y )’

< [ [ 11600x) — 20)@ot9) = s (1) ol

< /Iduo(y)*du1(y)|/|83{ph(X)|lh(X)*leduo(XIy)

<M /]EDO[Ih(X) —2Y[|Y = y] | duo(y) — dpa (y))| (Assumption[2.T)

< 3M? / | dpio(y) — dpa (y)| (Assumption[2.T)
< 6M?dry(Do(Y), D1 (Y)).
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Note that the last equation follows the definition of total variation distance. For the second term, we have:

[ 60t = 20 s () s )~ [ [ G130~ 20) ool s v)

‘ / h?(x)(dpa (x]y) — dpo(xy)) dp (y ’ ’ / / 2y h(x)(dpa (x]y) — dpo(xly)) dp (y )‘ (Triangle inequality)

<3M Ep, [|ED3[ ] = Epy Y1 (Assumption 2.T)

To prove the last equation, we first see that:

[t~ o) dul(y)‘

X

< ‘ I ) @ xl) = o) dul(y)‘

< M/ [Ep, [M(X)|Y = y] = Ep, [A(X)|Y =y dpi(y) (Assumption 2.T)

Similarly, we also have:

// 2y h(x)(dp (x]y) — dpo(x]y)) diu (y)’
<2‘// sup y)h(x)(du (x|y) — duo(xy))dul(y)‘

<2 [ [Ep, (b)Y = 5]~ Bo, HO)IY = 3] i) (Assumption[ZT)
— 2M Ep, [y [7] - Eny V)]

By symmetry, we can also see that:

|Ep, [1*(X) = 2V h(X)] — Ep, [h*(X) = 2V h(X)]| < 6M>dry(Do(Y), Di(Y)) + 3M Ep, [[Epy [Y] — Epy [Y]]]

Combine the above two equations yielding:
[Ep, [h%(X) — 2V R(X)] — Ep, [h%(X) — 2V A(X)]|
< 6M2dry(Do(Y), D1(Y)) + 3M min{Ep, [|[Epy [Y] — Epy [V]1], Ep, [[Epy [Y] — Epy [Y][]}.

Incorporating the terms back to the upper bound of the error gap then completes the proof. ]

Theorem 3.3. Consider the minimax game in (I). The equilibrium (g*, f*) of the game is attained when 1). Z = ¢*(X) is
independent of A conditioned onY’; 2). f*(Z,Y)=D(A=1|Y,2).

Proof. To prove Theorem [3.3] we first give Proposition [A.T]

Proposition A.1. For any feature map g : X — Z, assume that F contains all the randomized binary classifiers and
Fof:Z2x)Y— A thenmingcr CEp(A || f(9(X),Y))=H(A|Z)Y).

Proof. By the definition of cross-entropy loss, we have:
CEp(A || f) = —Ep [I(A = 0)log(1 — f(g(X),Y)) + I(A = 1)log(f(9(X),Y))]
= —Eg,p [[(A = 0)log(1 - f(2,Y)) + I(A = 1) log(f(Z,Y))]
= —EzyEazy [[(A=0)log(l - f(Z,Y)) + (A = 1)log(f(Z,Y))]
= —Ezy [D(A=0]|2Y)log(1 - f(ZY))+D(A=1]2,Y)log(f(Z,Y))]
=Ezy [Dx(D(A| Z,Y) || f(2,Y))] + H(A| 2,Y)
>H(A|Z)Y),
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where Dy (-||-) denotes the KL divergence between two distributions. From the above inequality, it is also clear that the
minimum value of the cross-entropy loss is achieved when f(Z,Y") equals the conditional probability D(A =1 | Z,Y),
ie, f(Z,Y)=DA=1|Z=g(X),Y). u

Proposition states that the minimum cross-entropy loss that the discriminator can achieve is H(A | Z,Y’) when f is the
conditional distribution D(A =1 | Z = g(X),Y). By the basic property of conditional entropy, we have:

tmin CEp(4 | f(9(X),Y)) = H(A | Z.Y) = H(A|Y) = I(A:Z| Y).

