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Abstract

Many statistical inference problems correspond to recovering the values of a set of hidden variables
from sparse observations on them. For instance, in a planted constraint satisfaction problem such as
planted 3-SAT, the clauses are sparse observations from which the hidden assignment is to be recovered.
In the problem of community detection in a stochastic block model, the community labels are hidden
variables that are to be recovered from the edges of the graph.

Inspired by ideas from statistical physics, the presence of a stable fixed point for belief propoga-
tion has been widely conjectured to characterize the computational tractability of these problems. For
community detection in stochastic block models, many of these predictions have been rigorously con-
firmed.

In this work, we consider a general model of statistical inference problems that includes both com-
munity detection in stochastic block models, and all planted constraint satisfaction problems as special
cases. We carry out the cavity method calculations from statistical physics to compute the regime of pa-
rameters where detection and recovery should be algorithmically tractable. At precisely the predicted
tractable regime, we give:

(i) a general polynomial-time algorithm for the problem of detection: distinguishing an input with
a planted signal from one without;

(i) a general polynomial-time algorithm for the problem of recovery: outputting a vector that corre-
lates with the hidden assignment significantly better than a random guess would.
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Analogous to the spectral algorithm for community detection [KMM*13, BLM15], the detection and
recovery algorithms are based on the spectra of a matrix that arises as the derivatives of the belief
propagation update rule. To devise a spectral algorithm in our general model, we obtain bounds on the
spectral norms of certain families of random matrices with correlated and matrix valued entries. We
then demonstrate how eigenvectors of various powers of the matrix can be used to partially recover
the hidden variables.
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1 Introduction

In the PLANTED-g-COLORING problem, a hidden coloring ¢ : [n] — {1,..., q} is sampled from the uniform
distribution over [¢]". A random graph G = ([n], E) is drawn from the Erdés-Renyi distribution conditioned
on ¢ being a legitimate coloring. So every edge (i, j) is included in the graph with probability %-1[c(i) # c(j)]
independently at random. Given the edges E as input, the goal of an inference algorithm is to recover (even
partially) the hidden coloring c.

PLANTED-q-COLORING is the archetypal example of a broad class of statistical inference problems where
the goal is to recover a set of hidden variables from sparse observations on it (see [Mon08]). A large number
of inference problems ranging from decoding LDPC codes to community detection in random graphs fall
into this broad framework. Broadly speaking, the setup in these inference problems is as follows. A set
of hidden variables {c(1),... c(n)} are drawn from a known prior product distribution P.. A sequence of
observations (a.k.a. hyperedges) E on these hidden variables are revealed to the algorithm. Each hyperedge
(i1, ..., ix) is included with probability ﬁ -®(c(iy), ... , c(ix)) for some constant ®(¢(iy), ..., ¢(ix)) that depends
on the values of hidden variables ¢(ij), ..., c(ix). Thus the inference algorithm receives ©(n) observations
with high probability and its goal is to partially recover the values of the hidden coloring.

The key computational task is to recover the values of the hidden variables. In a sparse setup where
the number of observations is linear, it is typically impossible to recover the hidden variables exactly.
Therefore, one settles for the relaxed goal of weak recovery where the algorithm is required to produce an
assignment which correlates better than random with hidden variables.

It is often useful to also define a related decision problem of "detection" . Here, the algorithm is required
to distinguish between a set of observations consistent with a single fixed assignment to hidden variables
(planted distribution) or a set of observations each sampled independently by drawing a new assignment
to the hidden variables (null distribution).

In this work, we will be considering a more general model that will permit constantly many types of
variables and observations. The prior distribution of each variable depends on its type, and the probability
of sampling an observation depends on the types and values of variables involved. We defer the formal
description of our general model to Section 2.1, but instead present a few examples of these problems.

Example 1.1. (Stochastic Block Models) A natural generalization of the PLANTED-g-COLORING problem
is the stochastic block model (SBM). The stochastic block model is defined by a parameter g (the number
of labels), a distribution P, over [q] (the expected fraction of vertices with a specific label), and a matrix
P € R4 such that P[c, d] gives the probability of an edge between two vertices with labels ¢ and d. In
the community detection problem, a hidden labelling ¢ : [n] — {1,..., q} is sampled from the product
distribution IP7. Given ¢, arandom graph G = ([n], E) is drawn by including each edge (u, v) independently
with probability P[c(u), c(v)] depending on the labels of the endpoints. The goal of the problem is to
recover the labelling ¢ from the graph G.

Example 1.2. (Planted CSPs) In a planted CSP over a domain [q], an assignment x € [g]" is chosen at
random and clauses are sampled conditioned on being satisfied by the planted assignment x. Depending
on the predicate used, one obtains different planted CSPs such as Planted NAE-k-SAT and Planted k-SAT.

Many more examples of problems that fit our framework will be presented in the rest of the paper.
Alternatively, this class of problems can be viewed as “Bayesian CSPs”. Traditionally, a constraint satisfac-
tion problem involves variables taking values over finite domain and a set of local constraints on them.



The goal is to find an assignment that satisfies either all the constraints (exact CSPs) or the largest frac-
tion of constraints (approximate CSP). The key difference in this setup is that there is a prior distribution
associated with assignment on the variables and the constraints.

Constraint satisfaction problems (CSP) lie at the bedrock of worst-case complexity theory tracing back
all the way to SAT and NP-completeness and by now there is a rich and comprehensive theory that cor-
rectly predicts the computational complexity of the traditional CSPs, with (i) the CSP dichotomy conjecture
[Sch78, Zhu20] for exact CSPs, which cleanly classifies a constraint satisfaction problem as polynomial-
time solvable or NP-hard depending on whether a pair of solutions could be combined to form a third
solution via a function called a polymorphism, and (ii) the Unique Games Conjecture for approximate
CSPs, which characterizes the best approximation ratio possible in polynomial time with an integral-
ity gap of a semidefinite program [Kho02, KKMOO07, Rag08]. There is also a well understood picture of
the complexity of refutation of random CSPs from the lens of the Sum-of-Squares semidefinite program-
ming hierarchy [AOW15, RRS17, KMOW17]. On the other hand, our understanding of the complexity of
Bayesian CSPs is still in its nascent stages. Bayesian CSPs are a rich and natural class of average case prob-
lems, and understanding their complexity would be a good test-bed for average case complexity theory.
Indeed, Goldreich’s pseudorandom generator [Gol11] is precisely based on harnessing the computational
intractability of certain Bayesian CSPs.

A naive exponential-time algorithm for the problem would be to use the Bayes rule to compute/sample
from the conditional distribution c|E. The fundamental question here is to understand the limits of efficient
algorithms for this class of statistical inference problems. Furthermore, both exact and approximate ver-
sions of traditional CSPs exhibit abrupt transitions wherein the computational complexity of the problem
changes from polynomial to exponential. It is a compelling question whether Bayesian CSPs also exhibit
similar abrupt transitions in computational complexity, and whether there exist broadly applicable optimal
algorithms for them.

1.1 Belief Propogation and Cavity Method

A natural candidate for an optimal algorithm for Bayesian CSPs (especially in the sparse case) is belief
propogation (BP). BP is often hypothesized to be theoretically optimal, and is also very efficient in practice.
There is a vast body of literature on belief propogation (BP) drawing ideas from statistical physics (see
[MMO09a, Chapter 14] and [ZK16a] for a comprehensive treatment). It is often very difficult to analyze BP
as a standalone algorithm and we are quite far from demonstrating its optimality among polynomial-time
algorithms. However, there has been a growing body of work in the past decade which suggest a very
general and precise theory to predict the computational complexity of Bayesian CSPs.

To the best of our knowledge, it appears that the work of Krzakala and Zdeborova [KZ09] is the first
to hypothesize a precise computational phase transition for planted problems based on ideas from statis-
tical physics. Specifically, Krzakala and Zdeborova [KZ09] hypothesized that for a broad class of planted
distributions, the problem of distinguishing the planted vs null distributions becomes computationally in-
tractable at a well-defined threshold. In the case of community detection, this threshold coincides with
the so-called Kesten-Stigum threshold. More broadly, in this work, we will often refer to this threshold of
intractability for Bayesian CSPs as the stable fixed point barrier for reasons that will be soon clear.

Building on the ideas from [KZ09], [DKMZ11b, DKMZ11a] made a fascinating set of conjectures on
community detection. For example, they conjectured that the k-coloring problem is easy exactly when the
average degree of a vertex in the model satisfies d > k%. Their conjectures fuelled a flurry of work, leading
to algorithms that match the conjectured computational thresholds [MNS18, Mas14, BLM15, AS15].



The stable fixed point barrier suggested by [KZ09, DKMZ11a] is applicable beyond the setting of com-
munity detection. For instance, Krzakala and Zdeborova point out that this stable fixed point barrier
is shared by problems such as hyper-graph bicoloring and locked CSPs. Here locked CSPs are those
wherein every pair of assignments to a predicate have Hamming distance at least 2 (analogous to pairwise-
independence leading to approximation resistance [AM09]). More broadly, there is a heuristic cavity
method calculation to pinpoint the location of the stable fixed point barrier in general (see Section 2.4
to Section 2.7).

To illustrate the rich and precise predictions of this heuristic calculation yields, we will show three
examples here.

Example 1.3. First, consider the problem of planted NAE3SAT wherein there is a uniformly random as-
signment in {0, 1}" and Not-All-Equal clauses on 3 variables are sampled so that a p-fraction of them are
satisfied. As one varies the average constraint-degree of a variable d and the approximation p, there is
an explicit prediction of the region of parameters where the distinguishing/recovery problem is computa-
tionally tractable (blue region in Figure 1). Interestingly, the spectral (and basic SDP) refutation threshold
for regular NAE3SAT was determined to be 13.5 in [DMO™19] and similar techniques point to the thresh-
old being 12.5 for an “Erd6s-Rényi” version of the model. However, our results imply a distinguishing
algorithm between random and planted NAE3SAT at a much smaller degree of 4.5, which suggests this
planting is not “quiet” and raises the question of what a quiet planted distribution is.
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Figure 1: Easy region for planted NAE-3SAT shaded in blue. Average degree on x-axis, fraction of clauses
satisfied on y-axis.

Example 1.4. Next, we turn our attention to mixed planted CSPs. For concreteness, we consider one
particular example: planted NAE-(3, 5)-SAT. In this example, the variables are given a uniformly random
assignment in {0, 1}" and Not-All-Equals clauses are sampled to be on 3 variables with probability p and on
5 variables with probability 1 - p. As one varies the constraint-degree of a variable d and the proportion of
NAE3SAT clauses p, we can plot a precise region of parameters where the distinguishing/recovery problem
is computationally tractable (blue region in Figure 2).

Example 1.5. Consider the following version of 4-community stochastic block model with communities

labeled (0, 0), (0, 1), (1,0) and (1, 1) and 3 parameters dy, d; and d,. For a pair of vertices u and v from
communities x and y we place an edge between u and v with probability @ where dist(x, y) is the

Hamming distance between x and y. For an additional twist, let us suppose that the first coordinate of the
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Figure 2: Easy region for planted NAE-(3, 5)-SAT shaded in blue. Average NAE3-degree of vertex on x-axis,
average NAE5-degree of vertex on y-axis.

community that every vertex belongs to is also revealed to the algorithm. What is the region of parameters
dy, di, d, for which an efficient algorithm can partially recover the second coordinate of the community
labels? See Figure 3 for the hypothesized transition.
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Figure 3: Easy regions for (dy, d;) for variety of settings of d;.

Unfortunately, we are still far from establishing the veracity of these heuristic predictions. For most
of these problems, BP has not been proven to succeed in the blue region of parameters, nor is any other
polynomial time algorithm known. There is no roadmap to establishing intractability of these problems
when the parameters are chosen in the white region.

Our main result takes a step towards establishing these predictions by giving a spectral algorithm to
partially recover the hidden variables whenever the parameters are in the blue region. Specifically, we
devise a spectral algorithm that uses a linearization of BP, an approach that has been succesfully carried
out for the case of community detection in [KMM*13, BLM15].

1.2 Stable Fixed Point Barrier

Belief propogation (BP) aims to estimate the marginals of the hidden variables, in our case ¢(v) for v € [n].
To visualize BP, it will be useful to consider the bipartite graph H with variables [n] on one side and the
factors (a.k.a. observations) E on the other. There is an edge between a variable v and an observation e € E



if v € e. The execution of BP is divided into rounds where in each round, the variable nodes send messages
to factor nodes or vice versa.
Let m“—¢ denote the message sent by a variable v to a factor e € E and let m*~° denote the message

from a factor e € E to a variable v. All messages exchanged are distributions over the domain [q], i.e.,

v—e v—e

m = (m{™¢ ..., m};_”?) and similarly m¢—?

e—v
q
estimate of the marginal probability that v is assigned the color ¢ when the factor e is absent, and m

v—e

= (m{~%....m ). Intuitively speaking, m¢ is an

e—u
[

is an estimate of the marginal probability that u has color ¢ when all other factors involving u are absent.
The general schema of a BP algorithm is to start BP with some intialization of the messages

{ mv—w[o]’ me—>v[0] }ve[n],eEE

and iteratively update the messages as specified by the functions Y, until the messages stabilize into a fixed
point, i.e., a set of messages {m* ¢, m¢ "} so that,

MY = Yoo ({70 | f € 90\e})

Mm% =Yy {Mm“7¢ | u € de\v})

There is a canonical starting point m for the BP iterations where the messages m*~ correspond to
uniform distribution over the possible values [gq]. Conjecturally, this canonical initialization 7 plays a
critical role in characterizing the computational complexity of inferring the hidden variables in model M.
There appear to be three possible cases with regards to this canonical initialization.

Case 1: m is not a fixed point Suppose m is not a fixed point for the BP iteration over the model M,
then BP iteration can be expected to make progress, thereby yielding a weak recovery of hidden variables.

In fact, we will present a self-contained algorithm that weakly-recovers the hidden coloring in this
case. Formally, we will show the following in Appendix B:

Lemma 1.6. Ifm is not a fixed point for the BP iteration on model M, then there is a polynomial time algorithm
A and an € > 0 such that

1. if (E, T) ~ M: A outputs a coloring that beats the correlation random guessing achieves with the hidden
coloring by e,

2. A solves the M vs. M* (the null distribution) distinguishing problem with high probability.

In light of the above lemma, it is natural to restrict our attention to the case where m is a fixed point
for the BP iteration.

Case 2: m is an unstable fixed point 7 is an unstable fixed point if arbitrarily small perturbations of
m will lead to the BP iteration moving away from the fixed point 7. This case was marked by the blue
region in Figure 1 and Figure 3. In this case, our main algorithmic result is a spectral algorithm to recover
a coloring ¢’ that beats the correlation random guessing achieves with the hidden coloring. Alternatively,
the spectral algorithm can be used to distinguish between the planted and the null distributions.

Case 3: mis a stable fixed point s a stable fixed point if there exists a neighborhood U around m such
that for any initialization m € U, BP iteration converges to the canonical fixed point 7. In this case, the
canonical fixed point m clearly highlights a potential failure of BP algorithm. The hypothesis of Krzakala
and Zdeborova [KZ09] asserts that existence of this stable fixed point marks the onset of computational
intractability in general.



1.3 Related Work

Ideas from statistical physics have long been brought to bear on inference problems. We refer the reader
to [Nis01, MMO09b, ZK16b, RTSZ19] for an introduction to the phase transitions that mark changes in
statistical and computational properties of these problems.

Planted models Special cases of the planted model we consider have appeared extensively in literature.
The conditional probability of the hidden vector given the noisy observations takes the form of a graphical
model, i.e. factorizes according to an hypergraph whose nodes correspond to variables and hyperedges
correspond to noisy observations. Such graphical models have been studied by many authors in machine
learning [LMP01] under the name of conditional random fields. We highlight a few among the extensive
body of literature on information-theoretic and structural properties of these planted models. Montanari
[Mon08] characterized the posterior marginals in terms of fixed points of the associated density evolution
operator. Subsequently, Abbe and Montanari [AM13] show concentration for the conditional entropy
per hidden variable given the observations. More recently, Coja-Oghlan et. al. [COHKL*20] study the
information theoretic limits to recovery and confirm a conjectured formula for the mutual information
between the observations and the planted assignment.

Spectral algorithms via non-backtracking operator The idea of using the spectra of non-backtracking
matrix for recovery in planted problems can be traced back to the seminal work of Krzakala et al. [KMM*13]
in the context of community detection. While this work provided heuristic arguments supporting the cor-
rectness of the algorithm, it was rigorously established in the work of Bordenave et. al. [BLM15]. Sub-
sequently, [SLKZ15] devised spectral algorithms for solving the recovery problem in the censored block
model, a variant of community detection wherein the edges are weighted and the weights carry the in-
formation about the community labels, but the edges don’t. Building on the result of [BLM15], this work
shows that the eigenvectors of non-backtracking matrix can be used to partially recover the communities,
right up to the threshold. Finally, Angelini et al. [ACKZ15] consider a model of sparse hypergraphs that
includes planted CSPs as a special case. The paper proposes a spectral algorithm based on a generalization
of a non-backtracking matrix to hypergraphs, and gives a heuristic argument that the algorithm solves
detection whenever belief propogation succeeds. Unlike our work, the algorithm proposed in [ACKZ15]
uses an unweighted non-backtracking matrix that is independent of the prior probabilities. While it is a
desirable feature that the algorithm is non-parametric, i.e., does not rely on the knowledge of prior distri-
butions generating the instance, it is unclear if such a non-parametric algorithm can achieve detection up
to the threshold in general.

Apart from recovery in planted models, the non-backtracking operator and the closely related Bethe-
Hessian matrix have also been applied towards computing upper bounds for the log-partition function in
ferro-magnetic Ising models on general graphs [SKZ17].

Quiet Planting Planted distributions that are indistinguishable from their random counterparts are of-
ten referred to as "quiet planting", though the terminology is not often consistent on whether the distribu-
tions are computationally or statistically indistinguishable.

A quiet planting that is statistically indistinguishable from random was used as a technical tool to study
random instances in [AC08]. Krzakala and Zdeborova [KZ09] studied the existence of quiet plantings
for graph coloring problem and were the first to hypothesize that under the Kesten-Stigum threshold,
the planted ensembles are a computationally indistinguishable from random. Subsequently, the authors



[ZK11] considered planted distributions for locked CSPs, wherein every pair of assignments to a predicate
have Hamming distance at least 2 and showed that problem is easy above a threshold that coincides with
the Kesten-Stigum threshold and hypothesize that non-trivial recovery is computationally hard under it.
Finally, a statistically quiet planting for the random k-SAT problem has been proposed in [KMZ12].

Community Detection Extensive work on community detection for stochastic block models has led to
the confirmation [MNS18, Mas14, BLM15, AS15] of conjectures of Decelle et. al. [DKMZ11b, DKMZ11a].
As predicted, existing algorithms [Mas14, BLM15, AS15] can partially recover community labels up to
the Kesten-Stigum threshold, but no lower. For ¢ = 2 communities, the Kesten-Stigum threshold also
matches the information theoretic threshold beyond which recovery is impossible. However, for g > 3
communities, the problem is believed to exhibit a statistical-vs-computational gap, in that there is a range
of parameters where partial recovery is possible but is computationally intractable. The presence of a gap
between the Kesten-Stigum threshold and the information theoretic threshold for all ¢ > 5 was established
in [Sly09]. More recently, Ricci-Tersenghi et al. [RTSZ19] predicted the existence of such a gap for q = 4
communities for some degree distributions, and also identifies a threshold beyond which there is a hard
phase in asymmetric SBM. Furthermore, this work predicts the existence of hybrid-hard phases where it
is computationally easy to reach a non-trivial inference accuracy, but computationally hard to match the
information theoretically optimal one. Specifically, there are stable fixed points for BP that are not the
trivial fixed point, but also don’t correspond to optimal recovery.

Spectral norm bounds Technically, our work draws on ideas from Bordenave, Lelarge and Massoulie
[BLM15] who established spectral norm bounds for non-backtracking matrices associated with Erd&s-
Renyi random graphs. Closer to our own setup, Stephan et al. [SM20] show eigenvalue bounds for the non-
backtracking matrices of random graphs that have independent and bounded edge weights, and bounded
model complexity (measured by the rank of the expected adjacency matrix). However, in our model the
edges have correlated matrix weights instead of independent scalar weights, so their eigenvalue bounds
do not generally apply to our model. Another work we draw several ideas from is that of Bordenave
and Collins [BC19], who prove that the spectra of a wide family of random graphs, namely those arising
from matrix-weighted noncommutative polynomials of random permutation matrices (see [OW20] for a
comprehensive characterization and examples in this family), are roughly contained within the spectrum
of an appropriately defined infinite graph. The key techniques useful in our work are the ones they employ
to bound the spectral norms of the non-backtracking matrices of random regular graphs whose the edges
are endowed with varying matrix weights.

