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Abstract—The Opportunistic Spectrum Access (OSA) model has
been developed for the secondary users (SUs) to exploit the
stochastic dynamics of licensed channels for file transfer in an
opportunistic manner. Common approaches to design channel
sensing strategies for throughput-oriented applications tend to
maximize the long-term throughput, with the hope that it provides
reduced file transfer time as well. In this paper, we show that this is
not correct in general, especially for small files. Unlike prior delay-
related works that seldom consider the heterogeneous channel
rate and bursty incoming packets, our work explicitly considers
minimizing the file transfer time of a single file consisting of
multiple packets in a set of heterogeneous channels. We formulate
a mathematical framework for the static policy, and extend to
dynamic policy by mapping our file transfer problem to the
stochastic shortest path problem. We analyze the performance
of our proposed static optimal and dynamic optimal policies
over the policy that maximizes long-term throughput. We then
propose a heuristic policy that takes into account the performance-
complexity tradeoff and an extension to online implementation
with unknown channel parameters, and also present the regret
bound for our online algorithm. We also present numerical
simulations that reflect our analytical results.

I. INTRODUCTION

In recent years, rapid growth in the number of wireless
devices, including mobile devices and Internet of Things (IoT)
devices has led to an explosion in the demand for wireless ser-
vice. This demand further exacerbates the scarcity of allocated
spectrum, which is ironically known to be underutilized by
licensed users [1]. The Opportunistic spectrum access (OSA)
model has been proposed to reuse the licensed spectrum in
an opportunistic way otherwise wasted by licensed users [1].
Recently, the FCC has released a new guidance in 2020, which
would expand the ability of the unlicensed devices (especially
IoT devices) to operate in the TV-broadcast bands [2]. Besides,
the related IEEE 802.22 family has been developed to enable
spectrum sharing [3] to bring broadband access to rural areas.

In the OSA model, a secondary user (SU) aims to oppor-
tunistically access the spectrum when it is not used by any
other users, while also prioritizing the needs of the primary
user (PU). The SUs need to periodically sense the spectrum
to avoid interfering with PUs. Interference reduces the quality
of service in the OSA networks, and throughput is one of
the most commonly used performance metrics in the OSA
literature. The PU’s behavior in a channel can be modeled as a
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Markov process (thus correlated over time), for which partially
observable Markov decision processes (POMDPs) are typically
employed to formulate the spectrum sensing strategy in order
to maximize the long-term throughput [4]. These POMDPs do
not possess known structured solutions in general and they
are known to be PSPACE-complete even if all the channel
statistics are known a priori [5]. To achieve near maximum
throughput, computationally efficient yet sub-optimal policies,
such as myopic policy [6] and Whittle’s index policy [7], have
been proposed for the offline OSA setting (known channel
parameters) and later extended to the online setting (unknown
channel parameters) [8]. Besides, single-channel online policies
have also been developed in [9], [10] to find the channel
with maximum throughput in the steady state. Recently, by
focusing more on heterogeneous channels with i.i.d Bernoulli
distribution for each, multi-armed bandit (MAB) techniques
have been extensively studied to let SUs learn unknown channel
parameters on the fly, and have been known for their lightweight
designs. MAB techniques that maximize the cumulative reward
(or minimize the regret) can directly be applied to the online
setting for maximizing the throughput, including the Bayesian
approach [11], upper confidence bounds [12], thompson sam-
pling [13] and its improvement from efficient sampling [14],
and coordination approach among multiple SUs [15].

Nowadays, low latency has become one of the main goals for
5G wireless networks [16] and other time-sensitive applications
with guaranteed delay constraints. For example, packet delay
in cognitive radio networks has been extensively studied using
queuing theory to derive delay-efficient spectrum scheduling
strategies. In this setting, a stream of packet arrivals modeled as
a Poisson process with a constant rate is a common assumption
in delay related works [17]–[21], and the goal is often to
minimize the average packet delay in the steady state. In
reality, however, so-called ‘bursty’ cases are also commonly
seen, where a finite number of packets comprising one file can
be pushed into the SU’s queue simultaneously and transmitted
opportunistically by the SU, and the next ‘file’ will not arrive
if the current file transfer job has not been finished yet.1

For instance, the IEEE 802.11p MAC protocol requires the
safety message to be generated and sent by each vehicle in
every 100 ms interval [22], Poisson arrivals being unsuitable
to model such situation. Same channel rate across all channels
is another implicit assumption in many works [18]–[21], but it

1One packet transmission in the delay-related studies [17]–[21] is equivalent
to a single file transfer job in the ‘bursty’ case because a single file in the SU’s
queue can be seen as a ‘large’ packet.



doesn’t reflect the realistic heterogeneous channel environment
frequently assumed in the throughput-oriented studies in the
OSA literature [10]–[14]. Clearly, allowing the SU to switch
across heterogeneous-rate channels during instances of PU’s
interruption can further reduce the file transfer time, but to the
best of our knowledge, this issue has not been fully explored.2