Note that H(A | Y) is a constant given the distribution D, so the maximization of g is equivalent to the minimization
of ming_yx)y I(A;Z | Y), and it follows that the optimal strategy for the transformation g is the one that induces
conditionally invariant features, e.g., [(A4; Z | Y') = 0. On the other hand, if g* plays optimally, then the optimal response
of the discriminator f is given by

FZY)=DA=1|Z=g¢"(X),Y)=DA=1]Y).
n

Theorem 3.4. Let the optimal feature transformation g* := argmin, W1 (Do (g9(X),Y), D1(g(X),Y")), then DY (Z =
g*(X)) = DY (Z = g*(X)) almost surely.

Proof. By the definition of Wasstertein distance, we have:

Wi (Do(Z,Y), Di(Z,Y)) = wer(igg,m) / d((zo,Y0), (z1,91)) dv((Z0, Y0), (z1,y1))

—  mf / d((z0,30), (z1,91)) dY(0, 21 | %0, 1) d7(30, 1)
~€L(Do,D1)

inf zo — Z1||1 + —y1|dvy(zo, 2 ,y1)d ,
%F(DO,D”/ || 0 1||1 \yo y1\ ’V( 05%1 |yo yl) V(yo y1)

Y

weF(igf,Dl)/ lyo — y1| dv(yo, y1) dv(Zo, 21 | Yo, y1)

= i /Iyo — 1| dy(yo, y1)

YEL(D (Y) Dy1(Y))
= Wi(Do(Y), D1(Y)).

To finish the proof, next we prove the lower bound is achieved when DY (Z = g*(X)) = DY (Z = g*(X)): itis easy to
see W1(DY(2), DY (2)) = [ |20 — 21 ||1 d¥(20. 21 | yo,y1) = O when the conditional distributions are equal. In this case,
when the Wasserstein distance is minimized, then Z is conditionally independent of A given Y almost surely. ]

B. Experimental Details

Adult The Adult dataset contains 48,842 examples for income prediction. The task is to predict whether the annual
income of an individual is greater or less than S0K/year based on the attributes of the individual, such as education level,
age, occupation, etc. In our experiment, we use gender (binary) as the sensitive attribute. The target variable (income) is
an ordinal binary variable: 0 if < 50K/year otherwise 1. After data pre-processing, the dataset contains 30,162/15,060
training/test instances where the input dimension of each instance is 113. We show the data distributions for different
demographic subgroups in Table|[T]

To preprocess the dataset, we first filter out the data records that contain the missing values. We then remove the sensitive
attribute from the input features and normalize the input features with its means and standard deviations. Note that we use
one-hot encoding for the categorical attributes.

For our proposed methods, we use a three-layer neural network with ReLLU as the activation function of the hidden layers
and the sigmoid function as the output function for the prediction task (we take the first two layers as the feature mapping).
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The number of neurons in the hidden layers is 60. We train the neural networks with the ADADELTA algorithm with the
learning rate 0.1 and a batch size of 512. The models are trained in 50 epochs. For the adversary networks in CENET and
WASSERSTEINNET, we use a two-layer neural network with ReLLU as the activation function. The number of neurons in the
hidden layers of the adversary networks is 60. The adversary network in CENET also uses sigmoid function as the output
function. The weight clipping norm in the adversary network of WASSERSTEINNET is 0.005. We use the gradient reversal
layer (Ganin et al., 2016) to implement the gradient descent ascent (GDA) algorithm for optimization of the minimax
problem since it makes the training process more stable (Daskalakis and Panageas|,2018). For the rest of the datasets we
used in our experiments, we also use a gradient reversal layer to implement our algorithms.

We use the Fairlearn toolkit (Bird et al., [2020) to implement BGL: we use the exponentiated-gradient algorithm with the
default setting as the mitigator and vary the upper bound € € {0.1,0.2,0.3,0.5} of the bounded group loss constraint. For
each value of €, we average the results of ten different random seeds.

COMPAS The COMPAS dataset contains 6,172 instances to predict whether a criminal defendant will recidivate within
two years or not. It contains attributes such as age, race, etc. In our experiment, we use race (white or non-white) as the
sensitive attribute and recidivism as the target variable. We split the dataset into train and test sets with the ratio 7/3. We
show the data distributions for different demographic subgroups in Table 2]

For all methods, we use a two-layer neural network with ReLU as the activation function of the hidden layers and the
sigmoid function as the output function for the prediction task (we take the first layer as the feature mapping). The number of
neurons in the hidden layers is 60. We train the neural networks with the ADADELTA algorithm with the learning rate 1.0 and
a batch size of 512. The models are trained in 50 epochs. For the adversary networks in CENET and WASSERSTEINNET,
we use a two-layer neural network with ReLU as the activation function. The number of neurons in the hidden layers of the
adversary networks is 10. The adversary network in CENET also uses sigmoid function as the output function. The weight
clipping norm in the adversary network of WASSERSTEINNET is 0.05.