1.4 Technical Overview

We define a general model for sparse observations on a hidden vector, and carry out the cavity method
calculations in full generality following [DKMZ11a]. We obtain a criterion for computational tractability
of the recovery and detection problems on this model, and provide spectral algorithms for recovery (The-
orem 2.10) and detection (Theorem 2.11) in the tractable regime. The key technical ingredient in our work
is tight eigenvalue bounds for nonbacktracking matrices of sparse random hypergraphs with (possibly
varying) matrix-valued edge weights (Theorem 3.8).

In this section, we will attempt a brief technical outline of our result specialized to the case of distin-
guishing a random NAE3SAT instance from one with a hidden satisfying assignment. Concretely, consider



the problem distinguishing Dpuy from Dpjanted where:!

« Aninstance T ~ D, is obtained by sampling each triple of distinct vertices (u, v, w) in [n]® inde-
pendently with probability ﬁ and then placing uniformly random negations (o, 6, 0,,) on each
variable.

+ An instance I ~ Dplanted is sampled in a two-stage process: (1) sample a hidden assignment x ~
{+1}", (2) sample each triple of distinct vertices (u, v, w) in [n]® independently with probability #
and place uniformly random negations (o, 6, 0,,) conditioned on NotAllEquals(a,x,, 0,Xy, OwXxy) =
1.

First, let us map out the statistical physics prediction of the smallest value of d at which the problem
becomes computationally tractable. In particular, we need to work out the value of d for which the trivial
fixed point for belief propogation is unstable. To this end, one emulates the cavity method heuristic calcu-
lations analogous to the one carried out in [DKMZ11a] for stochastic block models. Oversimplifying for
the sake of presentation, the cavity method heuristic amounts to carrying out the calculation by treating
the neighborhood of each variable to be an infinite tree (see Section 4 for more details).

Concretely, the setup in the cavity method calculation is as follows. The neighborhood of a variable v
in the NAE3SAT instance is modelled as an infinite tree with alternating layers of variable and NAE3SAT
constraint nodes. The tree is generated by a Galton-Watson process where each variable v picks a degree
d,, ~ Poisson(d) from the Poisson distribution, and has d,, NAE3SAT constraint nodes as children, and
each constraint node has exactly 2 children. For each path of length 2, ¥ — C — w from a variable u
to its constraint node C followed by another variable w in the constraint, there is an associated constant
sized matrix M, c,, depending on the prior distribution. For the case of NAE3SAT, all of the matrices M,,c,,
are given by M,cy = 0,0,M where

-6 w6
16 -1/6|°

For any depth ¢, consider the following quantity p; where the expectation is over the choice of the infinite

tree T,
t-1 t-1 i
pi(d) = Eqee 7 Z Tr H My Ciu.y H Mu;cuiy
pathsuy=v—Cy—u—Ci—up—-—u; i=0 i=0

The threshold d" predicted by the cavity method is precisely the smallest value of d for which lim;_, p;(d) >
1.

This characterization of d” is a little unwieldy in that it is not immediate that the value of the threshold
d" is decidable. Fortunately, through ideas from the work of Bordenave and Collins [BC19], the above
characterization can be equivalently written in terms of the spectral radius of an associated finite matrix.
Specifically, for NAE3SAT, d" is the smallest d for which the spectral radius of L exceeds 1 where:

1/18 -1/18 -1/18 1/18
~118 118 1/18 -1/18
|-118 118 1/18  -1/18]
118 -1/18 -1/18 1/18

!Strictly speaking, this model and the distribution over NAE3SAT instances our generic model yields differ slightly. Never-
theless they are contiguous and so the phenomena in one carry to the other.



(see Section 2.9 for an overview of how to construct L in general, and Section 4 for details). Hence, for
NAE3SAT, the problem is hypothesized to become algorithmically tractable once d > 4.5. Our main re-
sults are algorithms for distinguishing the null and planted distributions, and for partially recovering a
hidden assignment in the general model we consider whenever the spectral radius p(L) of the matrix L
corresponding to the model exceeds 1. In the case of NAE3SAT, we prove:

Theorem 1.7. When d > 4.5, given T ~ Dy or Dpjanted:
1. There is an efficient algorithm to distinguish D,y from Dpjanted With probability 1 - o(1).
2. There is an efficient algorithm to produce ©(1) unit vectors V where {v, x) > Q(+/n) for some v € V.

We now describe the distinguishing algorithm, which is spectral in nature, and briefly survey the tech-
niques to analyze the matrix involved. The matrix we employ is a power of the so-called non-backtracking
matrix obtained by linearizing belief propogation. For each clause C and pair of variables u, v in the clause
signed by oy, 0, we define matrix Myc, := 0,0,M. The s-th nonbacktracking power matrix is a nx n block
matrix where each block is 2 x 2:

A(S)[a> b] := Z MuclulMuICZug Mus,lCSv-

uCiuy; Gyug...us_1 Csv

The algorithm is then fairly simple:

« Let s = [\/log n], and let x be strictly between /p(L) and p(L).

o If JAY| < x* output Dy, otherwise output Dplanted-

In order to prove that the algorithm is correct, there are two key technical steps: (1) to prove that in the
planted model, the operator norm is large, (2) to prove that in the null model, the operator norm is bounded.
The key insight in proving (1) is that the large operator norm of A® arises from the hidden assignment

to the planted instance T itself. In particular, denoting y := x ®

1 We prove:

Lemma 1.8. With probability 1 - o(1):

(y,ADy) s
2 V7S Q(p(L)).

This is proved in full generality in Section 6.
The main technical difficulty is in proving (2) in the general model, as is done in Section 7. We prove:

Lemma 1.9. With probability 1 - o(1):

1491 < ((1+ 0)P(D) ) -

Our proofis largely inspired by the works of [BLM15, BC19, SM20]. On one hand, [BLM15] and [SM20]
show tight eigenvalue bounds for the nonbacktracking matrices of sparse (possibly inhomogenous) Erdés-
Rényi graphs with scalar edge weights. The proof exploits the commutativity of scalar products, i.e. the
product of edge weights along a walk is invariant under reordering. However, the graphs we consider
have matrix-valued weights, which in general don’t commute under multiplication. Therefore the product
of edge weights changes depending on the order of multiplication. On the other hand, random regular



graphs with matrix-valued edge weights is handled in the work of [BC19]. However, the proof in [BC19]
heavily exploits the regularity of the model — each vertex has exactly d adjacent edges and these edges
have the exact same set of matrix weights. This leads to every vertex having isomorphic neighborhoods,
and simplifies the analysis, which does not occur in our setting due to the lack of regularity. Our situation
is further complicated by the fact that due to hyperedges of size greater than 2 even the random matrix
weights in different blocks are not independent, which introduces mild correlations. The proof follows the
general framework of the trace method and gives a more fine-grained analysis for nonbacktracking walks
based on their shapes.

While the spectral radius of non-backtracking powers A® serve as a distinguisher, recovering the
hidden assignment from the eigenvectors is little more subtle. In particular, this requires proving a converse
of Lemma 1.8 that the every vector v for which (v, A®v) is large, is actually correlated with the planted
assignment. Instead, we bypass this issue by collating information from eigenvectors of A®) for a range of
values of s (see Section 8 for details).

1.5 Discussion and Future Work

In this work, we have shown that for a very general class of planted problems, the problem is computa-
tionally tractable whenever the trivial fixed point is unstable. This establishes the algorithmic side of the
predictions of Krzakala and Zdeborova [KZ09] for all these problems. Several compelling open questions
remain, we list a few here.

Reductions. From the standpoint of average case complexity, the main open question is to establish or
refute the stable fixed point barrier. Given that all Bayesian CSPs have a uniform onset of intractability as
specified by the stable fixed point barrier, perhaps these problems are reducible to one another. Traditional
CSPs are very amenable to reductions, it is compelling to see if there are reductions between Bayesian CSPs,
and stable fixed point barrier can be obtained as a consequence of the intractability of a single Bayesian
CSP. The main challenge here is in coming up with reductions between problems that are distribution-
preserving and we speculate that the ideas in [BBH18, BB20], which are examples of recent successes in
reductions between average case problems, might be useful.

Hardness evidence in restricted computational models. Evidence on the stable fixed point barrier
would also be very interesting. [HS17] showed that an algorithm based on low-degree polynomials solves
the distinguishing problem in community detection up to Kesten-Stigum threshold, and also proves match-
ing hardness in that low-degree polynomials fail to solve the problem under the Kesten-Stigum threshold.
Recent work introduced the local statistics SDP hierarchy [BMR19] and showed the same algorithmic re-
sult for this class of algorithms and proved a negative result for the degree-2 SOS version of this algorithm.
It will be useful to show that low-degree method and local statistics SDP hierarchy fail to solve the de-
tection problem in the general model we consider in the presence of a stable fixed point. It will also be
interesting to see if conditional hardness results for the problem can be obtained in other models such as
statistical query algorithms [FGR*17].

Another direction in the spirit of the recent work of [BBH"20] which establishes an equivalence be-
tween the predictions of statistical query algorithms and the low-degree polynomials method would be to
formally establish the equivalence of the predictions for the stable fixed point based on the cavity method
with the other restricted models of computation such as the ones mentioned above.
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Goldreich’s PRG for 1-wise independent, balanced, local predicates Goldreich proposed a con-
struction of pseudorandom generators from random CSPs with balanced local predicates [Gol00]. The
generator mapping n variables to {0, 1}™ is constructed as follows: let Ey, ..., E,; be a randomly chosen set
of constraints on n input variables, then the i-th bit of the output string indicates whether E; is satisfied
by the input or not.

The constraints in Goldreich’s generator can be sampled from the null distribution of the model that
we study. Then on any input ¢ (analogous to the hidden variables in the model), the output of the generator
together with the constraints can be viewed as observations from the model’s planted distribution. Roughly
speaking, we say that this generator produces pseudorandom strings if and only if the detection problem
for this model is intractable.

For any random CSP with 1-wise independent predicates, the cavity method yields a concrete predicate
density threshold above which the detection problem should be tractable (indeed the threshold is always
of order O(n)). Our distinguishing algorithm confirms tractability in this regime, and therefore provides
a concrete linear upper bound on the stretch of the Goldreich’s PRG constructed from the random CSP.
Indeed, the upper bounds would be tight if the stable fixed point barrier hypothesis holds.

NP problem If the stable fixed point barrier hypothesis holds, then these Bayesian CSPs are excellent
examples of average-case hard problems that are easy to sample. Their intractability can be harnessed to
build cryptographic and pseudorandom primitives whose security depends on the existance of average-
case hard problems. To this end, it is important that the underlying intractable problem is in NP, i.e., given
the true hidden assignment, an efficient algorithm must be able to recognize it. Formally, this motivates
the following NP-version of the problem:

Problem 1.10. (NP version) Devise an efficient verification algorithm .4 that, given observations E from
the planted model M and a candidate assignment ¢ : [n] — [q], has the following property:

« If (¢, E) are generated from the model M, the algorithm A accepts (c, E) with high probability.

« If the observations E are generated from the null model M, then for every assignment ¢ : [n] — [q],
the algorithm rejects (¢, E) with high probability.

Dense models The focus of this paper has been the sparse settings, where in the underlying variable-
observation graph is constant degree on average. Stability of trivial fixed point is also hypothesized to
indicate computational intractability in dense problems such as spiked Wigner matrix (see [MV17] for
some rigorous results). In this setting, it is the stability of fixed points of the approximate message passing
(AMP) algorithm. A natural open question is whether the spectral algorithm based on linearizing AMP
can be shown to generically hold in the dense setting.

Optimal Recovery Finally, in the region where weak recovery is possible, BP is conjectured to achieve
the optimal recovery rate, i.e., achieve the maximum possible correlation with the hidden communities.
While spectral algorithms provably achieve weak recovery, there has only been partial progress on the
problem of achieving the optimal recovery rate [MNS14] — in particular, optimal recovery even in the
2-community block model close to the Kesten-Stigum threshold is open. In analogy with traditional CSPs,
stable fixed point barrier marks the onset of "approximation resistance” for some problems, while the re-
covery rate corresponds to the approximation ratio.
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2 Preliminaries

2.1 Observation Model

We will now formally define the observation model that is used throughout this work. The basic setup con-
sists of a set of hidden variables ¢(1), ..., ¢(n) taking values over a finite domain [q] = {1, ..., q}. Borrowing
terminology from the PLANTED COLORING problem, we will refer to [n] = {1, ..., n} as the set of variables,
[q] as the set of colors and ¢ : [n] — [q] as the hidden coloring.

The hidden coloring ¢ : [n] — [q] is drawn from a prior distribution P,. A sequence of hyperedges E
on the vertex set [n] are drawn, and we will refer to these hyperedges as observations. More precisely, an
observation is effectively a hyperedge e € E with a type z(e).

Definition 2.1. An observation model M = ([q], T, T, {P;}seT, ®) describes a distribution on n-vertex
hypergraphs M,, for every n > 1 and is specified by,

« (Variable Types T). A set of types T for the hidden variables and a distribution 7 over them.
Each variable is assigned a random type sampled from 7 and is described by = : [n] — T; in
aggregate there are ~ 7 (r) - n variables of type .

« (Prior Distributions {P;},cr). For each variable of type 7 € T, a prior distribution P,.

The prior distribution of hidden coloring ¢ : [n] — [q] is the product distribution,

Pe = Py1) x Pyz) ... x Py

 (Observation Types ®). Set of observation types ® = {1, ..., #r}. The arity of a type i observation
is denoted by a(i).

Each observation on the variables is a hyperedge with a type from ®. Specifically, the set of all
observations is a set of hyperedges E partitioned as E = u,r)E; where E; is a set of a(i)-tuples of
distinct elements in [n].

« (Observation Distributions). For each observation type ¢; € ®, we have a bounded function
b+ TO < [0 > R,
For every a(i)-tuple (vy, ..., vy(;)) of distinct elements in [n], the observation ¢;(vi, ..., v,(;) is included
independently with probability

Pe [ ) € 5] % AU LD () o)

Notice that the probability of drawing an observation ¢;(vy, ..., vy(;)) depends both on the types of
the variables and their colors.

We refer the reader to the work of Montanari [Mon08], where this model has been previously used for
a wealth of concrete examples captured in this framework. Here we will exhibit a few examples.
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Example 2.2. (Stochastic Block Model in semi-supervised setting)

In this variant of community detection, a graph G = (V, E) is drawn from a [g]-community SBM and
in addition an a-fraction of the vertex labels are revealed. [ZMZ14] study the KS threshold in this model
using the cavity method.

To encode this problem into our framework, we will have vertex types T = [gq] u { L} wherein the type
of a vertex v is 7(v) € [q] if the label of v is revealed, and z(v) =L if it is unrevealed.

We have a single observation type namely the edges of the SBM, and the probability of an edge (u, v)
is clearly ¢ ((z(w), c(u)), (z(v), ¢(v))) /n for a function ¢ depending on the types and colors of two vertices.

More generally, the model can encode variants of SBM wherein there is additional attributes revealed
about the vertices or edges or both. For example, SBM with labelled edges [HLM12] are subsumed by
different types of observations, while SBM with vertex features [DSMM18] are captured by vertex types.

Further, the model can also be used to express geometric SBM [GMPS18] in restricted cases. In a
geometric SBM, the vertices are distributed on a compact metric space like the sphere, and the probability
of including an edge between vertices u, v is a function of the distance between the two. If the metric space
is compact, say a sphere in a constant dimensional space, then one can use an e-net of the compact set as
a finite set of vertex types to model the SBM in our framework.

2.1.1 Miscellaneous simplifying notation

Class function Cl: For notational convenience, we will make a modification to our Definition 2.1 that
does not affect the generality of our results. We will enforce that each observation type ¢; have a fixed
tuple of variable types on which it applies. Formally, each observation type ¢; has an associated class type
Cl(i) € T such that all occurrences of the observation ¢; have input variable types given by CI(i). It is
clear that this restriction is a special case of Definition 2.1 with the additional restriction that,

Gi (71, 1) ey (Tagiyy Cai)) = 0 3f (71, o, Tags) # CL(D)

Conversely, given a general model M as per Definition 2.1, for each observation type ¢; and each tuple
7 = (11, ... Ty(j)), introduce an observation type ¢;, that is identical to ¢;, but restricted to variable types
7, i.e, set Cl(i) = 7. It is easy to see that this transformation creates a model M’ that is equivalent to
M. Without loss of generality we will henceforth use ¢;(cy, ..., ¢y(;)) to denote ¢;((71, ¢1), ..., (7o), ¢i)) where
7 = CI(i).

Average factor density: We will use ¢; to denote the average density of a factor:

a(i)
¢i = Z < ]PCl(i)k> “iler, .., Cagi))-

(C15mnCa(i) €L \ k=1
Bipartite view: Given a collection of sampled observations E = ul_, E;, we associate a bipartite graph G
where the left vertex set is given by the variables [n] and the right vertex set is given by the collection of

all (i, y) for y in E;.

Index function: For e = (i, (vy, ..., Uy(;))) We define i.(v;) as s and e[s] as v5. When e is clear from context
we will drop the e and just use i(v;).
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Definition 2.3. For an observation model M = ([q], T, T, {P; } reT, ®) the corresponding null model M* is
the observation distribution where for every a(i)-tuple (vy, ..., v,(;)) a hidden coloring ¢ is sampled inde-
pendently, and the observation ¢;(vy, ..., vy(;)) is included with probability

Pr [gb,-(vl, ey va(i)) € El] dgf ¢i ((T(Ul)’ c(vl));l;(-i;_(lf(va(i)), C(Ua(i)))) '

Equivalently, in the null model for every (vi, ..., v,(;) the observation ¢;(vy, ..., vy) is included indepen-
dently with probability:

def @i
Pr [gi(vr, ..., o) € Bi] < G

Remark 2.4. For a model M we will refer to it as the planted model and we will refer to M* as the null
model. Two computational problems we are interested in are distinguishing whether a sample is drawn
from M or M*, and inferring the hidden coloring for a sample drawn from M.

2.2 Bayesian Inference

Given the variable types = : [n] — T and the observations E, the canonical algorithm to infer the hidden
coloring c is to use the Bayes rule to compute the conditional distribution [P jg. Formally, the probability
that amodel M = ([q], T, T, {P; } .1, D) generates a hidden coloring ¢ and observations E is

Pr(Ei,...,Er,c | 7] =Pr[c | 7] - Pr[Ei, ..., Er | ¢, 7]

= (H ]P‘r(v)(c(v))> '
v€[n]

¢)i(c(vl)’ s C(Ua(i))) l(vj)jeEi ¢i(c('01), vees C(’Ua(l-))) l(vj)jeEi
I1| II -

na(i)_l na( i)-1

i€[F]\ (v;);€[n]2®
By applying Bayes rule,

Pr(E,,...,Er, c| 7]

P Ei,...,Ep, 1] = '
rlc| E 4 Yo Pr[(Ey,...,Ep, ¢ | 7]

Ignoring the normalizing constant, we can write
Pr(c | Ey,...,Ep, 7] ¢ H(clEr..Ep.7)

where

H(c | Ey,...,Ep, 1) = - Z Z [l(vj)jeEi log (¢i(c<vlzl’a.(.i;_’f(va(i)))> + 1)k, log (1 - g, c(va(i)))>}

i)-1
i€[F] (v;);€[n]2®) na(

- Y. logPo(c(v)).
v€[n]
The function H(c|Ey, ..., Ep, 7) is referred to as the Hamiltonian, and the distribution is the Boltzmann
distribution with Hamiltonian H and inverse temperature f§ = 1.
Since in our setting, the hypergraph is sparse, i.e., ¢; = O(1), the terms

log <1 _ ¢i(c(vl)’---9c(va(i)))> ~ 0 (1)

na(i-1
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for all (vj); € E;. So the these terms can be dropped to simplify the Hamiltonian to

Hic | Ep Bnt) == 3 3 log (i(c(0n), ., c(0ap) = 3 log Peuy(e(o)). (2)

i€[F] (Uj)jEEi v€[n]
The Hamiltonian H is a sum of local terms each depending on a constant number of variables. The
observations E and the variables ¢ together form what is termed as factor graphs (see [MM09a]), where
each observation is a factor of the Boltzmann distribution. Recall that the Boltzmann distribution is given

by
¢~ H(C|Ey....Er,7)
PI‘[C | (Ely‘”sEFi T)]

- Y o e HCI(Er..Er.7)
C

The normalization term in the denominator is called the partition function of the distribution and is de-
noted Z(M). Notice that a naive algorithm to infer the hidden coloring via the Bayes rule as described
above would take exponential time.

