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Abstract

Sequence models are a critical component of001
modern NLP systems, but their predictions are002
difficult to explain. We consider model ex-003
planations though rationales, subsets of con-004
text that can explain individual model predic-005
tions. We find sequential rationales by solving006
a combinatorial optimization: the best ratio-007
nale is the smallest subset of input tokens that008
would predict the same output as the full se-009
quence. Enumerating all subsets is intractable,010
so we propose an efficient greedy algorithm011
to approximate this objective. The algorithm,012
which is called greedy rationalization, applies013
to any model. For this approach to be effec-014
tive, the model should form compatible condi-015
tional distributions when making predictions016
on incomplete subsets of the context. This017
condition can be enforced with a short fine-018
tuning step. We study greedy rationalization019
on language modeling and machine translation.020
Compared to existing baselines, greedy ratio-021
nalization is best at optimizing the sequential022
objective and provides the most faithful ratio-023
nales. On a new dataset of annotated sequen-024
tial rationales, greedy rationales are most simi-025
lar to human rationales.026

1 Introduction027

Sequence models are a critical component of tasks028

ranging from language modeling (Radford et al.,029

2019) to machine translation (Brown et al., 1993;030

Vaswani et al., 2017) to summarization (Rush et al.,031

2015). These tasks are dominated by complex neu-032

ral networks. While these models produce accurate033

predictions, their decision making processes are034

hard to explain. Interpreting a model’s prediction035

is important in a variety of settings: a researcher036

needs to understand a model to debug it; a doctor037

using a diagnostic model requires justifications to038

validate a decision; a company deploying a lan-039

guage model relies on model explanations to detect040

biases appropriated from training data.041
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 of
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Figure 1. Rationales for sequential prediction on GPT-
2. Each row is a predicted word. The darkened cells
correspond to the context words found by greedy ra-
tionalization. To predict “constitutionality”, the model
only needs “The”, “Court”, “challenge”, and “the”.

Interpretation takes many flavors (Lipton, 2018). 042

We focus on rationales, i.e. identifying the most 043

important subset of input tokens that leads to the 044

model’s prediction. For example, consider the sen- 045

tence: “The Supreme Court on Tuesday rejected 046

a challenge to the constitutionality of the death 047

penalty.” Suppose we would like to explain the de- 048

cision of the model to generate “constitutionality.” 049

While the model mathematically conditions on all 050

the previous words, only some are critical to its pre- 051

dictions. In this case, the rationale produced by our 052

algorithm includes “the”, “challenge”, and notably 053

“Court”, but not phrases that add no information 054

like “on Tuesday” (Figure 1). 055

Various rationale methods have been proposed 056

for sequence classification, where each sequence 057

has a single rationale (Lei et al., 2016; Chen et al., 058

2018; Jain et al., 2020). However, these methods 059

cannot scale to sequence models, where each token 060

in a sequence requires a different rationale. 061
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This work frames the problem of finding se-062

