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Abstract

Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining
insights into cognitive processes in humans. Data amassed from fMRI measure-
ments result in volumetric data sets that vary over time. However, analysing such
data presents a challenge due to the large degree of noise and person-to-person vari-
ation in how information is represented in the brain. To address this challenge, we
present a novel topological approach that encodes each time point in an fMRI data
set as a persistence diagram of topological features, i.e. high-dimensional voids
present in the data. This representation naturally does not rely on voxel-by-voxel
correspondence and is robust to noise. We show that these time-varying persis-
tence diagrams can be clustered to find meaningful groupings between participants,
and that they are also useful in studying within-subject brain state trajectories
of subjects performing a particular task. Here, we apply both clustering and tra-
jectory analysis techniques to a group of participants watching the movie ‘Partly
Cloudy’. We observe significant differences in both brain state trajectories and
overall topological activity between adults and children watching the same movie.

1 Introduction

Human cognitive processes are commonly studied using functional magnetic resonance imag-
ing (fMRI), amassing highly complex, well-structured, and time-varying data sets across multiple
individual subjects. fMRI uses blood oxygen measurements of 3D brain volumes divided into voxels,
i.e. 3D pixels with dimensions in the mm range. Voxels are measured over time while participants
∗These authors contributed equally.
†These authors jointly supervised this work; corresponding authors.
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Figure 1: A graphical overview of our method. We represent an fMRI stack (a) as a volume (b),
from which we create a sequence of cubical complexes (c). Calculating the persistent homology of
this sequence results in a set of time-varying persistence diagrams (d); note that we only show the
diagrams for a single dimension of the cubical complex. We calculate summary statistics from the
diagrams (not shown), and convert them to vectorial representations (e) for analysis tasks.

perform cognitive tasks, resulting in time-varying activity measurements and an activation function
over the volume. The ultimate goal of extracting higher-level abstractions from such data is primarily
impeded by two factors: (i) the measurements are inherently noisy, due to changes in machine
calibration, spurious patient movements, or environmental conditions, and (ii) there is a high degree
of variability even between otherwise healthy brains (e.g. in terms of the representation of stimulus
and activity in the brain). While these factors can be mitigated by certain experimental protocols
and pre-processing decisions, they cannot be fully eliminated. This demonstrates the need for using
representations that are to some extent robust with respect to noise and invariant with respect to
isometric transformations in order to better capture cognitively-relevant fMRI activity, particularly
across populations where anatomy–function relations may differ.

Traditional approaches largely ignore these factors, considering them inevitable noise in the mea-
surements. Voxel activity is often either directly compared across different cognitive tasks, or the
time-varying activity of voxels in pre-defined brain regions sharing functional properties is correlated
to create a ‘functional connectivity’ graph. Our approach differs from existing approaches for fMRI
data analysis in two crucial ways, namely (i) it is coordinate-free, providing a stable representation
of high-level brain activity, even without a voxel-by-voxel match, and (ii) it does not require the
creation of a correlation graph, or operate on any other approximated graph structure (in contrast
to the MAPPER algorithm [55], for example). Instead, our method uses the ‘raw’ voxel activations
themselves as a cubical complex, which we further characterise using time-varying persistence
diagrams that indicate the presences of topological features such as voids of various dimensions in
the voxel activations. These topological features are naturally invariant to a variety of shifts and
noise (see Section 4 for more details). Our formulation enables the non-parametric analysis of fMRI
data both statically and dynamically, i.e. for assessing differences between cohorts across time, and
enabling insights into time-varying topological brain state trajectories within cohorts or individuals.
For individuals, we calculate an averaged summary statistic over time that can be embedded to
explore population structure and variability statically, which we use to organise subjects in our test
set by age. Then, after partitioning subjects into cohorts, we propose a novel method for producing
a time-varying trajectory of persistence diagrams that can be used to quantify the progression and
entropy of brain states. In summary, we make the following contributions:

• We present a novel non-parametric framework for transforming time-varying fMRI data into
time-varying topological representations.