In this paper, we study the OSA model with the aim of
minimizing the transfer time of a single file over hetero-
geneous channels. The common folklore assumes that the
policy maximizing the long-term throughput would also lead
to the minimum expected file transfer time. For example,
Wald’s equation implies that the file download time in an
i.i.d (over time) channel is equal to the file size divided by
the average throughput of that channel, implicitly favoring the
max-throughput channel for minimal download time. In this
paper, we show that this is not the case in general, even in
the i.i.d (over time) channel. We first present a theoretical
analysis for static policies where the SU only sticks to one
channel throughout the entire file transfer. By casting the file
transfer problem into a stochastic shortest path framework, the
SU is free to switch between channels and we are able to
obtain the dynamic optimal policy. Our theoretical analysis
shows that static and dynamic optimal policies reduce the
transfer time compared to the baseline max-throughput policy,
and this reduction is even more significant in delay-sensitive
applications, where files are relatively small. We then propose a
lightweight heuristic policy with good performance and extend
to an online implementation with unknown channel parameters
the SU needs to learn on the fly. We modify a MAB algorithm
(model-based method) proposed in [23] in the online setting and
show its gap-dependent regret bound, instead of the model-free
reinforcement learning used in delay-related works [18], [20]
for sample efficiency purpose [24]. We also use simulation
results to visualize that the max-throughput policy is not the
best when it comes to achieving the minimum file transfer time.

The rest of the paper is organized as follows: In Section II
we introduce the OSA model and characterize the file transfer
problem and its policy under the OSA framework. In Section
III, we show the expected transfer time for static policy and it’s
performance analysis. Then, we extend from the static policy
to the dynamic policy in Section IV. The practical concerns
are discussed in Section V. Finally in Section VI, we evaluate
different policies in the realistic numerical setting.

II. MODEL DESCRIPTION

A. The OSA Model

Consider a set of N heterogeneous channels N ,
{1, 2, · · · , N} available for use and each channel i ∈ N offers
a stable rate of ri > 0 bits/s if successfully utilized [7], [10]. In
our setting, a SU wishes to transfer a file of size F bits using
one of these N channels via opportunistic spectrum access.
The SU can only access one channel at any given time, and
can maintain this access for a fixed duration of ∆ seconds,

2Although [17] assumes heterogeneous channel rates, it requires the SU
to stick to one channel to complete the packet transmission, even if the
transmission may be interrupted by the PU multiple times.

after which it has to sense available channels again in order to
access them. At this point, the SU can decide which channel to
sense and access that channel for the next ∆ second interval if
the channel is available. Or the SU has to wait for ∆ seconds
to sense again if that channel is unavailable, thereby unable
to transfer data for this duration. This pattern is known as the
constant access time model, and has been commonly adopted
for the SU’s behavior as a collision prevention mechanism in
the OSA literature [1], [11]. The cycle repeats itself until the
SU transmits the entire file size F , then it immediately exits
the channel in use. Note that the duration ∆ seconds is not a
randomly chosen number. For example, ∆ is recommended as
100 ms because the SU needs to vacate the current channel
within 100 ms once the PU shows up, as defined in IEEE
802.22 standard [3]. The SU can transmit up to 3.1 Mb in each
∆ seconds with highest channel rate 31 Mbps in IEEE 802.22
standard and many small files (e.g, 5 KB text-only email, 800
KB GIF image) need just a few slots to complete.

We say a channel is unavailable (or busy) if it is currently
in use by the primary users (PUs) or other SUs, while it is
available (or idle) if it is not in use by any other users. The state
of a channel (idle or busy) is assumed to be independent over all
channels i ∈ N , and i.i.d. over the time instants {0,∆, 2∆, · · · }
following Bernoulli distribution with parameter pi ∈ (0, 1],
in line with the widely used discrete-time channel model [1].
Specifically, for each i ∈ N , {Yi(k)}k∈N is a Bernoulli process
with pi = P [Yi(k) = 1] = 1 − P [Yi(k) = 0] for all k ∈ N.
Then, we can define Xi(t), the state of channel i ∈ N at
any time t ∈ R+, as a piecewise constant random process:
Xi(t) , Yi (bt/∆c), where b·c denotes the floor function. This
way, we write Xi(t) = 1 (0) if channel i ∈ N is available
(unavailable) for the SU with probability pi (1− pi).

In this setup, the rate at which the SU can transmit files
through channel i ∈ N at any time instant t ≥ 0, also termed
as the instantaneous throughput of the channel i, is given by
riXi(t), with its throughput [12], [14] by E[riXi(t)] = ripi.
We denote by i∗ , arg maxk∈N rkpk the channel with the
maximum throughput. For simplicity, we assume that this
channel is unique, i.e., ri∗pi∗>rkpk for all k ∈ N\{i∗}. In what
follows, we introduce some basic notations and expressions
regarding policies under this OSA framework.

