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Abstract

The problem of adversarial examples has high-
lighted the need for a theory of regularisation
that is general enough to apply to exotic function
classes, such as universal approximators. In re-
sponse, we have been able to significantly sharpen
existing results regarding the relationship between
distributional robustness and regularisation, when
defined with a transportation cost uncertainty set.
The theory allows us to characterise the conditions
under which the distributional robustness equals a
Lipschitz-regularised model, and to fightly quan-
tify, for the first time, the slackness under very
mild assumptions. As a theoretical application
we show a new result explicating the connection
between adversarial learning and distributional
robustness. We then give new results for how to
achieve Lipschitz regularisation of kernel classi-
fiers, which are demonstrated experimentally.

1. Introduction

When learning a statistical model, it is rare that one has
complete access to the distribution. More often it is the case
that one approximates the risk minimisation by an empirical
risk, using sequence of samples from the distribution. In
practice this can be problematic — particularly when the
curse of dimensionality is in full force — to a) know with
certainty that one has enough samples, and b) guarantee
good performance away from the data. Both of these two
problems can, in effect, be cast as problems of ensuring
generalisation. A remedy for both of these problems has
been proposed in the form of a modification to the risk
minimisation framework, wherein we integrate a certain
amount of distrust of the distribution. This distrust results
in a guarantee of worst case performance if it turns out later
that the distribution was specified imprecisely, improving
generalisation.
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In order to make this notion of distrust concrete, we intro-
duce some mathematical notation. The set of Borel prob-
ability measures on an outcome space {2 is B (£2). A loss
function is a mapping f : 2 — R so that f(w) is the loss
incurred with some prediction under the outcome w € f2.
For example, if 2 = X x Y then f,(x,y) = (v(z) — y)?
could be a loss function for regression or classification with
some classifier v : X — Y. For a distribution p € B(£2)
we replace the objective in the classical risk minimisation
min, E,[f,] with the robust Bayes risk:

SupUGBC([L,’r‘) EV [f] (I'B)

where B.(u,r) C B3({2) is a set containing p, called the
uncertainty set (viz. Berger, 1993; Vidakovic, 2000, Griin-
wald & Dawid, 2004, §4). It is in this way that we introduce
distrust into the classical risk minimisation, by instead min-
imising the worst case risk over a set of distributions.

It is sometimes the case that for an uncertainty set,
B.(i,7) C P(£2), there is a function, rlip, : R? — R
(not necessarily the usual Lipschitz constant), so that

SUPyeB..(1,r) E, [f] < EM [f} +r hp('(f) L)

Results like (L) have been studied in the literature, however
these usually make onerous assumptions on the structure of
the loss function/model class (Shafieezadeh-Abadeh et al.,
2019; Blanchet et al., 2019) or on the cost function underpin-
ning the uncertainty set (Kuhn et al., 2019). Thus ruling out
application to many common machine learning and statisti-
cal techniques. Therefore, in §3, our first major contribution
is to revisit such a result using a new proof technique that
relies on the difference-convex optimization literature to
strictly generalise and improve upon several well-known
related results (summarised in Table 1). In particular, a
major novelty of our approach lies with the characterisation
of when (L) holds as an equality, and when the bound is
tight. These are quite involved and are as important as the
inequality (L) itself.

In practice, however, the evaluation of Lipschitz constant is
NP-hard for neural networks (Scaman & Virmaux, 2018),
compelling approximations of it, or the explicit engineering
of Lipschitz layers and analysing the resulting expressive-
ness in specific cases (e.g., co-norm, Anil et al., 2019). By
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Table 1: Comparison of results related to (L). Assumptions listed in boldface are the weakest.

Reference (L) f c " X
(Shafieezadeh-Abadeh et al., 2019, Thm. 14) convex L]PSChltZ margin norm empirical dist. R?
loss with linear classifier

(Kuhn et al., 2019, Thm. 5) < upper semicontinuous norm empirical dist. R4
(Kuhn et al., 2019, Thm. 10) = convex, Lipschitz norm empirical dist. R4

. similar to generalised . - . a
(Gao & Kleywegt, 2016, Cor. 2 (iv)) < Lipschitz p-metric empirical dist. R

i < - ) babilit bl
Theorem 1 (this paper) _ convex, generalised convex, k-positively probabiitty separable

Lipschitz

measure Banach space

homogeneous

comparison, kernel machines have a reproducing kernel
Hilbert space (RKHS) encompassing a family of models
that are universal (Micchelli et al., 2006). Our second major
contribution, in §4, is to show that product kernels, such
as Gaussian kernels, have a Lipzchitz constant that can be
efficiently approximated and optimised with high proba-
bility. By using the Nystrom approximation (Williams &
Seeger, 2000; Drineas & Mahoney, 2005). we show that an
€ approximation error requires only O(1/e?) samples. Such
a sampling-based approach also leads to a single convex
constraint, making it scalable to large sample sizes, even
with an interior-point solver (§5). As our experiments show,
this method achieves higher robustness than state of the art
(Cisse et al., 2017; Anil et al., 2019).

2. Preliminaries

Let R & [—00,00] and R>¢ & [0, 00], with similar nota-
tions for the real numbers. Let [n] denote the set {1,...,n}
for n € N. Unless otherwise specified, X, Y, {2 are topolog-
ical outcome spaces. Often X will be used when there is
some linear structure so that {2 = X x Y may be interpreted
as the classical outcome space for classification problems
(cf. Vapnik, 2000). In particular, in all cases X and Y can
be taken to be R% and {1, ..., k} respectively.

The Dirac measure at some point w € {2 is §,, € P({2), and
the set of Borel mappings X — Y is Lo(X,Y). For u €
B(£2), denote by L,,(§2, 1) the Lebesgue space of functions
f € Lo(£2,R) satisfying ([|f(w)[”u(dw))"” < oo for
p > 1. The continuous real functions on {2 are collected
in C(£2). In many of our subsequent formulas it is more
convenient to write an expectation directly as an integral:

Eulf] = [ fdp < [ fw)p(dw).

For two measures u, v € P(£2) the set of (u, v)-couplings
is II(p,v) C P(N2 x 2) where 7 € II(p,v) if and
only if the marginals of 7 are p and v. For a coupling
function ¢ : 2 x 2 — R, the c-transportation cost of
v € P(£2) is coste(p, v) € infren,) [ edr. The c-
transportation cost ball of radius r > 0 centred at p € P(2)
is Be(i1,7) & {v € P(£2) | coste(p, v) < 7}, and serves as
our uncertainty set. The the least c-Lipschitz constant (cf.

Cranko et al., 2019) of a function f : X — R is the number
lip.(f) £ inf Ac(f), where

Ac(f) N2 0] Vayex 1 [f(2) = F(y)] < Ae(z,y)}

Thus when (X, d) is a metric space, lip,(f) agrees with the
usual Lipschitz notion. When ¢ maps X — R, for example

when ¢ is a norm, we let c(z,y) & c(z — y) forall z, y € X.

A function f : X — R is called k-positively homogeneous
if, for all @ > 0, there is f(az) = a* f(z) forall z € X.
Throughout we always assume k& > 1.

To a function f : X — R we associate another function
@ f : X — R, called the convex envelope of f, defined
to be the greatest closed convex function that minorises
f. The quantity p(f) & sup,c x (f(z) — o f(x)) was first
suggested by Aubin & Ekeland (1976) to quantify the lack
of convexity of a function f, and has since shown to be of
considerable interest for, among other things, bounding the
duality gap in nonconvex optimisation (cf. Lemaréchal &
Renaud, 2001; Udell & Boyd, 2016; Askari et al., 2019;
Kerdreux et al., 2019). In particular, observe

p(f)=0 < f=tcof <= fisclosed convex.

While it may seem like somewhat of an intractable quantity,
p(f) can be estimated in principle, details of which are
included in the supplementary material (Supplement B).
Complete proofs of all technical results are relegated to the
supplementary material.

3. Distributional robustness

In this section we present our major result regarding identi-
ties of the form (L).

Theorem 1. Suppose X is a separable Banach space and
fix p € P(X). Suppose ¢ : X — Rsq is closed convex,
k-positively homogeneous, and f € L1(X, 1) is upper semi-
continuous with lip(f) < oo. Then for all v > 0, there
exists Ag . (1) > 0 so that

sup
vEB.(p,7)

[ v Apert = [ £aus rin (.0
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Table 2: Comparison of results related to Theorem 2. Assumptions listed in boldface are the weakest, and assumptions in

red are prohibitive.

Reference Result f c “w X
(Staib & Jegelka, 2017, Prop. 3.1) < unclear p-metric unclear metric space
< Lipschitz margin loss with

(Shafieezadeh-Abadeh et al., 2019, Thm. 12) - _ linear classifier norm empirical dist. R
_ additional strong regularity
- condition
(Gao & Kleywegt, 2016, Cor. 2 (ii)) = concave p-metric empirical dist. com;efos(lilbset
< measurable probability separable
Theorem 2 (this paper) norm measure
. non-atomic, Banach space
= continuous

compact support

and

Aper(p) <rlip(f)—
max{0, rlip.(¢o f) — E,[f — o f]}. (2)

Observe that when f is closed convex, (2) implies
Aer(p) =0.

A summary of the results Theorem 1 improves upon is
presented in Table 1 and a more detailed discussion follows
in the supplementary material (Supplement A).

Proposition 1. Suppose X is a separable Banach space.
Suppose c : X — R satisfies the conditions of Theorem 1,
and f € (,eq(x,) £1(X, 1) is upper semicontinuous, has
lip,(f) < oo, and attains its maximum on Xo C X. Then
forallr >0

SUPye(xo) Af.er ()
= rlip.(f) — maX{O, rlip.(co f) — p(f)}

Remark 1. Proposition 1 shows that for any compact sub-
set Xy C R? (such as the set of d-dimensional images,
[0, 1]%) the bound (1) is tight with respect to the set of dis-
tributions supported here, for any upper semicontinuous

F € Muepxo) £0X 1).

It is the first time to our knowledge that the slackness (2)
has been characterised tightly. Remark 3 (in §A.1) discusses
a similar way to construct such a bound from some existing
results in the literature, and compares it to Theorem 2.

3.1. Adversarial learning

Szegedy et al. (2014) observe that deep neural networks,
trained for image classification using empirical risk min-
imisation, exhibit a curious behaviour whereby an image,
z € R? and a small, imperceptible amount of noise,
5, € R?, may found so that the network classifies x and
x40, differently. Imagining that the troublesome noise vec-
tor is sought by an adversary seeking to defeat the classifier,

such pairs have come to be known as adversarial examples
(Moosavi Dezfooli et al., 2017; Goodfellow et al., 2015;
Kurakin et al., 2017).

The closed ¢ : X — R ball of radius » > 0, centred at
r € X is denoted B.(z,7) & {y€ X |c(z—y) <7}
Let X be a linear space and Y a topological space. Fix y €
PB(X x Y). The following objective has been proposed as
a means of learning classifiers that are robust to adversarial
examples (viz. Madry et al., 2018; Shaham et al., 2018;
Carlini & Wagner, 2017; Cisse et al., 2017)

/ sup o+ 8 y)u(dz x dy), 3)
6€B.(0,7)

where f : X x Y — R is the loss of some classifier.