We use the Fairlearn toolkit to implement BGL: we use the exponentiated-gradient algorithm with the default setting as the
mitigator and vary the upper bound € € {0.1,0.2,0.3,0.5} of the bounded group loss constraint. For each value of €, we
average the results of ten different random seeds.

As for CoD, we follow the source implementationE] We use the same hyper-parameter settings as (Komiyama et al., 2018)):
We use the kernelized optimization with the random Fourier features and the RBF kernel (we vary hyper-parameter of the
RBF kernel v € {0.1,1.0,10,100}) and report the best results with minimal MSE loss for each time we change the fairness
budget e. We also vary € € {0.01,0.1,0.5, 1.0} and average the results of ten different random seeds.

Table 1: Data distribution of Y and Table 2: Data distribution of Y and
A in Adult dataset. A in COMPAS dataset.
Y=0 Y=1 Y=0 Y=1
A=0 20988 9539 A=0 1849 1148
A=1 13026 1669 A=1 1514 1661

Communities and Crime The Communities and Crime dataset contains 1,994 examples of socio-economic, law enforce-
ment, and crime data about communities in the United States. The task is to predict the number of violent crimes per 100K
population. All attributes in the dataset have been curated and normalized to [0, 1]. In our experiment, we use race (binary)
as the sensitive attribute: 1 if the population percentage of the white is greater or equal to 80% otherwise 0. After data
pre-processing, the dataset contains 1,595/399 training/test instances where the input dimension of each instance is 96. We
visualize the data distributions for different demographic subgroups in Figure [Sa]

To preprocess the dataset, we first remove the non-predictive attributes and sensitive attributes from the input features. Note
that all features in the dataset have already been normalized in [0, 1] so that we do not perform additional normalization to
the features. We then replace the missing values with the mean values of the corresponding attributes.

3https://github.com/jkomiyama/fairregresion
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For all methods, we use a two-layer neural network with ReL.U as the activation function of the hidden layers and the
sigmoid function as the output function for the prediction task (we take the first layer as the feature mapping). The number of
neurons in the hidden layers is 50. We train the neural networks with the ADADELTA algorithm with the learning rate 0.1 and
a batch size of 256. The models are trained in 100 epochs. For the adversary networks in CENET and WASSERSTEINNET,
we use a two-layer neural network with ReLU as the activation function. The number of neurons in the hidden layers of the
adversary networks is 100. The adversary network in CENET also uses sigmoid function as the output function. The weight
clipping norm in the adversary network of WASSERSTEINNET is 0.002.

We use the Fairlearn toolkit to implement BGL: we use the exponentiated-gradient algorithm with the default setting as the
mitigator and vary the upper bound € € {0.01,0.02,0.03,0.05} of the bounded group loss constraint. For each value of e,
we average the results of ten different random seeds. Note that our experiment setup is different from (Agarwal et all [2019),
so our results cannot be directly compared to theirs.

As for CoD, we follow the same hyper-parameter settings as (Komiyama et al., 2018)): We use the kernelized optimization
with the random Fourier features and the RBF kernel (we vary hyper-parameter of the RBF kernel v € {0.1,1.0, 10, 100})
and report the best results with minimal MSE loss for each time we change the fairness budget e. The hyper-parameter
settings follow from (Komiyama et al.l [2018). We also vary € € {0.01,0.1,0.5, 1.0} and average the results of ten different
random seeds. Note that our experiment setup is different from (Komiyama et al.,[2018]), so our results cannot be directly
compared to theirs.
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Figure 5: Data distributions for different demographic subgroups in three datasets.
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Law School The Law School dataset contains 1,823 records for law students who took the bar passage study for Law
School Admissiorﬂ The features in the dataset include variables such as undergraduate GPA, LSAT score, full-time status,
family income, gender, etc. In our experiment, we use gender as the sensitive attribute and undergraduate GPA as the
target variable. We split the dataset into train and test sets with the ratio 8/2. We show the data distributions for different
demographic subgroups in Figure [5b|