2.3 Belief Propogation

The algorithm of choice to infer the hidden variables in a sparse factor model would be belief propogation.
We refer the reader to [MMO09a] for a detailed exposition of belief propogation, and restrict ourselves to a
broad outline.

Belief propogation (BP) aims to estimate the marginals of the hidden variables, in our case c(v) for
v € [n]. BP draws its inspiration from a dynamic programming algorithm to compute the marginals
when the underlying factor graph is a tree, and is broadly applicable to sparse settings where the local
neighborhood of a vertex is tree-like. In particular, while BP computes the marginals exactly on a tree, it
is very succesful in practice over sparse factor models that are locally tree-like.

To visualize BP, it will be useful to consider the bipartite graph H with variables [n] on one side and
the factors (a.k.a. observations) E on the other. There is an edge between a variable v and an observation
e € E if v € e. The execution of BP is divided into rounds where in each round, the variable nodes send
messages to factor nodes or vice versa.

Let m”—¢ denote the message sent by a variable v to a factor e € E and let m*~" denote the message
from a factor e € E to a variable v. All messages exchanged are marginal distributions over the domain

v—e e—v

[q), ie, m¥7¢ = (m{™* ..., m¢™°) and similarly m*™% = (m{™°, ..., mg™°). Intuitively speaking, m¢™*

c
is an estimate of the marginal probability that v is assigned the color ¢ when the factor e is absent, and

e—u
c

absent.

m is an estimate of the marginal probability that u has color ¢ when all other factors involving u are

BP specifies an update rule for every variable/factor node to update its outgoing messages each round,
depending on its incoming messages. Let de denotes the set of variables incident a factor e and let v denote
the set of factors incident on a variable v. BP specifies functions Y, ., Y., so that if {m* =[], m*~°[¢]
denote the messages in round ¢, then the updated messages are given by

mP7et+ 1] = Yoose ({m/ 77[1] | f € 00\e}) 3)
meO [t + 1] = Yoo ({m*7¢[t] | u € d€\v}) (4)

We will describe the specific form of the functions Y in Appendix A, but there are two salient details
that we would like to highlight at this time. First, the functions Y are smooth rational functions that map
marginals over [g] to a marginal distribution over [g]. Second, the updated outgoing message m*—¢[t + 1]
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depends on all messages incoming to variable v except the message m®~°[t]. Similarly, the updated
outgoing message m®— [t + 1] is independent of the incoming message m*—¢[t].
The general schema of a BP algorithm is to start BP with some intialization of the messages

{ mv—>e[0], me—>v[0] }ve[n],eeE

and iteratively update the messages as specified by the functions Y, until the messages stabilize into a fixed

A

point, i.e., a set of messages {m* ¢, m*~"} so that,

AT = Yo, (130 £ € 90ie))

MY = Yoo ({78 | u € de\v))

While it can often be difficult at times to show convergence to a fixed point, BP is very succesful in
practice over locally tree-like factor models.

2.4 Stable Fixed Point Barrier
A natural starting point for BP iteration for a model M is given by the following:

__ de
e

ef prior distribution P, (5)
7% % uniform distribution over support of P () (6)
Conjecturally, this canonical initialization 7 plays a critical role in characterizing the computational com-
plexity of inferring the hidden variables in model M.

There appear to be three possible cases with regards to this canonical initialization.

Case 1: m is not a fixed point Suppose m is not a fixed point for the BP iteration over the model M,
then BP iteration can be expected to make progress, thereby yielding a weak recovery of hidden variables.

In fact, we will present a self-contained algorithm that weakly-recovers the hidden coloring in this
case. Formally, we will show the following in Appendix B:

Lemma 2.5. Ifm is not a fixed point for the BP iteration on model M, then there is a polynomial time algorithm
A and an € > 0 such that

1. if (E, T) ~ M: A outputs a coloring that beats the correlation random guessing achieves with the hidden
coloring by ¢,

2. A solves the M vs. M* distinguishing problem with high probability.

In light of the above lemma, it is natural to restrict our attention to the case where m is a fixed point
for the BP iteration. 7 being a fixed point of BP is equivalent to a “detailed balance” condition holding (in
the sense of (45)).

Case 2: T is an unstable fixed point 7 is an unstable fixed point if arbitrary small perturbations of
m will lead to the BP iteration moving away from the fixed point m. BP is conjectured to succeed in
weak-recovery of hidden coloring and distinguishing between M vs. M* in this case, and this has been
extensively demonstrated experimentally [DKMZ11a, ZMZ14].
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Case 3: mis a stable fixed point s a stable fixed pointif there exists a neighborhood U around m such
that for any initialization m € U, BP iteration converges to the canonical fixed point 7. In this case, the
canonical fixed point 7 clearly highlights a potential failure of BP algorithm. A priori, it is conceivable that
by using BP with an alternative starting point or an entirely different algorithm, one could still efficiently
infer the hidden coloring in this case.

Surprisingly, it is conjectured that the existence of this canonical fixed point that is stable marks the
onset of computational intractability! Inspired by ideas from statistical physics, Krzakala and Zdeborova
[KZ09] were the first to hypothesize that the existence of a trivial fixed point that is stable marks compu-
tational intractability. Building on these intuitions, Decelle et. al. [DKMZ11a] outlined a fascinating set
of conjectures on community detection problem which fuelled a flurry of activity, resulting in algorithms
matching the conjectured computational thresholds [MNS18, Mas14, BLM15, AS15].

2.5 Analyzing Stability

The stability of the canonical fixed point 7 under BP iteration can be analyzed using derivatives of the BP
update rule. Suppose I" denote the map associated with running two rounds of BP iteration to produce the
messages, i.e.,

{ mv%e[t + 2] }ve[n],eav =T ({ mv—»e[t] }ve[n],eav)

In other words, T is given by the composition of the functions in (3) and (4). If m is a fixed point of BP,
then we will have,
I({m*™}) = {m"}
To analyze the stability of the fixed point m, one uses the linear approximation of I in a neighborhood
of m, by setting
I'(m +¢€)=m+ Be

where B is the matrix of partial derivatives, i.e.,

B ar( m) u—e

B[mu—w’ mu’—>e’]
omu—e

i
With this linear approximation I'(7 + €) = m + B’e. Therefore, the stability of the fixed point is charac-
terized by the spectral radius of the operator B.

Specifically, m is a stable fixed point if and only if p(B) < 1 where p(B) def max; [A;(B)] is the largest
magnitude of an eigenvalue of B.

Notice that B is an asymmetric random matrix depending on the set of observations E. The cavity
method is a heuristic to guess the spectral radius of a typical derivative matrix B in terms of the spectral
radius of some constant sized linear operator L. In the rest of the section we first use the cavity method to
obtain a precise condition on M for p(B) < 1, then state our main theorem that the distinguishing problem
and the weak recovery problem are efficiently solvable when p(B) > 1, and finally define the operator L
whose spectral bound Ay, satisifies that p(B) = }/2.

2.6 The local distributions of M

Before diving into the calculation, we define a few local distributions of M that would be used later.
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The color assigment distribution y; For each factor ¢; € ®, define a local distribution y; over [¢]*? as,
pilers ey Cai)) < H Peygiy; (¢ ) - ¢i(c) (7)
€fa(i)]
For each ¢; € ® and a, b € [a(i)] define a matrix ¥, 4, € RI9-9] by fixing,

W, ap(e B) ' Prieyeyy-mlea = aley = B (®)

This says that conditioned on that ¢; is in the observations E, the matrix ¥; 4, encodes the color distribution
of a conditioned on the color of b. Finally for ¢; € ® and a, b € [a(i)] we define a matrix that is useful later,

M o5 = (L= Peigy, 1), 415 )

The neighbor factor distribution of a variable We now take a closer look at a type 7 variable’s
neighbor factor distribution. Here a variable’s neighbor factors refer to all factors that are connected to
the variable in the factor graph.

To study this neighborhood distribution, we first define random variables deg; ;(7) for a type 7 variable
.

Definition 2.6. For 7 € T, ¢; € @, deg; ;(7) is the random variable denoting the number of type ¢; factors
in the neighborhood of the type r variable v such that the index of v in all these factor is j.

From the definition, we see that each deg, ;(7) is the sum of many binomial variables each of which
indicates whether a specific type ¢; factor exisits in the factor graph. We formally define these binomial
variables.

Definition 2.7. For 7 € T, (v, ..., vy;) € [n]2D, b " is the indicator variable of whether the type ¢;
factor e whose j-th variable is v; for all j € [a(i)] is in the observations E.

We can compute the probability of by = 1 in M,,.

Vg ey Ug(i 1 au > e
ol | LU VI s =
j=

( al))e[ d(l j=1

= 7@ w0 HT(Cl(i)f)
J

Thus b;"”""? has distribution Binomial (T(T e HJ ) T (CI(i) )

Now we can express deg; ;(7) as the sum of n*)~1 binomial random variables.

deg ()= > b0,
(vj)je[n]a(i) ‘ V=V

U
We also note that most of the b;"*?s are independent. Two random variables b;"”*? and b 0

are not independent only if there exist j,j € [a(i)] such that v; = U but CI(i); # Cl(i)y. That is the two
factors share some variable but require the variable to have dlfferent types. However, only O ( ~(a()- ))

a(i)-1

fraction of the pairs are correlated. Thus, when n is large we can treat the n*"~" random variables as being

independent. Then each deg; ;(7) has a Poisson distribution.
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Claim 2.8. deg; ;(r) ~ Poisson ( HJ T(Cl (1)) )

For similar reason as above, when n is large we can treat the random variables {deg; ;(7)}ic(r) je[a(i)) Of
a variable v as independent. Therefore for large n, the neighbor factor distribution of a type 7 variable v
is very close to the product distribution of the random variables {deg; ;(7)} icr jefa(i)]-

2.7 The stability condition

Now we continue to explore the condition on M that makes m stable. We focus on sparse models whose
average factor degrees ¢; = O(1) for all ¢; € ®. In such models, a variable node is contained in constant
number of factors, and its o(log n)-neighborhood is locally tree-like with high probability. Set the tree
depth ¢ be a function such that ¢£(n) € o(logn), and consider the distance (2¢ + 1) neighborhood of a
variable v;. Assume each level-(2¢ + 1) factor node e,;’s outgoing message to some level-2¢ variable v,
is perturbed to m#— % = m“ ™% + ¢,. Recall that m* ™% is the trivial fixed point message, and ¢, is
the random perturbation that is independent across different edges e, — v,. We want to compute the
expected influence of the perturbations on the messages to the root .

We first consider the distance 2¢ + 1 neighborhood of a variable vy. The treelike neighborhood can be
constructed by the following process.

1. Sample the type of the root variable 7(vy) from 7.

2. Sample the level-1 factors: for each type of factor ¢; € ® sample the number of type ¢; neighbor
factors of vy by sampling {deg; ;(7(20))}icF je[a(y) independently. Add vy’s neighbor factors to level 1.
Add the other variables in these factors to the next level of the tree, assuming that there is no shared
variables other then vy. Note that these variables already have types.

3. Repeat step 2 for the new variables until we get a depth-(2¢ + 1) tree T.

We next use the tree T to give a precise condition on M for the fixed point 7 to be stable.
Ina Ty, aleaf node e, is connected to the root node vy via a path e;, v, e,_1, ... v1, €9, vy. A perturbation
on the leaf message m“—% influence the next level message m®-1— %! via the partial deriviative matrix

%. We can express the partial deriviative matrix evaluated at the fixed point using the matrix

defined in (9).

Claim 2.9 (Claim 4.1).
ar(m)eé’fl—’vlfl o
—omasa = Moy i )
This claim is proved in Appendix C. When writing the matrix Mg(e);,(v)ji, (), it’s clear that the index
function is associated with the factor e, so we drop the subscript e in i, for simplicity.
Using the chain rule, we can compose the partial deriviative matrices along a path, and conclude that

each path influences the root message by

4
<HM 0(ej-1),i(vj-1)li( vj)> €e,-
=1

Thus the influence of all paths in T, is

>, (H Mo(e, 1).ico1) |1<v,>> e
(er,0¢,...,€0,00)€Ty =
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To decide if the fixed point is stable, we compute the variance a; of this influence.
2
¢
ET(,€ Z (H 0(ej-1).i(vj-1) 1(v])> €e,
(e¢,0p,...,€0,09)ET ¢ J=1

¢ * ¢
Z <H Mo(e; ) i(v-)li(vy) > <H O(ej-1).i(v; 1)1(vj)> eg]
(E[,’U[,...,Eo,’l)o)GT[ =1 j=1

4 ’ *
Z <<H 0(ej-1),i(vj-1) > (H 0(ej-1),i(vj-1) 1(vj)> >
(C[,Z)[,...,E(),Z)0)ET[

So the squared norm of the perturbations e, is amplified by

. .
Z <<H M@(e] 1:A(vj-1)li(vy) > (HM 0(ej-1),i(vj-1) I(Uj)> >] :
(er,0¢,...,€0,00)ETy J=1
1/2¢

We note that for a model M, by definition of o, and the operator B in Section 2.5, p(B) = lim,« @;

(recall that ¢ is a function of n). Thus when lim,_,« a;/ 2t < 1, mis a stable fixed point.

ZET[,E

Ec, [lec|°]

:ETz .

def
a[ - ET(

2.8 Efficient recovery and detection when the fixed point is unstable

For a model M whose fixed point m is unstable, it is conjectured that the BP algorithm can successfully
weak-recover the hidden coloring. We provide a BP-inspired spectral algorithm that solves the weak re-
covery problem in this regime. We state the result somewhat informally below; the full formal statement
can be found in Theorem 8.1. However, before we state the result we go on a small digression on how to
set the benchmark for weak recovery. A first attempt might be:

For a fixed type 7 € T and color ¢ € [q], produce a vector u € R” such that w correlates with
the following “centered indicator vector” of (7, ¢): ¢ where y™* is an n-dimensional vector
with i-th coordinate 1[z(i) = 7] - (1[¢(i) = ¢] - P(¢)).

However, this benchmark is unattainable since for a problem such as PLANTED-g-COLORING there is no
way to statistically discriminate between a given coloring and a different coloring obtained by permuting
the names of the colors. Thus, to account for this complication we consider the following modification of
the above benchmark, which we first state in words.

Produce a vector u € R"” such that after some permutation is applied to the names of the colors,
for some type 7 € T and color c € [q], u correlates with the centered indicator vector of (z, ¢).

More formally:

Theorem 2.10. If a model M has lim;_,, a}/** > 1, there is a spectral algorithm A that solves the weak-
recovery problem. A bit more concretely, for G ~ My, the algorithm A(G) produces Oy (1) vectors {uy, ..., U, }
such that one of these vectors u; has constant correlation with the planted coloring in the following sense:

There is a type T € T, and a color a € [q] such that if we construct y»* € R" as

x"Li] = 1[z(i) = 7](1[c(i) = a] - P.())
then
Cuj Y% = Qu(1) - Jn.
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For amodel M with m as an unstable fixed point, it is conjectured that the BP algorithm can successfully
distinguish it from the null model M*. We provide a BP-inspired spectral algorithm that solves the detection
problem in this regime. We state the result below but leave the proof sketch to the technical overview

section.

Theorem 2.11. Ifa planted model M haslim,_,o, a}** > 1, there is a spectral algorithm A : factor graphs —
{P, N} that solves the detection problem in the following sense

Pry, [A(factor graph) = P] =1 - 0,(1) and Pry:[A(factor graph) = N] = 1 - 0,(1).

2.9 The stability condition via a finite linear operator L

In this part we define a finite linear operator L whose spectral radius gives a criterion for when lim,_,, a}*¢

is greater than 1 or less than 1.

1/2¢

Naively, computing lim,_,. a,’“" requires us to consider trees whose size grows with ¢. However we

1/ %! via an insight of [BC19] by observing that the tree T, is constructed

can simplify the expression for ¢,
recursively. For any even level Varlable node v in the tree, the distribution of its children factor nodes
depends only on vy’s type. Furthermore, the factor node distribution {deg; ;(z(vk))}icr jefa(i)) also fully de-
scribes the distance 2 neighborhood of vy. For a type 7 variable v, define the random variable num.(i, j, j)
to be the number of variables u that are connected to v via some type ¢; factor, and additionally u have
index j” in the factor and v has index j. These random variables give a way to concisely express the total

influence of the distance 2 type 7’ variables to the type r variable. This influence is

num’['(isjﬁj/) . Mi,j‘j/ € ]R[Q]X[CI]
i)j)j/l(:l(i)j/:T/

Then we can build a 2 step quadratic influence operator L : RT1aTldl — RT{aTla) guch that the
(7, 7) block of L(M) is

LM)™" = Z Z Z num. (i, j, ;') - M jj M7 MUU ’
v/ i€F,j,j'€[a(i)] ijj’|Cl(i) =7/

and the off-diagonal blocks are L(M o7 = 0.
Suppose the input M is such that each M o7 captures the quadratic influence of some path vy, ey, ..., vg, €
such that the endpoint v; has type 7/,

(HMG(eJ :A(vj-1)li(vy) > (H M9(eJ 1):A(v-1)Ii( vj)> .

And all other blocks in M are 0. Then after applying the operator, every diagonal block L(M)™" captures
the expected quadratic influence of all paths vy, ey, v1, €1, ..., vy, e, Which are 2-step extensions of the path
vy, €1, ..., Uy, e, and whose endpoint v has type 7.

Using this operator L we can rewrite o, as

¢ 13 *
>, T ((HMew,i(vmli ) > <H 0(¢1-1),i(vy-1)li() > )
(ee,v¢,....€0,00)ET J=1 =1

where Diag(P) € RT19T"ld) is a diagonal matrix whose ((z, c), (t, ¢)) entry has value P,(c).

a = Er, = Tr (L (Diag(P))) ,
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Use Ay to denote the maximum eigenvalue of L. Then by standard linear algebra fact,
lim Tr (L (Diag(P))) — A}.
n—o0
Therefore we obtain the following equivalence relation between «, and A;.

Lemma 2.12. For a model M, lim_,o &} = A%, Thus the fixed point m of M is stable if and only if A;, < 1.

3 Technical Overview

3.1 Algorithm for distinguishing

We now describe our algorithm for distinguishing if an instance G was sampled from the null distribution
M* from the planted distribution M. Our algorithm constructs a matrix Mg obtained from linearizing ¢
rounds of the belief propagation algorithm at the uninformative fixed point on input G and tests if its
largest eigenvalue exceeds a chosen threshold . If it does then the algorithm declares that G came from
the planted distribution, and otherwise claims G was sampled from the null distribution. A bulk of the
technical work is in proving that this particular matrix Mg has all its eigenvalues bounded by the chosen
threshold x when G is sampled from the null model, and in illustrating that Mg has an “outlier” eigenvalue
exceeding x otherwise. In this section, we delve more into the description of Mg and then give a brief
description of how we prove the statements about the eigenvalues of Mg in the null and planted models.

More concretely, given a random instance G sampled either from M* or M, we set Mg as the following
matrix Ag) called the length-¢ centered nonbacktracking walk power of G, for which we provide a slightly
informal description below.

Definition 3.1 (Centered nonbacktracking power (slightly informal)). A(é) is a nq x nq matrix which we
treat as a n x n grid of g x q blocks. The block rows and columns are indexed by [n]. In the (i, j)-th block,
we place the following g x ¢ matrix:

Z M., o, - Mg, 0110, = Me, 0, )i - (1[er € G] = Pry[eg € G) - (1[e; € G] - Pry-[ e € G)).
iejvieVy...€0J€
all nonbacktracking walks
from i to j in complete
factor graph
Recall the matrix L from Section 2.8 which the stability prediction of belief propagation was based on,
and let A; denote its largest eigenvalue. The two main technical theorems we prove about A(é) in service

of proving that our algorithm is correct with high probability are:

Theorem 3.2 (Local statistics in planted model). When G ~ M, with probability 1 - 0,(1): AmaX(A(G[)) > A—qi.