quence rationales as a combinatorial optimization:063

given a model, the best rationale is the smallest064

subset of input tokens that would predict the same065

token as the full sequence. Finding the global op-066

timum in this setting is intractable, so we propose067

greedy rationalization, a greedy algorithm that it-068

eratively builds longer rationales. This approach is069

efficient for many NLP models such as transform-070

ers. Moreover, it does not require access to the071

inner workings of a model, such as gradients.072

Underlying this approach is an assumption that073

the model forms sensible predictions for incom-074

plete subsets of the input. Although we can pass075

in incomplete subsets to neural models, there is no076

guarantee that their predictions on these subsets077

will be compatible with their predictions on full078

contexts (Arnold and Press, 1989). We show that079

compatibility can be learned by conditioning on080

randomly sampled context subsets while training081

a model. For large pretrained models like GPT-2082

(Radford et al., 2019), fine-tuning is sufficient.083

In an empirical study, we compare greedy ratio-084

nalization to various gradient- and attention-based085

explanation methods on language modeling and086

machine translation. Greedy rationalization best087

optimizes the objective, and its rationales are most088

faithful to the inner workings of the model. We089

additionally create a new dataset of annotated ratio-090

nales based on the Lambada corpus (Paperno et al.,091

2016). We find that greedy rationales are most sim-092

ilar to human annotations, both on our dataset and093

on a labeled dataset of translation alignments.094

2 Sequential Rationales095

Consider a sequence of tokens, y1:T , generated by096

some unknown process y1:T ∼ F . The goal of097

sequence modeling is to learn a probabilistic model098

pθ that approximates F from samples. Maximum-099

likelihood estimation is an effective way to train100

these models, where θ is fit according to101

argmax
θ

Ey1:T∼F [log pθ(y1:T )]. (1)102

Sequence models are typically factored into condi-103

tional distributions:104

pθ(y1:T ) = fθ(y1)
T∏
t=2

fθ(yt|y<t). (2)105

Here, fθ is the specific model parameterizing pθ,106

such as a transformer (Vaswani et al., 2017), and is107

trained to take inputs y<t. Going forward, we drop 108

the dependence on θ in the notation. 109

Word-level explanations are a natural way to 110

interpret a sequence model: which words were in- 111

strumental for predicting a particular word? Would 112

the same word have been predicted if some of the 113

words had been missing? 114

Explanations may be straightforward for simpler 115

models; for example, a bigram Markov model uses 116

only the previously generated word to form predic- 117

tions. However, the most effective sequence mod- 118

els have been based on neural networks, whose pre- 119

dictions are challenging to interpret (Lipton, 2018). 120

Motivated by this goal, we consider a sequence 121

y1:T generated by a sequence model p. At each 122

position t, the model takes the inputs in the context 123

y<t and uses them to predict yt. We are interested 124

in forming rationales: subsets of the contexts that 125

can explain the model’s prediction of yt.1 126

What are the properties of a good rationale? Any 127

of the contextual words y<t can contribute to yt. 128

However, if a model makes the same prediction 129

with only a subset of the context, that subset con- 130

tains explanatory power on its own. A rationale 131

is sufficient if the model would produce the same 132

yt having seen only the rationale (DeYoung et al., 133

2020). While rationales consisting of the full con- 134

text would always be sufficient, they would be inef- 135

fective for explaining longer sequences. Intuitively, 136

the smaller the rationale, the easier it is to interpret, 137

so we also prioritize brevity. 138

We combine these desiderata and frame finding 139

rationales as a combinatorial optimization: the best 140

rationale of a word yt is the smallest subset of in- 141

puts that would lead to the same prediction. Each 142

candidate rationale S is an index set, and yS de- 143

notes the subset of tokens indexed by S.2 Denote 144

by S = 2[t−1] the set of all possible context subsets. 145

An optimal rationale is given by 146

argmin
S∈S

|S| s.t. argmax
y′t

p(y′t|yS) = yt. (3) 147

The constraint guarantees sufficiency, and the ob- 148

jective targets brevity. Although the objective may 149

have multiple solutions, we only require one. 150

Optimizing Eq. 3 is hindered by a pair of com- 151

putational challenges. The first challenge is that 152

1Our paradigm and method extend easily to conditional
sequence models, such as those used for machine translation.
For full details, refer to Appendix A.

2A sequence of tokens can be represented as a set of tuples:
“The dog walks” becomes {(1 : The), (2 : dog), (3 : walks)}.
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solving this combinatorial objective is intractable;153

framed as a decision problem, it is NP-hard. We dis-154

cuss this challenge in Section 3. The second chal-155

lenge is that evaluating distributions conditioned156

on incomplete context subsets p(y′t|yS) involves157

an intractable marginalization over missing tokens.158

For now we assume that f(y′t|yS) ≈ p(y′t|yS); we159

discuss how to enforce this condition in Section 4.160

3 Greedy Rationalization161

We propose a simple greedy algorithm, greedy ra-162

tionalization, to approximate the solution to Eq. 3.163

The algorithm starts with an empty rationale. At164

each step, it considers adding each possible token,165

and it selects the one that most increases the prob-166

ability of yt. This process is repeated until the167

rationale is sufficient for predicting yt.3 Figure 2168

provides an overview.169

Here is the algorithm. Begin with a rationale170

S(0) = ∅. Denoting by [t − 1] = {1, . . . , t − 1},171

the first rationale set is172

S(1) = argmax
k∈[t−1]