B. Policies for File Transfer
We define a policy at time t to be a mapping π : R+ 7→ N

where π(t) = i indicates that the SU has chosen channel i to
access during the time period
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standing assumption, a policy therefore only changes at t ∈
{0,∆, 2∆, · · · }, and all policies ensure that the file transfer for
any finite size F will eventually be completed. This way, the
policy π(t) is a piecewise constant function (mapping), defined
at all time t ≥ 0. For a given policy π, let T (π, F ) denote the
transfer time of a file of size F — the entire duration of time
to complete the file transfer, which is written as T (π, F ) =

minT≥0{
∫ T

0
rπ(t)Xπ(t)(t)dt ≥ F}. Figure 1 explains the file

transfer progress via OSA model.
The objective of our OSA framework is to minimize the

expected transfer time E[T (π, F )] over the set of all policies π.
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Fig. 1. File transfer via the OSA framework. The SU senses channels according
to its policy, and accesses the channel if it is available. Upon gaining access, it
begins transmitting data at the corresponding channel rate. Transmission ends
(red line) as soon as the amount of data transmitted (green line) equals the file
size F .

Policies can be static, where the SU only senses and transmits
via one (pre-determined) channel i throughout the file transfer,
that is, π(t) = i for all t ≥ 0. For such static policies, we denote
by T (i, F ) their transfer time for file size F . The channel that
provides the minimum expected transfer time is then called
static optimal given by

iso(F ) = arg mink∈N E[T (k, F )], (static optimal) (1)

and we denote T (iso, F ) the corresponding transfer time for
this static optimal policy. Note that the static optimal channel
iso(F ) depends on the file size F and can vary for different
file sizes. Policies can also be dynamic, in which an SU is
allowed to change the channels it chooses to sense throughout
the course of the file transfer. Given a file size F , the policy
with the minimum expected transfer time over the set of all
policies Π(F ) is called the dynamic optimal policy given by

π∗(F ) = arg minπ∈Π(F ) E[T (π, F )]. (dynamic optimal) (2)

Lastly, we define the max-throughput policy as the static policy
with the channel i∗, which maximizes the long-term throughput.
In the next section, we take a closer look at the max-throughput
policy and static policies in general.

III. STATIC OPTIMAL POLICY

Recent works in the OSA literature focus on estimating chan-
nel parameters pi’s, with the goal of eventually converging to
the policy i∗=arg maxk∈N rkpk which provides the maximum
throughput [10]–[14].3 They focus on minimizing the ‘regret’
in the MAB model, defined as the difference between the
cumulative reward obtained by the online algorithm and the
max-throughput policy (the optimal policy in hindsight).

3While [12]–[14] deal with link rate selection problem to select best rate in
one channel to maximize the expected throughput, the mathematical model of
link rate selection problem is essentially the same as the standard OSA setting
for choosing the max-throughput channel, as considered in our setting.

The essential assumption behind all these approaches is that
the SU always fully dedicates ∆ seconds in each time interval
for file transfer. Channel i∗ appears as a good candidate since
it provides the largest expected data transfer ∆ri∗pi∗ across
every time interval. This is further supported by the well-
known Wald’s equation with the i.i.d reward assumption at
each time interval, suggesting that E[T (i, F )] = F/ripi for
each channel i ∈ N , which is then minimized by i∗. When
policies are dynamic, however, the rewards are not identically
distributed since the transfer rates of the dynamically accessed
channels can be different, making Wald’s equation inapplicable.
Surprisingly, it is not applicable for static policies either. As
typically is the case in delay-sensitive applications [17]–[19],
[21], the file sizes are often not that large, rendering their
transfer times small enough that an SU may not need to utilize
the whole ∆ seconds for data transfer in each time interval. The
reward summands are still not identically distributed, causing
Wald’s equation to fail in general.

Our key observation in this paper is that choosing channel i∗

may not be the best option to minimize the expected transfer
time. In this section, we limit ourselves to the set of static poli-
cies of the form shown in (1) and analyze the resulting expected
transfer time in the OSA network. We use this to compare the
performance gap between the max-throughput policy and the
static optimal policy, and show that for a reasonable choice
of channel statistics and file sizes, the static optimal policy
performs significantly better than the max-throughput policy.
We derive a closed-form expression of the expected transfer
time of a file of size F in each fixed channel by the following
proposition.

Proposition 3.1: Given a file of size F , the expected transfer
time E[T (i, F )] of the static policy for channel i ∈ N is

E[T (i, F )] = ∆
(
ki/pi + 1{αi>0}(1− pi)/pi + αi

)
, (3)

where ki ,bF/∆ric∈ Z+ and αi , F/∆ri − ki ∈ [0, 1).
Sketch of proof: Since each channel is i.i.d Bernoulli

distributed, the waiting time until one access to any channel
i ∈ N is a geometrically distributed random variable, indepen-
dent across all channels, with mean ∆(1 − pi)/pi. Each file
size F transmitted in channel i needs to access channel i for
ki times. If the remaining portion αi is nonzero, then the SU
needs additional random waiting time to complete the transfer.
Combining the total transmission time F/ri and the expected
total waiting time gives (3).