Theorem 2. Suppose (X,co) is a separable Banach
space. Fix ;1 € P(X) and for r > 0 let R,(r) &ef
{9 € Lo(X,Rx0) | [gdu < r}. Thenfor f € Lo(£2,R)
and r > 0 there is

sup /u(dw) sup flw) < sup /fd%
gER,(T) w'€Bey (w,g(w)) v€Beg (1)
“)

If f is continuous and p is non-atomically concentrated with
compact support, then (4) is an equality.

Remark 2. By observing the constant function g, = 7 is
included in the set R,, (), it’s easy to see that the adversarial
risk (3) is upper bounded as follows

3) = / sup (e )pl(dw)
w’E€Bc(w,r)

< smw [u@n)  sw @) 6

gERM( WIEBc(w’g(w))

where, in the equality, we extend c( to a metriccon X X Y
in the same way as (B.6).

Theorem 2 generalises and subsumes a number of existing
results to relate the adversarial risk minimisation (3) to the
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distributionally robust risk in Theorem 1. A discussion and
summary of the improvements made by Theorem 2 on other
comparable results is presented in §3.2, with a table that is
similar to Table 1.

A simulation is in place demonstrating that the sum of the
gaps from Theorems 1 and 2 and Equation (5) is relatively
low. We randomly generated 100 Gaussian kernel classi-
fiers f = Zl 1 ik (2, -), where 2 was sampled from the
MNIST dataset and ~y; sampled uniformly from [—2, 2]. The
bandwidth was set to the median of pairwise distances. In
Figure 3, the z-axis is the adversarial risk (LHS of (5), i.e.,
(3)) where the perturbation ¢ is bounded in an ¢, ball and
computed by projected gradient descent (PGD). The y-axis
is the Lipschitz regularised empirical risk (RHS of (1)). The
scattered dots lie closely to the diagonal, demonstrating that
the above bounds are tight in practice.

3.2. Results related to Theorem 2

Similarly to Theorem 1, Theorem 2 improves upon a num-
ber of existing results in the literature. These are listed in
Table 2. The majority of other results mentioned are are for-
mulated with respect to an empirical distribution, that is, an
average of Dirac masses. Of course any finite set is compact,
and so these empirical distributions satisfy the concentration
assumption. Staib & Jegelka (2017, Prop. 3.1) also state an
equality result, but this is in the setting of an co-Wasserstein
ball, which is a much more exotic object (viz. Champion
et al., 2008) and is not obvious how it relates to the other
results, so we choose to omit it from Table 2.

4. Lipschitz regularisation for kernel methods

Theorems 1 and 2 open up a new path to optimising the
adversarial risk (3) by Lipschitz regularisation (RHS of
(1)). In general, however, it is still hard to compute the
Lipschitz constant for a nonlinear model (Scaman & Vir-
maux, 2018). Interestingly, we will show that for some
types of kernels, this can be done efficiently on functions
in its RKHS, which is rich enough to approximate con-
tinuous functions on a bounded domain (Micchelli et al.,
2006). Thanks to the connections between kernel method
and deep learning, this technique also potentially benefits
the latter. For example, ¢; -regularised neural networks are
compactly contained in the RKHS of multi-layer inverse ker-
nels k(z,y) = (2 — 2 "y) ! with ||z[|, < Land [|Jy[|, < 1
(Zhang et al., 2016, Lem. 1 & Thm. 1) and (Shalev-Shwartz
et al., 2011; Zhang et al., 2017), and possibly Gaussian
kernels k(z,y) =exp(55 |z—y||*) (Shalev-Shwartz et al.,
2011, §5).

Consider a Mercer’s kernel k on a convex domain X C R4,
with the corresponding RKHS denoted as . The standard
kernel method seeks a discriminant function f from H with
the conventional form of finite kernel expansion f(x) =

% Zi:l ~Ya k(x%,-), such that the regularised empirical risk
can be minimised with the standard (hinge) loss and RKHS
norm. We start with real-valued f for univariate output such
as binary classification, and later extend it to multiclass.

Our goal here is to additionally enforce, while retaining a
convex optimisation in v & {~,}, that the Lipschitz con-
stant of f falls below a prescribed threshold L > 0, which is
equivalent to sup, ¢ x ||V f(z)||, < L thanks to the convex-
ity of X. A quick but primitive solution is to piggyback on
the standard RKHS norm constraint || f||,, < C, in view that
it already induces an upper bound on ||V f(z)||, as shown

in Example 3.23 of Shafieezadeh-Abadeh et al. (2019):
sup [V (@)ll, < [Ifll5 sup 1g(2), (6)
rzeX z>0

where g(z) > sup 1k, ) = k(') gy -

' €X:||lz—a'||,=2

For Gaussian kernels, g(z) = max{c~!, 1} 2. For exponen-
tial and inverse kernels, g(z) = z (Bietti & Mairal, 2019).
Bietti et al. (2019) justified that the RKHS norm of a neural
network may serve as a surrogate for Lipschitz regularisa-
tion. But the quality of such an approximation, i.e., the gap
in (6), can be loose as we will see later in Figure 4. Besides,
C and L are supposed to be independent parameters.

How can we tighten the approximation? A natural idea is
to directly bound the gradient norm at n random locations
{w*}"_, sampled i.i.d. from X, an approach adopted by
Arbel et al. (2018, Appendix D). These obviously result in
convex constraints on <. But how many samples are needed
to ensure ||V f(z)||, < L+ € for all z € X? Unfortunately,
as shown in §C.1, n may have to grow exponentially by
1/¢4 for a d-dimensional space. Therefore we seek a more
efficient approach by first slightly relaxing ||V f(x)||,. Let
g;(x) & & f(z) be the partial derivative with respect to the
j-th coordinate of z, and 97 k(x, i) be the partial derivative
to x; and y;. i or j being 0 means no derivative. Assuming
sup,cx k(z,z) = 1 and g; € H (true for various kernels
considered by Assumptions 1 and 2 below), we get a bound

sup |[Vf(2)|2 = su , )2
IEEH @)l IEEZ (95, k()%
d
S sup . <ga¢>2
¢:\|¢\|H:12J:1 nH
= )\max(GTG)) (7)

where .y evaluates the maximum eigenvalue, and G &
(91,---,9a4). The “matrix” is only a notation because each
column is a function in 7, and obviously the (i, 7)-th entry
of GTG is (9i>95) %

Why does \,..(G'G) tend to provide a lower (i.e.,
tighter) approximation of the Lipschitz constant than
(6)? To gain some intuition, note that the latter takes two
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Figure 3: Empirical evaluation of the sum of the gaps
from Theorems 1 and 2. The Lipschitz constants
supgex [|Vf(2)[|, (eft: p = 2, rightt p = o0, 1/p +
1/q = 1) were estimated by BFGS.

steps of relaxation: |f(x) — f(z')| < ||fll% - ||k(x,-) —
k(2', )| and W < sup,.o £. They attain
equality at potentially very different (x, ') pairs, and the
former depends on f while the latter does not. In contrast,
our bound in (7) only relaxes once, leveraging the efficiently
approximable partial derivatives g; in §4.1 and capturing the
correlations across different coordinates j by the eigenvalue.

An empirical comparison is further shown in Figure 4, where
Amax (GTG) was computed from (9) derived below, and the
landmarks {w?®} consisted of the whole training set; drawing
more samples led to little difference. The gap is smaller
when the bandwidth o is larger, making functions smoother.
To be fair, both Figure 3 and Figure 4 set o to the median of
pairwise distances, a common practice.

Such a positive result motivated us to develop refined al-
gorithms to address the only remaining obstacle to lever-
aging Amax(G'G): a computational strategy. Interest-
ingly, it is readily approximable in both theory and prac-
tice. Indeed, the role of g; can be approximated by its
Nystrém approximation g; € R? (Williams & Seeger, 2000;
Drineas & Mahoney, 2005) with K %' [k(w?, w" )], ;» and
Z ¥ (k(w', ), k(w?,),..., kw™,)):
3 LK (gi(wh),. .. gi(w™) T

— (ZTZ)—1/2Zng (8)
because g;(w') = (g;,k(w’, )>H
Amax(GTG) < L? + ¢, intuitively we can enforce
Aax(GTG) < L2, where G & (g1,...,Gq). It retains
the convexity in the constraint on ~. However, to guarantee
€ error, the number of samples (n) required is generally
exponential (Barron, 1994). Fortunately, we will next show
that n can be reduced to polynomial for quite a general class
of kernels that possess some decomposed structure.

Then to ensure

4.1. A Nystrom approximation for product kernels

A number of kernels factor multiplicatively over the coordi-
nates, such as periodic kernels (MacKay, 1998), Gaussian

S S 3
\-680 " \-630 i
B B

leo| |

g |4 g-20

) .. )

=] F . =10

17} S 17}

=20 g K
5% = |-
=0 =0

0 20 40 60 80 0 10 20 30

Amax(GTG)Y? — Tip.(f) Amax(GTG)Y? — Tip.(f)

(a) 5-layer inverse kernel (b) Gaussian kernel

Figure 4: Comparison of \y.x (G T G) and the RHS of (6),
as upper bounds for the Lipschitz constant. Smaller values
are tighter. We sampled 100 functions in the same way as
in Figure 3.

kernels, and Laplacian kernels. Let us consider k(z,y) =
H;l:l ko(zj,y;) where X = (Xo)? and ko is a base kernel
on an interval Xj. Let the RKHS of k¢ be H, and let i be
a finite Borel measure with supp[uo] = Xo. Periodic ker-
nels have ko(z;,y;) = exp(—sin(Z(z; — yj))g/(2a2)).
We stress that product kernels can induce very rich function
spaces. For example, Gaussian kernel is universal (Micchelli
et al., 2006), meaning that its RKHS is dense in the space
of continuous functions in the £, norm over any bounded
domain. Also note that the factorization of kernel k& does
not imply a function f € H must factor as [[; f;(z;).

The key benefit of this decomposition of £k is

that the derivative 0%'k(z,y) can be written as

80’1]{,‘()(.%‘1,:[/1)]__[?:2 ko(l‘j,yj). Since ko(a:j,yj)
can be easily dealt with, approximation will be
needed only for 9%'kg(wq,y1). Applying this idea

t0g; =13 | 7.0%k(z®, ), we can derive
!

d
Pl = Y Pawdas [T koG ad)],  ©
a,b=1 j=2
where Ma,b déf <80’1k()(1'{11, '), 80’1k()($1{, )>

12 <91792>H =
I d

['yavbﬁo’lko(x%, 22)9%% ko (25, 24) H ko(zF, w;’)} .

a,b=1 j=3

Ho’

So the off-diagonal entries of G'T G can be computed ex-
actly. But this is not the case for the diagonal entries because
M, is not equal to OV ko (x4, 2%). This differs from the
(a%lf(x))2 used in Arbel et al. (2018), which can be com-
puted with more ease via ( f, [0""k(z, ) ® 0" k(w, )]f>H
Now it is natural to apply Nystrom approximation to M,
in the diagonal, using samples {w7, ..., w}} from pg:

My =0% ko (24, ) T Z0(Z] 20) 72 2] 0% ko (28, ), (10)
where Z; & (ko(wi,-), ..., ko(w?},-)). Note

ZF@O’lk‘o(x’f, -):(80’1160(3:‘11,10%), R 80’1160(;6‘11,10?))—'—7
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and similarly for Z] 9%1ko(z%,-). Denote this approxi-
mation of G'G as Pg. Clearly, )\max(Pg) < I?isa
convex constraint on <y, based on i.i.d. samples {w} |
s € [n],j € [d]} from po.