p(yt|yk). (4)173

At each step, we iteratively add a single word to174

the rationale, choosing the one that maximizes the175

probability of the word yt:176

S(n+1) = S(n) ∪ argmax
k∈[t−1]\S(n)

p(yt|yS(n)∪k). (5)177

We continue iterating Eq. 5 until178

argmaxy′t p(y
′
t|yS(n)) = yt. The procedure179

will always converge, since in the worst case,180

S(t−1) contains the full context.181

This procedure is simple to implement, and it is182

black-box: it does not require access to the inner183

workings of a model, like gradients or attention.184

While greedy rationalization can be applied to185

any model, greedy rationalization is particularly186

effective for set-based models such as transform-187

ers. If we assume the rationale size m = |S| is188

significantly shorter than the size of the context t,189

greedy rationalization requires no extra asymptotic190

complexity beyond the cost of a single evaluation.191

For transformers, the complexity of each evalu-192

ation f(yt|y<t) is quadratic in the input set O(t2).193

Each step of greedy rationalization requires evalu-194

ating f(yt|yS), but yS can be significantly smaller195

3The greedy approach is motivated by approximations to
the set cover problem (Chvatal, 1979). Each set is a single
context token, and a rationale is “covered” if it results in
generating the true token.

than y<t. A rationale of size m will require m 196

steps to terminate, resulting in a total complexity of 197

O(m3t). As long as m = O(t1/3), greedy rational- 198

ization can be performed with the same asymptotic 199

complexity as evaluating a transformer on the full 200

input, O(t2). In Appendix C, we empirically verify 201

the efficiency of greedy rationalization. 202

4 Model Compatibility 203

Greedy rationalization requires computing condi- 204

tional distributions p(yt|yS) for arbitrary subsets 205

S. Using an autoregressive model, this calcula- 206

tion requires marginalizing over unseen positions. 207

For example, rationalizing a sequence y1:3 requires 208

evaluating the candidate rationale p(y3|y1), which 209

marginalizes over the model’s predictions: 210

p(y3|y1) =
∑
k

f(y3|y1, y2 = k)f(y2 = k|y1). 211

Given the capacity of modern neural networks, 212

it is tempting to pass in incomplete subsets yS to 213

f and evaluate this instead as f(yt|yS) ≈ p(yt|yS). 214

However, since f is trained only on complete fea- 215

ture subsets y<t, incomplete feature subsets yS are 216

out-of-distribution (Hooker et al., 2019). Evaluat- 217

ing f(y3|y1) may be far from the true conditional 218

p(y3|y1). In Figure 4, we show that indeed lan- 219

guage models like GPT-2 produce poor predictions 220

on incomplete subsets. 221

4.1 Fine-tuning for Compatibility 222

Ideally f(yt|yS) approximates p(yt|yS), a property 223

known as compatibility (Arnold and Press, 1989). 224

Since training with Eq. 1 only evaluates f on com- 225

plete contexts y<t, its behavior on incomplete con- 226

texts yS is unspecified. Instead, compatibility can 227

be obtained by training to maximize 228

Ey1:T∼FES∼Unif(S)

[∑T
t=1 log f(yt|yS<t)

]
, (6) 229

where S ∼ Unif(S) indicates sampling word sub- 230

sets uniformly at random from the power set of all 231

possible word subsets, and S<t denotes the indices 232

in S that are less than t. We approximate Eq. 6 with 233

word dropout.4 Jethani et al. (2021) show that the 234

optimum of Eq. 6 is the distribution whose condi- 235

tional distributions are all equal to the ground-truth 236

conditionals. 237
4In practice, we combine this objective with standard MLE

training to learn compatible distributions while maintaining
the performance of the original model. We also skew the word
dropout distribution towards sparser rationales since we expect
shorter rationales to be more common; see Appendix D.
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The loud and hungry dogs

bark

“The”, “dogs”
“loud”, “dogs”
“and”, “dogs”

“hungry”, “dogs”

context (last word is “bark”)p

0.04
0.41
0.03
0.13

(a) (b)

The and hungry dogs

bark

(c)

loud

Figure 2. One step of greedy rationalization. In (a), the rationale so far is a single word, “dogs.” In (b), each
candidate token is considered and “loud” results in the best probability for “bark.” In (c), the token “loud” is added
to the rationale. This process repeats until the most likely word is the model prediction.
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Figure 3. Training with word dropout (right) results in
compatible predictions for the majority-class synthetic
language. The optimal compatibility is the dashed line.

