


models that either (i) merely modify the output

of a standard classification/regression head or (ii)

modify the parameters of the head itself. These

two options correspond to the mixed effects mod-

eling concepts of random intercepts and random

slopes, respectively. For the same reason that such

random effects can be incorporated into effectively

any generalized linear model in a modular way, our

components can be be similarly incorporated into

any NLI model. We describe how this can be done

for a simple RoBERTa-based NLI model.

We find (i) that models containing only random

intercepts outperform both standard models and

models containing random slopes when annotators

are known; and (ii) that when annotators are not

known, performance drops precipitously for both

random effects models. Together, these findings

suggest that those building NLI datasets should

provide annotator information and that those de-

veloping NLI systems should incorporate random

effects into their models.

2 Extended Task Definition

In the standard supervised setting, NLI datasets are

(graphs of) functions from text-hypothesis pairs

〈Ti, Hi〉 ∈ Σ∗ × Σ∗ to inference labels yi ∈ Y—

where Y is commonly {contradicted, neutral, en-

tailed} or {not-entailed, entailed}, but may also

be a finer-grained (e.g. five-point) ordinal scale

(Zhang et al., 2017) or bounded continuous scale

(Chen et al., 2020). The NLI task is to produce a

single label from Y given a text-hypothesis pair.

We extend this setting by assuming that NLI

datasets are (graphs of) functions from text-

hypothesis pairs and annotator identifiers ai ∈ A
to inference labels and that the NLI task is to pro-

duce a single label given a text-hypothesis pair and

an annotator identifier. A particular model need

not make use of the annotator information during

training and may similarly ignore it at evaluation

time. Though many existing datasets do not pro-

vide annotator information, it is trivial for a dataset

creator to add (even post hoc), and so this extension

could feasibly be applied to any existing dataset.

3 Models

We assume some encoder that maps from

〈Ti, Hi〉 ∈ Σ∗ × Σ∗ to 〈xTi
,xHi

〉 ∈ R
M × R

N

independently of annotator ai, and we focus mainly

on the mapping from zi ≡ 〈xTi
,xHi

〉 and ai to yi.

We consider two types of model: one contain-

ing only annotator random intercepts and another

additionally containing annotator random slopes.

The first assumes that differences among annota-

tors are relatively shallow—e.g. given some true

label for a pair (or distribution thereon), annota-

tors have their own specific way of mapping that

value to a response—and the second assumes that

the differences among annotators are deeper—e.g.

annotators differ in how they interpret the relation

between texts and hypotheses. This distinction is

independent of the labels Y: regardless of whether

the labels are discrete or continuous, random ef-

fects can be incorporated. In the language of gener-

alized linear mixed models, the link functions are

the only thing that changes. We consider two label

types: three-way ordinal and bounded continuous.

Annotator random intercepts amount to anno-

tator specific bias terms ρai
on the raw predictions

of a classification/regression head. Unlike stan-

dard fixed bias terms, however, what makes these

terms random intercepts is that they are assumed to

be distributed according to some prior distribution

with unknown parameters. This assumption mod-

els the idea that annotators are sampled from some

population, and it yields ‘adaptive regularization’

(McElreath, 2020), wherein the biases for annota-

tors who provide few labels will be drawn more

toward the central tendency of the prior.

Random intercepts for categorical outputs

can take two forms, depending on whether the

model enforces ordinality constraints—as linked

logit models do (Agresti, 2014)—or not. Since

most common categorical NLI models do not en-

force ordinality constraints, we do not enforce them

here, assuming that the model has some indepen-

dently tunable function hθ : RM × R
N → R

|Y|

that produces potentials for each label and that:

f(yi | zi,θ,ρai
) = softmax (hθ(zi) + ρai

)

where ρai
∼ N (0,Σ) with unknown Σ.

Random intercepts for continuous outputs

are effectively shifting terms on the single value

predicted by some independently tunable function

h : R
M × R

N → R. If the continuous output

is furthermore bounded, a squashing function g is

necessary. In the bounded case, we assume that

the variable—scaled to (0, 1)—is distributed Beta

(following Sakaguchi and Van Durme, 2018) with

mean µi and precision νi = exp (ρai1 + ν0).



MegaVeridicality
I Someone knew that something happened.