For all methods, we use a two-layer neural network with ReL.U as the activation function of the hidden layers and the
sigmoid function as the output function for the prediction task (we take the first layer as the feature mapping). The number of
neurons in the hidden layers is 10. We train the neural networks with the ADADELTA algorithm with the learning rate 0.1 and
a batch size of 256. The models are trained in 100 epochs. For the adversary networks in CENET and WASSERSTEINNET,
we use a two-layer neural network with ReLU as the activation function. The number of neurons in the hidden layers of the
adversary networks is 10. The adversary network in CENET also uses sigmoid function as the output function. The weight
clipping norm in the adversary network of WASSERSTEINNET is 0.2.

We use the Fairlearn toolkit to implement BGL: we use the exponentiated-gradient algorithm with the default setting as the
mitigator and vary the upper bound € € {0.01,0.02,0.03,0.05} of the bounded group loss constraint. For each value of e,
we average the results of ten different random seeds. Note that our experiment setup is different from (Agarwal et al., 2019),
so our results cannot be directly compared to theirs.

As for CoD, we follow the same hyper-parameter settings as (Komiyama et al., 2018)): We use the kernelized optimization
with the random Fourier features and the RBF kernel (we vary hyper-parameter of the RBF kernel v € {0.1,1.0, 10, 100})
and report the best results with minimal MSE loss for each time we change the fairness budget e. The hyper-parameter
settings follow from (Komiyama et al., [2018). We also vary € € {0.01,0.1,0.5,1.0} and average the results of ten different
random seeds. Note that our experiment setup is different from (Komiyama et al.,|2018)), so our results cannot be directly
compared to theirs.

Medical Insurance Cost The medical insurance cost dataset (Lantz, [2013)) is a simulated dataset which was created
using real-world demographic statistics from the U.S. Census BureauE] The dataset reflect approximately reflect real-world
conditions and has been used in the research of regression (Panay et al.,[2019; Hittmeir et al.,[2019; [Pan et al., [2020). It
contains 1,338 medical expense examples for patients in the United States, with features such as gender, age, BMI, etc.,
indicating characteristics of the patient and total annual medical expenses charged to the patients. In our experiment, we use
gender as the sensitive attribute and the charged medical expenses as the target variable. In order to reflect the real-world
scenarios where the accuracy disparity is significant due to the small and imbalanced dataset, we sub-sample the dataset: we
randomly subsample 5% of examples with gender as male and 50% of examples with gender as female. After sub-sampling,
we get 364 examples in total (33 male examples and 331 female examples). We split the dataset into train and test sets with
the ratio 7/3. We visualize the data distributions for different demographic subgroups in Figure

For all methods, we use a two-layer neural network with ReL.U as the activation function of the hidden layers and the
sigmoid function as the output function for the prediction task (we take the first layer as the feature mapping). The number
of neurons in the hidden layers is 7. We train the neural networks with the SGD algorithm with the learning rate 0.1 and a
batch size of 64. The models are trained in 750 epochs. For the adversary networks in CENET and WASSERSTEINNET, we
use a two-layer neural network with ReL.U as the activation function. The number of neurons in the hidden layers of the
adversary networks is 7. The adversary network in CENET also uses sigmoid function as the output function. The weight
clipping norm in the adversary network of WASSERSTEINNET is 0.2.

We use the Fairlearn toolkit to implement BGL: we use the exponentiated-gradient algorithm with the default setting as the
mitigator and vary the upper bound e € {0.01,0.1, 0.5, 1.0} of the bounded group loss constraint. For each value of €, we
average the results of ten different random seeds.

As for CoD, we follow the same hyper-parameter settings as (Komiyama et al.,2018)): We use the kernelized optimization
with the random Fourier features and the RBF kernel (we vary hyper-parameter of the RBF kernel v € {0.1,1.0, 10, 100})
and report the best results with minimal MSE loss for each time we change the fairness budget e. The hyper-parameter
settings follow from (Komiyama et al., [2018). We also vary e € {0.01,0.1,0.5,1.0} and average the results of ten different

“We use the edited public version of the dataset which can be download here: https://github.com/algowatchpenn/Ger
ryFair/blob/master/dataset/lawschool.csv
>We download the public version of data here: https://www.kaggle.com/mirichoi0218/insurance


https://github.com/algowatchpenn/GerryFair/blob/master/dataset/lawschool.csv
https://github.com/algowatchpenn/GerryFair/blob/master/dataset/lawschool.csv
https://www.kaggle.com/mirichoi0218/insurance
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random seeds.