The overall convex training procedure is summarised in Al-
gorithm 1, where the goal is to train a kernel SVM with the
additional constraint that the Lipschitz constant is at most
L. More detailed formulations are available in §D. The
three different ways to enforce the Lipschitz constant as dis-
cussed above correspond to options (1) to 3). For practical
efficiency, we greedily expand the Nystrom landmark set S
by locally maximizing the norm of the gradient at each iter-
ation (step (®). Figure 7 in §5.1 will show that the Nystrom
based algorithm is much more efficient than the brute-force
counterpart, and the greedy approach significantly reduces
the number of samples for both algorithms.

4.2. General sample complexity and assumptions

Finally, it is important to analyse how many samples w} are
needed, such that with high probability

Amax(Pa) S L? = Anax(GTG) < L% + e

Fortunately, product kernels only require approximation
bounds for each coordinate, making the sample complexity
immune to the exponential growth in the dimensionality
d. Specifically, we first consider base kernels ky with a
scalar input, i.e., Xy C R. Recall from Steinwart & Christ-
mann (2008, §4) that the integral operator for & and p is
Try & T o Sg,, where S, : Lo(Xo, 10) — C(Xo) oper-
ates according to (Sk, f)(z) £ [ ko(x,y) f(y)uo(dy) for
all f € Lo(Xo, po), and I: C(Xo) < L2(Xo, pto) is the in-
clusion operator. By the spectral theorem, if T}, is compact,
then there is an at most countable orthonormal set {€;} jc s
of ,CQ(X(),,uo) and {)\j}jeJ with Ay > X > ... >0
such that Ty, f = 375y Aj (f1€5) £, (x.0) € TOrall f €
L5(Xo, po)- It follows that ¢; &\ /Xje; is an orthonormal
basis of Hq (cf. Steinwart & Christmann, 2008).

Our proof is built upon the following two assumptions on
the base kernel. The first one asserts that fixing x, the energy
of ko(z,-) and 8%'kq(z,-) “concentrates” on the leading
eigenfunctions.

Assumption 1. Suppose ko(x,z) = 1 and 0°1ky(z,-) €
Hyo for all x € Xy. For all ¢ > 0, there exists N, € IN
such that the tail energy of 9%k (x, ) beyond the N -th
eigenpair is less than €, uniformly for all z € X. That is,
denoting @,,, & (¢1,...,0m), N. < 0o is the smallest m
such that

||60’1k'0(33a ) - ¢m¢718071k0(x7 )HHO
and ||k0(xa') *@mds;kO(x?')HHo

The second assumption asserts the smoothness and range of
eigenfunctions in a uniform sense.

VeeX, <e

< €.

Algorithm 1 Training L-Lipschitz binary SVM

Randomly sample S = {w!, ..., w"} from X.
fori=1,2,...do
Train an SVM under one of the following constraints:

@ Brute-force: |V f(w)|2 < L2, Vwe S
@ Nystrom holistic: .. (G G)<L?in (8) by S

(3 Nystrom coordinate wise: )\max(Pg) < I? in
(10) by using S

Let the trained SVM be f ().
Add a new w to S by one of the following methods:

(® Random: randomly sample w from X.

® Greedy: find argmax, ¢ x | Vf@ (z)]|| (local
optimisation) by L-BFGS with 10 random ini-
tialisations and add the distinct results

Return if L) & max,cx |V f@(2)|| falls below L

Assumption 2. Under Assumption 1, {e;(z) : j € N}
is uniformed bounded over x € X, and the RKHS inner
product of 9%1kg(z, -) with {e; : j € N} is also uniformly
bounded over x € Xj:

f
M, ¥ sup max
ZEEXOJE[NJ

<80’1/€0($a ')a ej>7.[0‘ < 00,

def
Q= Sup max lej(z)] < oc.

Theorem 3. Suppose ko, Xo, and pg satisfy Assumptions
I and 2. Let {w} : s € [n],j € [d]} be sampled i.i.d. from
wo. Then for any f whose coordinate-wise Nystrom approx-
imation (9) and (10) satisfy )\max(f’g) < L2, the Lipschitz
condition Amax(GTG) < L? + € is met with probability
1 -4, as long as n > é(éNfoQf log %) almost
independent of d. Here O hides all poly-log terms except
those involving d. The proof is deferred to §C.3.

The log d dependence on dimension d is interesting, but not
surprising. After all, only the diagonal entries of G'T G need
approximation, and the quantity of interest is its spectral
norm, not Frobenious norm. Compared with the brute-force
approach in Arbel et al. (2018) which costs exponential sam-
ple complexity, we manage to reduce it to 1/¢? by making
two assumptions, which interestingly hold true for important
classes of kernels.

Theorem 4. Assumptions I and 2 hold for periodic kernel
and Gaussian kernel with O(1) values of N., M, and Q..

The proof is in §C.4 and §C.5. It remains open whether
non-product kernels such as inverse kernel also enjoy this
polynomial sample complexity. §C.6 suggests that its com-
plexity may be quasi-polynomial.



Generalised Lipschitz Regularisation Equals Distributional Robustness

5. Experimental results

We studied the empirical robustness and accuracy of the
proposed Lipschitz regularisation technique for adversarial
training of kernel methods, under both Gaussian kernel and
inverse kernel. Comparison will be made with state-of-the-
art defence algorithms under effective attacks.

Datasets We tested on three datasets: MNIST,
Fashion-MNIST, and CIFARI10. The number of
training/validation/test examples for the three datasets are
54k/6k/10k, 54k/6k/10k, 45k/5k/10k, respectively. Each
image in MNIST and Fashion-MNIST is represented as
a 784-dimensional feature vector, with each feature/pixel
normalised to [0,1]. For CIFARIO, we trained it on a
residual network to obtain a 512-dimensional feature
embedding, which were subsequently normalised to [0, 1].

Attacks To evaluate the robustness of the trained model,
we attacked them on test examples using the random ini-
tialized Projected Gradient Descent method with 100 steps
(PGD, Madry et al., 2018) under two losses: cross-entropy
and C&W loss (Carlini & Wagner, 2017). The perturbation
6 was constrained in an 2-norm or co-norm ball. To eval-
uate robustness, we scaled the perturbation bound ¢ from
0.1 to 0.6 for co-norm norm, and from 1 to 6 for 2-norm
norm (when § = 6, the average magnitude per coordinate is
0.214). We normalised gradient and fine-tuned the step size.

Algorithms We compared four training algorithms. The
Parseval network orthonormalises the weight matrices to
enforce the Lipschitz constant (Cisse et al., 2017). We
used three hidden layers of 1024 units and ReLU activation
(Par-ReLU). Also considered is the Parseval network with
MaxMin activations (Par-MaxMin), which enjoys much
improved robustness (Anil et al., 2019). Both algorithms
can be customised for 2-norm or co-norm attacks, and were
trained under the corresponding norms. Using multi-class
hinge loss, they constitute strong baselines for adversarial
learning. We followed the code from LNets with 5 = 0.5,
which is equivalent to the first-order Bjorck algorithm. The
final upper bound of Lipschitz constant computed from
the learned weight matrices satisfied the orthogonality con-
straint as shown by Anil et al. (2019, Fig. 13).

Both Gaussian and inverse kernel machines applied Lip-
schitz regularisation by randomly and greedily selecting
{w?®}, and they will be referred to as Gauss-Lip and
Inverse-Lip, respectively. In practice, Gauss-Lip with the
coordinate-wise Nystrom approximation ()\maX(Pg) from
(10)) can approximate )\max(GTG) with a much smaller
number of sample than if using the holistic approximation
as in (8). Furthermore, we found an even more efficient
approach. Inside the iterative training algorithm, we used
L-BFGS to find the input that yields the steepest gradient
under the current solution, and then added it to the set {w®}

(which was initialized with 15 random points). Although
L-BFGS is only a local solver, this greedy approach em-
pirically reduces the number of samples by an order of
magnitude. See the empirical convergence results in §5.1.
Its theoretical analysis is left for future investigation. We
also applied this greedy approach to Inverse-Lip.

Extending binary kernel machines to multiclass The
standard kernel methods learn a discriminant function
e € S k(x4 ) for each class ¢ € [10], based
on which a large variety of multiclass classification
losses can be applied, e.g., CS (Crammer & Singer,
2001) which was used in our experiment. Since the
Lipschitz constant of the mapping from {f°} to a real-
valued loss is typically at most 1, it suffices to bound
the Lipschitz constant of z — (f(z),...,fP(x))"
via  max; Amax(G(z)G(x)"), where G(x) af
[Vfl(l'), ,vfIO(x)] = [<g;ak(xa')>H]j€[d],c€[10]-
As ||k(z,-)||;, = 1, we then enforce

10
Amax Gleo™G.) <L? (1
e (> cleoTce) < (11)

where G, & (97, 99)-

The LHS of (11) is amenable to the same Nystrom approxi-
mation as in the binary case. Further, the principle can be
extended to oo-norm attacks, whose details are in §D.1.

Parameter selection We used the same parameters as in
Anil et al. (2019) for training Par-ReLU and Par-MaxMin.
To defend against 2-norm attacks, we set L = 100 for
all algorithms. Gauss-Lip achieved high accuracy and
robustness on the validation set with bandwidth o = 1.5 for
FashionMNIST and CIFAR-10, and o = 2 for MNIST. To
defend against co-norm attacks, we set L = 1000 for all
the four methods as in Anil et al. (2019). The best ¢ for
Gauss-Lip is 1 for all datasets. Inverse-Lip used 5 layers.

Results Figures. 5 and 6 show how the test accuracy de-
cays as an increasing amount of perturbation (6) in 2-norm
and oco-norm norm is added to the test images, respectively.
Clearly Gauss-Lip achieves higher accuracy and robustness
than Par-RelLU and Par-MaxMin on the three datasets, un-
der both 2-norm and oo-norm bounded PGD attacks with
C&W loss. In contrast, Inverse-Lip only performs similarly
to Par-ReLU. Interestingly, 2-norm based Par-MaxMin are
only slightly better than Par-ReLU under 2-norm attacks,
although the former does perform significantly better under
oo-norm attacks.

The results for cross-entropy PGD attacks are deferred to
Figures. 9 and 10 in §E.1. Here cross-entropy PGD attack-
ers find stronger attacks to Parseval networks but not to our
kernel models. Our Gauss-Lip again significantly outper-
forms Par-MaxMin on all the three datasets and under both
2-norm and oco-norm norms. The improved robustness of
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Figure 6: Test accuracy under PGD attacks on the C&W approximation with oco-norm norm bound

Gauss-Lip does not seem to be attributed to the obfuscated
(masked) gradient (Athalye et al., 2018), because as shown
Figures. 5, 6, 9 and 10, increased distortion bound does
increase attack success, and unbounded attacks drive the
success rate to very low. In practice, we also observed that
random sampling finds much weaker attacks, and taking 10
steps of PGD is much stronger than one step.