That thing happened.
I Someone thought that something happened.

That thing happened.

MegaNegRaising
I Someone didn’t think that something happened.

That person thought that thing didn’t happen.
I Someone didn’t know that something happened.

That person knew that thing didn’t happen.

Table 1: NLI sentence pairs from MegaVeridicality and

MegNegRaising. I indicates the line is a text, and

the following line is its corresponding hypothesis. Hy-

potheses in green indicate that the context entails the

hypothesis; those in red indicate that it does not.

µi = g (hθ(zi) + ρai2)

αi; βi = µiνi; (1− µi)νi

f(yi | zi,θ,ρai
; ν0) = Beta(yi | αi, βi)

where ρai
∼ N (0,Σ) with unknown Σ. This

implies that νi ∼ logN (ν0, σ
2
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) with unknown ν0.

The precision parameter νi controls the shape of

the Beta: with small νi, ai tends to give responses

near 0 and 1 (whichever is closer to µi); with large

νi, ai tends to give responses near µi.

Annotator random slopes amount to annotator-

specific classification/regression heads hφi
. We

swap these heads into the above equations in place

of hθ. As for the random intercept parameters, we

assume that the annotator-specific parameters φi,

which we refer to as the annotator random slopes,

are distributed φi ∼ N (θ,Σ) with unknown θ,Σ.

One way to think about this model is that hθ pro-

duces prototypical interpretation around which an-

notators’ actual interpretations are distributed.

4 Experiments

We compare models both with and without ran-

dom effects when fit to NLI datasets conforming

to the extended setting described in §2. The model

without random intercepts (the fixed model) simply

ignores annotator information—effectively locking

ρai
to 0 for all annotators ai.

Encoder All models use pretrained RoBERTa

(Liu et al., 2019) as their encoder. We use the basic

LM pretrained versions (no NLI fine-tuning).

Data To our knowledge, the only NLI datasets

that both publicly provide annotator identifiers

and are large enough to train an NLI system are

MegaVeridicality (MV; White and Rawlins, 2018;

White et al., 2018), which contains three-way cate-

gorical annotations aimed at assessing whether dif-

ferent predicates give rise to veridicality inferences

in different syntactic structures, and MegaNegRais-

ing (MN; An and White, 2020), which contains

bounded continuous [0, 1] annotations aimed at

assessing whether different predicates give rise to

neg(ation)-raising inferences in different syntactic

structures. Table 1 shows example pairs from each

dataset. Both datasets contain 10 annotations per

text-hypothesis pair from 10 different annotators.

MV contains 3,938 pairs (39,380 annotations) with

507 distinct annotators, and MN contains 7,936

pairs (79,360 annotations) with 1,108 distinct an-

notators. In both datasets, each pair is constructed

to include a particular main clause predicate and a

particular syntactic structure. To test each model’s

robustness to lexical and structure variability, we

use this information to construct folds of the cross-

validation (see Evaluation).

Classification/Regression Heads We consider

heads with one hidden affine layer followed by

a rectifier. We use a hidden layer size of 128 and

the default RoBERTa-base input size of 768.

Training All models were implemented in Py-

Torch 1.4.0 and were trained for a maximum of 25

epochs on a single Nvidia GeForce GTX 1080 Ti

GPU, with early stopping upon a change in average

per-epoch loss of less than 0.01. We use Adam opti-

mization (lr=0.01, β1=0.9, β2=0.999, ε=10−7) and

a batch size of 128. All code is publicly available.

Loss We use the negative log-likelihood of the

observed values under the model as the loss.

Evaluation We evaluate all of our models using

5-fold cross-validation. We consider four partition-

ing methods: (i) RANDOM: completely random

partitioning; (ii) PREDICATE: partitioning by the

main clause predicate found in the text (a particular

main clause predicate occurs in one and only one

partition); (iii) STRUCTURE: partitioning by the

syntactic structure found in the text (a particular

structure occurs in one and only one partition); and

(iv) ANNOTATOR: a particular annotator occurs in

one and only one partition. For the first three meth-

ods, we ensure that each annotator occurs in every

partition, so that random intercepts and random

slopes for that annotator can be estimated. For the

ANNOTATOR method, where we do not have an

estimate for the random effects of annotators in the

held-out data, we use the mean of the prior.1

We report mean accuracy on held-out folds for

the categorical data (MV); and following Chen et al.