C. Additional Experimental Results and Analysis

In this section, we provide additional experimental results and analysis.
C.1. Classification Accuracy vs. Error Gaps in Adult and COMPAS Datasets
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Figure 6: Classification accuracy and error gaps of different methods in Adult and COMPAS datasets.

We also report the corresponding classification accuracy for Adult and COMPAS datasets here. In Figure [6] we can see that
our proposed methods achieve the best trade-offs in terms of classification accuracies and error gap values.

C.2. Impact of Fairness Trade-off in the Baseline Methods

We present additional experimental results and analyses to gain more insights into how the fairness trade-off parameters
(e.g., €) affect the performance of the model predictive performance and accuracy disparity in baseline methods.

Table 3: R? regression scores and error gaps when e changes in BGL.

€ 0.1 0.2 0.3 0.5
Adult R? 0.3508 0.3696 0.3696 0.3696
Agy  0.0612  0.0726  0.0726  0.0726

€ 0.1 0.2 0.3 0.5
COMPAS | R? 0.1478 0.1478 0.1507 0.1507
Ag,y  0.0072  0.0072  0.0086 0.0086

€ 0.01 0.02 0.03 0.05
Crime R? 0.3922  0.3922 0.5380 0.5380
Ag,  0.0189 0.0189 0.0238 0.0238

€ 0.01 0.02 0.03 0.05
Law R? 0.1407 0.1407 0.1407 0.1412
Ag,y  0.0094  0.0094 0.0094 0.0101

€ 0.0001 0.01 0.05 0.1
Insurance | R? 0.6804 0.6855 0.6855 0.6855
Ag,y 0.0145 0.0144 0.0144 0.0144
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Table shows R? regression scores and error gaps when e changes in BGL. We see that with the decrease of the trade-off
parameter ¢, both the values of R? and error gaps decrease. This is because when the upper bound of ¢ in BGL is small,
the accuracy disparity is also mitigated. When e is above/below a certain threshold, R? scores and error gap values then
increase/decrease.

Table 4: R? regression scores and error gaps when e changes in CoD.

€ 0.01 0.1 0.5 1.0
COMPAS | R? 0.1033 0.1144 0.1146 0.1146
Ag,, 0.0064 0.0083 0.0085 0.0085

€ 0.01 0.1 0.5 1.0
Crime R? 0.1262 0.3284 0.3603 0.3603
Ag,, 0.0312  0.0307 0.0343 0.0343

€ 0.01 0.1 0.5 1.0
Law R? 0.1262 0.3284 0.3606 0.3603
Ag,, 0.0312  0.0307 0.0343 0.0343

€ 0.01 0.1 0.5 1.0
Insurance | R? 02711 0.2691 0.2689 0.2689
Agy 0.0203  0.0210 0.0211  0.0211

Table 4| shows R? regression scores and error gaps when € changes in COD. We see that with the decrease of the trade-off
parameter e, both the values of R? and error gaps decrease in general.

C.3. Visualization of Training Processes

We visualize the training processes of our proposed methods CENET and WASSERSTEINNET in the Adult dataset and
COMPAS dataset in Figure [7] and Figure [8] respectively. We also compare their training dynamics with the model
performance when we solely minimize the MSE loss (i.e., A = 0) and we term it as NO DEBIAS.
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Figure 7: Training visualization of CENET, WASSERSTEINNET (A = 50) and NO DEBIAS (A = 0) in the Adult dataset.

In Figure[7]and Figure 8] we can see that as the training progresses go on, the MSE losses in both datasets are decreasing
and finally converge. However, the training dynamics of error gaps are much more complex even in the NO DEBIAS case.
Before convergence, the training dynamics of error gaps differs among different datasets. Our methods enforce the models
to converge to the points where error gap are smaller while preserving the models’ predictive performance. It is also worth
to note that minimax optimization makes the training processes somehow unstable, especially when training CENET.
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Figure 8: Training visualization of CENET, WASSERSTEINNET (A = 5) and NO DEBIAS (A = 0) in the COMPAS dataset.
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