The intuition for Eq. 6 is straightforward: if238

the model sees incomplete contexts while training,239

it can approximate arbitrary incomplete distribu-240

tions. Since f(yt|yS) approximates F (yt|yS) and241

f(yt|y<t) approximates F (yt|y<t), all the condi-242

tional distributions are compatible.243

4.2 Compatibility Experiments244

To demonstrate the impact of training with the com-245

patibility objective in Eq. 6, we consider a synthetic246

majority-class language over binary strings of 19247

tokens. The first 17 are sampled uniformly from248

{0, 1}, and the 18th token is always ‘=’. The 19th249

token is 0 if there are more 0’s than 1’s in the first250

17 tokens, and 1 otherwise.251

We train two models: one using the standard252

objective in Eq. 1, the other using word dropout253

to optimize Eq. 6. Although both models have254

the same heldout perplexity on the full context,255

training with Eq. 6 is required to form compatible256

predictions on incomplete subsets. In Figure 3, we257

provide different models f with random subsets S258

and calculate the model’s probability that the last259

token is 1. A model that has only seen a few tokens260

should be less confident about the prediction of261

the final majority class, yet models trained without262

word dropout ignore this uncertainty.263

Models do not need to be trained from scratch264
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Figure 4. Fine-tuning GPT-2 for compatibility re-
moves pathological repeating on incomplete contexts.
For a position t, the vertical axis gives f(yt+1 =
“the”|yt = “the”).

with Eq. 6. A model can be pre-trained with Eq. 1, 265

after which it can be fine-tuned for compatibility. 266

As an example, when GPT-2 is not trained with 267

word dropout, it makes insensible predictions for 268

out-of-distribution sequences. For a sequence that 269

contains only the token “the,” GPT-2 is trained to 270

give reasonable predictions for p(y2|y1 = “the”). 271

But when it has only seen the token “the” some- 272

where besides the first position of the sequence, the 273

top prediction for the word after “the” is also “the”. 274

Of course, following “the” with “the” is not gram- 275

matical. Fine-tuning for compatibility alleviates 276

this problem (Figure 4). 277

Finally, we find that that fine-tuning for com- 278

patibility does not hurt the heldout performance 279

of the complete conditional distribution of each 280

fine-tuned model (see Appendix D). 281

5 Connection to Classification Rationales 282

In this section, we discuss related approaches devel- 283

oped for classification, and why they cannot scale 284

to sequence models. We also show that the com- 285

binatorial rationale objective in Eq. 3 is a global 286

solution to a classification rationale-style objective. 287
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In classification problems, a sequence x1:T is288