We have from Proposition 3.1 that E[T (i, F )], the expected
transfer time for any file size F under the static policy on
channel i ∈ N , can be explicitly written in terms of file size F ,
time duration ∆ and channel statistics ri and pi of the chosen
channel i. Substituting ki = F/∆ri − αi in (3) gives

E[T (i, F )]=
F

ripi
+∆1{αi>0}(1−αi)

1−pi
pi
≥ F

ripi
. (4)

The inequality in (4) shows the expected transfer time of any
static policy is no smaller than that given by Wald’s equation.

We use Figure 2 to illustrate the results in Proposition 3.1,
where each line represents the expected transfer time via one
channel over a range of file sizes from (3). We observe that the



expected transfer time of channel 1 (red line) is always above
the Wald’s equation of channel 1 (purple dot-line). As shown
in (3), the slope of each line (channel i) is 1/ri and the ‘jump
size’ ∆(1−pi)/pi is equal to the expected waiting time till the
channel is available. The jumps in the plot for each channel i,
representing the waiting times, occur at exactly the instances
where file size is an integer multiple of ∆ri, and come into
play especially when there is still a small amount of remaining
file to be transferred at the end of a ∆ time interval.
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Fig. 2. Expected transfer time from (3) with duration ∆ = 100 ms (IEEE
802.22 standard). Channel 1 has the maximum throughput. The purple dot-line
E[T ] = F/r1p1 corresponds to the Wald’s equation for channel 1. Downward
arrow in the inset figure is the threshold H in Proposition 3.2.

By definition, the static optimal policy provides the minimum
expected transfer time over all static policies including the
max-throughput policy itself. While it is true for all file sizes,
in some cases with certain file sizes, these two policies may
coincide.

Proposition 3.2: The max-throughput policy coincides with
the static optimal policy, that is, iso(F ) = i∗, for any file size
F satisfying at least one of the two conditions below:

1) F exceeds a threshold H , where

H =
∆(1− pi∗)/pi∗

1/rhph − 1/ri∗pi∗
, (5)

and h = arg maxj∈N\{i∗} rjpj is the channel with the
second largest throughput.

2) F is an integer multiple of ∆r∗i , i.e., F =k∆ri∗ for some
k∈Z+.

Sketch of proof: From (4) we have the lower bound
of E[T (i, F )], and the upper bound is derived from (3)
with 1{αi>0}(1− αi) ≤ 1. The sufficient condition to en-
sure E[T (i∗, F )] ≤ E[T (i, F )] is that the upper bound of
E[T (i∗, F )] is smaller than the lower bound of E[T (i, F )] for
any channel i, which leads to (5). When F = k∆ri∗ , from (3)
we have the expected transfer time E[T (i∗, F )] = F/ri∗pi∗ .
Since ri∗pi∗ ≥ rjpj for any j ∈ N , we can show E[T (i∗, F )]
is smaller than the lower bound of E[T (i, F )] for any channel
i, which establishes condition 2), completing the proof.

Outside of Proposition 3.2, however, there are many instances
where the max-throughput channel is not static optimal and
other channels can perform better for smaller file sizes. In
such cases, we would like to discuss how much time the static
optimal policy can save against the max-throughput policy.

Corollary 3.3: Let mi , pi/pi∗ for i ∈ N \ {i∗}. Consider
a file of size F ∈ (k∆ri∗ , (k+1)∆ri∗) for some k ∈ N. Then,
we have

E[T (iso, F )]

E[T (i∗, F )]
≤ min
i∈N\{i∗}

{
1,
F/∆ripi + (1− pi)/pi

(k + 1)(mi/pi − 1)

}
. (6)

Note that by definition mi/pi = 1/pi∗ > 1 so that the
upper bound on the ratio E[T (iso, F )]/E[T (i∗, F )] in (6) is
always in the interval (0, 1]. Moreover, smaller ratio means
better performance of the static optimal policy against the max-
throughput policy. To gauge how the parameters of the max-
throughput channel could affect the performance of the static
optimal policy, suppose we fix F,∆, ri, pi for all i∈N \{i∗}
and the maximum throughput ri∗pi∗ , while treating pi∗ as
a variable. The upper bound in (6) is then monotonically
decreasing in mi = pi/pi∗ , and can even approach 0 if at least
one of mi is really large, resulting in the huge performance
gain of the static optimal channel compared to that of the max-
throughput channel. This implies that accessing channel i∗ can
take much longer time to transmit a file than other channels
if its available probability pi∗ is very small, which is common
in outdoor networks where the max-throughput channel i∗ has
very high rate but with low available probability [25].

Our static optimal policy shows better performance against
the max-throughput policy for small files and small pi∗ . Since
the static optimal channel depends on the file size, choosing
channels dynamically according to its remaining file size can
further reduce the expected transfer time. We next formulate
the file transfer problem as an instance of the stochastic
shortest path (SSP) problem and analyze the performance of
the dynamic optimal policy.

IV. DYNAMIC OPTIMAL POLICY

Now that we have analyzed the static policies, we turn
our attention to feasible dynamic policies for our file transfer
problem. We start by first formulating the file transfer problem
as a stochastic shortest path (SSP) problem, in which the agent
acts dynamically according to the stochastic environment to
reach the predefined destination as soon as possible. Then,
we translate this SSP problem into an equivalent shortest path
problem, which helps us derive the closed-form expression of
the expected transfer time for any given dynamic policy, and we
utilize this to obtain the performance analysis of the dynamic
optimal policy against the max-throughput policy.