Obfuscated gradient To further illustrate the property of
Gauss-Lip trained models, we visualised “large perturba-
tion” adversarial examples with the 2-norm norm bounded
by 8. Figure 11 in §E.2 shows the result of running PGD
attack for 100 steps on Gauss-Lip trained model using
(targeted) cross-entropy approximation. On a randomly
sampled set of 10 images from MNIST, PGD successfully
turned all of them into any target class by following the
gradient. We further ran PGD on C&W approximation in
Figure 12, and this untargeted attack succeeds on all 10
images. In both cases, the final images are quite consistent
with human’s perception.

5.1. Efficiency of enforcing Lipschitz constant

Figure 7 plots how fast the Lipschitz constant L) at it-
eration ¢ is reduced by the variants la, lc, 3a, and 3c in
Algorithm 1, when more and more points w are added to
the constraint set .S. We used 400 random examples in the
MNIST dataset (200 images of digit 1 and 0 each) and set
L = 3 and RKHS norm || f||;, < oo for all algorithms.

Clearly the Nystrom algorithm is more efficient than the
brute-force algorithm, and the greedy method significantly
reduces the number of samples for both algorithms. In fact,

— —6— 3¢ Nystrom (greedy)
20 24 —A— 1c Brute-force (greedy)
i 10°Rs ::: --------- - « = 3a Nystrom (random) |}
- S~ - - = = la Brute-force (random)
3
k=
s
7]
g 401
S 10 ¢
N
=
2
&
—

100 0 ‘ 1 ‘ 2

10 10 10

Size of § (number of w added), i.e., index 7 in Alg. 1

Figure 7: Comparison of efficiency in enforcing Lipschitz
constant by various methods.

Nystrom with greedy selection (3c) eventually fell slightly
below the pre-specified L, because of the gap in (7).

6. Conclusion

Risk minimisation can fail to be optimal when there is some
misspecification of the distribution, such as when, as we
always must, work with its empirical counterpart. Therefore
we must turn to other techniques in order to ensure stability
when learning a model. The robust Bayes framework pro-
vides a systematic approach to these problems, however it
leaves open the choice as to which uncertainty set is most
appropriate. We show that in many cases, the popular Lip-
schitz regularisation corresponds to robust Bayes with a
transportation-cost-based uncertainty set.
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Supplementary Material

All code and data are available anonymously, with no tracing, at

https://github.com/learndeep2019/DRobust.

A. Discussion of Theorems 1 and 2

The reason we are interested in studying identities like (L) in full generality is to demonstrate that these relationships,
which have been studied in particular specific cases by a number of authors (cf. Tables. 1 and 2) have a simple common
structure. In this manner our goal is to contribute to the understanding of distributional robustness and regularisation directly,
rather than the specific application articulated in the adversarial robustness literature. In particular, our choice of a separable
Banach space for X is primarily motivated by the work of Blanchet & Murthy (2019), wherein the authors consider a
Polish space. When X is a Polish space equipped with a linear structure (so that we can exploit identities from convex
analysis), this makes X a separable Fréchet space. Our analysis is only restricted to the Banach setting only by our use of
the generalised Euler identity (Yang & Wei, 2008, Thm. 3.2), however we feel that this restriction is elementary.

A.1. Results related to Theorem 1

There are a number of similar results concerning identities of the form (L) and these are summarised in Table 1; the
result column refers to the relationship shown in (L). The assumptions necessary to show only inequality in Theorem 1 are
substantially weaker than the complete statement of the theorem (this is shown in the first paragraph of the proof on p. ) and
so we don’t include them in table. The weakest assumptions are highlighed with bold text, and any onerous assumptions
are highlighted with bold red text. In all cases our result is a strict generalisation, and no other works cited observe our
slackness bound using the lack of convexity parameter. The closest result to our slackness bound is not noted in — but can
be derived from — the work of Kuhn et al. (2019), which mention in Remark 3.

Remark 3. A similar slackness bound to (2) can be derived from Kuhn et al. (2019, Thms. 5,10), who show (under additional
assumptions)

sup /fduﬁ/de+TliP|\.|\(f)
veBy (k)

and

s [ pan= [ sdus i o)

veB) (1,7

which, together with the observation ¢o f < f, implies the slackness bound

Yuenx) + App () < r(lipyy(F) ~lipy (@) + (/). (A1)

However, (A.1) neither enjoys the same tightness guarantee as (2) (as demonstrated by Example 1), nor is stated with our
level of generality.

Example 1. Let I & [—r4/2,79/2] C R be an interval defined for some ro > 0. Let f(x) & 1 — (2x/ry)? for x € I and
f(x) = 0 for all other points x. Then f is upper semicontinuous, ¢o f = 0, p(f) = 1. Then

Vuep(ny ¢ costy. (1, 80) = /I\xm(dx) <o,

and 8y € B (s, 79) for all € P(I). The left hand side of (A.1) at any p € B(I) is

/fd,u—l—rolipc(f)— sup /deZ/fdu+Tolipc(f)—1

VEB(‘.(MJ'O)
S 1 + To hpc(f) - 17
=To hpc(f)7
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while the right hand side of (A.1) is

p(f) +ro(lip.(f) —lip. (€0 f)) = 1 + 7o lip.(f)-

This shows that

sup Ag (1) < p(f) + ro(lip.(f) — lip.(c0 f)).
neP(I)

Then, by the intermediate value theorem, there exists 0 < r < r( so that the bound (A.1) is not tight in the same way as (2).

B. Technical results on distributional robustness

For a topological vector space X we denote by X* its topological dual. These are in a duality with the pairing
(-, ) : X xX* — R. The weakest topology on X so that X* is its topological dual is denoted o(X, X*). The continuous
real functions on a topological space (2 are collected in C({2), and the subset of these that are bounded is Cy,({2). For
a measure p € P(X) and a Borel mapping f : X — Y, the push-forward measure is denoted fup € P(Y) where
Fan(A) & u(f~1(A)) for every Borel A C Y.

The e-subdifferential of a convex function f : X — R at a point z € X is

0cf(z) = {z" € X* |Vyex : (y—=,2%) —e < fy) - f(2)},

where € > 0. The Moreau-Rockafellar subdifferential is O f(x) Do f(2) and satisfies 0 f(z) = (.5 Ocf(z). The
Legendre—Fenchel conjugate of a function f : X — R is the function f* : X* — R defined by
Verexe: fH(x*) ¥ sup ((z,2%) — f(2)),
zeX
and satisfies the following Fenchel-Young rule when f is closed convex
Veer-1®)Vareo f(z) + (@) + [7(27) — (2,87) < e (B.1)

Finally the domains are dom 0 f & {x € X | 0f(z) # 0} and dom 0. f & {x € X | 0.f(z) # 0}.

A coupling function ¢ : X x X — R has an associated conjugacy operation with

fo(x) Esup(f(y) - cl@,y)),

yeX

for any function f : X — R. The indicator function of aset A C X is ta(z) £ 0forxz € Aand 14(x) ¥ oo forz ¢ A.

When f : R? — R is minorised by an affine function, there is (cf. Hiriart-Urruty & Lemaréchal, 2010, Prop. X.1.5.4;
Benoist & Hiriart-Urruty, 1996)

@0 f(x) = inf Z aif(xg) | (a1, .., ang1) € A" (T46)iem1) C R, Z T =T

1€[n+1] 1€[n+1]
forall z € RY, where A" £ {(au,..., apnq1) € R%, | 30,c(,4q) @i = 1}. Consequentially it is well known that p(f) can
be computed via
p(f) = sup D i | =D auf(a)
(ar,apq)eA™ i€[n+1] i€[n+1]

(T1,eey g1 ERD)H



B.1. Proof of Theorem 1 and other technical results

Lemma 1 ((Blanchet & Murthy (2019, Thm. 1))). suppose §2 is a Polish space and fix p € B(£2). Let ¢ : {2 x 2 — Rzo
be lower semicontinuous with c(w,w) = 0 forall w € §2, and f : {2 — R is upper semicontinuous. Then for all r > 0 there
is

sup /fdl/ = inf (/\7’ Jr/f)‘C du). (B.2)
vEB.(u,r) A20

Duality results like Lemma 1 have been the basis of a number of recent theoretical efforts in the theory of adversarial
learning (Sinha et al., 2018; Gao & Kleywegt, 2016; Blanchet et al., 2019; Shafieezadeh-Abadeh et al., 2019), the results of
Blanchet & Murthy (2019) being the most general to date. The necessity for such duality results like Lemma 1 is because
while the supremum on the left hand side of (B.2) is over a (usually) infinite dimensional space, the right hand side only
involves only a finite dimensional optimisation. The generalised conjugate in (B.2) also hides an optimisation, but when the
outcome space {2 is finite dimensional, this too is a finite dimensional problem.

We also require the following result of Yang & Wei (2008) to exploit the structure of k-homogenous functions.

Lemma 2 ((Yang & Wei (2008, Thm. 3.2))). Suppose X is a Banach space and c : X — R is convex, k-positively
homogeneous for k > 0, and lower semicontinuous. Then for every x € dom Oc there is

vw*eac(z) : C(iC) = k_1<$,$*>.

The following lemma is sometimes stated a consequence of, or in the proof of, the McShane—Whitney extension theorem
(McShane, 1934; Whitney, 1934), but it is immediate to observe.

Lemma 3. Let X be a set. Assumec: X X X — Rzo satisfies c(x,x) = 0forallx € X, f: X — R. Then

L2 1ipe(f) <= Yyex : fy) = sup(f(z) = cle,y)).

Proof. Suppose 1 > lip,.(f). Fix yo € X. Then

Veex + f(x) —c(z,90) < f(yo),

with equality when = = 4. Next suppose

Vyex © fly) = sup(f(x) — c(z,y)),

xeX
then
Voyex © f(y) = f(z) —c(z,y) < Vayex: f(z)— f(y) < c(z,y)
> 12> lip.(f),
as claimed. ]

Lemma 4. Suppose X is a locally convex Hausdorff topological vector space and ¢ : X — Rzo satisfies ¢(0) = 0, and
f: X — Ris convex. Then

1> hpc(f) < VEZO : 8€f(X) - 866(0)

Proof. Assume 1 > lip.(f). Then f(z) — f(y) < c¢(z —y) forall z,y € X. Fix e > 0, z € X and suppose 2™ € 0. f(x).
Then

Vyex : (y—2,2") —e < f(y) — f(z) < cly —x)
= Vyex: (y,27) —e < fy+x) — f(z) < c(y) — ¢(0),

because ¢(0) = 0. This shows 2* € 0.¢(0).



Next assume O f(x) C 0.¢(0) forall e > 0 and x € X. Because f is not extended-real valued, it is continuous on all
of X (via Zilinescu, 2002, Cor. 2.2.10) and 0 f(z) is nonempty for all x € X (via Zalinescu, 2002, Thm. 2.4.9). Fix an
arbitrary x € X. Then () # 0 f(x) C 0¢(0), and

ereaf@)Vyex + f(@) — fly) < (z—y,27)

(B.1)
= VYyex: f(z) = f(y) < (2 —y,2") <clz—y),

where the implication is because x* € 0¢(0) and ¢(0) = 0. Since the choice of x in (B.1) was arbitrary, the proof is
complete. O

Lemma 5. Suppose X is a Banach space and c : X — Rzo is convex, k-positively homogeneous. Then (i) c* > L1 ac(0)
and (ii) ¢*(x*) = oo for any z* ¢ 0¢(0).