The proof of this is carried out in Section 6 and uses two ingredients: the first is recognizing that A(G[)

is self-adjoint under a certain inner product ¢, - )y, due to which for any vector x:

6 AY 300 < A (AG“) - (x, O.

The second ingredient is in identifying a vector x depending on the planted solution the instance G was

I3
sampled with which makes the above quadratic <x, A(Gf)xm larger than the desired lower bound of % with
high probability.

The second main technical theorem, which is proved in Theorem 3.3 is:
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Theorem 3.3 (Eigenvalue bound in null model). When G ~ M* and (loglog n)? < W’

for every

constant € > 0 with probability 1 - 0,(1), all eigenvalues ofAG are bounded in magnltude by ((1+¢) \//TL) .

When A, > 1, we choose § > 0 so that 1 + § < \[Az, £ as (loglog )%, and k as ((1 + 8)y/Ar)’. Then
as an immediate consequence of Theorem 3.2 and Theorem 3.3 we know that the algorithm correctly
distinguishes between M* and M with high probability.

We now elaborate on Theorem 3.3 and elucidate the exact random matrix concentration statement.

3.2 Matrix concentration vignette

Consider an Erdés-Rényi graph H sampled from G (n, %) Pick a random vertex v in H and observe a
“large” radius neighborhood around v. Typically, this neighborhood around v will be a tree, and addition-
ally, and in the large-n limit the distribution of this tree is a Galton-Watson process — a random (possibly
infinite) tree T generated by starting at a root vertex r, attaching Poisson(d) children to r, and then at-
taching Poisson(d) children to each child of r and so on.? So this tells us that there is some sense in which
T “approximates” the finite random graph. This intuition is spectrally articulated by a theorem which is
(implicitly) due to [BLM15] (see also [FM17] and [BMR19]). Before we state the theorem, we bring up a
natural quantity to associate to the random tree: the growth rate which is defined as

lim E[# of vertices at depth-£]"¢,

{—00
which is equal to d for the aforementioned Galton-Watson process.

Theorem 3.4 ([BLM15, FM17, BMR19]). Let Ay := Au — EAn be the centered adjacency matrix of H.
Suppose d > 1, then:

max(AY) < (1 + 01))Vd)t = (1 + o(1))/growth rate of T)*

logn
> loglogn |*

for £ € |(loglog n)?

Now, let’s add a small twist: sample two Erdés-Rényi graphs H; ~ G (n, %) and H, ~ G (n, %) and

consider the weighted graph H = 0.9H; - H,. The random tree that H locally resembles is the following
different Galton-Watson process T’: start at a root vertex r, connect Poisson(d,) children with edges of
weight 0.9 and Poisson(d;) children with edges of weight -1 to r, then repeat the same for each child
vertex, and keep going. The following quantity is the correct generalization of growth rate to weighted
graphs, which we call the weighted growth rate of the tree:

wer(T') := (li_r)lgo E Z H w?

Pelength-¢ paths e€P
starting at root

For illustrative purposes, one subcase of our matrix concentration result is:
Theorem 3.5. Let Ay := Ay - EAg be the centered adjacency matrix of H. Suppose wgr(T’) > 1, then:
Amax (A7) < (1 + o(1)wer(T)’

__logn
for e (log log n) (loglog n)?

The reader is advised to not pay too much attention to the fact that the number of children are distributed according to a
Poisson random variable. The important property is that a vertex has d children on average.
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We now discuss our full matrix concentration theorem which captures both of the above mentioned
theorems. Before doing so, it is worth noting that the picture for random graphs being spectrally approx-
imated by infinite graphs is far more well understood in the setting of models of random regular graphs
through works of [Fri03, Bor19, BC19, MOP20, OW20] but we defer the readers to [OW20] for an extensive
discussion of what is known in that setting.

3.3 Matrix concentration statement

Let ¢:,-), be an inner product on R"? and let M* denote the adjoint of a matrix M under this inner product.
We consider ngxnq random matrices sampled according to the following model (whose notation the reader
should treat independently from the preceding notation related to distinguishing instances from the null
and planted distributions).

Definition 3.6 (Random matrix model (slightly informal)). The model has an underlying left vertex set
which is equal to [n]. First, every vertex v is assigned a type (v) in [ T] sampled according to a distribution
7. There are F types of right vertices, given by set [F]. Each right vertex type i comes with an arity
k;, which is a positive integer, a profile y; which is a tuple in [T]%, a collection of k;(k; - 1) matrices
{Mi(ab)}(ab)elk]?: azb> and a density ¢;. A random instance H is sampled in the following way: for every
(i, (v, ..., v,)) for i € [F] and tuple (v, ..., vy,) in [n]% of distinct elements such that (z(vy), ..., (vy,)) = Xi
we add (i, (vy, ..., vy,)) as a right vertex with probability ngi 7, connect edges to vy, ..., vk, and mark the edge
to v; with number t. We use IC,, to refer to the bipartite graph with left vertex set [n], and the right vertex

set containing every potential right vertex. Now let y = (i,(vy, ..., v,)); for a two-step v, — y — vy
in the complete graph for a # b we use My,,, to denote the matrix M;, ;). The random matrix we are

interested in, which we denote A;?, is the matrix where the uv entry contains:

AL = 3 Miy,o, Mo,y - (ly € H] - Pelyy € H)) - (1lye € H] - Prly, € H]).

i)/l U1... )/[]
nonbacktracking walks in K

Definition 3.7 (Galton-Watson tree approximating random matrix (informal)). For a given setting of pa-
rameters for the random model from Definition 3.6, the bipartite Galton-Watson tree T which “locally
resembles” an instance H sampled from the model is as follows:

1. Start with a left root vertex r and assign it type z(r) ~ x.

2. For each i € [F] and each j € [k;] such that (y;); = 7(r) sample

ki
n;j ~ Poisson P Hﬂ.’oﬁ.)t R
Tr(v) =1

and attach n;; right vertices of type i to r and mark the corresponding edge with j. Then to each

such right vertex, attach k; - 1 (left vertex) children and mark the edges with numbers from [k;]\ {j}.
To each added child vertex v with edge marked with ¢, assign it type (y;):.

3. Repeat step 2 for each added left vertex child.
We define the matrix weighted growth rate of T to be the following:
e

mwgr(T) := lim E|Tr Z May, oy - Moy yebMbyyop -+ Moyyra

{—o00
ay1vy...yeb
nonbacktracking walks in K
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We prove:

Theorem 3.8 (Main matrix concentration theorem (slightly informal)). Let H be a random instance of a
setting of parameters for the model from Definition 3.6 and let T be the tree which locally approximates H in
the sense of Definition 3.7. Suppose:

1. For every right vertex y = (i, (v, ..., vy,)) in K, and every 1 < a, b < k; for distinct a, b the nq x nq
matrix obtained by placing M., v, in the (v,, vy) block and zeros everywhere else is adjoint to the nqxnq
matrix obtained by placing My, ., in the (v, v) block and zeros everywhere else under {-,-,.

2. There is a constant C such that for any nonbacktracking walk vyy1v; ... ysvs in Ky:

”MvOYlUl “‘va—l}’svs ” < C.

3. mwgr(T) > 1

Then if (loglog n)? < £ < Ioéolognn)z, with probability 1 - 0,(1):

Mmax(Ag)® < (1 + o(1))mwgr(T))".

The full formal set-up for Theorem 3.8 along with its proof is in Section 7.

4 A conjectured detection/recovery threshold

In Section 2.9 we see the connection between A; and a, of a model M. In this section we prove this
connection more rigorously, and conclude with a conjectured weak-recovery threshold in terms of ;. We

start by quickly going through the definitions of the partial derivative matrices Mg(ej) ie , the color

(vj)‘le (vj+1
distribution matrix D, the influence variance «,, and their connections.

Claim 4.1. The following matrices satisfy:
L Mgty (oplie () = (1= Paen1") Yogig (o) ()-

. — —T . .
2. LetD, := Diag(P;). Then Dz(vj)Me(ej),i(vj)h(vjﬂ) = Me(ej),i(vjﬂ)“(UJ,)DI(%) where the ¥ in the superscript
denotes the pseudoinverse of the matrix.

This claim is proved in Appendix C. From here on we drop the subscript e from the index function i,
whenever it is clear from the context which factor is being considered.
Using these notations we can express the influence variance, or the amplification factor, a, as follows:

£ ¢ .
( 2 (H Me(eil)’i(vi1)|i(vi)> <H M@(ei1>,i<vil>i<vi>> )]
(€00, 0)ET \ i=1 1

The key property of the above amplification factor we are interested in is its limiting behavior as k goes

ap = Er|Tr

to infinity. We say that the uninformative fixed point of the belief propagation update rule is stable if
lim, e 0{}/ 2t < 1, and unstable otherwise. Furthermore, if the fixed point is stable, the problem of weak-
recovering the hidden coloring of M is conjectured to be hard, and if the fixed point is unstable, this problem

is conjectured to be easy.
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In the remainder of this section, we focus on obtaining a simpler criterion for stability by simplifying
the expression for the amplification factor. In particular, we give a constant dimensional linear transfor-
mation whose top eigenvalue is greater than 1 if the fixed point is stable and is less than 1 if the fixed point
is unstable. For a leaf-to-root path e, vpe,_1vp-1 ... €90y We say its type is

0, — outy — 1, — iny_;y — 0.1 — outy_; — - — outy — 7, — ing — G — outy — 7

where 6, is the factor type of e;, 7; is the variable type of v;, out; is the index of v; in ¢;, and in; is the index
of vy in e;. The amplification factor can then be written as:

o = Tr( Z M, — - — T0)>

Op—+—19

where the sum is enumerated over all leaf-to-root path types and M(6, — --- — 1p) is defined as follows:

(0)
MO — - — ) = T () - (H il HT(CI (6)s) - 1[CLB,You, = n]-l[c1<9t>m,=n+l]>-

T(Tt s=1
-1 -1 . ¢6 air)
T T Mooutin, | { T Monoutsfin f H T (CI(6,)s) - 1[CUOr)out, = Te]-
=0 t=0
Now, let’s define V; ; as:
Ver i= Z M0y — -+ — 10)
Op—-—19
T0=T

and V; as the following |T|- g x |T| - g block diagonal matrix comprised of q x g-dimensional blocks with
block rows and columns indexed by T:
Velz, 7] = Ver.

Finally, we define a linear transformation L on the space of | T|- q x|T| - ¢ matrices. To define L(M) we treat
M as a block matrix comprised of g x g-dimensional blocks with blocks rows and columns indexed by T.

a(0)

T (z) > HT (CL(6)s) - 1[CL(O)oue = 7] - 1[CL(O)n = T']-

T’—>in—>9—>out—>r

T 7 7
M9>out|in : M[T > T ] : M9,out|in'

L(M)[z, 7] :

LM)[1, 2] -

Now observe that V;,; = L(V;); consequently V, = L(V;) and a; = Tr (L[(VO)).
We now connect the limiting behavior of the amplification factor a; to the eigenvalues of L. We start

0 for 1 # .

by making a few observations:
Observation 4.2. If M is a positive semidefinite matrix, then L(M) is also a positive semidefinite matrix.

Observation 4.3. V; is a diagonal matrix with strictly positive entries on its diagonal and hence is positive
definite.

Observation 4.4. Since L!(V;) is positive semidefinite:
I (Vo)llr < Tr (L°(Vo)) < g+ ITIIL (Vo)lr-
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Our final ingredient is a lemma that appears in [BC19, Theorem 16, part (ii)].

Lemma 4.5. If L is a linear operator on r x r matrices with spectral radius Ay such that for any positive
semidefinite matrix M, L(M) is also positive semidefinite, then for any positive definite M’,

Ay = lim LM

By Observation 4.2, Observation 4.3 and Lemma 4.5: A1, = lim,_,e |[Lf(V;)|¥¢. Observation 4.4 lets us
conclude:
T ¢ 1/¢ T 1/¢
AL = fh_r}rgo Tr (L (VO)) [h_>rr.}° ;'
Thus we prove Lemma 2.12, and make the following conjecture:

Conjecture 4.6. If A1 > 1, then lim,_, a; goes to co we conjecture that recovery is easy and if Ay < 1, then
lim,; . a; = 0 and we conjecture that it is hard.

5 A spectral distinguishing algorithm

We now describe the spectral distinguisher we use, which is based on linearizing the belief propagation
algorithm outlined in Section 4. Recall that given G sampled from either M* or M our goal is to output
“null” if G ~ M* and “planted” if G ~ M with probability 1 - o(1). Further, the messages given by (5) and
(6) are a fixed point for the BP update rule for M (which is equivalent to the detailed balanced condition
(45) holding). The sample G is given by the tuple ([n], Ey, ..., Ep, 7). Our algorithm constructs a matrix
called the null-centered nonbacktracking power matrix and thresholds on its largest eigenvalue against a
particular value t which is a function of the null and planted models and outputs “planted” if the largest
eigenvalue exceeds ¢ and “null” otherwise.

Recall the definition of the matrix Ag).

Z Mel,i\vl : Mez,‘Ul"Uz MG[,‘U[_l‘j : (1[61 e G] - PrMX‘T[el e G]) (l[e[ E G] - PrMX‘T[e[ E G])
iejvieavy...e0J€
all nonbacktracking walks
from i to j in complete
factor graph

where the complete factor graph is defined as follows.

Definition 5.1. We define the complete factor graph K, = ([n], Ey, ..., Er) where E; denotes the collection
of all potential type-i factors that could appear in G.

We now describe our algorithm.?

« Compute a matrix representation of the linear operator L from the statement of Conjecture 4.6.
« Let A; be the spectral radius of L.

« Choose « strictly in between VAL and A;.

o Lets= [\/@]. Compute A(GS) and compute its largest eigenvalue p.

« If p > k°, output “planted”, otherwise output “null”.

3The details for why each step can be carried out efficiently are briefly discussed at the end of this section.
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To prove that the above algorithm works it suffices to prove that when G is sampled from the null
distribution, all its eigenvalues are all less k* and when G is sampled from the planted distribution there
is an eigenvalue greater than x°. Henceforth we assume A; > 1. To prove both of these facts under the
hypothesis that A; > 1, one ingredient we need is that the matrix A(é) is self-adjoint under an appropriate
inner product.

Given a vector in R"? we treat it as a block vector comprising of n blocks of dimension g each where
each block corresponds to a vertex in [n]. Now, we define a nq x nq-dimensional positive diagonal matrix

H, where the (v, v) block is equal to:

P c) ifP c)>0
He o 0)lc ] = «()(¢) T(v)(. )
1 otherwise.

We will use the following inner product on R"?:
(e, ydm = xTH 'y,

Remark 5.2. Ideally, we would like to simply place IP;(,)(c) in every diagonal entry [(v, c), (v, c)] and use
the pseudoinverse of H instead. But doing so leads to some complications of the defined bilinear form not
necessarily satisfying strict positive definiteness required of an inner product. The choice of 1 is arbitrary
and does not influence any of the statements since all the vectors we work with have zeros in the (v, c)
coordinates where P,((c) is 0, and also that coordinate subspace is in the kernel of every matrix we work
with.

Claim 5.3. The matrix A(CS;) is self-adjoint under {-, - ).

Proof. For any vectors x, y:

<x A y>H Z Z [u]TH_IMEI,ul‘Ul : HEZ,‘UlI‘UZ o Meg,vg,l\z)Y[U]'

u, ve[n] ue; vy €20y
e VEK,

(1[e1 € G] - Pryi.[e1 € G]) - (1[er € G] - Pryi.[er € G))

From Part 2 of Claim 4.1,

x[u]TH_l[u: u]Mel,uwl Meg,vg,1|vy[v] = x[u]T(Me‘g,vlw,l Mel,vllu)TH_l[vs U])’[U]

Plugging this back into the above gives:

= Z Z x[u]T(Meg,vwg,l Mel,vllu)TH_l[v’ U])’[U]'

u Ue[ﬂ] uejv1e2
’ ... VEK,

(1[e1 € G] - Pry.[e; € G]) "'( [er € G] - Pryic[er € G])
Z Z (Me[ vlvp-g T 61 vllux[ ])TH_I[U’ U])’[U]

u, UE ] uejv1€02
...ep VEK,

(1[e; € G] - Pryc[e1 € G]) -~ (1[e; € G] - Prypc[er € G])
= <A(é)x,y>H

which proves the claim. O
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We first focus on obtaining spectral norm bounds on A(Gs) in the null model. We obtain these bounds
from Theorem 7.4 so we verify that the matrix A(é) indeed meets the hypothesis of the theorem statement.
Condition 1 is satisfied due to Claim 5.3. As a consequence of the first part of Claim 4.1, all the matrices
M(p) are Markov transition matrices with an eigenspace projected away, and hence have all their entries
bounded by 1. Since these matrices have dimension gx g, their operator norm is bounded by some constant
C depending only on g, and hence Condition 2 is also satisfied. Next, p(Bl, M*) is exactly equal to \/)T ,
which by our assumption is greater than 1. Finally, we chose s in the range handled by the theorem
statement and thus Theorem 7.4 implies:

Theorem 5.4. Suppose G ~ M*. For every constant ¢ > 0, with probability 1 — o(1):
s (A9) < (@ + )T

We can choose ¢ small enough so that |A|max (A%?) < «f for G ~ M* whp.
Finally, to prove that there is an eigenvalue greater than x* when G ~ M, by Claim 5.3 it suffices to

X,AGX>H

illustrate a vector x € R" such that $ X > k°. Then as a direct consequence of Theorem 6.1:

Theorem 5.5. Suppose G ~ M. There is an absolute constant C such that with probability 1 - o(1):
s (49) > €25,

Since s is super-constant and « is strictly less than Ay, it is indeed true that |A|;ax (A(é)) > k*forG~M
whp. Consequently, we can summarize our main theorem on distinguishing the null distribution from the

planted distribution:

Theorem 5.6. When Ay > 1, the task of distinguishing M* from M with high probability can be done in
polynomial time.

5.1 Implementation details

Our first goal is to explain how to efficiently choose x which strictly between /A, and A; when A} > 1.
PN
2
lies strictly in between /A, and A;. By Lemma 4.5 there is large enough constant C such that [LE(D)[}/©

Tl
2

First note that there is a small enough ¢ such that if r is an additive e-approximation of A, then

is e-close to A;. Thus, if our estimator A; is ||L1°g"(l)||117/ 6" then for large enough n, choosing « as

would give us a number strictly between \//TL and Ay.

Our second goal is to explain how to efficiently compute the matrix A({?- Towards doing so, define the
nonbacktracking walk generator matrix as the matrix with rows and columns indexed by vev’ for variable
vertices v and v’ and constraint vertex e’:

M oslos - (1[€2 € G] = Prg-mc[e2 € G])  if er # €3, vy = 3
BG[(Ulelvz),(U3€204)] = €230y ( |z ) .
0 otherwise.

Let Sg be the matrix with rows indexed by variables in [n] and columns indexed by all vev’” where the
(v, ver/) entry contains M, v - (1[e € G]-Prg.uc[e € G]) and the remaining entries contain 0, and let Tg
be the matrix with rows indexed by all vev” and columns indexed by variables in [n] where the (vev’, V)
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entry is I and the remaining entries contain 0. Then SgBg; ITg = Ag), and it is apparent that the LHS can
be computed efficiently.

Finally, since A(Gs) is self-adjoint under ¢, - )y by Claim 5.3 its largest eigenvalue can be efficiently com-
puted via standard methods such as the power iteration method to a precision necessary for the distin-

guishing algorithm.

6 Statistics for the planted model

Consider the planted model M,, = (n, T, 7, C,P, ¢). Use G = ([n], Ey, ..., Er, 7, ¢) to denote a sample from
Ml[,n]. Recall that in this section our goal is to prove a lower bound on the spectral radius of A(Cs;) for
s < m by illustrating a “witness” vector with large quadratic form.

We define the local statistics vector associated to G denoted g € R?" to be the concatenation of vectors
g% = u,, for all v € [n], where u, € RY is the indicator of vector of color c. We will shorten <g, g)u to |g|*
in this section.