1We additionally experimented with marginalizing over
the random effects, but the results did not differ.



RANDOM PREDICATE STRUCTURE ANNOTATOR

Model Acc Corr Acc Corr Acc Corr Acc Corr

Fixed 1.00 0.35 0.92 0.23 0.83 0.27 0.91 0.31

Random Intercepts 1.15 1.53 1.13 1.53 1.05 1.53 0.98 0.20

Random Slopes 1.17 1.42 1.13 1.42 0.82 1.41 0.42 0.05

Table 2: Mean of the rescaled accuracy (categorical data) and rank correlation (bound continuous data) across

cross-validation folds for each partitioning method (scoremod from §4). Bolded values are best in column.

(2020), we report mean rank correlation on held-

out folds for the bounded continuous data (MN).

To make these metrics comparable, we report them

relative to the performance of both a baseline model

and the best possible fixed model.

scoremod =
raw-scoremod − raw-scorebase

raw-scorebest − raw-scorebase

For the categorical data, the baseline model pre-

dicts the majority class across all pairs, and the

best possible fixed model predicts the majority

class across annotators for each pair. Similarly, for

the bounded continuous data, the baseline model

predicts the mean response across all pairs, and

the best possible fixed model predicts the mean

response across annotators for each pair.2

These relative scores are 0 when the model does

not outperform the baseline and 1 when the model

performs as well as the best possible fixed model.

It is possible for a random effects model to obtain

a score of greater than 1 by leveraging annotator

information or less than 0 if it overfits the data.

5 Results

Table 2 shows the results. The random intercepts

models reliably outperform the fixed models in

all cross-validation settings except ANNOTATOR

in Bonferroni-corrected Wilcoxon rank-sum tests

(ps<0.05). Indeed, they tend to reliably outperform

even the best possible fixed model, having rescaled

scores above 1. The random slopes models, while

in many cases comparable to the random intercepts

models, confer no additional benefit over them. In

the one instance in which the random slopes model

performs best (the random partition for categorical

data), the advantage relative to the random inter-

cepts model is not statistically significant.

Consistent with Pavlick and Kwiatkowski’s find-

ings, these results suggest that variability in annota-

tors’ responding behavior is substantial; otherwise,

it would not be possible for the random effects

2Rank correlation is technically undefined when one of the
variables is constant. For the purposes of computing scoremod

for the bounded continuous data, we treat raw-scorebase as 0.

models to outperform the best possible fixed model,

and we would not expect the observed drops in per-

formance when annotator information is removed.

But this variability is likely relatively shallow: if

these differences were due to deeper differences

in annotators’ interpretation of the pair, we would

expect this to manifest in better performance by the

random slopes models, as the latter subsumes the

random intercepts model and can leverage the ad-

ditional power of annotator-specific classification

or regression heads. Of course, it remains a live

possibility that the encoder we used does not ex-

tract features that are linearly related to the relevant

interpretive variability, and so further investigation

of random slopes models with different encoders

may be warranted (see Geva et al., 2019).

Contrasting the results on ordinal and bounded

continuous data, the fixed model tends to perform

better on ordinal data than on bounded continu-

ous data. A similar trend is not seen for the ran-

dom effects models. Indeed, the random intercepts

model performs substantially better on the bounded

continuous data under all settings except for AN-

NOTATOR. These results could be due to the link

function we used for the bounded continuous data:

the fixed model consistently learned small values

for the precision parameter ν0, resulting in sparse

(bimodal) beta distributions. But the fact that the

random intercepts model reliably outperforms the

best possible fixed model implies that any tweaks

to the link function would not bring the fixed model

up to the level of the random intercepts model.

6 Analysis

To understand how annotator biases tend to pat-

tern with ordinal and bounded continuous scales,

we investigate the mean ρa for each annotator a

in the random intercepts models across folds un-

der the RANDOM partition method. Figure 2 plots

the distribution of biases across categorical annota-

tors when the fixed effect potentials—hθ(zi) in the

equations in §3—are set to 0: softmax(ρa). This

distribution can be thought of as an indicator of
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