Proof. Fix an arbitrary € X. Then, for ¢ > 0, there is z* € 0.c(x) if and only if

(y —a,a") <ey) — () +e = (y—z,27) <cly) —clx) +e
= (y,2") = (z,27) <c(y) —c(x) +e
ke(x)
= (") < cly) + (k— De(z) + e,

holds for every y € X. Then, so long as k > 1, we have 0.c(x) = 0 (5—1)c(2)+c(0) 2 0cc(0). Setting € = 0 we find

vxedom(ac) : 86(3;‘) D) 80(0) (Bl)

Fix an arbitrary 2, € X*. Then because c is convex and real-valued, dom dc = X and

¢*(zg) = sup  ((z,25) — c(2))
z€dom(0c)
2 swp sup  ((z,2f) — k™' z, z%))
xz€dom(dc) x*€dc(x)

B.1)
> sup sup  ((z,2f) — k™ 'z, 2%))
z€dom(0c) z*€0¢(0)

= sup sup <x,x3 — kflx*>
z€dom(0c) z*€0c(0)

> sup  f(z, ), (B.2)
z€dom(0c)

where

If kzf ¢ 0c(0) then there is xo € X with
1
k(xo, z3) > c(rg) = o0 > (xg,x4) > %c(xo) >0,

and zy € dom f. Therefore for any =, ¢ 0¢(0),

sup  flz,z5) = sup f(z,z5) > supalxg, zj) = . (B.3)
re€dom(0dc) z€dom(c) a>0

In the first equality we used the fact that cldom(9dc¢) = cldom(c). This shows

(B.2)

(B.3)
c@) S s 1) % oo
z€dom(dc)



and proves (i).

Suppose z; ¢ 0c(0). Then there exists y € X so that (y, zj) > c(y). Letag & »~/p. Then ag > 0, 6. — 1, and

aok

k
W.wp) > ely) = (y.25) > > cly)
aop
> (aoy, kxz) > afec(y)
< (agy, kx§) > c(apy),
where in the last line we used the k-positive homogeneity of c. This shows that kx§ ¢ 0¢(0). Using (i) we obtain

vy & 0c(0) = kay ¢ 0¢(0) = oo (a) = 00 22 ¢ (w) = oo,

which completes the proof of (ii). ]

Lemma 6. Assume X is a Banach space. Suppose X is a Banach space and ¢ : X — R is convex, k-positively homogeneous,
and lower semicontinuous. Then there is

Vyex : sup (f(x) —c(x — y)> _ {f(y) 1> lip.(f)

zeX 00 otherwise.

Proof. Fix an arbitrary yo € X. From Lemma 4 we know

1> lip,(f) <= Veso: 0f(X) C 0ec(0).

Assume 0. f(X) C 0.c¢(0) for all ¢ > 0. Consequentially 0. f(yo) C 0c(0) = 0cc( - — yo)(yo) for every € > 0.
From the usual difference-convex global e-subdifferential condition (Hiriart-Urruty, 1989, Thm. 4.4) it follows that

zeX

inf (c(az —yo) — f(£)> = c(yo — vo) —f(y0) = —f(y0),
0

where we note that ¢(yo — yo) = ¢(0) = 0 because c is sublinear.
Assume 0. f(X) € 0.c(0) for some e > 0. By hypothesis there exists ¢; > 0, zg € X, and xf € X* with
x5 € Oy f(xo) and  zf & 0,¢(0).

Using the Toland (1979) duality formula (viz. Hiriart-Urruty, 1986, Cor. 2.3) and the usual calculus rules for the Fenchel
conjugate (e.g. Zdlinescu, 2002, Thm. 2.3.1) we have

it (el =)~ £0)) = _int (£ = el 30" (@"))

reX zreX*
= int (£ = @)+ )

< £ (@l) — ¢ (e8) + (g0, zY)
o+ (xo,zl) — Flao) — (@) + (o )

= €0 + (o + Yo, 75) — f(w0) —c"(p), (B.1)

<oo

where the second inequality is because x§ € O, f (o).

We have assumed z; ¢ 0.c¢(0) 2O 0¢(0). Because ¢ convex k-positively homogeneous, ¢*(zf) = oo (via Lemma 5 (ii)).
Then (B.1) yields

it (clo =)~ ) < .

zeX

which completes the proof. O



Theorem (1). Suppose X is a separable Banach space and fix p € B(X). Suppose ¢ : X — Rzo is closed convex,
k-positively homogeneous, and | € L1(X, p) is upper semicontinuous with lip.(f) < co. Then for all r > 0, there exists
Ay er() > 0 so that

SUP /de+Af7cr ):/fd,u—l—Tlipc(f),

veB.(

and

Afer(p) <rlip.(f)—
max{0,rlip.(¢o f) — E,[f — o f]}.

Proof. (1): Since ¢ is k-positively homogeneous, there is ¢(x, x) = ¢(x — ) = ¢(0) = 0 for all x € X. Therefore we can
apply Lemma 1 and Lemma 3 to obtain

L1 . e
sup /fdu = inf (r)\ —l—/f du)
’/EBC(/JHT) )\20

< it (m+ / f*“du) (B.2)

AZlip,.(f)

B lip,(f) + / fdn,

and therefore Ay . ,(u) > 0.
(2): Observing that co f < f, from Lemma 6 we find for all z € X

sup (f(z) — f(a) =)

A€[0,00)
= sup (f(z)—sup(f(y) — Ac(z —y)) —rA)
AE€[0,00) yeX
= sup inf (f(x)— f(y) +Ac(z —y) —7N)
A€E[0,00) YEX
< sup inf (f(2) = f(y) + Ac(z —y) — Ar)
A€E[0,00) ¥EX
g (@) =T I@) A (@) <X
A€[0,00) | 00 lip, (€0 f) > A
= f(z) — @0 f(z) — rlip.(co f). (B.3)

Similarly, for all x € X there is

swp (f@) = @) —rA) < sw (f@) = @)+ sup (=1

A€[0,00) A€[0,00) A€[0,00)

= s (f() - f“(x))

A€[0,00)

= sup inf

L (f )+ Ae(z — ))
(7@

IA

inf sup
yeX A€[0,00)

nf {oo clx—y) >0
yeX |0 €T

= 0. B4

[z )+ Ac(x — ))



Together, (B.3) and (B.4) show

[ 5w (5= P =ryau

A€[0,00)
< min{ = du—rlipc(COf),O}. (B.5)
Then
Apenlit) = (r lip, (/) + / fdu> - / fdv
®2) (r lip,.(f) + / fdu) - Aei[gfm)<rx— / fre du>
= rlip.(f) + sup /(f—fkc —)\7“) du
AE€[0,00)
< rlip () + [ sup (£ P o) dn
A€[0,00)
(B.5)
2 rtin. (1) + minf [ () au i (@0 1,0},
which implies (2). O

The extension of Theorem 1 for robust classification in the absence of label noise is straight-forward.

Corollary 1. Assume X is a separable Banach space and Y is a topological space. Fix ji € P(X xY). Assume
c: (X xY) x (X xY) — R satisfies

(o 0), ) = {Z‘f ey B0

where co : X — R satisfies the conditions of Theorem 1, and [ € L1(X x Y, ) is upper semicontinuous and has lip,.(f) <
0. Then for all v > 0 there is (1) and (2), where the closed convex hull is interpreted co(f)(z,y) £ co(f(-,y))(z).

Proposition (1). Suppose X is a separable Banach space. Suppose ¢ : X — Rzo satisfies the conditions of Theorem 1,
and f € nuE‘B(Xo) L1(X, p) is upper semicontinuous, has lip,.(f) < oo, and attains its maximum on Xy C X. Then for
allr >0

SUPep(X,) Afer(1t)

= rlip,(f) — max{o,rhpc(@f) - p(f)}~

Proof. Let zg € X, be a point at which f(z) = sup f(Xo). Then costc(z,,82,) = 0 < r,and sup,cg (s, . [ fdv=
f(zg). Therefore

Afer(82y) = rlip.(f) + f(z0) — f(20) = 7lip.(f)- (B.2)
And so we have
(B.2)
T]ipc(f) < sup Af,cm(:u)
HEP(Xo)
T1
< rlip(f) — max{rlip.(c5 /) ~ p(f),0}
< rlip.(f),

which implies the claim. O



B.2. Proof of Theorem 2

Lemma 7 will be used to show an equality result in Theorem 2.

Lemma 7. Assume (2, c) is a compact Polish space and p € B(§2) is non-atomic. For r > 0 and v* € B.(u,r) there is a
sequence (f;)ien € Au(r) £ {f € Lo(£2,12) ’ [cd(Id, f)up < 7} with (fi)up converging at v* in o(B(12), C(£2)).

Proof. Let P(u,v) € {f € Lo(X,X) | fgp = v}. Since  is non-atomic and c is continuous we have (via Pratelli, 2007,
Thm. B)

Viepo) felig%ﬁ V)/cd(Id,f)#,u = cost(u, V).

Let 7* & cost..(u, v*), obviously r* < r. Assume r* > 0, otherwise the lemma is trivial. Fix a sequence (ex)gen C (0,7)
def

with ¢, — 0. Foru > Olet v(u) = p + u(v* — ). Then
coste(u,v(0)) =0 and cost.(u,v(1)) =1,

and because cost. metrises the o(P(2), C(£2))-topology on B(£2) (Villani, 2009, Cor. 6.13), the mapping u
coste(p, v(w)) is o(PB(£2), C(§2))-continuous. Then by the intermediate value theorem for every k € N there is some
ug > 0 with coste(u, v(ug)) = r* — €, forming a sequence (uy)reny C [0, 1]. Then for every k there is a sequence
(Fyn)jen © Pl () so that (£51) 1 — v(k) in o(B(12), C(12)) and
lim [ cd(d, fp)pn= _int [ cd(1d. fo)en
= coste(u, v(k))

=7" — €.

Therefore for every k € N there exists j, > 0 so that for every j > ji

/Cd(Id, fjk)#,u < r*. (BZ)

Let us pass directly to this subsequence of (f;1);en for every k € N so that (B.2) holds for all j, k € N. Next by construction
we have v(uy) — v*. Therefore (f;x);ken has a subsequence in k so that (fjz)xp — v* in in o(P(£2), C(£2)). By
ensuring (B.2) is satisfied, the sequences (f;x);jen € A, (r) for every k € N. O

We can now prove our main result Theorem 2. When (X ¢) is a normed space, the closed ball of radius » > 0, centred
atz € X is denoted B.(z,7) &£ {y € X | c(x —y) <7}

Theorem (2). Suppose (X, cy) is a separable Banach space. Fix pp € B(X) and forr > 0 let R,,(r) E{g€ Lo(X,Rxo) |
[ gdu <r}. Thenfor f € Lo(£2,R) and r > 0 there is

sup / p(dw)  sup  f(w) < sup / fdv,
gER“(T) UJIEBCO((.U,_(](UJ)) UEBCQ(U’aT)

If f is continuous and i is non-atomically concentrated with compact support, then (4) is an equality.

. . def
Proof. For convenience of notation let ¢ = ¢y.