In this section we prove:

Theorem 6.1. Let s < (b;ﬁ There exists a constant y such that with probability 1 - 0,(1):
(&48e)
=YL
lel”

To prove Theorem 6.1 we will introduce and recall some notation to streamline the proofs. First recall
that we defined K, in Definition 5.1 as the instance on variable set [n] with all potential factors that could
appear in a graph sampled from M,,. Let p be some length-2s walk (vy — ¢y — v1 ... Us.1 — €5.1 — Us)
in K, starting and ending at a variable node. Use p, to denote the factor nodes in p and p,, to denote the
variable nodes in dp..* We use p,[i] to denote v; and p,[i] to denote e;. Recall that we use 6(e) to denote
the type of a factor node e. We use y(p) to denote the number of excess edges in p. Concretely:

Definition 6.2. x(p) = [po| - X jer5) (@(0(pelil))-
Definition 6.3. Let NB(s) denote the set of all length-s nonbacktracking walks in &C,,.
Definition 6.4. M, : HJ 0 Mo, [)iCpo LD li(poli+1])-
Definition 6.5. ¥ := TTiZ Yo(p.[)i(p.Llip.Li+1)-
For G ~ M,,, we define the following notation:
Definition 6.6. W(G, p) := M, I[T;5 (1[p[/] € G] - Pre-me[peli] € G).
Definition 6.7. We will use wt(p) to denote Hjs-;é (l[pe[]'] € G] - Prg.m<[pel/] € G])
Remark 6.8. In the above language, the centered nonbacktracking power matrix of G is:

(s)
AP, 0] = 3 w(G, p).
PENB(s)|po[0]=u,py[s]=v
“We would like to stress that p,, also includes vertices that are not walked on, but are incident to factor nodes which are walked
on.
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Recall that a block (u, v) in the centered nonbacktracking power matrix Ag) captures the matrix weight
of all length-2s nonbacktracking walks from u to v. Although the paths are nonbacktracking, there could
be variables that are visited multiple times and there could also be off-path variables in p, connected
to multiple factors. It is hard to pinpoint the statistics precisely for this kind of walks, but luckily their
contribution is negligible. Thus, we first remove these “bad” walks from A(Gs) and analyze the resulting
matrix Z((S;), and then bound the contribution of these bad walks.

We give a formal definition of the “nice” walks that are kept in Z(é).

Definition 6.9. A path p is self-avoiding if x(p) = [po| = X jer) (a(Clp(j)) - 1) =1

In any self-avoiding path, every variable node in the interior of the path has degree 2 (i.e. is contained
in 2 factors in p) and each of the other variable nodes has degree 1 (i.e. is contained in 1 factor in p).

Definition 6.10. Let SA(s) denote the set of all length-2s self-avoiding walks in C,,.

Definition 6.11. The centered self-avoiding-walk matrix of G is Zg) € R7™" where the (u, v)-th block
of the matrix is
(s)

AG[u, v] = > w(G, p).

PESA(s)|po[0]=u.po[s]=v
6.1 Statistics for the centered self-avoiding-walk matrix
Claim 6.12. For any self-avoiding path p in £,
Ec [<g"", w(G.p)g"! )] = Proslp € G- Tr (M, M) .
Proof. The proof is via a chain of equalities. To lighten notation we use e; to denote p,[j] and v; to denote
polj]- We use Int(p,,) to denote the interior vertices of p.

Egpr [<g™. W(G,p)g™)y] = Z H P r(w)(e(w)) - Egje.c|[H ™' [(20, c(20)), (w0, ¢(0))]-

Cipyp— WGPu

s—1
[]le € 61 - Presyele; € GHMy[c(wo). c(vsn]
Jj=0

= Z H Pr(w (C(W)) H PrG~erc g € G] Pl'G~M\ [e] € G])

c: pp—[q] WEPo

1 —
m - M, [e(v5), c(20)]

s-1
- Y TII W HPrGNM,[ejeG]-(uej(C(aej))— HPr(w>(C(W)>>‘
j=0

c: py—[q] welnt(p,) wede;
1

Pr(vs)(c(vs))
= PrG~M\r[P € G] Z H(‘I’e} v]\vﬁl U] (Uj+1)] - ]Pr(vj)> : H;[C(Us), c(w)]

c:{w,....vs}—[q] j=0

=Proaelp €G] Y Myle(on), c(v)] - My [e(vy). e(en)]
c(vo),¢e(vs)

M e(wy), ()]
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= PI‘GNM‘T[p € G] -Tr (Mpﬁ;)

O
Now we give precise estimates for the statistics of the centered self-avoiding walk matrix.
Lemma 6.13.
Be [(gAGg) | = (1-o)in
Proof. Expanding out Z(S) as a sum by its definition in Definition 6.11 gives:
()
B [(a A5y, = 3 Eol(a M wic. i), ]
peSA
Z Prg.mj<[p € G]-Tr (Mpﬁ;) (via Claim 6.12)
PESA(s)
=n-(1-0,(1))A] (by the definition of A).
O]

We next bound the variance of the local statistics.

Lemma 6.14. There is an absolute constant C such that:
—(s) 2 —(s) 2 Cs
8&AGE " -Eg [ & Acg . < n(Cs)™".

Proof. If two walks p and p do not share any vertices, then their contribution to Eg

Eg

_ 2
<g, A(é)g> }satisiﬁes
H

contribution of p, p =Eg [{ g™, w(G. p)gl1) (g 0] w(G, p)gh!] >l
=Eg [<gpv[0], w(G, P)gpv[S] >H] Eg [<gﬁv[0]’ w(G, ﬁ)gﬁv[S] >H] )

So this contribution cancels out with the identical term in Eg [< g,A g> ] Thus it suffices for us to

consider self-avoiding walks p and p that share some vertices.
We write p || p if they share some variable or factor nodes and the shared nodes have consistent types
and use p" to denote the union of the two walks. Now, note that:

1. Conditioned on 7 and c every factor node with arity k is chosen independently with probability at

most —; for some constant . Thus, for any subgraph of K, on e edges and r factor nodes, the

probability of it occurring in G is at most o n®".

2. The matrix weight M,, of any self-avoiding path has entries bounded in magnitude by 1 since it is a
product of projected stochastic matrices.

Using the above facts, a straightforward calculation tells us:

‘EG [ W(G D& pols > <g 0 w(G, p)gpu > ]‘ < ((){/)sn_(zeepg a(e)-1). (10)

We say p{ ~ py if the subgraphs induced by them are isomorphic. ~ partitions the space of all p¥ into
equivalence classes. We use [p"] to denote the equivalence class of p*. The number of equivalence classes

32



can be bounded by (C’s)€s for some constant C’ > 1 (since the graph representing the equivalence class of
pupison O(s) vertices can be specified by a list of O(s) edges). Due to the shared vertices, p" is connected
and y(p") < 1. Thus, we now bound the variance as follows:

A -E JA
<g G8 H G 846 8 .

= Y Eq [{g7), (G, p)g? Y, (g, w(G, pgh) ]
plp

< Z Z (a/)sn_(Zeep‘g a(e)-1)
p° plp: pup=p"
<Y Y osyn e 2D
[p°] pyelp]
(9a/s)sn‘p;‘_(22€pg a(e)—l)

Eg

[p"]
- Z(9a’s)sn)((pu)
[p"]

<(9C"o’s%) .
Thus, the claim follows. O

6.2 Bounding contribution of non-self-avoiding walks

In comparison to the self-avoiding walks, the non-self-avoiding walks have negligible contributions to the
expectation and the variance of the statistics. We prove this statement using the following claim.

Claim 6.15. We can bound the statistics of non-self-avoiding walks as follows:

Ec Y, KL w(G pghtTyll < (€.

p non-self-avoiding

Eg Z <gp”[0],W(G, p)gpv[SJ>H . <gﬁ”[0],w(G, ﬁ)gﬁv[SJ>H < (Cs)S
plp

p or p non-self-avoiding

for some absolute constant C.

Proof. The first part is derived by applying Item 1 in the proof of Lemma 6.14.

Eg > (g, w(G, p)g?tTy, || < > |EG [{g", w(G, P)gp”[s]>H])

p non-self-avoiding p non-self-avoiding
< Y Prelped]-on
p non-self-avoiding
< Z (o)X ®lpel
p non-self-avoiding
< ) (@

p non-self-avoiding
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<(Cs)".

where the equality from the second to third line is a consequence of Item 1 in the proof of Lemma 6.17,
and the last inequality is due to y(p) < 0 for a non-self-avoiding walk.
The second expression is equal to:

Z EG [<gpv[0],W(G, p)gpv[s] >H . <g~v[0]’w(G, ﬁ)gﬁv[s] >H] .
plp

p or p non-self-avoiding
By (10) the above can be bounded by:
Z ( 0/) S X @)-Ipel
rlp

p or p non-self-avoiding

where pY, recall, is the union of p and p. Since p and p share vertices, y(p*) < min{y(p), x(p)}, and since
at least one of the two walks is non-self-avoiding, y(p") < 0. This lets us bound the above by:

¥ (@) n <Y Y (@)

. plp P’ plp:pup=p
p or p non-self-avoiding
- Y aspnl
[p°] pielp’]
= 2(905'3)S
(p"]

< (9C/a/32)c’s
which gives us the desired bound in the second part of the statement. O

6.3 Wrapping up estimates of statistics

The following claim about the statistics of the centered non-backtracking-walk matrix A(é) is an immediate
consequence of combining Lemma 6.13 and the first part of Claim 6.15.

logn

Lemma 6.16. Fors < Toglog

Bo [{g.A0g) | = 1+ 0 0)in

Lemma 6.17. For some absolute constant C:

(o),
s £1G H

Proof. Using the observation that only pairs of walks that share some vertices contribute to the variance,

(s.al5), | B [Codls), ]

s £1G H G s L1G H
7(5) >2 [< 7(5) > ]2
JA _E ,A

<g GE8/4 G|\&7cE/,
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Eq ~Bo [{galey | <n(cs)®
H

we have:

Eg

:EG




+ Z Eg [<gn(17v w(G, p, 1) n(pv> <gn(P° (G, p, ij)g"P) >H]
plp

p or p non-self-avoiding
We can conclude the desired bound immediately from Lemma 6.14 and the second part of Claim 6.15. [

Finally, to establish Theorem 6.1 we first use Chebyshev’s inequality to conclude that when s <
logn
(loglog n)??

<g, (s)g> = (1 0,(1)A}n

with probability 1 - 0,(1). Now, since the |g|* is (1 + on(1))y with probability 1 - 0,(1) for some constant
¥y, we can conclude that with probability 1 - 0,(1),

(o48s), A(é g>

thereby finishing the proof.

7 Eigenvalue bounds

In this section we show an eigenvalue upper bound for the centered nonbacktracking-walk matrix in the
null model. We first describe the matrix distribution in detail.

Recall the definition of a null model M* (Definition 2.3). Let H := (JI_, E; be an observation sampled
from M*. As discussed in Section 2.1.1, the observation H has an associated bipartite graph which we
denote Bip(H). The left vertex set is given by the variables [n] and the right vertex set is given by the
factors y € H. We will use L(H) and R(H) to denote the left and right vertex sets of Bip(H).

Next associate with each triple vyu, where v, u € y and v # u, a ¢ x ¢ matrix M,,,. Like before, the
value of the matrix only depends on the factor type 6(y) and the two variables’ indices i(v), i(u) in y. We
use Bl to denote the collection of these q x g matrices { Mgy, p } ic[F],axbe[a(i)]- NOW We are ready to define the
matrix distribution.

Definition 7.1. The matrix distribution is defined as follows. First sample an observation H from some
null model M*. We define the length-¢ M*-centered nonbacktracking power A A( ) is the n x n block matrix
where the (i, j)-block as the following q x q¢ matrix:

4
A(I—?[lsj] = Z HM'UZt—Z)/tht—l (1{y: € H] - Pry-[y: € H]),
(wy1v1...Ve-1yeve) =1
ENB(K,,,¢,1,j)

where NB(KC,, £, i, j) denote the set of all length-2¢ nonbacktracking walks in the complete bipartite factor
graph Bip(KC,) starting at variable i and ending at variable j.

We are interested in obtaining a high probability upper bound on ||A(I§) | in terms of a particular quantity
depending on Bl and M*, which we denote by p(Bl, M*). Before giving its definition, we simplify the
notation a bit:
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Definition 7.2. Given a length-2¢ nonbacktracking walk W = vyy; 01 y20; ... Up—1 Yr v in Bip(H), we define
the weight of the walk with My, to be

My = Mvo}’lUlMUleUz “'MU{LIYI’U!'
We use y;(W) to denote the i-th factor visited by W.
We now define p(BIl, M*).

Definition 7.3. For a positive integer m, construct a length-m path P with random matrix weights in the
following way. Start with a vertex vy and assign to it a random label 7(vy) sampled from 7. We iteratively
construct a path with edges weighed by matrices until its length is equal to m. Suppose we already have
a path vy, ... v, where each v; has a label 7(v;), and for an edge {v;, v, } its two directed edges (v;, vi+1)
and (vj,1, v;) have matrix weights W ;1 and Wi, ; respectively. To grow this path, we sample (s, a) where
s € [F] and a € [a(s)] with probability proportional to ¢ - 1[Cl(s), = 7(v;)] - Hj:u;e 2 T (Cl(s);), followed by
a uniformly random b in [a(s)]\ {a}. Add vertex v;.1 and set T(vy.1) = CI(s)p. Then add edge {v;, vy41} and
let the matrix weight of the directed edge (v;, v+1) be Wy y1 = Mygp, € Bl, and matrix weight of directed
edge (vr.1, vt) be Wi1p = Mpy o € BL° We then define wy, as:

Wy = ETF(W()J Wl,z Wm—l,me,m—l Wg’l Wl,O)'

Now define r(Bl, M*) as

1
r(BL, M™) := lim sup wy".

m-—00

Next, define d(M*) (which, intuitively, is the average degree of a vertex in a sample from M*) as

T F
d(M) := ZT(t)Z >, $a[CL(D); = 1]
Finally, we define p(BL, M*) as

p(BL M) := r(BL M*)/d(M").

We remark that if the weight collection Bl is defined such that Mg, = Hi,a“, (defined in (9)) for all
i € [F],a # b € [a(i)], then p(BL, M*) = \[A;.
The main result of this section is that ||A(I_? | < ((1 + 0,(1))p(Bl, M*))" for a wide range of £ when H ~ M*.

Theorem 7.4. Suppose:

1. There is an inner product {-,-), on R" such that for every right vertex y = (v,..., V) in Kpip, for
all1 < a,b < a(i), the nq x nq matrix obtained by placing My,y, in the (vs, vy) block and zeros
everywhere else is the adjoint of the nq x nq matrix obtained by placing My, ., in the (v, v,) block and
zeroes everywhere else under {-,-»,.

2. There is a constant C > 1 such that the weight My, every nonbacktracking walk W in IC,, satisfies:
IMw] < C

where | - | is the operator norm induced by (-, -).

>For the sake of intuition the reader should think of the distribution of v,,; as first sampling H ~ M*, then choosing a random
vertex v with label 7(v,) and finally choosing as a random neighbor w of v within H. 7(v;,,) is then set to the label of w and the
matrix weight on edge (v, v1,1) is chosen as the matrix weight on (v, w).

36



3. p(BLM*) > 1.

logn

Then for every € > 0 and (loglog n)* < ¢ < {Toglog n)?’

with probability 1 - 0,(1):
| [max (A(,?) < ((1 + €)p(BL, M) .

7.1 Proof of Theorem 7.4

The proof of Theorem 7.4 is via the trace method. One preliminary observation is that Condition 1 implies
that A(I? is self-adjoint and hence all its eigenvalues are real. Consequently, for any positive even integer

k:
k
A< Tr ((A&?) ) . (1)

k
Our goal is now to obtain a handle on § := Tr <( A(I_?) ) and obtain a high probability bound on it. We

borrow some terminology from [MOP20]:

Definition 7.5 (Linkages). A (k x 2¢)-nonbacktracking Bl-linkage is a length-2k¢ closed walk in Bip(K,)
that starts and ends in the left vertex set and can be expressed as a concatenation of k nonbacktracking
walks of length-2¢ each. Each length-2¢ nonbacktracking segment is called a link. We use Lkgs(Bl, n, k, ¢)
to denote the collection of all (k x 2¢)-nonbacktracking Bl-linkages.

Definition 7.6. Given a (k x 2¢)-nonbacktracking Bl-linkage W, we use L(W) to denote the set of left
vertices visited by W, R(W) to denote the set of right vertices visited by W, V(W) to denote L(W)u R(W),
E(W) to denote the set of edges visited by W, and G(W) to denote the graph (V(W), E(W)) induced by W.

With the above terminology and notation in hand, we can write S as:

kt
s= ) TMw) [ ] (1lv(W) € H] - B A[y(W) € H]) .
WeLkgs(Bl,n,k,t) t=1

A natural strategy to obtaining a high probability bound on § is to bound E[S] by some Z and use Markov’s
inequality to conclude that S is bounded by, say, nZ with high probability. However, E[S] is not as small as
we would hope due to blowing up in magnitude owing to the occurrences of certain rare and problematic
subgraphs in Bip(H). So this suggests a natural tweak of conditioning away these rare subgraphs and
trying to carry out the same strategy. This tweak is an idea that occurs in many previous papers in the line
of work on getting eigenvalue bounds on sparse random matrices [Fri03, BLM15, Bor19, BC19, MOP20].
These problematic subgraphs all share one common trait — having multiple cycles in a small neighborhood.

Definition 7.7. We say a graph I' is r-bicycle free if for every vertex v, the radius-r ball around v contains
at most one cycle. We say I is an r-bicycle if it has at most 7 edges and has at least two cycles, and we say
I is an r-bicycle frame if it is an r-bicycle such that no subgraph of it is an r-bicycle.

Lemma 7.8. With probability 1 - 0,(1), Bip(H) is r-bicycle free for r = lolg()ign'
We refer the reader to Corollary D.9 for a proof of this fact.
Henceforth, we use € to denote the event that H is r-bicycle free for r = lgn_ Now define U :=

loglogn*
S - 1[£€]. By Lemma 7.8 with probability 1 - 0,(1), S = U so if we can prove that U < Z with probability
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1 - 0,(1), we can also show that S < Z with probability 1 - 0,(1). Thus, we turn our attention to bounding
E[U].

kt
u= Y 1) [ ] (Al(W) € H] - Egea[y(W) € H]) 1[E]. (12)
WeLkgs(BLn,k,f) t=1

We now study the quantity Ht 1 ( [y«(W) € H] - Eg 1[y/(W) € H]) more closely.

Definition 7.9. For a given right vertex y of IC, the multiplicity my (y) of y in W is the number of times
y is visited by W. S(W) denotes the set of all right vertices that are visited exactly once and are called
singleton right vertices. D(W) denotes the set of all right vertices that are visited more than once, and are
called duplicative right vertices.

Henceforth, we shorten 1[y € H] to 1, and Ey1[y € H] to y,. Thus:

ke
T (tow) = 1yewy) = H Ay -m) [T @y-p)m™
t=1 yes(w yeD(W)
my (y)
= 1 1, - _ymw(p-i [ mw(r) _ymw(y)
yels_[ (1y yelD—([W)< Y ; (=py) ( ; +(=py)

To lighten notation, we use a, to denote R py)mW(Y)’i(mVVi(Y)).

H My -p) [T @yay+CEp)™0)

yeS(w yeD(W)

= H (1)/ _ ,Uy Z H 1,0, H _py)mw()’)
YES(W) LeD(W) yeL yeD(WML

= )™ ) 1, - 1,. (13)
e

Plugging in (13) into (12) gives:
v- 3 o 3 [To TT e I oo
WeLkgs(BLn,k,¢) LeD(W) YEL  yeD(W)\L yes(w yeL

We are interested in understanding E[U]. Note that this is equal to E;Eg.[U]. We will first focus our
attention on understanding Eg.[U]. We have:

Enc U= >, TMw) Y [Ie T] o)™ WBme| T -] 1,10
WeLkgs(BLn,k,f) LeD(W) yeL yeD(W)\L yYeS(W) YEL
< Y TMw) Y, [Tl TT w"EBae| [T @y -m) [ 1,10E]
WeLkgs(BLn,k,?) LeD(W) yeL YED(W)\L YeS(W) YeL

Notice that a;, = (1 —/ly)mW(Y) - (—/JY)’"W(Y) and hence |a,| < (1 —yy)mW(Y) +;1}'31W(Y) < (1-py)+py = 1 where
the second inequality is a consequence of y, € [0, 1]. The result is:

Enc[U] < > Tr(Mw) Y, H

WelLkgs(Bln,k,f) LeD(W) yeD(W)\L

EH| (14)

[ - [T

yeS(W YEL

Next, we would like to obtain a bound on )EH‘, [Hyes(W)(ly =) [yer 1y1[8]] ‘
Towards doing so, we first set up a couple of definitions and an observation.
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Definition 7.10 (Closure of subgraph). Given a subgraph I of Bip(K,,) with right vertex set R(I'), we define
its closure Clos(I') as the induced subgraph on the vertex set (UyeR(F) N (y)) (JR(). We say I is closed if
Clos(T') =T.