A. Stochastic Shortest Path Formulation

The SSP problem is a special case of the infinite horizon
Markov decision process [26]. To make this section self-
contained, we explain our problem as a SSP problem.

State Space and Action Space: We define the state s ∈ S ,
R+ of our SSP as the remaining file size yet to be transmitted.
The action i ∈ N is the channel chosen to be sensed at the
beginning of each time interval. The objective of our problem
is to take the optimal action at each state s which minimizes
the expected time to transmit the file of size F .

State Transition: Denote by Ps,s′(i) the transition probability
that the SU moves to state s′ after taking action i at state s.



From any given state s ∈ S \{0}, the next state under any
action i ∈ N depends on the availability of channel i. Since
the channel is available or unavailable according to an i.i.d (over
time) Bernoulli distribution, the next state is either the same as
the current one if channel i is unavailable, i.e. Ps,s(i) = 1−pi;
or the next state is (s−∆ri)

+ , max{0, s−∆ri} if channel
i is available, i.e. Ps,(s−∆ri)+(i) = pi. State 0 is a termination
state since there is no file transmission remaining.

Cost Function: The cost c(s, i, s′) is the amount of time
spent in transition from state s to s′ after sensing channel i.
Since the SU can only sense channels at intervals of size ∆,
sensing an unavailable channel costs a ∆ second waiting period
until the SU can sense next, that is, c(s, i, s) = ∆ for all s ∈
S \{0}, i ∈ N . Similarly, if the sensed channel is available,
the time spent in transmitting is also ∆ seconds, unless the
SU finishes transmitting the file early. In the latter case the
cost of transmission is c(s, i, 0) = s/ri. Overall, the cost of a
successful transmission can be written as c(s, i, (s−∆ri)

+) =
min{∆, s/ri} for all s ∈ S\{0}, i ∈ N . Once the remaining
file size reduces to 0, the SU will end this file transmission
immediately with no additional cost incurred, so that c(0, i, 0)=
0 for any i ∈ N .

Our dynamic policy4 is written as a mapping π : S → N ,
where π(s) ∈ N denotes the channel chosen for sensing when
the current state (remaining file size) is s. For any policy π,
we have T (π, 0) = 0 at the termination state. Our goal in
this SSP problem is to find the dynamic optimal policy π∗(F )
that minimizes the expected transfer time for the file size F ,
which can be derived from a variety of methods such as value
iteration, policy iteration and dynamic programming [26].
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Fig. 3. Illustration to translate the file transfer problem into an equivalent
shortest path problem.

B. Performance Analysis

For ease of exposition, we introduce additional notations
here. By a successful transmission, we refer to state transitions
of the form s → s′. This is denoted by the horizontal green
line in Figure 3(a) connecting states s and s′ , s −∆ri > 0,
and should be distinguished from the self-loop s → s, which
implies the sensed channel was unavailable. As shown in Figure

4There always exists an optimal policy π∗ to be deterministic in the SSP
problem, as proved in Proposition 4.2.4 [26]. Thus, we restrict ourselves to the
class of deterministic policies in this paper.

3(a), taking expectation helps get rid of these self-loops by
casting the original SSP to a deterministic shortest path problem
in expectation. The cost associated with each link is then the
expected time it takes to transit between the states. Figure 3(b)
shows the underlying network for the shortest path problem,
where each link is a channel chosen to be sensed and each
path from source F to destination 0 corresponds to a policy
π ∈ Π(F ). The path-length or the number of links traversed
from F to 0 under any given policy π then becomes the total
number of successful transmissions needed by that policy to
complete the file transfer, which we denote by |π|.

For any policy π ∈ Π(F ) and n ∈ {1, · · · , |π|}, let Fn
denote the remaining file size right before the n-th successful
transmission. Then for all n ∈ {2, · · · , |π|}, we have the
recursive relationship: Fn = Fn−1 −∆rπ(Fn−1), starting with
F1 = F and ending with F|π|+1 = 0. Given a file size F ,
each policy π ∈ Π(F ) can then be written in a vector form as
π = [π(F1), π(F2), . . . π(F|π|)]

T . With this in mind, we can
derive a closed-form expression of the expected transfer time
for any dynamic policy in the following proposition.

Proposition 4.1: Given a file of size F , the expected transfer
time of a dynamic policy π is written as

E[T (π, F )]=∆

|π|−1∑
n=1

1

pπ(Fn)

+∆
1−pπ(F|π|)

pπ(F|π|)
+

F|π|

rπ(F|π|)
. (7)

In (7), the first summation is the cumulative expected trans-
mission time, or the cost, to the (|π|−1)-th successful transmis-
sion, with the last two terms being the expected transmission
time of the last successful transmission. Proposition 4.1 also
includes the expected transfer time of the static policy as a
special case. Recall that ki = bF/∆ric and αi = F/∆ri − ki
in Proposition 3.1. When applied to a static policy for any
channel i ∈ N , we have |π| = ki + 1{αi>0} and pπ(Fn) = pi
for all n = 1, 2, · · · , |π|. The recursive relationship becomes:
Fn = Fn−1−∆ri, implying that Fn = F − (n− 1)∆ri. Then,
we have F|π| = F−(|π|−1)∆ri = αi∆ri if αi > 0. Otherwise,
F|π| = ∆ri. Substituting these into (7) gets us (3).