When » = 0, the set R#(r) consists of the set of functions g which are 0 p-almost everywhere, in which case
B.(z,g(z)) = {0} for p-almost all € X. Thus (5) is equal to [ f(z)u(dz). Since ¢ is a norm, ¢(0) = 0, and by a similar
argument there is equality with the right hand side. We now complete the proof for the cases where r» > 0.

Inequality: For g € R,,(r),let I'; : X — 2% denote the set-valued mapping with I'y(z) £ B.(z, g(z)). Let Lo(X, Iy)
denote the set of Borel a : X — X so that a(x) € I,(z) for y-almost all z € X. Let A, (r) & UgGRM(T) Lo(X, Iy).
Clearly for every a € A, (r) there is

r> /c(x,a(x))d/i = /cd(Id,a)#u,



which shows {axp | a € A,(r)} C Be(u, 7). Then if there is equality in (B.3), we have

sup / sup f(x)= sup sup /fda#u (B.3)
gER(r) J a'€ly(x) gER, (1) a€Lo(X,Ty)
= sup /fda#u
a€A,(r)
< sup / fdv,
vEBc(u,r)

which proves the inequality.

To complete the proof we will now justify the exchange of integration and supremum in (B.3). The set Lo(X, I,) is
trivially decomposable (Giner, 2009, see the remark at the bottom of p. 323, Def. 2.1). By assumption f is Borel measurable.
Since f is measurable, any decomposable subset of Ly(X, X) is f-decomposable (Giner, 2009, Prop. 5.3) and f-linked
(Giner, 2009, Prop. 3.7 (i)). Giner (2009, Thm. 6.1 (c)) therefore allows us to exchange integration and supremum in (B.3).

Equality: Under the additional assumptions there exists v* € ({2) with (via Blanchet & Murthy, 2019, Prop. 2)

frur= g, [0

The compact subset where 1 is concentrated and non-atomic is a Polish space with the Banach metric. Therefore using
Lemma 7 there is a sequence (f;);en € A, (r) so that

l_im/fiduz/fdl/*: sup /fdu7
ieN vEBe(p,r)

proving the desired equality. O

C. Proofs and additional results on the Lipschitz regularisation of kernel methods
C.1. Random sampling requires exponential cost

The most natural idea of leveraging the samples is to add the constraints ||g(w®)|| < L. For Gaussian kernel, we may
sample from A (0, 02I) while for inverse kernel we may sample uniformly from B. This leads to our training objective:

i 1 2 . S <L, Vselnl.
min Z oss(f Hf||H s lg(w?)[| < s € [n]

Unfortunately, this method may require O(-;) samples to guarantee ;i llg; ||3{ < L? + e w.h.p. This is illustrated in

Figure 8, where k is the polynomial kernel with degree 2 whose domain X is the unit ball B, and f(z) = 3(v"z)?. We

seek to test whether the gradient g(z) = (v z)v has norm bounded by 1 for all z € B, and we are only allowed to test
whether ||g(w®)|| < 1 for samples w* that are drawn uniformly at random from B. This is equivalent to testing ||v]| < 1,
and to achieve it at least one w*® must be from the € ball around v/ ||v|| or —v/ ||v||, intersected with B. But the probability
of hitting such a region decays exponentially with the dimensionality d.

The key insight from the above counter-example is that in fact ||v|| can be easily computed by Zle (vT,)?, where
{w*}4_, is the orthonormal basis computed from the Gram—Schmidt process on d random samples {w*}?_; (n = d).
With probability 1, n samples drawn uniformly from B must span R? as long as n > d, i.e., rank(W) = d where
W = (w!,...,w™). The Gram—Schmidt process can be effectively represented using a pseudo-inverse matrix (allowing
n > d) as

)

olly = ||V Tw) 2w T

where (T W )~1/2 is the square root of the pseudo-inverse of W T 1. This is exactly the intuition underlying the Nystrom
approximation that we will leveraged.



Figure 8: Suppose we use a polynomial kernel with degree 2, and f(z) = (v 2)? for z € B. Then g(z) = (v z)v. If

we want to test whether sup,c g ||g(z)||, < 1 by evaluating ||g(w)||, on w that is randomly sampled from B such as w,
and wo, we must sample within the e balls around the intersection of B and the ray along v (both directions). See the blue
shaded area. The problem, however, becomes trivial if we use the orthonormal basis {1, w2 }.

C.2. Spectrum of Kernels

Let & be a continuous kernel on a compact metric space X, and  be a finite Borel measure on X with supp[u] = X.
We will re-describe the following spectral properties in a more general way than in §4. Recall Steinwart & Christmann
(2008, §4) that the integral operator for k and y is defined by

Ty = Iy o Sk : Lo(X, p) = Lo X, 1)
where Sy : Ly(X,p) = C(X),  (Sef)(2) = /k(x,y)f(y)du(y), fe La(X, ),
I, : C(X) < L3(X, ), inclusion operator.

By the spectral theorem, if T, is compact, then there is an at most countable orthonormal set (ONS) {é;} e of Lo(X, 1)
and {\;};es with Ay > Ay > ... > 0 such that

Tf= ZAJ' (f, éj>z:2(x,u) €, f € Lo(X,p).
jedJ

In particular, we have (é;, éj>£2( = §;; (i.e., equals 1 if ¢ = 7, and O otherwise), and T'¢; = \;€;. Since €; is an

X,u)
equivalent class instead of a single function, we assign a set of continuous functions e; = )\;15 #€; € C(X), which clearly

satisfies
(€ir€i) ryx ) = 0iin Tej = Ajey.

We will call \; and e; as eigenvalues and eigenfunctions respectively, and {e; };c s clearly forms an ONS. By Mercer’s
theorem,

k(z,y) =D Ajej(@)e;(y), .1

jeJg

and all functions in A can be represented by 3 jes aje; where {aj/\/A;} € €*(J). The inner product in H is equivalent
to <Zj€J aj€j ey bjej>7—t = > jes a;bj/A;. Therefore it is easy to see that

(pjdéf\/kjej, jed



is an orthonormal basis of H, with Moreover, for all f € H with f =", ; aje;, we have (f,e;);, = a;/A;, (f,¢j)y =

a;/\/A;, and
F=Y e = VAilleiy i = > N (frei)y e
J J i

Most kernels used in machine learning are infinite dimensional, i.e., J = IN. For convenience, we define ®,,, def (P15, Om)
and A,, = diag(A1,..., Am).

C.3. General sample complexity and assumptions on the product kernel

In this section, we first consider kernels ky with scalar input, i.e., Xy C R. Assume there is a measure jy on X. This
will serve as the basis for the more general product kernels in the form of k(x,y) = H;l:l ko(z,y;) defined over X¢.

With Assumptions 1 and 2, we now state the formal version of Theorem 3 by first providing the sample complexity for
approximating the partial derivatives. In the next subsection, we will examine how three different kernels satisfy/unsatisfy
the Assumptions 1 and 2, and what the value of N, is. For each case, we will specify 1o on Xo, and the measure on X¢ is
trivially o = pd.

Theorem 5. Suppose {w®}"_, are drawn iid from pg on Xo, where Lo is the uniform distribution on [—v/2,v/2] for
periodic kernels or perlodlzed Gaussian kernels. Let Z < (ko(w',-), ko(w?,-), ..., ko(w™, ")), and g, = % 22:1 Va9l
Xd& — R, where ||¥||,, < c1 and

d
gt (y) = 0% k(" y) = b () [ ] ko(2§,y;) with  h§(-) £ 0% ko(af, ).

j=2

Given e € (0, 1], let @ = (p1,.. <pm) where m = N.. Then with probability 1 — 0, the following holds when the sample
size n = max (N, 325 NeQ? log <):

1
||g1||§{ < l—z’yTKl’y—&—Z’)cl (1 —|-2\/NEM€)€, (C.2)

where  (K1)ap = (h8)T 2(Z7Z)~ 1ZThka0 x?,zh).
j=2

Then we obtain the formal statement of sample complexity, as stated in the following corollary, by combining all the
coordinates from Theorem 5.

Corollary 2. Suppose all coordinates share the same set of samples {w®}7_;. Applying the results in (C.2) for coordinates
from 1 to d and using the union bound, we have that with sample size n = max(N,, > 52 N, 2N <), the following holds
with probability 1 — dé,

Amax(GTG) < Amax(P) + 3¢1 (1 + 2\/N€M€)e. (C.3)

Equivalently, if N, M. and Q. are constants or poly-log terms of € which we treat as constant, then to ensure Amax(GTG) <
Amax(Pa) + € with probability 1 — ¢, the sample size needs to be

—c1(1+2fM) lelog%

Remark 4. The first term on the right-hand side of (C.3) is exphcltly upper bounded by L? in our training objective. In
the case of Theorem 6, the values of Q¢, N, and M, lead to a O( ) sample complexity. If we further zoom into the

dependence on the period v, then note that [V, is almost a universal constant while M, f” (Ne — 1). So overall, n
depends on v by . This is not surprising because smaller period means higher frequency, hence more samples are needed.
Remark 5. Corollary 2 postulates that all coordinates share the same set of samples {w?®}”_,. When coordinates differ in
their domains, we can draw different sets of samples for them. The sample complexity hence grows by d times as we only
use a weak union bound. More refined analysis could save us a factor of d as these sets of samples are independent of each
other.



Proof of Theorem 5. Let ¢ & (1 4 2y/mM.)e. Since
d
(97, 91)5 = (RS, 1)y, H 25, 27)

and | ko (4 24, x%)| < 1, it suffices to show that for all a, b € [I],
(1), — ()T 227 2)" 27T h| < 3¢

Towards this end, it is sufficient to show that for any h(-) = 0,0%'ko(z,-) + 0,0% ko(y, ) where z,y € X, and
102] + 16, < 1, we have

’hTZ(ZTZ)—lzTh - |\h||?HU‘ <¢. (C4)
This is because, if so, then
(.18, — )T 227 2)7 2T |
5 (I + 412, — g2, — IR, )

1 _
— S|+ T 22T 2)7 2T (s 4

— )T 2(ZT2) 7 ZThG — ()T 22T 2) 2T h |
1
< 5(46/ +é +¢€)
=3¢
The rest of the proof is devoted to (C.4). Since n > m, the SVD of /171/ 2QSLZ can be written as UXV T, where
UUT =U"U = V'V = I, (m-by-m identity matrix), and X = diag(cy, ..., 0,,). Define
a=n"Y2vUT A 20T h.

Consider the optimization problem o(a) £ 1 || Zax — h”ito' It is easy to see that its minimal objective value is 0* &

2 _
LInll3, — hT2(Z2TZ2) " Z h. So

0<20" =|hl3, —h"2(Z72)'Z"h < 20(ex).

Therefore to prove (C.4), it suffices to bound o(ax) = || Zax — hl|;,, . Since V@, ANV2PUV T = &,,8 h, we can
decompose || Za — hly, b
m

170~ by, < [[(Z - @0}, 2,
+ H(Q’m@jnz - \/ﬁ@mA%QUVT)

(C5)
+ || @@ = hl|, -
The last term ||,,, @5, h — hl|,, is clearly below e because by Assumption 1 and m = N,
@@l = |5, < 10u] || @@, 0% ko (2, ) — O ko, ) ||,

+ |0 |H¢m€pT80’1k0(y7 ) ot kO y, ||
(162] + 10y ])e
€.