associated with a label y. Rationale methods are289

commonly used in this setting (Lei et al., 2016;290

Chen et al., 2018; Yoon et al., 2018; Bastings et al.,291

2019; Jain et al., 2020; Jethani et al., 2021). The292

most common approach uses two models: one, a293

selection model q(S|x1:T ), provides a distribution294

over possible rationales; the other, the predictive295

model p(y|xS), makes predictions given only sam-296

ples from the former model. Typically, p and q are297

optimized jointly to maximize298

Ex,y∼FES∼q(S|x,y)[log p(y|xS)− λ|S|]. (7)299

Here, F is the ground truth, unknown data distribu-300

tion, and λ is a regularizing penalty that encourages301

smaller rationales.302

In practice, it is infeasible to adopt this objective303

for sequence models. Eq. 7 is centered on pro-304

viding predictive models with only the words in305

its rationale. In sequential settings, each word re-306

quires its own rationale. Thus training with shared307

word representations would leak information across308

rationales. Training sequence models without shar-309

ing representations is computationally infeasible;310

it requires O(T 3) computations per sequence for311

transformer architectures.312

Most classification rationale methods treat313

q(S|x1:T ) as a probability distribution over all pos-314

sible rationales. However, the q that maximizes315

Eq. 7 is deterministic for any p. To see this, note316

that q does not appear inside the expectation in317

Eq. 7, so it can place all its mass on a single mode.318

We provide a formal justification in Appendix B.319

Since the optimal selection model q is a point-320

mass, the optimal rationale can be written as321

argmin
S∈S

λ|S| − log p(y|xS). (8)322

This optimization is identical to the combinatorial323

optimization in Eq. 3, albeit with a soft constraint324

on the rationale’s prediction: the true label y is325

not required to be the maximum of p(y′|xS). In326

practice, this soft constraint sometimes results in327

empty rationales (Jain et al., 2020). Since we view328

sufficiency as a key component of a good rationale,329

Eq. 3 imposes a hard constraint on the rationale’s330

prediction.331

6 Related Work332

Finding rationales is similar to feature selection.333

While global feature selection has been a well-334

studied problem in statistics (Guyon and Elisseeff,335

2003; Hastie et al., 2009; Bertsimas et al., 2016), 336

instance-wise feature selection — where the goal 337

is selecting features per-example — is a newer re- 338

search area (Chen et al., 2018). We review local 339

explanation methods used for NLP. 340

Gradients. Gradient-based saliency methods 341

have long been used as a measure of feature impor- 342

tance in machine learning (Baehrens et al., 2010; 343

Simonyan et al., 2013; Li et al., 2016a). Some varia- 344

tions involve word embeddings (Denil et al., 2014); 345

integrated gradients, to improve sensitivity (Sun- 346

dararajan et al., 2017); and relevance-propagation 347

to track each input’s contribution through the net- 348

work (Bach et al., 2015; Voita et al., 2021). 349

But there are drawbacks to using gradient-based 350

methods as explanatory tools. Sundararajan et al. 351

(2017) show that in practice, gradients are satu- 352

rated: they may all be close to zero for a well- 353

fitted function, and thus not reflect importance. Ad- 354

versarial methods can also distort gradient-based 355

saliences while keeping a model’s prediction the 356

same (Ghorbani et al., 2019; Wang et al., 2020). We 357

compare to gradient saliency methods in Section 8. 358

Attention. Recently, NLP practitioners have fo- 359

cused on using attention weights as explanatory 360

tools. The literature has made a distinction be- 361

tween faithfulness and plausibility. An explana- 362

tion is faithful if it accurately depicts how a model 363

makes a decision (Jacovi and Goldberg, 2020); an 364

explanation is plausible if it can be understood and 365

interpreted by humans (Wiegreffe and Pinter, 2019). 366

Practitioners have shown that attention-based expla- 367

nations are generally not faithful (Jain and Wallace, 368

2019; Serrano and Smith, 2019), but that they may 369

be plausible (Wiegreffe and Pinter, 2019; Mohanku- 370

mar et al., 2020; Vashishth et al., 2019). Others 371

show that attention weights should not be inter- 372

preted as belonging to single tokens since they mix 373

information across tokens (Brunner et al., 2019; 374

Kobayashi et al., 2020). Bastings and Filippova 375

(2020) argue that general input saliency measures, 376

such as gradients, are better suited for explainabil- 377

ity than attention. We compare to attention-based 378

methods in Section 8. 379

Local post-hoc interpretability. Another class 380

of methods provides local interpretability for pre- 381

trained models. These approaches aim to explain 382

a model’s behavior for a single example or for a 383

small subset of inputs. LIME (Ribeiro et al., 2016) 384

trains an interpretable model that locally approx- 385
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imates the pretrained model. Alvarez-Melis and386