The common folklore around the max-throughput policy is
that it would lead to the minimum expected file transfer time
of F/ri∗pi∗ . Our next result shows this is too optimistic and
not achieved in general even under the dynamic optimal policy.

Proposition 4.2: For any file size F and any dynamic policy
π ∈ Π(F ), we have E[T (π, F )] ≥ E[T (π∗, F )] ≥ F/ri∗pi∗ .
Moreover, i∗ = π∗(F ) for F = k∆ri∗ , k ∈ Z+.

Sketch of proof: From the definition of F|π| we have
F|π| ≤ ∆rπ|π| . Using ri∗pi∗ ≥ ripi for all i ∈ N and F|π| ≤
∆rπ|π| , together with (7), gives E[T (π, F )] ≥ E[T (π∗, F )] ≥
F/ri∗pi∗ . When F = k∆ri∗ , k ∈ Z+, from (3.1) we also have
E[i∗, F ] = F/ri∗pi∗ and E[i∗, F ] ≥ E[T (π∗, F )] by definition.
Using the squeeze theorem gives i∗ = π∗(F ).

As shown in (4), F/ri∗pi∗ is always the lower bound on the
transfer time for any static policy. Proposition 4.2 strengthens
this by showing that the same is true even for the dynamic
optimal policy. Similar to condition (b) in Proposition 3.2 for
the static optimal policy, the dynamic optimal policy π∗(F )
also coincides with the max-throughput policy i∗ when the file



size is an integer multiple of ∆ri∗ , while we no longer have
the finite threshold H as in Proposition 3.2(a). We next give
bounds to quantify the performance of the dynamic optimal
policy with respect to the max-throughput policy.

Corollary 4.3: Let mi , pi/pi∗ for i ∈ N \ {i∗}. Consider
a file of size F ∈ (k∆ri∗ , (k+1)∆ri∗) for some k ∈ N. Then,
we have

1/(1 + ∆1{αi>0}(1− pi∗)ri∗/F ) ≤ E[T (π∗, F )]

E[T (i∗, F )]

≤ min
i∈N\{i∗}

{
1,
F/∆ripi+(1−pi)/pi−kmi(ri∗pi∗−ripi)/rip2

i

(k + 1)(mi/pi−1)

}
.

To better understand Corollary 4.3 we analyze how the
parameters of the max-throughput channel could impact the per-
formance of the dynamic optimal policy. Similar to Corollary
3.3, small value of E[T (π∗, F )]/E[T (i∗, F )] implies that the
dynamic optimal policy offers significant saving in time over
the max-throughput policy. We note that Corollary 4.3 tightens
the upper bound with an extra negative term in the numerator,
compared to that in Corollary 3.3, potentially providing greater
savings in time as we extend the policy from static optimal to
the dynamic optimal.

In contrast to Proposition 3.2 that max-throughput policy is
good enough for F ≥ H , Corollary 4.3 tells us that there is
always some reduction in file transfer time even for large file
size F under the dynamic optimal policy. This is because the
extra negative term in the numerator can be large, since k =
bF/∆ri∗c could be big for large F , implying that the second
argument in the min{·, ·} function may no longer be increasing
in F . Note however that the reduction in transfer time would be
minimal for large file sizes since the lower bound in Corollary
4.3 will rise to 1 as F goes to infinity.

V. PRACTICAL CONSIDERATIONS

While the dynamic optimal policy gives a smaller expected
transfer time, we face a scaling problem when the file size can
differ from each, effectively changing the underlying ‘graph’
in the corresponding shortest path problem. This warrants re-
computation of the dynamic optimal policy for each file size,
which would be unacceptable in reality. In this section, we
discuss the policy re-usability issue and propose a heuristic
policy balancing the performance and the computational cost.
We also consider the case where the SU has no information
about the channel parameters beforehand and it must sense and
access channels on the fly in order to find the optimal policy,
thereby extending the problem to an online setting.

A. Performance-Complexity Trade Off

Due to the nature of the shortest path problem, a change in
file size induces a change in the underlying graph. Transmitting
different-sized files is very common [27], and if the goal is
to always determine the best solution, the only option is to
recompute the dynamic optimal policy for every different file
size. This would not be scalable in applications where minimal
computation is required, and policies that can be promptly
modified and reused across different file sizes with performance
guarantees would be highly desirable.