Ho

<
<



We will next bound the first two terms on the right-hand side of (C.5).
(w ) ) @ ¢T kO

HH < ¢, hence

|2 = duty 2)all,, < evinlall,.

To bound |||, note all singular values of VU " are 1, and so Assumption 2 implies that for all i € [m],

‘Aj_w {#35 h>7—£0‘ = ‘(%hmo

= ‘<ej, 00" ko(z,-) + Hyaovlko(y, .)>Ho‘

IA

sup ’<ej, 0" k(z,))
zeX

< M.. (C.6)

1l

As a result,

(2 = 27 Z)es|,, < en/ 012 | 45120 h| < ev/imM.
(i1) We first consider the concentration of the matrix

m

1
RY _A12¢T 7227 ®,, A Y2 e R™X™,
n

Clearly,

n

B[R] {ws}[ > elwn)e w] ~ [ citaleso) duto) = b

By matrix Bernstein theorem (Tropp, 2015, Theorem 1.6.2), we have
Pr(||R — Ll < e) >1-6
when n > O(.). This is because

er (@), - em(@))* < mQZ,  [|Equy[RRT]]],, < mQZ/n,

and
[ [ <
Pr(R—ImS §e)21—2mexp _—
14 mQ2 (1 + *E)

—62
Z 1—-2m exp W
3n <

21_57

where the last step is by the definition of n. Since R = %U X2uT,
e. So forall i € [m],

%UZQUT - Im”sp =

-1

1
o;+1 <e. (C.7)

7

1 1
no?l‘ge == ‘\/ﬁail‘<e




Moreover, A; < 1 since ko(z, z) = 1. It then follows that

(@] Z — \/ﬁQSmA,l/QUVT)a‘

m

Ho

1 1
=P A PUSVT —=VUT A2 D h— /0@ AYPUV T —=VU A2 ® ] R
Vn vn

m m m

Ho
1
= A%2U<E - Im> UT A 2@ (because D, &, = I,,,)
vn 2
1
<X i1 ‘A*1/2@Th)’
= 1 znel[?fb{] \/ECT ’ m m||,
<ev/mM, (by (C.7),(C.6), and \; < 1).
Combining (i) and (ii), we arrive at the desired bound in (C.2). O]

Proof of Corollary 2. Since Pg approximates G ' G only on the diagonal, P;—GTGisa diagonal matrix which we denote
as diag(dq,...,d4). Letu € R< be the leading eigenvector of Pg. Then

Amax (Pa) — )\maX(GTG) <u'Pou—u'G'Gu= uT(ﬁG — GTG)u = Z 6ju?

J

(by (C2) <3¢ (1 + 2\/N5Me)e.
The proof is completed by applying the union bound and rewriting the results. O

C.4. Case 1: Checking Assumptions 1 and 2 on periodic kernels

Periodic kernels on X & R are translation invariant, and can be written as ko(z,y) = s(x —y) where x : R — R is a)
periodic with period v; b) even, with x(—t) = x(t); and ¢) normalized with x(0) = 1. A general treatment was given by
(Williamson et al., 2001), and an example was given by David MacKay in (MacKay, 1998):

1 2
ko(z,y) = exp(—%‘2 sin(%(a: — y)) ) (C.8)

We define jio to be a uniform distribution on [—%, ], and let wg = 27/v.

Since & is symmetric, we can simplify the Fourier transform of (¢)d, (t), where 6,(t) = 1if t € [—v/2,v/2], and O
otherwise:

1 v/2
Flw)= Nors /v/2 k(t) cos(wt) dt.

It is now easy to observe that thanks to periodicity and symmetry of &, for all j € Z,

1 v/2 ‘ 1 v/2 ‘
- / ko(z,y) cos(jwoy) dy = — / K(z — y) cos(jwoy) dy
V)2 VJ_v/2

1 z+v/2
== / k(2) cos(jwo(x — 2))dz  (note cos(jwo(x — z)) also has period v)

v —v/2
1 ’U/2

=— / k(2)[cos(jwox) cos(jwoz) + sin(jwox) sin(jwpz)) dz  (by periodicity)
VJ—v/2

1 1}/2
== cos(jwox) / k(z) cos(jwpz)dz (by symmetry of k)
v

—v/2
V2

:TF(jwo) cos(jwox).



And similarly,

1 [v/? L Nz
5/ / ko(z,y) sin(jwoy) dy = TF(on)Sm(onx)~
—v/2

Therefore the eigenfunctions of the integral operator 7}, are

eo(®) =1, ej(z) ¥ V2cos(jwor), e_j(x) ¥ V2sin(jwez) (5> 1)

and the eigenvalues are \; = @F( Jjwo) forall j € Z with A_; = \;. An important property our proof will rely on is that

¢j(x) = —jwoe—j(x), forallj € Z.

Applying Mercer’s theorem in (C.1) and noting £(0) = 1, we derive 3,7 A; = 1.

Checking the Assumptions 1 and 2. The following theorem summarizes the assumptions and conclusions regarding the
satisfaction of Assumptions 1 and 2. Again we focus on the case of X C R.

Theorem 6. Suppose the periodic kernel with period v has eigenvalues \; that satisfies
Aj(1+5)2max(1,52)(146(j > 1)) < - ¢, forallj >0, (C.9)

where ¢4 > 1 and cg > 0 are universal constants. Then Assumption 1 holds with

2.1 2
N.=1+2|n.|, where n.%log, (6266 max(l, 41;2» (C.10)

In addition, Assumption 2 holds with Q. = /2 and M, = % [ne| = @(N6 —1).
For example, if we set v = mand 02 = 1 /2 in the kernel in (C.8), elementary calculation shows that the condition (C.9)

is satisfied with ¢4 = 2 and ¢g = 1.6.

Proof of Theorem 6. First we show that h(z) < 8%'ko(zo,z) is in Ho for all zp € Xo. Since ko(zo,2) =
> jez Aiej(o)ej(x), we derive

Z)\ ej(z0)0te;(x Z)\ e;(xo)(—jwoe—j(z)) ZWOZAjje,j(xo)ej(x). (C.11)

JEZ JEZ JEZ

h(zx) is in H if the sequence \;je_;(zo)/+/A; is square summable. This can be easily seen by (C.9):
wo [, = D Aie2;(wo) = 3 AiPe (o
J JEZ

2
—Z)\]j eﬂ x —)\o—i—QZjQ/\ < 64651.
JEZ j>1 €4 —

Finally to derive N,, we reuse the orthonormal decomposition of A(x) in (C.11). For a given set of j values A where
A C Z, we denote as @ 4 the “matrix” whose columns enumerate the ¢; over j € A. Let us choose

As {J Ay max(L, 52)(1+ 52 (146 > 1)) > min(l’wf)zea}'



If j € A, then —j € A. Letting Ny = {0,1,2,...}, we note Z]E]No H_] <2.1.So

= @adln];, = wd Y Aji%e?(x0)

jeZ\A
=uwg Y N[ @) + ()G = 1) +6( =0)]
JG]NO\A
=wp Yy NP+ = 1)
JEN\A
. . ) 1
=wj Y {Ajf(l +37)A 400G = 1) .2}
JENG\A J
€2 1 €
< — _ = — Z — < 52,
< > = <
2.1 jem, 14+ 2.1 jem, 1+
Similarly, we can bound Hk‘o(xo, ) = AP ko (z0, - HH
koo, -) — @a® jko(o, - HH
Z/\Jejato Z)\maxlj)()
JEZ\A JEZN\A
> Aamax(L,52)[(ef(z) + €2 ;(2))8(j > 1)+ 6(j = 0)]
JENo\A
1
= 3 e A A0 62 )
jGIN()\A J
= 2
j€No 1 tJ
< €2,

To upper bound the cardinality of A, we consider the conditions for j ¢ A. Thanks to the conditions in (C.9), we know
that any j satisfying the following relationship cannot be in A:
1 472
min| 1, il €.
2.1 ce v2

So A C {j :|j| < ne}, which yields the conclusion (C.10). Finally Q. < v/2, and to bound M., we simply reuse (C.11).
For any j with |j| < n,,
V21

[(hs )] < e ljes(z0)] < VB [m) = LN~ 1),

6 - czljl < min(1,wy %)=

5T TN c;\]|<

C.5. Case 2: Checking Assumptions 1 and 2 on Gaussian kernels

Gaussian kernels k(z, y) = exp(— ||z — y||* /(202)) are obviously product kernels with ko(z1,1) = s(z1 — y1) =
exp(—(z1 — y1)?/(20?)). It is also translation invariant. The spectrum of Gaussian kernel ko on R is known; see, e.g.,
Chapter 4.3.1 of (Rasmussen & Williams, 2006) and Section 4 of (Zhu et al., 1998). Let i be a Gaussian distribution
N(0,0?). Setting €2 = a? = (20?)~! in Eq 12 and 13 of (E Fasshauer, 2011), the eigenvalue and eigenfunctions are (for
J =0

i 1
A =cg? % where ¢ = 5(3+\/5)

51/8 R EAR! =T



where H; is the Hermite polynomial of order j.

Although the eigenvalues decay exponentially fast, the eigenfunctions are not uniformly bounded in the L., sense.
Although the latter can be patched if we restrict « to a bounded set, the above closed-form of eigen-pairs will no longer hold,
and the analysis will become rather challenging.

To resolve this issue, we resort to the period-ization technique proposed by (Williamson et al., 2001). Consider
k(z) = exp(—x?/(20?)) when = € [—v/2,v/2], and then extend  to R as a periodic function with period v. Again let x
be the uniform distribution on [—v/2,v/2]. As can be seen from the discriminant function f = } 2221 vik(zt, ), as along
as our training and test data both lie in [—v/4, v/4], the modification of ~ outside [—v/2, v/2] does not effectively make
any difference. Although the term 9% 'kq(z¢,w1) in (10) may possibly evaluate x outside [—v/2,v/2], it is only used for
testing the gradient norm bound of .

With this periodized Gaussian kernel, it is easy to see that Q. = /2. If we standardize by o = 1 and set v = 5 as an
example, it is not hard to see that (C.9) holds with ¢4 = 1.25 and c¢g = 50. The expressions of N, and M. then follow from
Theorem 6 directly.

C.6. Case 3: Checking Assumptions 1 and 2 on non-product kernels

The above analysis has been restricted to product kernels. But in practice, there are many useful kernels that are
not decomposable. A prominent example is the inverse kernel: k(x,y) = (2 — 2"y)~!. In general, it is extremely
challenging to analyze eigenfunctions, which are commonly not bounded (Zhou, 2002; Lafferty & Lebanon, 2005), i.e.,
Sup,_, o, SUpP,, |€;(x)| = co. The opposite was (incorrectly) claimed in Theorem 4 of Williamson et al. (2001) by citing
an incorrect result in Konig (1986, p. 145), which was later corrected by Zhou (2002) and Steve Smale. Indeed, uniform
boundedness is not known even for Gaussian kernels with uniform distribution on [0, 1]d (Lin et al., 2017), and Minh et al.
(2006, Theorem 5) showed the unboundedness for Gaussian kernels with uniform distribution on the unit sphere when
d> 3.