Jaakkola (2017) learn a causal relationship between387

perturbed inputs and their model outputs. These388

methods impose no constraints on the pretrained389

model. However, they are expensive – they require390

training separate models for each input region. In391

contrast, the method proposed here, greedy rational-392

ization, can efficiently explain many predictions.393

Input perturbation. Practitioners have also394

measured the importance of inputs by perturbing395

them (Zeiler and Fergus, 2014; Kádár et al., 2017).396

Occlusion methods (Li et al., 2016b) replace an397

input with a baseline (e.g. zeros), while omission398

methods (Kádár et al., 2017) remove words entirely.399

Li et al. (2016b) propose a reinforcement learning400

method that aims to find the minimum number of401

occluded words that would change a model’s pre-402

diction. Feng et al. (2018) use gradients to remove403

unimportant words to see how long it takes for the404

model’s prediction to change. They find that the re-405

maining words are nonsensical and do not comport406

with other saliency methods. Others have shown407

that input perturbation performs worse than other408

saliency methods in practice (Poerner et al., 2018).409

These methods have mostly focused on subtractive410

techniques. For this reason, they are inefficient411

and do not aim to form sufficient explanations. In412

contrast, greedy rationalization efficiently builds413

up sufficient explanations.414

7 Experimental Setup415

There are two goals in our empirical studies. The416

first is to compare the ability of greedy rationaliza-417

tion to other approaches for optimizing the combi-418

natorial objective in Eq. 3. The second is to assess419

the quality of produced rationales.420

We measure the quality of rationales using two421

criteria: faithfulness and plausibility. An explana-422

tion is faithful if it accurately depicts how a model423

makes a decision (Jacovi and Goldberg, 2020); an424

explanation is plausible if it can be understood425

and interpreted by humans (Wiegreffe and Pinter,426

2019). Although sufficiency is a standard way to427

measure faithfulness (DeYoung et al., 2020), all428

the rationales that satisfy the constraint of Eq. 3 are429

sufficient by definition. To measure plausibility, we430

compare rationales to human annotations. Since431

there do not exist language modeling datasets with432

human rationales, we collected annotations based433

on Lambada (Paperno et al., 2016). The data is434

available as part of this paper.435

We compare greedy rationalization to a variety 436

of gradient- and attention-based baselines (see Sec- 437

tion 6). To form baseline sequential rationales, 438

we add words by the order prescribed by each ap- 439

proach, stopping when the model prediction is suf- 440

ficient. The baselines are: l2 gradient norms of em- 441

beddings (Li et al., 2016a), embedding gradients 442

multiplied by the embeddings (Denil et al., 2014), 443

integrated gradients (Sundararajan et al., 2017), at- 444

tention rollout (Abnar and Zuidema, 2020), the 445

last-layer transformer attention weights averaged- 446

across heads, and all transformer attentions aver- 447

aged across all layers and heads (Jain et al., 2020). 448

To compare rationale sets produced by each 449

method to those annotated by humans, we use the 450

set-similarity metrics described in DeYoung et al. 451

(2020): the intersection-over-union (IOU) of each 452

rationale and the human rationale, along with the 453

token-level F1, treating tokens as binary predic- 454

tions (either in the human rationale or out of it). 455

We use transformer-based models for all of the 456

experiments.5 We will release our fine-tuned GPT- 457

2 model on Hugging Face (Wolf et al., 2019). For 458

model and fine-tuning details, refer to Appendix D. 459

8 Results and Discussion 460

The experiments test sequential rationales for lan- 461

guage modeling and machine translation. Ap- 462

pendix E contains full details for each experiment. 463

8.1 Language Modeling 464

Long-Range Agreement. The first study tests 465

whether rationales for language models can capture 466

long-range agreement. We create a template dataset 467

using the analogies from Mikolov et al. (2013). 468

This dataset contains word pairs that contain either 469

a semantic or syntactic relationship. For each type 470

of relationship, we use a predefined template. It 471

prompts a language model to complete the word 472

pair after it has seen the first word. 473

For example, one of the fifteen categories is 474

countries and their capitals. We can prompt a lan- 475

guage model to generate the capital by first men- 476

tioning a country and then alluding to its capital. 477

To test long-range agreement, we also include a 478

distractor sentence that contains no pertinent in- 479

formation about the word pair. For example, our 480

5We fine-tune each model for compatibility using a single
GPU. That we can fine-tune GPT-2 Large (Radford et al.,
2019) to learn compatible conditional distributions on a single
GPU suggests that most practitioners will be able to train
compatible models using a reasonable amount of computation.
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Length Ratio Ante No D

Grad norms 22.5 4.1 1.0 0.06
Grad x emb 38.0 7.4 0.99 0.01
Integrated grads 28.1 5.2 0.99 0.00
Attention rollout 36.9 7.1 1.0 0.12
Last attention 16.7 2.9 0.99 0.13
All attentions 14.5 2.6 1.0 0.02
Greedy 7.1 1.2 1.0 0.43