Definition 7.11 (Excess). Given a graph I" on e edges, v vertices and ¢ connected components, we define
the excess of T', denoted Exc(T'), tobe e - v + c.

The following is immediate from the observation that the excess of a graph cannot decrease on adding
a new vertex or a new edge.

Lemma 7.12. IfT = (V,E) andT” = (V’, E’) are two graphs such that T is a subgraph of T/, i.e. V c V' and
E c E/, then Exc(I”) > Exc(T).

If Clos(L) is not r-bicycle free, then [ ] ¢ 1,1[€] is equal to 0. Otherwise Lemma D.11 then shows that:

<TIw- |s<w>\( 1 )

Y€ESUL

B _Exe(Clos(S(W)UL)

Buie | [T 1y -m) [ ] 1,10

YeS(W) YeL

Plugging the above into (14) tells us:

En<[U] < > Tr(My) Y 1 I y}'/nw(Y)—lz\S(WN(%)

WeLkgs(BLn,k,?) LeD(W) YER(W)  yeD(W)\L
Clos(L) r-bicycle free

S _Exe(Clos(S(W)uL))

Henceforth, we will shorten Exc(Clos(S(W)u D(W))) to Excy for simplicity of notation. Since Clos(S(W)u
L) is a subgraph of Clos(S(W)uD(W)), by Lemma 7.12 we have Excy > Exc(Clos(S(W)uL)), which means:

Is(w)|
- 1 - -Excw

Eg [UI< ) Tr(My) D 01w I1 wew 12\S<W)|(7)

WeLkgs(BLn.k.¢) LeD(W) yeR(W)  yeD(W)\L n

Clos(L) r-bicycle free
N

- olsSw (2 T mw(y)-1

=Y T 25 () [Tw Y IT w0 as

WeLkgs(BLn,k,f) YER(W) LeD(W) yeED(W)\L

Clos(L) r-bicycle free

Next, we focus on bounding 3, 1cpw)  [Iyepwyr [T '. For starters, observe that:
L r-bicycle free

> mw(y)-1
> Il wns (%)
LeD(W) yED(W)\L LeD(W) yED(W)\L n
Clos(L) r-bicycle free Clos(L) r-bicycle free

We proceed to bound this in a manner identical to [BMR19]. We define a weight function w on subsets of
D(W) as follows: w(K) = 3’ cx mw(y) - 1. Choose D'(W) as a maximum weight subset (according to w)
of W such that Clos(D*(W)) is r-bicycle free, and let A(W) := w(D(W)) - w(D*(W)). Note that for any
L ¢ D(W) such that Clos(L) is r-bicycle free, A(W) < w(D(W)\ L).

- mw(y)-1 — w(D(W)\L)
Z H ( ¢max > < Z ( ¢max )
LeD(W) yeDwne N " LeD(W) n

Clos(L) r-bicycle free Clos(L) r-bicycle free
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Since L ¢ D(W) every my/(y)—-1 > 1. Using this along with A(W) < w(D(W)\ L) we can bound the above
by:

a max{|D(W)\L,A(W)}
< ( max
LeD(W)

n

_ <¢max>“w>.<|n<w>|>+ 5 (%)"(ww)
i<awy N1 i i=aw) N T i

= AW) i
< (A(W) +1) <¢maX> ) (‘/%WWN>

n

Plugging this back into (15) gives us:

Isw)l _ - ANW)
1 - Excy 2
(15) <2 Z Tr(My) - 2ISW)I (7) . ( ¢max> . H 1y

5
WeLkgs(BLn.k.¢) n n YER(W)
As a first step towards simplifying the above quantity we make the following definition:

Definition 7.13 (Shape of a linkage). Given a (kx2¢)-nonbacktracking linkage W = vyv; ... vk, that visits
v distinct vertices, we say the shape of W denoted Sh(W) is the (k x 2¢)-nonbacktracking linkage on graph
on vertex set [v] obtained by first constructing map ¢ : V(W) — [2kf] where é(v) = i where v is the i-th
distinct vertex visited by W and defining the t-th step of the walk Sh(W) to be &(v;-1)&(v;). We say the
left vertex set of Sh(W) is £(L(W)) and the right vertex set is £(R(W)). For a € V(Sh(W)) we will use the
notation W[a] to denote £ !(a).

We use Shps(k, £) to denote the set of all distinct shapes of linkages in Lkgs(Bl, n, k, £), and Shps(k, ¢, v, €)
to denote the set of all shapes in Shps(k, £) on v vertices and e edges.

We can rewrite the bound on (15) as:

[SGh)| _ -
(15) < 2 Z olS(Sh)l (i) r o . 2P max
= ns n
SheShps(k,?)

A(Sh)
) TiMw) - [ me (10)
W : WeLkgs(Bln,k,f) YER(W)
Sh(W)=Sh

For a given linkage W, we begin by deriving an upper bound on Tr(My). A preliminary observation is:

Observation 7.14. Tr(My) < q|Mw/|.

Our next step is to decompose W into simpler “subwalks”. This segment of the argument follows
[BC19, OW20]

Definition 7.15. We call a vertex v in L(W) a landmark of W if it satisfies at least one of the following
conditions: (i) is an endpoint of a link, (ii) deggy(v) > 3, (iii) deg sy (w) > 3 for some w € R(W) which
is incident to v within G(W). We refer to the set of all landmark vertices in W as Lm(W) We call any path
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between two landmark vertices v; and v, with no intermediate landmark vertices a trail. We call a trail
a forked trail if it has an intermediate vertex w in R(W) such that deg ) (v) > 3, and an unforked trail
otherwise. We use Trs(W) to denote the collection of all trails in W, UTrs(W) to denote the collection of
all unforked trails in W and FTrs(W) to denote the collection of all forked trails in W.

Observation 7.16. Any forked trail must be a single two-step of the form uyv where u and v are left
vertices and y is a right vertex.

Any W € Lkgs(BL n, k, £) is a sequence of nonbacktracking walks on trails. W can be written as the
sequence of vertices visited vyy; v ... Yke Uke- Let T be the set of all times ¢ such that vy is a landmark. Using
T, we construct a set of pause times P in the following way:

For each t € T, if the trail starting or ending at time ¢ is visited for the first or second time, we
add t to P.

Recall from Definition 7.2 that My, is the product of k¢ matrices My,y, o, ... M

Uke-1VYkt Vke

Let p; < -+ < ps be
the sequence of all pause times. By submultiplicativity of the operator norm,

M

Upy Vp1+1¥Upy+1 M'Upz—l Ypo Upy " ”M’Ups Yps+1Ups+1 M'Uklfl Ykt Vke ”

”MW” < "M‘Uo)/lvl = My

p1-1Yp1 Upy " ’

Each segment between consecutive pauses p; and p;,1 falls into one of the following categories:

« Seg,(W): the segment is composed of exactly one trail and is the first or second visit to the trail.

+ Seg_,(W) the segment is a union of trails and each of these trails has already been visited at least
twice before.

Rewriting the above upper bound, we now have:

IMwl < TT Mol T Ml

weSeg,(W) wESeg_,(W)

Given a trail T with endpoints u and v, there are two nonbacktracking walks w; and w, that cover T, one
from u to v and another from v to u. By Condition 1, M;, = M, where the « in the superscript refers to
the adjoint induced by the inner product <, -), and so |M,, | = |M.,|.- Henceforth we use |[Mr| to denote
IMy, | = [M,|- Using the notation UTrs>,(W) for unforked trails that are visited more than once, we can
write the above as:

IMwl < T Il 11 |My].-

TeUTrsyo(W) 0€Seg.,(W)uSeg (W\UTrs> (W)

Condition 2 further lets us get the following bound:

My | < CSeaWSegz (W) H M2 < CPi. H | M| (17)
TeUTrs3 (W) TeUTrs3 (W)

We now turn our attention to bounding |P|. Given a landmark vertex v and an edge e incident to it, there
are at most am,y trails that start at v and tread on e on their first step, and hence the number of distinct
trails starting at v is at most amax - deggy)(v). By the construction of P, the number of pauses at vertex v
is at most twice the number of distinct trails starting at v, and hence is at most 2amay - deggyy(v). Thus:

Pl < 2amax ), degG(W)(v)<Zamax<2|ng2(W)|+ > degG(W)(v)>
veELm(W) veLmy3(W)
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where Lm¢,(W) and Lm>3(W) denote the sets of landmark vertices of degree-< 2 and degree-> 3 respec-
tively. Each vertex in Lm,(v) is either an endpoint of a link or a neighbor of a degree-> 3 right vertex.
There are exactly k + 1 endpoints of links, and at most ZUEG(W):degG(W)(v)>3 degg(w)(v) landmark vertices
induced as neighbors of degree-> 3 right vertices, and hence:

|P| < 2amax |2(k +1) +2 Z deggow(v) + Z deggwy(v) (18)
VvEG(W): deggy)(v)>3 VEG(W): deggy)(v)=3

It remains to bound },cqow): deg ) (0)>3 degsw)(v). Let X be a set of edges of size Excy such that
T(W,X) :=(V(W),E(W)\ X) is a tree. Since G(W) has at most k leaves, T(W, X) has at most k + 2Excy
leaves. We now state the following well known fact about trees and refer the reader to [BMR19, Fact 6.35]
for a proof.

Fact 7.17. Let T be a tree with | leaves. Then 31 2 ¥ cy(1):deg,(v)>3 9€87(0)-

As a consequence of Fact 7.17:

degry x)(v) < 3(k + 2Excy).
‘UEV(T(W,X)):degT(V’X)(v)>3

Now observe that for any graph T and graph I obtained by adding a single edge to T*:
Z degp(v) < ( Z degr(v)> +6,
veV(I”):degp (v)>3 veV(T):degr(v)=>3

and thus

> degy)(v) < 3(k + 2Excy) + 6Excy = 3k + 12Excy. (19)
vEG(W): deggw)(v)>3

Plugging this back into (18) and using k > 2 gives:
|P| < 2amay (12k + 36Excy) = 24amay (k + 3Excy).
Remark 7.18. Observe that the above also proved the following, which will be of utility later in the proof:

Z deggwy(v) < 12k + 36Excw.
vELm(W)

Next, plugging the bound on |P| back into (17) along with Observation 7.14 gives:

Tr(Mw) < qC24amax(k+3EXCW)+1 . H ”MT”Z < qc253max(k+3EXCW) X H ||MT||2
TeUTrs (W) TeUTrs3 (W)

And via (16) and introducing the expected value over the randomness of :

or 1568h) 25 A(Sh)
EEpo[U] < 2g <5> (T ) ek ( max>
SheShps(k,e) \ n
IT 1Mol -Be JT my (20)
W : WeLkgs(Bl,n,k,f) TEUTrs> (W) YER(W)
Sh(W)=Sh
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Thus, for a fixed shape Sh we now restrict our attention to bounding:

IT M-k T w0 (21)

W : WeLkgs(Bl,n,k,£) TEUTrs (W) YER(W)
Sh(W)=Sh

We now define the notion of Cl-consistent.
Definition 7.19. Let I' be a subgraph of the complete bipartite factor graph Bip(K,). We say T is Cl-

consistent if there exists a 7 such that every y = (vy, ..., vy(;) € R(T') satisfies (7(v1), ..., T(vy(;))) = CI(O(y)).
If T is Cl-consistent we use 1 to refer to the unique 7 such that I is (z, Cl)-consistent.

Observation 7.20. For W € Lkgs(BL, n, k, ¢), HYGR(W) Wy is equal to 0 if W is not Cl-consistent.
Thus:
_ 2 Poy)
(21) = > [I 1 1 a0(y)-1 [I 7w

W : WeLkgs(BLn,k,f) TEUTrss (W) YER(W) veL(Clos(W))
Sh(W)=Sh
W Cl-consistent

Definition 7.21. We call two walks W; and W, equivalent denoted W; ~ W, if
« Sh(W;) = Sh(W,) =: Sh,
« for any a € R(Sh), 0(Wi[a]) = O(W;[a]),

« for any edge {v, y} in Sh for v € L(Sh) and y € R(Sh), i(Wi[y], Wi[v]) = i(W;[y], Wa[v]).

We say W) and W, are closure equivalent denoted Wy ~clos Wo if Wi ~ W, and the graphs induced by
Clos(W;) and Clos(W,) are isomorphic.

The relationship ~ partitions the space of all Cl-consistent W in Lkgs(Bl, n, k, £) with shape Sh into a
collection of equivalence classes C. We use [W] to denote the equivalence class it is contained in. ~cjos
further partitions each equivalence class [W] € C into a collection of sub-equivalence classes Cy, and
we denote the sub-equivalence class of W with [[ W]]. We use J(W) to denote |[E(Clos(W))| - |E(W)|. With
these definitions and notation in hand, we can write:

en=> > > I P J1 nfs;ﬁ(y?)l [T 7w

[WleC [[W]leC[W] W’e[[W]] TEUTrs (W) YER(W) veL(Clos(W))
o
S Z Z H ”]VIT”2 : H Wy};i—l . H T (tw(v)) - plUClos(W))|
[WIeC [[WIEC[W] TeUTrs(W) yer(w) " veL(Clos(W))
JW)

LW+ (W)]

B
= Z Z Z H ||MT||2' H %' H T(TW(U))‘W

[WleC =0 [WIEC[W]  TeUTrsy(W) yER(W) veL(Clos(W))
IL(Clos(W))|=|L(W)+t

To enumerate the innermost sum, first observe that any W can be changed to Clos(W) where |L(Clos(W))|-
|L(W)| = t via the following procedure. First add J(W) new vertices and to each y € R(W) attach an edge
from y to a(6(y)) - deg,, (y) of the new vertices. There exists a sequence of J(W) - t “merge” operations
on the left vertices, and a labeling of the newly added left vertices in [n] that would result in Clos(W). The
number of possible sequences of merge operations is at most (amaxk€)*V")I=9_ Thus, the above sum can

be bounded by:

& Pocy) (agark)? \ V!
<> > I el T —whse 11 Tgww»qﬁwwwm.<>
[W]EC 10 TeUTrss,(W) yer(w) veL(Clos(W)) n
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Y O e I1 (nﬁ%« I1 T<rw<v>>)-

[W]eC t=0 TeUTrsyy(W) YER(W) veL(Clos(W))\L(W)
(W)t
1 (amaxk?)? \”
H T (rw () - H T AlLW)HTW)], (
veL(W) veL(Clos(W))\L(w) T (tw (v))detw ()t n

JW)

Z Z H |Mr|? - ];(IW) (rrj;i(yy);l - H T(Tw(v))>'
ye

[W]eC t=0 TeUTrsy (W) veL(Clos(W))\L(W)

H T (rw/(v)) - ntEWIFIWIL (WW)U(W)—t

veL(W) Tininnt

Jw)l-t
We can use the bound ZJ ) ((a‘“a"k()z ) < 2 to deduce:

Tmin n

<z JI 1wl H)(,ﬁ%l I1 T(rw(v))). [T 7(ew(o)) - MM

[W]EC T€UTrs>,(W) YER(W veL(Clos(W))\L(W) vel(W)
=2y J] Ml J] <¢e(y)‘ 11 T(rw<v>>)- I 7wy - ntBew.
[W]eC TeUTrs» (W) YER(W) veL(Clos(W))\L(W) veL(W)
(22)

We decompose [],erw) (d)”(y) Teercroswyynw T(TW(U))) into three parts: the contribution of sin-

gleton right vertices [, esw) (Guiy) - [ Teercrosowyyw T(TW(U))) which can be bounded by d)‘riih)l,

contribution of duplicative degree-> 3 right vertices H yeD(W (¢f7()/) [ Teercroswyyw T(Tw(v))) which
de@w()’)>3

—3k+12E _— - . .
-7 and finally the contribution of duplicative degree-2 right vertices

via (19) can be bounded by ¢

I1 yenow) (ur) Guy) * [vercroswynnw) T(TW(U))). For each y considered in the final case we can identify a

degyy (y)=2
unique T € UTrs>,(W) such that y is in T, and likewise for every T € UTrs>,(W), every right vertex y in

max

T is duplicative and has degree exactly 2 and hence appears in the product. Thus, the third product can be

1T <¢e<y> 11 T(Tw(v))>-

TeUTrs>,(W) yeR(T) veL(Clos(T)\L(T)

written as

Next, observe that using the facts that each 7; € [0, 1] and every interior left vertex of a trail occurs in no

other trail, HUGL(W) T (tw(v)) can be upper bounded by HTGUTIS>2(W) HveL(T) T(Tw(v))'HveLm( w) W,

in

12k+36Excsy
which by Remark 7.18 is at most [ [ reurss. ,(w) [ Lver(ry 7 (tw(9)) - (%) i

|S(Sh)|+3k+12Excsy ( 1 n_EXCSh+1~

. 12k+36Excs),
(22) < 2¢pax T)
min

> 11 <||MT||2- II %0 ] 7w HT(TW(U))>

[W] TeUTrs (W) YER(T) veL(Clos(T))\L(T) veL(T)
12k+36Excsy,
< 2¢nSl(aSXh)|+3k+12EXCSh< 1 ) —
Tmin
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>, <||MU||2- II %000 TI 7w J] T(TW(U))>

TeUTrs>(Sh) [U]:Sh(U)=T yeR(U) veL(Clos(U))\L(U) veL(U)

For any constant ¢, there exists a constant C, such that the above is at most:

- Excsn+1 H Ce ((1+ g)p(Bl, MX))2|T|

—S(Sh)|+3k+12Excsy ( 1
TeUTrs>(Sh)

12k+36Excgsy
< 2¢max T >
min

Since |UTrs>2(Sh)| is at most the sum of degrees of landmark vertices on which we have an upper bound
by Remark 7.18, and since ) reyrys.,(shy | ] < %:

12k+36Excsy,
S(Sh)|+3k+12EXCSh< 1 )

< 2¢max : n—EXC5h+1C(€12k+36EXC5h X ((1 + E)p(Bl, MX))k{’ )
Tmln

Since (22) is an upper bound on (21), rearranging the terms in the above gives:

73 12 k —12 36 EXCSh
—|S(Sh) 2xC, ?ax C .
@1) < 20 Py ( mrlf > ( 73.6; ) (1 + e)p(BL M) .

min min

Plugging this upper bound on (21) into (20) gives us:

E.Eq.[U] <4nq((1 + e)p(BL, M) -

—r Bl —12 Excsh -3 ko — A(Sh)
Z ( 2r¢max ) ( C75amax ¢max Cgé ) ( CZSamax ¢max Cslz ) ( 2(zbmax )
5 36 5 12 :
SheShps(k,£) n Tain? Tain n
. . — C7Samax$12 36 CZSamax$3 c12
To notationally lighten the above, we choose f as a constant larger than 2¢, ., 75— and TRe
Then: min min
g AN AR AN
EEp.[U] < 4nq((1+epBLM) - > (= = = (23)
n n n

SheShps(k,?)
To obtain a bound on (23) we first bound:

IS(Sh)|

‘Br> - <ﬁ>EXCSh <‘B)A(Sh) (24)
SheSths(k,f) ( n n n

We proceed by partition all Sh € Shps(k, £) into sets where each set of Sh share the same |S(Sh)|, Excgp,
and A(Sh). We bound the sum for each set with the following claim proved in Appendix D.

Claim 7.22. Let U a denote the set of all Sh € Shps(k, ¢) with |S(Sh)| = s, Excsy, = x, and A(Sh) = A.
Then

r\ 2SR Excgp A(Sh) r N . x _ A
5 (/s ) ( s ) (ﬁ) <</3 :likt’)> </3 i(_ffﬁ) (4/3 <jkf>2> v
ShGUS)xﬂA

Using this claim we can derive

"\ x A
B, 1) () (2)
n n n
se[ke]xe[2ke].A€[ke] ShEV 1




<
ns ns n

</3r - (4ko)" > r (/3 - 2(kt)? )x (4,[3 - (2kt)? ) A (2k)Oklog kD)
s€[kt],x€[2kt],A€[kt]

r r\ ; . x i A
ko e ke (PO (2007 (707

se[ke],xe[2ke],Ae[ke] ns n> n

We set the bicycle-free radius to r : = o(log n-%/log 4k£p) so that all three terms b r'(:f[)r, b '251(2()3, ip '(ik{))z
are less than 1. Then we observe that

(24) < 2k3£3(2ke)Oklogkt),
Plugging this bound into (23) gives us:
E.Epp.[U] < ((1+ e)p(BL M) - 2ngpkak® ¢ (2k)Okloe kD
Set k¢ = O(logn - loglog n), and ¢ = w(log k¢). Then we have the bound
¢
(nEBae[U1)"" < (1 + p(BLM) - (4gB - n - (ke) - (2ke) ek ) )

< ((1 + E)p(Bl, M) - (Sqﬁk . n3)1/k{’)(

¢
< ((1 + €)p(Bl, M*) - <1 4 210g$qﬁk) . 210§;n3)>>

1 Ry
< <<1+£+O<loglogn>>p(Bl,M )) .

We now complete the proof of Theorem 7.4.