We approach this issue by proposing a heuristic policy that
utilizes the max-throughput policy, which is fixed and known to
the SU, and the static optimal policy, which is relatively simpler
to evaluate due to E[T (i, F )] being known in closed form for
any channel i and file size F . Note that the max-throughput
policy coincides with the dynamic optimal policy when the file
size is an integer multiple of ∆ri∗ according to Proposition
4.2. We also know that the static optimal policy significantly
outperforms the max-throughput policy especially for smaller
file sizes. Combining these two policies, by transmitting file
through max-throughput channel until the remaining file size
becomes ‘small’ so as to apply the static optimal policy for
the rest, will strike the right balance between computational
complexity and achievable performance gain.

With this motivation in mind, we divide file size F :=
F1+F2 into two parts: F1 = m∆ri∗ (m = 0, 1, · · · ,bF/∆ri∗c)
and F2 = F − F1. The heuristic policy πheu is defined as
follows: The SU first transmits the F1 amount of the file through
the max-throughput channel i∗, and then sticks to the static
optimal policy iso(F2) for the remaining amount F2 of the file.
Due to the page limit, we refer readers to the proof of Corollary
4.3 in our technical report [28], in which the upper bound of
ratio E[T (πheu, F )]/E[T (i∗, F )] is monotonically decreasing
in m. The largest possible m gives us the smallest upper bound
of the ratio. Moreover, the upper bound in Corollary 4.3 is
smaller than that of the static optimal policy in Corollary 3.3.
These arguments suggest that the heuristic policy πheu with
largest possible m can potentially lead to smaller transfer time
compared to different values of m. Besides, our heuristic policy
can further reduce the computational cost for a set of files
sharing the same remaining file size F2 because iso(F2) has
already been found and no further re-computation is needed
for this set of files.

B. Unknown Channel Environment
We now consider the setting where the SU does not know the

available probability pi for any channel i ∈ N and only knows
the rate ri — a commonly analysed setting in the OSA literature
[10], [11]. The SU has no alternative but to observe the states
of these channels when it tries to access them, and build its own
estimations of channel probabilities. In this extended setting, we
study our problem as an online shortest path problem, which
has been widely studied in [23], [29], [30] for different kinds
of cost functions. [23] proposed a Kullback-Leibler source
routing (KL-SR) algorithm to an online routing problem with
geometrically distributed delay in each link, which coincides
with our link cost in the underlying graph of the shortest path
problem shown in Figure 3(b).

For our purpose, we modify KL-SR algorithm; key differ-
ences being that we let the file size vary across the episodes, al-
lowing a different underlying graph of the shortest path problem
for each episode instead of the fixed underlying graph of the
shortest path problem in [23]. Algorithm 1 describes our online
implementation, where F k is the file size to be transferred in the
k-th episode. ni(k) denotes the number of times channel i has
been sensed before the k-th episode and p̄i(k) is the empirical
average of channel i’s available probability throughout the k−1



episodes so far. With ni(k) and p̄i(k), the estimated available
probability p̂i(k) of channel i is then derived from the KL-
based index in [23]. As mentioned in line 1 in Algorithm 1, the
SU can choose one of the various policies according to which
it wishes to perform the file transfer, i.e., dynamic optimal
policy π∗, static optimal policy iso, max throughput policy i∗

or the heuristic policy πheu, and then stick to that policy. Let
Ẽ[T (π, F k)] be the estimated expected transfer time of policy
π at the k-th file by using the estimated parameter p̂i(k) instead
of pi for all i ∈ N in (7). In line 7 in Algorithm 1, πk will
be computed as πk=arg minπ∈Π(Fk) Ẽ[T (π, F k)] for dynamic
optimal policy; πk=arg mini∈N Ẽ[T (i, F k)] for static optimal
policy and πk = arg max rip̂i(k) for max-throughput policy.
For heuristic policy πheu, πk will be computed in the same
way as described in Section V-A with estimated parameters
{p̂i(k)}i∈N .

Algorithm 1 Online file transfer algorithm
1: Choose the type of policy to use: π∗, iso, i∗ or πheu.
2: Apply static policy i in the i-th episode to transmit the file

of size F i for i = 1, 2, · · · , N , and update ni(N + 1),
p̄i(N + 1) for i ∈ N at the end of the N -th episode

3: for k ≥ N + 1 do
4: Compute the estimated channel statistics {p̂i(k)}i∈N

according to the KL-based index in [23].
5: Given a file of size F k, compute the policy πk with
{p̂i(k)}i∈N and observe channel status for the whole file
transfer process in this episode.

6: Update ni(k + 1), p̄i(k + 1) for i ∈ N .
7: end for

The performance of Algorithm 1 with varying file sizes (as-
suming bounded file size) is measured by its regret E[R(K)] ,
E
∑K
k=1(T (πk, F k) − T (πtar(F

k), F k)), which is defined as
the cumulative difference of expected transfer time between
policy πk at k-th file and the targeted optimal policy πtar ∈
{π∗, iso, i∗, πheu} up to the K-th file. The regret analysis is the
nearly same as Theorem 5.4 in [23] and we only present the
regret bound of Algorithm 1 due to the page limit. We have,

E[R(K)] ≤ O
(

NFmax

∆minp2
minrmin

log(K)

)
, (8)

where Fmax is the largest possible file size,
pmin = mini∈[N ] pi, rmin = mini∈[N ] ri and ∆min =
min{F∈(0,Fmax],π∈Π(F )/πtar} E[T (π, F )] − E[T (πtar(F ), F )]
is the smallest non-zero difference of expected transfer time
between any sub-optimal policy π and the targeted optimal
policy πtar. The regret (8) scales linearly with the number
of channels N , instead of the number of edges in the online
shortest path problem [23], because each edge in our setting
(see Figure 3) is chosen from one of N channels while each
edge in [23] is treated as a different ‘arm’.