Table 1. Language modeling faithfulness on long-
range agreement with templated analogies. “Ratio”
refers to the approximation ratio of each method’s ratio-
nale length to the exhaustive search minimum. “Ante”
refers to the percent of rationales that contain the true
antecedent. “No D” refers to the percent of rationales
that do not contain any tokens from the distractor.

template for this category is,481

When my flight landed in Japan, I converted my482
currency and slowly fell asleep. (I had a terrifying483
dream about my grandmother, but that’s a story484
for another time). I was staying in the capital,485
_______________486

Here, the parenthetical clause is a distractor sen-487

tence, since it contains no relevant information488

about predicting the capital of Japan. The correct489

capital, “Tokyo,” is predicted by GPT-2 both with490

and without the distractor. We use this template for491

all of the examples in the country capital category,492

swapping the antecedent “Japan” for each country493

provided in Mikolov et al. (2013).494

We feed the prompts to GPT-2, which completes495

each analogy. To measure faithfulness, we calcu-496

late the percent of rationales that contain the true497

antecedent, and the percent of rationales that do not498

contain any words in the distractor. We only use ex-499

amples where the prediction is the same both with500

and without the distractor. We also perform exhaus-501

tive rationale search on the objective in Eq. 3. This502

search is highly inefficient, so we only complete503

it for 40 examples. To measure the approximation504

ratio, we divide the size of the rationale found by505

each method by the exhaustive rationale size.506

Table 1 contains the results on the compatible507

model.6 Although all methods contain the true an-508

tecedents in their rationales, greedy rationalization509

has by far the least distractors in its rationales. The510

rationales are also universally shorter for greedy511

rationalization, and closer to the optimal rationales,512

justifying our greedy assumption.513

6To show that fine-tuning GPT-2 for compatibility is not
hurting the baselines, we also perform the baseline methods
on a pretrained GPT-2 without fine-tuning; see Appendix E.

Length IOU F1

Gradient norms 52.9 0.13 0.21
Gradient x embedding 64.8 0.11 0.19
Integrated gradients 59.1 0.11 0.19
Attention rollout 73.5 0.09 0.17
Last attention layer 43.2 0.17 0.27
All attention layers 35.8 0.24 0.33
Greedy 14.1 0.27 0.37

Table 2. Language modeling plausibility on rationale-
annotated Lambada.

Annotated Rationales. To test the plausibility 514

of rationales for language models, we collect a 515

dataset of human annotations. We base the collec- 516

tion on Lambada (Paperno et al., 2016). Lambada 517

is constructed so that humans need to use both lo- 518

cal and global context to reliably predict a missing 519

word. By its construction it is guaranteed to have 520

non-trivial rationales. 521

Our goal is to collect rationales that are both 522

minimal and sufficient for humans. We run an an- 523

notation procedure with two roles: a selector and a 524

predictor. First, the selector sees the full passage 525

and ranks the words in order of how informative 526

they are for predicting the final word. Next, the 527

predictor sees one word at a time chosen by the 528

selector, and is asked to predict the final word of 529

the passage. The words the predictor saw before 530

guessing the correct word form a human rationale. 531

This rationale selection method is inspired by Ris- 532

sanen Data Analysis (Rissanen, 1978; Perez et al., 533

2021), which uses a minimum description length 534

metric to estimate feature importances. We rely on 535

human annotators to estimate information gains. 536

Since it could be trivial for humans to predict 537

the final word if it also appears in the context, we 538

only include examples that do not repeat a word. 539

We collect annotations for 107 examples, which 540

we also release publicly. We compare the ratio- 541

nales produced by each method to the annotated 542

rationales. In the analysis, we only include the 62 543

examples that GPT-2 predicts correctly. 544

Table 2 shows that the greedy rationales are most 545

similar to the human-annotated rationales. Greedy 546

rationalization is also the most effective at mini- 547

mizing the combinatorial objective in Eq. 3, as its 548

rationales are by far the shortest. Figure 5 contains 549

examples of rationales for this dataset. 550

It is worth noting that the top few words added 551

by the baselines are quite relevant; after 5 tokens, 552

the “All attention layers” baseline has a better F1 553

and IOU than greedy rationalization. However, 554
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Target word: refuse

It was the kind of smile that I'd seen before. The kind the 
boxer gave me right before he killed me in that dirty fight.