8 Weak Recovery

We begin the section by briefly describing an algorithm for weak recovery.

Weak Recovery Algorithm

1. Fix § > 0 such that A; > (1 + §)*.
2. C = Oy (1) is a sufficiently large constant depending on model M and 4.

3. For (loglog n)® < t < (loglog n)®, vy € R™ be the eigenvector with largest eigenvalue of A(ct:) and let
A! denote the largest eigenvalue. Compute v;, A; and A(ct:) for all ¢ in this range.

4. Find m € [(loglog n)?, (log log n)°] such that for all s € [(loglog n)*, m], we have
4G vl < A1 + O™
(see Claim 8.6 for proof of existence of m)

5. Foreach 0 < £ < C, set

def -
Wy = A(Cr;n [)Um

_ def
and let w, = m'wtz.
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6. Output the set of vectors {u, g} in R" for 0 < £ < C, f € [q] defined as,

g p[i] = we[i, ]

Theorem 8.1. There exists a constant C = Oy 5(1) depending on model M and § such that the following
holds with probability 1 — 0,(1): For some ¢ € {1,2,...,C} and B € [q], the unit vector U, g is correlated with
the coloring in the following sense: 3t € T, a € [q] such that if we construct y™* € R" as

x "o = 1[z(0) = 7](A[c(i) = a] - P-(a))

then
|<ﬁf,ﬂ,)f’a>| > Qum(1) - Vn

In the rest of the section, we will outline the proof of correctness of the above described weak-recovery
algorithm. To this end, we begin by recalling the matrix A; € R*®"4. For all i # j € [n],

Aglif] Y M.y (1€ G] - Pry[e € Glz))

ek, edij

and Ag[i, i] = 0. Similarly, for all i # j € [n] we set

Bolij1€ Y M.y - (1[e € G] - Pry[e € Glz,c])

ee,,edij
and Bg[i, i] = 0. Finally, let

. . def - ..
BG[I’J] = AG[I’]] _BG[I!]]
= Z M, ; (Prp[e € G|z, ¢] - Pry[e € Glt])

ey, edij

Let Xg € Rl encode the number of variables of each type in G and g € RY7! encode the number of
variables of each type and color in G. Then block R;[i, j] only depends on (i), 7(j), ¢(i), ¢(j) and yg. More
specifically

Rglij] = Z M, (Prule € G|z(i), 7(j), c(i), c(j), yc] - Prule € G|z(i), 7(j), X))

e, edij

Remark 8.2. We remark that with probability 1 - 0,(1) each entry of yg satisifies yg[r,a] € (1 + ¢€) -
Em[yc[t, a]] for some small constant €. From now on we only consider G that satisifies this condition.

Next we introduce notation for the non-backtracking product of two matrices.

Definition 8.3. For two matrices A, B € R"?"4, define A-B to be the non-bactracking product of A and B
by setting for all i,j € [n]

(AsB)[i, ] = {OzkA[i’ k)B[k,j]1 ifi#j

otherwise

Inductively define A®) «F A-Dog
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Suppose v; € R" be the eigenvector with largest eigenvalue of A and let its eigenvalue be Al. By
Theorem 6.1, we know that for each s, with probability 1 — 0,(1),

Amax(é(cs;)) 2 QM(l) : AISJ
Therefore,
USA((S;)US = QM(l) : Ai

On the other hand, by the spectral norm bound for all s > (loglog n)® in the null model,

vsﬁg)vs < (1+0(1))° <\//TL>S

For simplifying notation, we will ignore the (1 + 0(1))° term in the above bound, here in the rest of the
section. Rewriting the difference we get,

of (49 - BY) v = Y, ol B RaoAl™ Vo,

Now we can replace the non-backtracking product in the above expression with the usual matrix prod-
uct using Lemma 8.4.

Lemma 8.4. Forall A,B,R € R"T"4,
|A9sR-BY ~ AYRBY| < glRlw - (JAOJIBE ] + [AL1JACVIBOY + [BT |11 A9 |BE D))
where |R|e = maxy ¢/e[nq] |Rp,¢|

We will postpone the proof of this Lemma to later in the section, and proceed with the argument.
Notice that under the condition in Remark 8.2,

S|

IRGleo < Om(1) - (25)

The maximum degree of a variable in the factor graph is O(log n) with probability 1 — 0,(1). Therefore a
naive bound on the spectral norm of A(GS) would be

|AY] < O(log n)* < o(n''*) (26)

1/4)

for s < o(log n/log log n). Similarly, we can bound ||§(Gt)|| < o(n"*). Using these bounds in Lemma 8.4, we

can replace non-backtracking product by the usual product to conclude,
t-1
of (40 - BY) v = Y ol BYRGAL™ ur+ on()
s=0

We will now rewrite the matrix R explicitly in terms of the coloring c. To this end, we make a few
definitions. For types 7,7 € T and colors @, @’ € [g] define I}’ , € RIa]la] ag,

ror, €N Moy - Prule € Gle(i) = 7. 7() = 7', (i) = . ¢(j) = o, )

eek,,edij
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/
In terms of the matrices {I';’ ,} we can write for i # j,

=) > T = 7]1[2()) = 7] (1[e(i) = a]1[ec()) = &'] - Prle(i) = alz(i), Y6 ]Prle(j) = &’|2(), Y61)

,77€T a,a’€(q]

For every type 7 and a color a, let "%, ¢™%, u™“ € R" be defined as follows:

X1 = "10r() = 1]+ (1[e(i) = ] - Prle(i) = alz(i) = 7, Y5))

de

X" = 1[r(0) = 7] - (1[e(i) = a])

pe[i] € 1[2(0) = 7] Pr{e(i) = alz(i) = 7. o]

=

)

Hence for i # j we have,

[*<

- Y Y (i T )

7,7’€T a,a’€[q]

Define R[i, i] so that we have the equality,

R; = r;;’/ ® (Xr,a(xr’,a’)T +Xr,a(ur’,a’)7“) 27)
7,77 ,a,0’ , o o
Using (27) for the matrix R, we can write,
t
of ( AY — Eé)) v= Y of Y BY (r;,;/ ® ( XY f,a(u,/,a/)r» AL 4 0.(1)
.7, a,a’ s=1

The second term corresponding to lr""(,ufl’“/)T is negligible. Specifically, we will prove the following
Lemma.

Lemma 8.5. With probability 1 — 0,(1) the following holds, for all T, @, 7', &’ Forall1 < s, t < \/logn,

s+t
B (1 o x7 )T ) A1 < (VA) - 0wt
We postpone the proof to later in the section and proceed with the main argument.
/7 ) s
Using Lemma 8.5, we can drop all terms arising from y "*(u"™ ¢ )T by losing less than Oy (1) 3120 ( \//TL>
N
Since Ay > (1+68)%, for all ¢ larger than a fixed constant ©;(1), this sum Op(1) ﬁ;(l) (\//TL) < %AE. There-

fore, we arrive at our inequality,

-1
% S (e ) a0

7,0 s=0

Let us write the matrix F;”Z, =y Bpelal F;”Z, (B,5]- eﬂ(eﬂ/)T where eg, e’ﬂ are standard basis vectors in RY.

Note that F;’Z, has entries that are Oy (1)/n. There must exist some choice of 7, 7/, a, &, §, f’ such that,

t-1
vtT Z ﬁ((s;) (eﬁ ® )(T’“(e[y ® lf/’a/)T) Ag_s_l)vt > Qum(1) - Ai -n

s=0
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where Qp(1) hides a constant depending on the model M. Rewriting the above inequality,

t-

1
QM(l)'Ai -n< Z <UtT’ oep® Xra> <eﬁ/ ®XT o A(t = 1)Ut>
s=0
<e/;/ ®XT o AA(tL s-1) Ut>‘

Using Lemma 8.8 on the fixed vector es ® y™“ and the planted distribution we get that with probability
1- On(1)>

t-1 ©)
||B eﬁ®)(

§=

TZZ”

t-1

Qumi(1) - Ap - n Z( ) .

=0

For notational convenience, let us reparametrize s — t — s and conclude,

Qu(1) - AL V1 < i(@)t

s=1

eﬁ/ ®XT o AG ’Ut>'

With high probability, the maximum degree of a variable is O(log n) « o(log? n), and therefore |A®| <
o(log n)%.
Since A; > A > (1+0) <\//TL) we can bound the terms for s = 1, ..., (loglog n)® as follows,

()"

where the last inequality holds for ¢t > (loglog n)*. Deleting terms for small s, we have the correlation
inequality,

(loglog n)* (log log n)* t—s

<eﬂ/ ®)(T = AS b >‘ - 5) -o((log n)*) - yn < o(1) - Al - Jn

s=1

ou) AL i< Y (Vi)™

s=(loglog n)?

ep ® )(T”“/,A((s;_l)vt>‘ (28)
for t > (log log n)*.
For each s, recall that v is the top eigenvector of AY, and A denotes the largest eigenvalue.
Claim 8.6. There exists a m € [(loglog n)**, (log log n)*] such that, for all s € [(log log n)*, m],
1A v < Ajy(1+8)™

Before we see the proof of above claim, let us see how it leads to an algorithm. Applying (28) for this
choice of m, we conclude that

Jioy-An< Y (ﬂ)

s=(loglog n)3

eﬁ/ ®XT,’aI,A(Gs_1)Um>‘ (29)
In (29), we can bound the sum of all terms with s < t* — C as follows.

e i (o | N B

s=(log log n)3 s=(log log n)3

m-C
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< Z (Vi)™ At vm-aom=t Gy

s=(log log n)3
m-s

m-C JAL) (1 +6)
s ()

<1+ 8ADn- K

s=(loglog n)?

S AM. <5(1 +15)Cz> (33)

Using (29) and (33), for sufficiently large C = Op;5(1), we conclude that

m-1

oAz a< Y (Vu)

s=m-C+1

<e/3/ ®)(T @ AG vm>' (34)

Note that there are only C = Oy (1) terms in the sum, so one of them is large. In particular, there exists
some £ € [m — C, m] such that if we set
e 40,
AG Um

then,

7/ / ].
<eﬁ’ ®x " ,Wf>' z ? Ap - Qus(1) -V,
c( AL)

But note that by the choice of m,
Jwe| <AL -(1+O)™ <AR-(1+6)C.

So there exists some ¢ € [m — C, m], such that the unit vector w, = ] satisfies,

‘<eﬂ’ ®X”“’,wf>‘ > Qu5(1)

In other words, for some choice of £ € [m - C,m] and ' € [q], if we construct u € R" as,

\W I

ali] = we[i, p']
then (7, )7(7"“/>| > Qms(1) - /n. This finishes the proof of Theorem 8.1. ©

Proof. (Proof of Claim 8.6) The idea behind the proofis a descent/bootstrap argument to get a contradiction.
Let us start with ¢ = (loglog n)® as the guess for m. If current value of t satisfies the condition of the claim,
we are done. Otherwise, there exists s < t such that,

[AS o] > A1+ 6)

This implies that,
SN+

or equivalently,

log As > log A; + log(1 + 8) - (t - s)/s

Note that the [’"’/ here is a bit different from the )f/’”‘/ defined in the theorem, but by Remark 8.2 they are within a multi-
plicative factor of (1 + €) from each other. Thus the inequality still hold for the )LT/’“/ defined in the theorem statement.
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Suppose we use s as the new candidate for m and recurse. Let us suppose we iteratively construct a
sequence of #y = (loglog n)° > ... > t, in this manner. The value of log A;, increases along the sequence. By
Fact 8.7, if we obtain a sequence of t, = (loglog n)* > ... > t, = (loglog n)*° then we will have,

log A, > (log ty - log t,)log(1 + 6) > log(1 + 6) - Q(log log log n)

This suggests that ||A(Ct;’)||1/ r > w(1) for some t, = Q(loglog n)*°. A contradiction, since with probability
1 - 0,(1), we will have ||A(Ct{)||1/ r = O(1). This follows from the fact that with probability 1 - 0,(1), degree of
every vertex in A(GS) is at most O(D®) for some constant D for all s > (loglog n)®. Therefore, the sequence
terminates and we find a ¢, € [(log log n)**, (log log n)’], implying the claim.

Fact 8.7. Given a sequence ofpositive integers, ay = ay = ... ar,
r ai — a; 1 r i
1 1-
YEEL SN S ) s ln(a) - In(ar) (35)
— a1 — —~ X — X
i=1 i=1 x=a;1 X=ay

O]

Proof. (Proof of Lemma 8.4) For s € IN, let P be the set of length s non-backtracking walks in complete
graph K. So @ = (a4, o, ..., as) € Ps will be a non-backtracking path in K, with vertices ay, ..., a;.
For ¢, ¢’ € [n], we can write

S t
A(S)RB(t)[f, l’/] = Z 'HAa,;lai : Ras,ﬂo : H Bﬁj—lﬁj (36)
a€P; P, i=1 J=1
aoif,ﬁt:[/
s t
A9RBIE 1= Y T Aca R [ Boos (37)
a€P,,BeP, i=1 Jj=1
Ct’():{’,ﬁt:[/

as#o,0s-1#Po.as# P

It is clear that the difference A®R-B® — ASORB(® consists of three different terms.
Term 1: o5 = f; Consider the block-diagonal matrix D; € R"¥"4 given by,

Dy[i,j] = 1[i = j] - Ry
then we can write this term as A®)D; B®). Hence we get the following bound,
|A9D1BY| < gIR|es - [AV] - |BY)]
Term 2: ;1 = ffy Consider the block-diagonal matrix D, € R"?"? given by,

Dyli,i] = ) AjRji.
J

then we can write this term as A®™)D,B"). We have the upper bound,

ID2] < qlRlwl Al -1
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which implies that
|ASVD,BY) < glxeol ylool Al |AC ] |BY]

Term 3: o = f; Consider the block-diagonal matrix D5 € R"?"? given by,

Ds[i, i] = (), RyBy).
J

then we can write this term as A®D;B*"). Analogous to the previous case, we get an upper bound of,
[A9DsB ] < qIRlee BT f1-1 [ AV 1B

Adding the three terms, we have the claim of the lemma.
O

We will need the following theorem about local statistics on the expectation and concentration of local
statistics in order to complete the proof of Lemma 8.5.

Lemma 8.8. Fix a vector x € R™, such that |x|. = O(1). With probability 1 - 0,(1), forall1 < s < Jlogn
we have,

S
4G < ¢ (Vi) - v (38)
for an absolute constant C > 1.

2s
Proof sketch. This is equivalent to proving (A(Cs;)x, A(Cs;)x> < C <\//TL> n. Indeed, this quantity can be
rewritten as: )
(48" xx".
Via similar calculations to the ones done in Section 6, we can show that this quantity is dominated by the
contribution of walks that are self-avoiding for the first s steps, and retrace the same steps taken in the

next s steps, which in turn can be used to show that this quantity concentrates around the expected total
weight of walks in the associated random tree that walk out s steps and walk back s steps, and hence for

2s
large enough s is at most C (\/)TL ) n for an absolute constant C. O

Proof of Lemma 8.5. Let I‘Z’Z, = Djelq W UJ-T be the singular decomposition of I’;’Z,.

IBITTT, @ x " (u” )T A < Y IBS wj @ x vy @ ()T AY) (39)
J

Applying Lemma 8.8 to the planted model M with the fixed vector u; ® y™*, we conclude that with proba-
bility 1 - 0,(1),

N N
1B w oyl < € (VAr) -l o x1 < (VL) Il - ' (40)

Similarly, applying Lemma 8.8 to the null model M* with fixed vector v; ® u™  we conclude that with
probability 1 - 0,(1), forall 1 < t < /logn,

’ o S o t
loy e () TAG < € (V&) oo )T < (VAL) T+ (a1)
Finally, note that ) ;|uf|v;| = ||1";Zl, lrr = Om(%) where Oy hides a fixed constant depending on the
model. Using (40) and (41) in (39), we conclude the proof. O
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A Belief propagation for M

We briefly describe the belief propagation (BP) algorithm that aims to estimate the mariginal distribution
of ¢(v), v € [n] under the Boltzmann distribution y with Hamiltonian H. Define the messages {m; ™} .¢[q]
that a variable v passes to some constraint e € E;, and the messages {m{ ™"} ¢4 that a constraint e € E;

'U—)E

passes to a variable u. Intuitively speaking, m is an estimate of the marginal probability that v is
assigned the color ¢ when the constraint e is absent and m{™* is an estimate of the marginal probability
that u has color ¢ when all other constraints involving u are absent. Since the distribution of ¢(v) under y
depends on the constraints that contain v, we only focus on the messages m*—¢, m*~* such that v € de

(i.e. e contains v) and e € du (i.e. e contains w).

— 1 —
m{ e 1] = o Pe() [ ml el (42)
feav\e
where Z9V7¢ = zce[q] P )(c) erau\e mf_w[t]
For factors e € E;, the messages are defined as

— 1 v—

me U+ 1] = T > dilee) H my st (43)

Celce(u)=c vEe\u

where Z¢—U = ZCE[q] Zce\ce(u):c di(ce) [Toceru mgz))‘f[t].
To obtain an estimate of the marginal probability of the assignment to a variable v, apply the message

v—e g e—uU

update rules until reaching some fixed point {m; ¢, m{™"} 4. The estimate is called the belief and is

given by

Tz

where Z° = zce[q] Pr(v)(c) erav r?tg_w.

B Proof of Lemma 2.5

Recall that:

=), <H Pqy l)k(ck)> “gi(ers - Ca(p) (44)
(g0

(C15-Ca(i) )€

We first explain how to solve the distinguishing problem and then explain the recovery algorithm. By
definition of the BP update functions Y,_,, (equation (42)) and Y.—,, (equation (43)), the set of trivial

58



messages m being a BP fixed point is equivalent to:

¢ = Z (H]PCI(i)k(Ck)> - gi(cr, .5 Cai)) Ve € [q] : Poy,(c) >0 (45)

(01,~~;Ca(i))€[‘ﬂa(i) : Nk
¢=c

If the set of trivial messages is not a fixed point of the belief propagation update rule: then there exist
¢ € [q], i € [F], and j € [a(i)] with P¢y(;),(c) > 0 such that

@i # Z (H ]Pcl(i)k(ck)> “gi(c, ., Cagi)-

(CronCa)E[q] D\ K#
Cj=C

Let deg; ;(v) be the number of type-i factors with variable v in the j-th position. Via standard results for
Poisson(d) approximating Binom(n, d/n) we have the following:

+ In M, for any variable v of type CI(i); and any constant T,
Edegi’j(v)T =EXT + 0,(1)
where X ~ Poisson(A) and A = ¢;.
+ On the other hand, in the planted model M:
Edegi,j(v)T =EYT £ 0,(1)

where Y is distributed as the mixture of Poisson distributions p;Poisson(A;)+---+p;Poisson(A;) where
s is the number of colors which vertex v has nonzero probability of attaining, not all A; are equal,

and all p; > 0.
By (44) p1Ay + -+ + psAs = A. We first recall the following well known fact about Poisson random variables.
Fact B.1. If A ~ Poisson(y), then EA? = yi? + pu.

As a consequence of Fact B.1: EX? = 2% + A, and EY? = py (A2 + A1) + - + ps(A2 + Ay).

EY? - EX? = pif(h) + .. psf(As) = f(A) = pif Q) + . psf(As) = f(prdy + -+ + psds)

Since not all A; are equal, all p; > 0 and f is strictly convex, EY? - EX? is equal to a constant § strictly
greater than 0. Suppose n;;2(G) = E}Y ¢y degi’j(v)z, then |[Eg-m+nij2(G) — Eg-mnij2(G)| = Q(n). Since
EY* and EX* are constants, the variance of n;;(G) is O(n) for both G ~ M* and G ~ M. This informs
using the following polynomial time distinguisher:

Compute n;;,(G) and if |n;j2(G) - Eg-m=[nij2(G)]| < |nij2(G) - Eg-m[ni;2(G)]| output “null”;
otherwise output “planted”.