Here we only present the limited results that we have obtained on the eigenvalues of the integral operator of inverse

kernels with a uniform distribution on the unit ball. The analysis of eigenfunctions is left for future work. Specifically, in
1

order to drive the eigenvalue \; below €, ¢ must be at least d [og2 £ 1+ This is a quasi-quadratic bound if we view d and 1/

as two large variables.

It is quite straightforward to give an explicit characterization of the functions in . The Taylor expansion of z~1 at
z=2is £ 37 (—1)z’. Using the standard multi-index notation with o = (a1, ..., aq) € (NU{0})?, || = Z?Zl o,
and x* = z{" ...z, we derive

1
k = —
(x,¥)=5— X7y
o k
1 1 To\k
= 22<—2> (—x'y)
k=0
Sy Y ey
k=0 a:la|=k
— Z27|oc|7lcv(|jtoz|xocyoc7
where CF = Lk —- So we can read off the feature mapping for x as

o(x) = {wax® : @}, where wy = 2—%(\041“1)0!)‘047

and the functions in H are
H= {f = awax®: 6], < oo}- (C.12)

Note this is just an intuitive “derivation” while a rigorous proof for (C.12) can be constructed in analogy to that of
Theorem 1 in Minh (2010).



C.7. Background of eigenvalues of a kernel
We now use (C.12) to find the eigenvalues of inverse kernel.

Now specializing to our inverse kernel case, let us endow a uniform distribution over the unit ball B: p(z) = chl where
Vy =n?2r (g + 1)1 is the volume of B, with I" being the Gamma function. Then X is an eigenvalue of the kernel if there
exists f = ) Oawax™ such that nyB kE(x,y)p(y)f(y)dy = Af(x). This translates to

Vd_l/ Y wax®y* Y bpwpy®dy =AY fawax®,  Vxe€B.
veP o s -
Since B is an open set, that means

Wey Z waGa+898 = Ma, vV a,
B

where

2[T¢, F(%O‘i""%)

oo = Vd‘l/ y*dy = vd~<|a|+d>~r(%|a|+§
YEB .

0 otherwise

> if all «; are even

In other words, A is the eigenvalue of the infinite dimensional matrix @ = [wq, wgqaﬂg]m 8>

C.8. Bounding the eigenvalues

To bound the eigenvalues of (), we resort to the majorization results in matrix analysis. Since & is a PSD kernel, all its
eigenvalues are nonnegative, and suppose they are sorted decreasingly as \; > Ao > . ... Let the row corresponding to «
have /5 norm r,, and let them be sorted as 2T 2 Then by (Schneider, 1953; Shi & Wang, 1965), we have

ﬁ)\i < ﬁr[ﬂ, Vn>1.
=1 =1

So our strategy is to bound 7, first. To start with, we decompose ¢qg into ¢, and gg via Cauchy-Schwartz:

2
q?xﬂﬂ =V, (/ y*tP dY) < Vdiz/ y**dy - / v dy = q2aqop-
yeEB yEB yEB

To simplify notation, we consider without loss of generality that d is an even number, and denote the integer b &' d/2. Now

V; = w°/bl. Noting that there are < Ftd=1

A values of 3 such that |3| = k, we can proceed by (fix below by changing

( k Z d > into < Rt Z -1 > or no need because the former upper bounds the latter)

o0
ri = wi Z w%qi_,_,@ < wiqga Z w%qm = wiqga Z 9—k—-1 Z ngm

s s k=0 B8] =k
g1 [ k+d
< wigpe ) 27 ( d > max Chazp
k=0
[ee] d 1
k! 211, (B + 5
= wiQQaZQ_k_l ( kgd ) max — . H"_l (B 2) i
et B=k [T, B! Va- 2k +d)-T(k+ 2)

i i [ k+d k!  CAGES)
w2 Y 1 9—k < ) - max Tt 27
at2aV; kZ:O d ) @k+dIk+ 9 \ﬁlz’%l;[l A

b K (k)
2 oe * —— - g—hk-13v T
< Walee T kzzo (k+ )’



since I'(8; + 1) < I'(B; + 1) = f3;!. The summation over k can be bounded by

il e (1)) <jomo o 2o
k=0

where the first equality used the identity > -, 27F ( d —11)— k ) =27 Letting | & |a|, we can continue by
d
2 < wWigaa - b p12d = 2~ 1-1 & 21y Iai +3) ()27
* * mbd! szl ;) Va-(20+d)-T'(1+b) =bd!

1n(b1)3
Al +b— 120 +d)

“1
b!)?
< glHb=1,-2b ( Hl—b ) (since (d') <27,

<92 l+d —2b

(since I'(a; + %) <Ia;+1)=qy))

This bound depends on «, not directly on c. Letting n; = ( L+ (? -1 ) and N;, = ZlL:O n; = ( d+ L ), it

follows that

L Lo+ Lo (1+ad)
; Z o z' =(d+1) Zm

=1 I=1
B I+d\ _ L+d+1
_(d+1);<d+1>—(d+1)< 042 )
Now we can bound Ay, by

—1\ ™
IR I+b
N —l4+b—-1 2b
AL<H>\<H< . ( l > )

=0

= logAn, <N, an( l—b+1)10g2—2b10g7r—10g(l—;b>>
1=0
L

< —NL_1 -log2 - Z Iny
1=0

since log 2 < 2log 7 as the coefficients of b

-1
 (d+L+1 d+L+1
(Y e (525

This means that the eigenvalue \; < € provided that ¢ > Ny where L = ﬂog2 ﬂ Since N, < dE*1, that means it
suffices to choose 7 such that

i> d’—log2 %]+1.

This is a quasi-polynomial bound. It seems tight because even in Gaussian RBF kernel, the eigenvalues follow the order
of Ao, = O(c!el) for some ¢ > 1 (Fasshauer & McCourt, 2012, p.A742).



D. Algorithm for training a Lipschitz binary SVMs
The pseudo-code of training binary SVMs by enforcing Lipschitz constant is given in Algorithm 1.

Finding the exact arg max,¢ y HVf(i) (x) H is intractable, so we used a local maximum found by L-BFGS with 10
random initialisations as the Lipschitz constant of the current solution f(*) (L(*) in step 6). The solution found by L-BFGS
is also used as the new greedy point added in step 5b.

Furthermore, the kernel expansion f(z) = } Zfz=1 ~Yak(x®, ) can lead to high cost in optimisation (our experiment
used [ = 54000), and therefore we used another Nystrom approximation for the kernels. We randomly sampled 1000
landmark points, and based on them we computed the Nystrém approximation for each k(z%, -), denoted as ¢(z%) € R0,
Then f(x) can be written as } Z;Zl Ya(2*) T ¢(z). Defining w = § 22:1 YaP(x®), we can equivalently optimise over
w, and the RKHS norm bound on f can be equivalently imposed as the £2-norm bound on w.

To summarise, Nystrom approximation is used in two different places: one for approximating the kernel function, and
one for computing ||g; |, either holistically or coordinate wise. For the former, we randomly sampled 1000 landmark points;
for the latter, we used greedy selection as option b in step 5 of Algorithm 1.

D.1. Detailed algorithm for multiclass classification
It is easy to extend Algorithm 1 to multiclass. For example, with MNIST dataset, we solve the following optimisation

problem to defend ¢ attacks:

e e . def
m%r,lnl{mlsoe ZE(F(:E),y), where F =

271 ZE“' ). Z710k T, - ]

=1

10 10
subject to SUP  Amax (Z GT(M)TG ) X SUP Amax <Z GTU’UTG ) < L2,

ol <1 =1 lvll;<1 =1

where ((F(z),y) is the Crammer & Singer loss, and the constraint is derived from (11) by using its Nystrom approximation

Ge =[5, ..., g5, which depends on {~',..., v} linearly. Note that the constraint itself is a supremum problem:
10 10
SUP  Amax Z GTU’UTG sup u' Z GI’UUTGC u
l[vll,<1 =1 H o[, <1 fJull <1 —1

Since there is only one constraint, interior point algorithm is efficient. It requires the gradient of the constraint, which
can be computed by Danskin’s theorem. In particular, we alternates between updating v and u, until they converge to the
optimal v, and u.. Finally, the derivative of the constraint with respect to {y°} can be calculated from Eﬂil (u] Gl v,)?,
as a function of {~¢}.

To defend oo-norm attacks, we need to enforce the oo-norm of the Jacobian matrix:

1 10 T _ c
EEEH[g (), .., 9"(@)] Hoo = sup max lg°(@)l],
= nax, sup lg°(2)l,
max sup Tézqﬁ,

- 1ses10 gy, <1 ul <1
where the last inequality is due to

sup [|lg(z)[l, = sup sup u'g(z) < sup u' GTo.
zeX 2eX lull <1 lwll, <1, lfull o <1

Therefore, the overall optimisation problem for defense against co-norm attacks is

n
r}yl}{{fl;}}yilb;)e Z; U(F(z),y)

subject to  Veeig) sup UTGCTU <L
lloll,<1lull o <1

(D.1)



For each ¢, we alternatively update v and w in (D.1), converging to the optimal v, and u.. Finally, the derivative of
SUP |||, <1, [Jul| . <1 u' G [ v with respect to 4¢ can be calculated from u,] G| v., as a function of v°.

E. More experiments
All code and data are available anonymously, with no tracing, at

https://github.com/learndeep2019/DRobust.
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Figure 10: Test accuracy under PGD attacks on cross-entropy approximation with co-norm bound

E.2. Visualization of attacks

In order to verify that the robustness of Gauss-Lip is not due to obfuscated gradient, we randomly sampled 10 images
from MNIST, and ran targeted PGD for 100 steps with cross-entropy objective and the ¢, norm upper bounded by 8. For
example, in Figure 11, the row corresponding to class 4 tries to promote the likelihood of the target class 4. Naturally the
diagonal is not meaningful, hence left empty. At the end of attack, PDG turned 89 out of 90 images into the target class by
following the gradient of the defense model.

Please note that despite the commonality in using the cross-entropy objective, the setting of targeted attack in Figure 11
is not comparable to that in Figure 9, where to enable a batch test mode, an untargeted attacker was employed by increasing
the cross-entropy loss of the correct class, i.e., decreasing the likelihood of the correct class. This is a common practice.

We further ran PGD for 100 steps on C&W approximation (an untargeted attack used in Figure 5), and the resulting
images after every 10 iterations are shown in Figure 12. Here all 10 images were eventually turned into a different but
untargeted class, and the final images are very realistic.


https://github.com/learndeep2019/DRobust
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(b)

Figure 11: (a) perturbed images at the end of 100-step PGD attack using the (targeted) cross-entropy approximation. The
top row shows 10 random images, one sampled from each class. The 10 rows below correspond to the target class. (b)
classification on the perturbed image given by the trained Gauss-Lip. The left images are quite consistent with human’s
perception.



B

L U Tl U Tl T U U TR TR RN
) S0 SO SO S0 SO SO N N S —
CUEU RO R R R R R L
e R B B L L R B
LA AR B B B B s T
W W W W W W W W
L L A L R L I T T
L G L IR B TR B
o BE U B U RS BN RS BEN R

MG Kso

W
(N
Wy
wn
~J

Figure 12: Perturbed images at the end of 100-step PGD attack using the (untargeted) C&W approximation. The top row
shows 10 random images, one sampled from each class. The 10 rows below show the images after 10, 20, ..., 100 steps of
PGD.