“I have a proposition for you" he began, pulling his 
hands down from under his chin and pushing out of the 
chair. “One that you won’t be able to _____________

"Just who is going to pay for this special feed grain 
anyway?  It must cost a bit if it’s that special."
"You're going to pay, obviously," replied Mitch, "since 
your cows will be eating it.  On the other hand, Joe will be 
planting and irrigating the grain.  He'll do all the work to 
make it _____________ 

Target word: grow

Figure 5. Examples from our annotated Lambada
dataset. Highlighted text denotes greedy rationales, and
bolded text denotes human-annotated rationales.

Mean Crossovers Crossover Rate
Source Target Source Target

Grad norms 0.41 0.50 0.06 0.07
Grad x emb 6.22 5.63 0.42 0.42
Integrated grads 1.93 1.53 0.22 0.12
Last attention 0.56 2.49 0.08 0.24
All attentions 0.60 0.83 0.08 0.11
Greedy 0.11 0.16 0.08 0.03

Table 3. Translation faithfulness with distractors.
“Mean crossovers” refers to the average number of
crossovers per rationale, and “Crossover rate” refers to
the fraction of rationales that contain at least one.

the baselines struggle to form sufficient rationales,555

which hurts their overall performance.556

8.2 Machine Translation557

Distractors. To measure faithfulness, we take a558

transformer trained on IWSLT14 De-En (and fine-559

tuned for compatibility), and generate translations560

for 1000 source sequences. We then randomly con-561

catenate each source sequence with a distractor562

(before or after). We know that each target se-563

quence is generated from the original source. Thus,564

we can evaluate rationales by penalizing them for565

“crossing over” to the distractor.566

Table 3 contains the results. Greedy rational-567

ization has by far the fewest average number of568

crossovers per rationale. Although the percent of569

source rationales that cross over is slightly higher570

than the percent using gradient norms, the percent-571

age on the target side is superior.572

Annotated Alignments. To test plausibility, we573

compare the rationales to human-labeled word574

Length AER ↓ IOU F1 Top1

Grad norms 10.3 0.82 0.31 0.16 0.62
Grad x emb 13.0 0.89 0.16 0.12 0.40
Integrated grads 11.0 0.84 0.27 0.14 0.45
Last attention 10.7 0.83 0.28 0.15 0.59
All attentions 10.6 0.82 0.32 0.15 0.65
Greedy 5.0 0.77 0.41 0.23 0.64

Table 4. Translation plausibility with annotated align-
ments. The first four columns correspond to using the
full rationale found by each method; the last column
“Top1” refers to the accuracy of the first token added
by each method. AER refers to alignment error rate.

alignments. Using a dataset containing 500 anno- 575

tated alignments for German-English translation,7 576

we compute rationales for each method using the 577

ground truth targets. We measure similarity to the 578

labeled rationales by computing alignment error 579

rate (AER) (Och and Ney, 2000), along with com- 580

puting the IOU and F1 between sets. To separate 581

the requirement that the rationale be sufficient from 582

each method’s global ordering of tokens, we also 583

compare top-1 accuracies, which measure whether 584

the top token identified by each baseline is present 585

in the labeled alignment set. 586

Table 4 contains the results. The rationales 587

learned by greedy rationalization are more similar 588

to human-labeled alignments than those provided 589

by gradient and attention methods. Many methods 590

have similar top-1 accuracies — indeed, the best 591

top-1 accuracy comes from averaging all attention 592

layers. This reinforces the notion that although the 593

baselines may be able to capture first-order infor- 594

mation, they struggle to form sufficient rationales. 595

9 Conclusion 596

We proposed an optimization-based algorithm for 597

rationalizing sequence predictions. Although ex- 598

act optimization is intractable, we developed a 599

greedy approach that efficiently finds good ratio- 600

nales. Moreover, we showed that models can be 601

fine-tuned to form compatible distributions, thereby 602

circumventing an intractable marginalization step. 603

In experiments, we showed that the greedy algo- 604

rithm is effective at optimization, and that its ratio- 605

nales are more faithful and plausible than those of 606

gradient- and attention-based methods. We hope 607

that our research, along with the release of an an- 608

notated dataset of sequence rationales, catalyzes 609

further research into this area. 610

7https://www-i6.informatik.rwth-
aachen.de/goldAlignment/
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