VI. NUMERICAL RESULTS

In this section, we present numerical results for file transfer
time under four different policies in online settings (unknown
pi’s), using three different channel scenarios as in [12], [14],

[25]. Through these results, we show the significant time
reduction achieved by the dynamic optimal, static optimal and
heuristic polices over the max-throughput channel, in line with
theoretical analysis.

We consider the experimental setup as an IEEE 802.22
system with 8 different channels. The time duration ∆ is
set to 100 ms, per IEEE 802.22 standard [3]. We use three
different channel scenarios: gradual, steep and lossy [12], [14],
[25]. Gradual refers to a case where the available probability
of the max-throughput channel is larger than 0.5. Steep is
characterized by the available probability of each channel being
either very high or very low. Lossy means that the available
probability of the max-throughput channel is smaller than 0.5.
The channel parameters in the above three channel scenarios
are given in Table I.

TABLE I
CHANNEL PARAMETERS IN THREE CHANNEL SCENARIOS

channel i 1 2 3 4 5 6 7 8
ri (Mbps) 1.5 4.5 6 9 12 18 20 23
pi (gradual) 0.95 0.85 0.75 0.65 0.4 0.3 0.2 0.1
pi (steep) 0.9 0.25 0.2 0.18 0.17 0.16 0.15 0.14
pi (lossy) 0.9 0.8 0.7 0.4 0.3 0.25 0.2 0.1

In our setting, the file size need not be fixed. Since larger
file sizes naturally take more time to transmit, it makes sense
to normalize our performance metric across the range of file
sizes. We define our metrics as average time ratio and average
throughput. For an arbitrary sequence of files {F k}k∈Z+

,
the average time ratio at the K-th episode is defined as
1
K

∑K
k=1 T (πk, F k)/E[T (i∗, F k)] and the average throughput

is represented as 1
K

∑K
k=1 F

k/T (πk, F k). Here, T (πk, F k)
is the measured transfer time of a file of size F k applying
the policy πk at the k-th episode. Policy πk is based on the
estimated parameter, which is updated by the SU on the fly, as
described in Section V-B.

In our simulation, we generate 7000 files from (0, 7] (Mb)
uniformly at random to be used in Algorithm 1. The simula-
tion is repeated 200 times. We observe in Figure 4 that the
max-throughput policy achieves the largest average throughput
while, counter-intuitively, has the longest transfer time in all
channel cases except the lossy case. The reason is that the
max-throughput policy computed by the SU is affected by the
estimated parameters and can be the inferior policy, resulting
in lower average throughput initially. For the lossy case on the
right column in Figure 4, even though the red curve (max-
throughput policy) is below the blue one for now, which is an
effect of imperfect knowledge of channel parameters, we infer
that the red curve will eventually exceeds all other curves as
the SU will perfectly learn all the channel parameters.

Next we focus on the average time ratio in the left column
of Figure 4. We first observe that all curves eventually flatten
out, signifying the convergence of Algorithm 1. In the gradual
case, the average time ratio is above 95% for all three policies,
implying that they don’t obtain much reduction in time and the
max-throughput channel is good to access when it is available
for most of the time. However, as shown in the steep and lossy
cases respectively, the dynamic optimal policy and heuristic
policy, as well as the static optimal policy, can save over
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Fig. 4. Average time ratio (left column) and average throughput (right column).
Channel scenarios from top to the bottom: Gradual; Steep; Lossy.

10% time on average over the baseline. This observation is in
line with Corollary 3.3 and Corollary 4.3 since the available
probabilities of the max-throughput channel are very small
in steep and lossy cases. Furthermore, the heuristic policy,
in addition to keeping the complexity low, achieves similar
transfer time to that of the dynamic optimal policy; at the
same time performing better than the static optimal policy, as
expected from Section V-A.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have developed a theoretical framework
for file transfer problem, where channels are modeled as inde-
pendent Bernoulli process, to provide the accurate file transfer
time for both static and dynamic policies. We pointed out that
the max-throughput channel does not always minimize the file
transfer time and provided static optimal and dynamic optimal
policies to reduce the file transfer time. Throughout our analy-
sis, we demonstrated that our approaches can obtain significant
reduction in file transfer time over the max-throughput policy
for small file sizes or when the max-throughput channel has
very high rate but with low available probability, as typically
the case in reality. Our future works include the extension to
heterogeneous and Markovian channels for minimum expected
file transfer time, for which our SSP formulation for online
learning scenario becomes no longer applicable.
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