We now discuss performing recovery. Recall the inner product ¢-, - )y from Section 5 which is defined
as follows: First, we define a nq x nq-dimensional positive diagonal matrix H, where the (v, v) block is
equal to:

]Pr(v)(c) ifPr(v)(C) >0
1 otherwise.

Hr,(v,v)[c’ C] ‘= {
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The inner product on R™ is then:
(x,ydu = x H'y.
And let | - | denote the norm induced by the above inner product. Let ¢ be the hidden coloring. Our goal

in recovery is to output a vector v such that (v, ¢ — Ec|t)g > ¢ |v| - | ¢ - Ec|z]|. Let ¢ and ¢’ be two colors
such that:

d. = Z <H Pc1(i)k(ck)> “giler, s Cai)) > Z <H Pc1(i)k(ck)> “giler, ..y Cai)) = dor
(a1

(cta)€lglP@ s \ K senCa()E[q) D\ K]
G=¢ ¢j=c
The distribution of the number of type-i factors that a color ¢ vertex is part of is Poisson(d,) and similarly
is Poisson(d,+) for a color ¢’ vertex. The following algorithm can then be shown to produce a vector v
meeting the aforementioned goal.

For each vertex u of type 7 (CI(i);), let m, be the number of type-i factors it is part of in the j-th
position. If m, has a higher probability of being sampled from Poisson(d,) than Poisson(d.)
then assign the u-th block of vector v to be the indicator of color c. Otherwise assign the u-th
block of vector v to be the indicator of color ¢’.

Since d; # d there is a constant ¢ > 0 such that with high probability (% + s) Pey(i), ()T (CI(i);)n variables
of color c and type CI(i); are assigned the correct color and also (% + s) Pcy(i), ()T (CI(i);)n variables of color
¢/ and type CI(i); are assigned the correct color. Consequently:

(v,c-Ec|t)g = € - |v| - |c - Ecl|7]

for some ¢ > 0.

C The partial derivative matrix

Recall the BP update function I' defined by equations (42) and (43).
We observe that by definition

_ a(m)v—e-1 % T (m) %

Mg(ej))i(vj)ﬁ(vjﬂ) = ome—Y omuis1—¢ m

Thus we first compute the two derivative matrices. For any pairs of colors ¢, d € [q],

ar(m)vj—>€j_1 1 - m‘l)j-)@j_l .
ejc—vuj zzvjﬁejil lP'L’(vj)(c) H m? 9. 14=c - — ]Pr(vj)(d) H m; 7

v—ej_
amd aeavj\{ej_l,ej} 4 ae&vj\{ej_l,ej}
vi—ej_q

1 1 P. (o) ay md T Poyy(d) a—v;

- me]'—VUj Z’Uj_’ejfl ’[(‘Uj) c H mC d:C mej—n)j Zvj_)efl H md
d aeavj\ej_l d aeavj\ej_l
vi—ej_q vi—ej_q

_ g my Y ey

=—%—=v ld=c = —e=75 -

mi—Yu mi—Yu d
The last equality is derived from the fixed point identity m? ¢ = —22P(1)() [Tacoore mE"
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Evaluating the derivative at the factorized fixed point gives the transformation matrix

o (m),*"

_wj% = support(Py(y,)) « (Pr(ey)(€) - La=c = Pr(ey)(€) - Priey)(d))

]
am,

where support(P,(,,)) denote the size of P(,)’s support. To write the matrix compactly we define D,
Diag(P,), and derlve from the above computatlon that %% = support(P(y,))- (D,(vj) = Po(o)P T(Uj)).

For any edge of the form vj,; 5, v; on this path where 0(e;) = ¢; we have,

—;

ar(m)¢ 1 wese;
msﬁl_’ej ZEj—>Uj Z ¢i(cej) H mcej(W)j

d cgj \cgj(vj vj1)=(c,d) wee\{v},0j41}

Z Z ¢i(cej) H mz:j?:;

ceC ce; |ce v},0j,1)=(c’,d) weei\v),vj1}

1 1 wW—€;
:ZEj—>vj . msf”_’ef' Z ¢i(cej) H mCEj(W)

Cej|Cej(Uj’vj+l)=(C’d) weej\vj

Z€]—>’UJ

€j—0j

me w—se;
B 7€ ’ Uﬁl_’ej Z Z ¢i(cei) H mcej(W;

c’eC cej\cej(v, vj,1)=(c’,d) weej\v;

Recall we defined a distribution y; over c,; and stochastic matrices Wo(e) i(v,..)li(v;) Pefore.
Evaluating the derivative at the factorized fixed point gives the transformation matrix

GF(m)ef_’”f% ~ 1
omun—e¢ " ]P,(Ujﬂ)(d) . support(]P,(vj))

(Pre, -poley (©01) = d | ¢4(0) = €]

1
- ), Pre,- (vjs1) = d | co(vj) = ,
support(Py(,)) C’Ze:c Te, Dyl € (V1) | cq(vy) = ¢ ])

ameﬁvj _ 1 _ 1 T T +
Then 1 (m)fe = support(JP,(vj)) (I support(JP,(z,j))11 )‘Pe(ej),i(vj,,l)\i(vj)Dt(
denotes the pseudoinverse of the matrix.

where the 1 in the superscript

. . . ¢
Then we can write the transformation matrix for the step vj.; — ¢;_ as

_ 1
_ T T
Moo icwplicuy) = (Drw» ~PrP r(v,->) <1 - —support(]PT(v)) > ¥ i) o)l Loy
]

= Dy(o) (I - llPZvj)) (1 - WHT) 00 i)l Do)
Dr(v»( - 1Py, )) Wi i Pat

= (T=Pe(en1") Dot i icornitenPrcornn

= (1= Priop1") Yoie)icopicorn) -

This establishes the first part of Claim 4.1. To establish the second part, consider the following chain of
equalities where the first equality is one we know from the above chain.

X _ T T +
Mooy iop)ico) = (1= Pr(o1 )Dr(vj)‘1’e<e,->,i<v,-+1)|i<v,->Dz<vj+1>
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De(o) (I - 1P I(v,-)) We) oyiep Do
D) (Yotepicoricey (1= Pecep1’)) DL,
= De(o) (Yote)icwy i) = Petyn1’) ' DY
Dy(o) (
D

T(Uj+l)

Tpt
= Do) (1= Ceeo1”) Yotepicwnlicen) Doy
2(0)MaeiorlienProy)
If IP;(4)(c) = 0, then the c-th column of M(;(ej),i(vjﬂ)“(vj) and the c-th row of Mg(ej)’i(vj)ﬁ(vjﬂ) are 0, and hence
the second part of Claim 4.1 follows as well.

D Random graph lemmas

D.1 Proof of Lemma 7.8

Let M be a null model, and let H ~ M*. We use apay to denote max;[r) a(i) and to denote max;e[r) @i.

max
Define the notion of (7, Cl)-consistent:

Definition D.1. Given 7 and Cl, we say a subgraph I of a bipartite factor graph with right vertex set R(T)
is (7, Cl)-consistent if every y = (vy, ..., vy(;)) € R(I') satisfies (7(v1), ..., T(vy3))) = CI(O(y)).

It is easy to see the following.

Observation D.2. Suppose I' is a subgraph of Bip(K';). Then the probability that I'is a subgraph of H is

equal to HyER(F) %l[l‘ is (z, Cl)-consistent].

Definition D.3 (Partially labeled graph). A partially labeled graph T = (L,R, P, p,E) is given by a left
vertex set L, a right vertex set R, a distinguished set of left vertices P along with an injective labeling of
the distinguished vertices p : P — [n], and edge set E.

Definition D.4 (Occurrence of partially labeled graph). An occurrence of a partially labeled graph I' =
(L, R, P, p, E) in Bip(H) is a pair of injective functions f; : L — L(H) and fg : R — R(H) such that for all
v € P satisfies fi(v) = p(v), and if {u, v} € E, then {f.(u), fr(v)} € E(Bip(H)).

Given a partially labeled subgraph I we are interested in bounding the expected number of occurrences
of I' in Bip(H).

Lemma D.5. Given partially labeled graphT = (L, R, P, p) with no isolated right vertices, the expected number
of occurrences of T in Bip(H) is at most

L|+[RI-|P|-|E Frna)”
nlLHR-PHE (B B

Proof. There are at most nl"I"I"| choices for f;. For each potential choice of fz, we can associate tr, + R — [F]
such that tf,(r) is the type of fr(r). There are at most F IRl possible values for tf,. For each fixed choice of
fr and t, we wish to bound the expected number of fz such that (fz, fz) is an occurrence and t;, = t. The
number of such potential fg is bounded by

H a( t(i))degr(i) pa(t(0)-degr(i)

i€[R]

62



and the probability that (f, fr) is a valid occurrence for a given such fr is at most
IT st
i nalt))-1°

which gives us a bound of

. degp(i) - - IE| N
IT(2) ™ e () ool

i€[R]

Combining this with the bound on total number of f; and ¢, gives us a bound of:

El IR —IR
|LI-|P| |R| ( @max IRIZIRL - _ |L|+[RI-|P|-|E| pIRI ,[E| 7RI
n F n n ¢max =n F amaxgbmax'

Since there are no isolated vertices, |E| > |R| and hence the above is at most nl/*R=IPHE(Fa 6 E O

Definition D.6. For a graph T’ and a subset of its vertices S we use Br(S, r) to denote the radius-r ball
around set S within I'. We also abuse notation and use By(S, r) to mean Bgipg)(S, 7).

Lemma D.7. Given a set of vertices S in Bip(H), the probability that |E(By(S, r))| — |[V(Bu(S, )| +|S| = t is
(Famax 2T B6E12)01S) ) '

n

at most (

In preparation to prove Lemma D.7 we will need the following statement about counts of trees with a
bounded number of leaves. The statement along with a proof can be found in [BMR19, Lemma 6.33].

Lemma D.8. The number of nonisomorphic trees on v vertices and L leaves is bounded by (4Lv)* !,

Proof of Lemma D.7. Let us call a partially labeled subgraph I’ = (L, R, P, p, E) a candidate witness if
« p(P) =S,

« T can be expressed as F u B where F is a forest and B = {{uy, v1},..., {u, v;}} is a set of t additional

edges,

+ F has |P| connected components where each connected component contains exactly one v € P and
has depth r when rooted at .

If |[E(By(S, )| - |[V(Bu(S,r))| +|S| = t, then there must be an occurrence of some candidate witness I' =
(L, R, P, p, E) within H. We will first find a “simple” subgraph of I' = F u B, which we call the trim of T.
First let us augment F to F by adding a single vertex w and connecting it to all vertices in P — note that F
is a tree. Now let Trim(F) be the tree obtained by only choosing vertices that lie on paths from vertices in
L :={w,...,u, vy,..., vy} to w. Since the depth ofTrim(F~) is r +1 and has at most 2t leaves when rooted at
w, the number of vertices in Trim(ﬁ) is at most 2tr + 1. Let Trim(T) = (L, R/, P, p, E’) be the graph obtained
by deleting w from Trim(F), adding edges {uy, v1}, ..., {u;, v;}, and adding vertices in P\ V(Trim(F)). Since
Trim(T) is a subgraph of I' there must be an occurrence of Trim(I') in H.

Trim(T') has at most 2tr vertices and |E(Trim(I'))| — |L(Trim(T))| - |[R(Trim(T))| + |P| > t. Thus, from

s r+ t
Lemma D.5 the probability that Trim(I') occurs in H is bounded by (MZW) . Thus:
Pr[|E(Bu(S, r)| - |V(Bu(S, r)| + |S| > t] < Pr[there is a candidate witness I' in H]
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< Pr{there is a trim of a candidate witness Trim(T') in H]
< > Pr[I” in H]

I’ trim of a candidate witness

- 2(r+1)\ ¢
Z ((Famax¢;nax) ) ) (46)

I’ trim of a candidate witness

N

Next we bound the number of terms in the above summation. Since each I" in the above sum can
be specified by taking a tree on at most 2¢r + 1 vertices and at most 2t + 1 leaves, deleting one vertex,
and labeling each neighbor of this deleted vertex with an element of P, from Lemma D.8 and the fact the
maximum degree in a tree is bounded by the number of leaves the number of terms is at most:

(42t + 1)@2tr + )3 . (2tr + 1) - [P < ((36131%)°|P))'.

Plugging this into (46) and using |S| = |P| gives:

_ ) t
(Famax Pima) (361 r2>5|5|>

Pel (65,7 - VS, )+ 15> 1) < .

Corollary D.9. With probability 1 — 0,(1), Bip(H) is r-bicycle free for r = lolgolgo g -

Proof. This is a simple consequence of Lemma D.7. Indeed, by Lemma D.7 the probability that the radius-

(r + 1) neighborhood of a single vertex v € [n] contains more than one cycle is at most ﬁ and hence

by a union bound over all vertices the probability of any left vertex containing more than one cycle in its
1

radius-r + 1 neighborhood is bounded by —— . Since every right vertex is incident to a left vertex, the

statement we wish to prove follows. O

D.2 Proof of Lemma D.11

We will need the following combinatorial lemma that appears in [FM17, Lemma A.2].
Lemma D.10. If'e distinct edges of a graph T belong to a r-bicycle frame, then Exc(') > 7.

Our proof of the statement below follows the same strategy as the proof of a similar statement appear-
ing in [FM17].

Lemma D.11. Suppose S and L are disjoint sets of right vertices of KC,, of size at mostlog® n, 1, is the indicator

random variable for whether y is in H, p, is the probability that y is in H, and € denotes the event that H is
. _ logn .

r-bicycle free for r = Then:

loglogn*®
1 @—EXC(CIOS(SUL))
B|[1a,-m[Te) < TTw-2 (55)
yes yeL yeSuL n

Proof.

E =) E

JjcS

H 1, - H(_ﬂy) : Hl),l[f]

veJ YesJ YeL

I[Tay -] ]110€]
YEL

YES
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- Z(_I)ISI-U\ H pyE

JcS yesS\J

[T 110e

y€Jul

= Z(_l)m H uPr€lye HVy € Jul]

JeS Y€ESUL
= [T w D -0Ver[€ly e Hvy eJuL] (47)
yeSuL =

Now we focus our attention on understanding the quantity ‘Z ]gs(—l)mPr [Elye HVy€Ju L]‘ Let gy be
H\(Sul).

(48)

Eg, ) (-1)/Pr{€]y e HVy € Ju L g]
=

S(-1VPr(€lye Hvyejul]
JcS

For K c S, define fg,(K) as 1 if Clos(gy u K u L) has no r-bicycles and 0 otherwise. Suppose there is s € S
that f, does not depend on - that is, for any K < S, f4 (K) = fg,(KA{s}), then for every J which contains s:

Pri€lye HVyeJulL,g)=Pr[€ly e HVy € JuL\{s}, gl

This means (48) is equal to:

(48) = |[Eg,1[fg, depends on every s € S] Z(—l)mPr [Elye HVy € JulL, g

=
< 210 Prg [fg, depends on every s € S]. (49)

Let Es be the set of all edges incident to S. If f,; depends on every s € S, then the function hg, defined on
subsets of Es which is 1 on input K ¢ Eg if Clos(gp u L) u K has no r-bicycles depends on at least |S| edges
in Es. That means:
(49) < 281 Prg [hg, depends on at least |S| edges in Es]
< 29 Prg [At least |S| edges in Eg part of r-bicycle frame in Clos(go u S u L)]

which, via Lemma D.10, can be bounded by

[ S|

< 2|5| ' Prgo EXC(BClos(gOUSUL)(CIOS(S), r)) Z 7
s ' ISl

< 2P Pry, |Exc(Bclos(g)(Clos(S u L), 1)) = — -
,

[ S
< 281 Pry [Exc(Bu(Clos(S u L), r)) > ISE_ Exc(Clos(S u L))}
r

Exc(Clos(S u L))]

By Lemma D.7, the bounds on size of |S| and |L|, and the value of r, we can conclude that the above is at

most:
1\ Z-Exc(Clos(SuL))
< 28 min (—5) ,1
n-
5| 1 Lfl —-Exc(Clos(SuL))
<2'(35)
Plugging this back into (47) gives us the desired statement. t
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D.3 Proof of Claim 7.22

Proof. Consider any Sh € Ui, a. Recall that S(Sh) is the set of singleton vertices in R(Sh) and D(Sh) the
set of duplicative vertices in R(Sh). D*(Sh) is the maximum weight subset of D(W) that makes Sh r-bicycle
free, and A(Sh) = w(D(Sh)) - w(D*(Sh)). Thus we deduce that A(Sh) > |D(Sh) \ D*(Sh)| We apply the
following procedures to the walk Sh.

1. Break the walk Sh into < s + A + |[D(Sh) \ D*(Sh)| + k segments by first removing the vertices S(Sh)
and D(Sh) \ D*(Sh) from Sh and second breaking the remaining segments at endpoints of the k links
in Sh. Denote the new union of walks Sh;.

2. Since S(Sh) and D(Sh) \ D*(Sh) are removed from Sh, Sh; is singleton free, and the graph on Shy,
denoted by G(Shy), is r-bicycle free.

3. We contract the graph G(Sh;) by merging all adjacent edges that share a degree-2 vertex. We denote
the resulting graph G(Sh;)., and we note that the vertices left in G(Sh;). are those with degree > 3
in G(Shy).

We make the following observations on the size of G(Sh;) and G(Sh;)..

The number of vertices in G(Shy) is |V(Sh)| - |S(Sh)| — [D(Sh) \ D*(Sh)|. The number of edges in G(Sh;)
is < |E(Sh)| - 2|S(Sh)| - 2|D(Sh) \ D*(Sh)|.

To bound the number of vertices in G(Sh;). is we apply the following lemma from [MOP20].

Lemma D.12 (Lemma 6.18 in [MOP20]). Let C be a (k, 2¢)-nonbacktracking, internally 2¢-bicycle-free link-
age. Assume log k¢ = o(£). Then G(C) has at most O(k log kt) vertices of degree exceeding 2.

Applying the lemma to the walk Sh;, we obtain that the number of degree > 3 vertice in Sh; is
O(klog k¢). Thus the number of vertices in G(Shy). is O(k log kf). The number of edges in G(Sh;). is

|E(G(Sh1))| - ([V(G(Shy))[ - [V(G(Sh1)c)))
< |E(Sh)| - 2|S(Sh)| - 2|D(Sh) \ D*(Sh)| - |V(Sh)| + |S(Sh)| + |D(Sh) \ D*(Sh)| + O(k log k¢)
= (|[E(Sh)| - |[V(Sh)|) - |[S(Sh)| - |D(Sh) \ D*(Sh)| + O(k log k¢)
< x + O(klog k¢).

Now to count the number of distinct Sh € U, a, it suffices to count 1. the number of distinct sets of
breaking points (S(Sh), D(Sh) \ D*(Sh), and k link endpoints), 2. the number of distinct graphs G(Shy), 3.
given the breaking points and G(Sh;), the number of distinct walk segments in G(Sh;) with those breaking
points. We count each of the three quantities separately and multiply them together to obtain an upper
bound on [V |-

The number of distinct sets of breaking points: these breaking points breaks Sh into at most s + 2A + k
segments. So there are (2k£)**?* ways to choose these breaking points.

The number of distinct graphs G(Sh;): G(Sh;) can be contracted to a graph G(Sh;). on O(klog k¢)
vertices and x + O(k log k¢) edges. Each edge in G(Sh;). represents a length-< 2k¢ simple path in G(Sh;).
Thus there are O(k log k£)?(x+Otklogkd)) . (3 p)x+Oklogkl) distinct graphs G(Shy).

Given the breaking points and G(Sh;), the number of distinct walk segments in G(Sh;) with those
breaking points: since G(Sh;) is r-bicycle free with r > 2¢ and each segment is of length < 2¢, there are
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only 2 distinct length < 2¢ walk between any two vertices in G(Sh;). Thus the number of distinct walk
segments are 25°2A*k,
Combine the three bound together we obtain that

|Us,x,A| < (zkt;)s+2A+x+O(klog kt) O(k log kf)Z(x+O(klog kf))25+2A+k‘

From this bound we quickly derive that

r Excgp A(Sh)
> () () G
SheUs xa

'\ » x A
v (5) (2) 2

r v . . x . A
_ <ﬁ .(4kf)> <[3 2kt O(klogkf)2> <4ﬁ (:kl’)2> 2%(2ke - O(k log ke)2)OtkIoskD)

[S(Sh)|
,

s ns
r r\ v x A
< B’ - (4ke) B - 2(kt)’ 4f - (2kt)? (2k)Oklog ko)
n?> n?> n
The last inequality follows since we pick ¢ such that log k¢ = o(¢). O
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