• We empirically show that these representations (i) capture age-related differences, and
(ii) shed light on the cognitive processes of age-stratified cohorts.

• Finally, we show that our topological features are more informative for an age prediction
task than other representations of the data set.

2 Background on topological data analysis

Topological data analysis (TDA) recently started gaining traction in machine learning [13, 32–
35, 37, 40, 45, 47, 48, 50, 67]. TDA is a rapidly-growing field that provides tools for analysing the
shape of data sets. This section provides a brief overview, aiming primarily for intuition and less
for depth (see also Section A.1 for a worked example). We refer to Edelsbrunner and Harer [25] for
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details. To our knowledge, this is the first time that TDA has been directly applied to fMRI data (as
opposed to applying it on auxiliary representations such as functional connectivity networks).

Simplicial homology. The central object in algebraic topology is a simplicial complex K, i.e. a
high-dimensional generalisation of a graph, containing simplices of varying dimensions: vertices,
edges, triangles, tetrahedra, and their higher-dimensional counterparts. A graph, for example, can
be seen as a 1-dimensional simplicial complex, containing vertices and edges. Such complexes are
primarily used to describe topological objects such as manifolds1. Simplicial homology refers to a
framework for analysing the connectivity of K via matrix reduction algorithms, assigning K a graded
set of mathematical groups, the homology groups. Homology groups describe the topological features
of K; in low dimensions d, these features are called connected components (d = 0), tunnels (d = 1),
and voids (d = 2), respectively. The number of d-dimensional topological features is referred to as
the dth Betti number βd ∈ N; it is used to distinguish between different topological objects. For
example, a circle (i.e. the boundary of a disk) has Betti numbers (1, 1) because there is a single
connected component and a single tunnel, while a filled square has Betti numbers (1, 0).

Persistent homology. The analysis of real-world data sets, having no preferred scale at which
features occur, requires a different approach: Betti numbers cannot be directly used here because
they only represent counts, i.e. a single scale. Endowing them with additional information leads to
persistent homology, an extension of simplicial homology that requires a simplicial complex K and
an additional function f : K → R, such as an activation function. If f only attains a finite set of
function values f0 ≤ f1 ≤ · · · ≤ . . . fm−1 ≤ fm, one can sort K according to them, leading to a
filtration—a nested sequence of simplicial complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K, (1)

with Ki := {σ ∈ K | f(σ) ≤ fi}. Filtrations represent the evolution of K along f . Similar to the
Watershed transform in image processing [49], topological features can be created (a new connected
component might arise) or destroyed (two connected components might merge into one) in a filtration.
Persistent homology efficiently tracks topological features across a filtration, representing each one
of them as a tuple (fi, fj) ∈ R2, with i ≤ j and fi, fj ∈ im(f).

Persistence diagrams. The tuples (fi, fj) are collected according to their dimension d and stored
in the dth persistence diagram Dd, which summarises all d-dimensional topological activity. As a
consequence of the calculation process, all points in Dd are situated above the diagonal. The quantity
pers(x, y) := |y−x|, i.e. the distance to the diagonal (up to a constant factor), of a point (x, y) ∈ Dd
is called the persistence of its corresponding topological feature. Low-persistence features used to
be considered ‘noise’, while high-persistence features are assumed to correspond to ‘real’ features
of a data set [26]. Recent work cast some doubts as to whether this assumption is justified [11]; in
medical data, low persistence merely implies ‘low reliability’, not necessarily ‘low importance.’

3 Related work

For fMRI analysis, the typical approach is to compare voxel activations directly, but when one
is interested in time-varying activity from a continuous stimulus (e.g. while watching a movie or
resting), voxel data is sometimes transformed into correlation matrices, either calculated across time
points [6] or across voxels [65]. In the latter case, the goal is to study functional connectivity, i.e.
information about the connectivity between brain regions sharing certain functional properties. Due
to the size of the resulting matrices, one also often reduces the dimensionality by applying an atlas
parcellation [54]. Both of these representations are efficacious, with voxel-by-voxel correlation
matrices providing insights into the topology and dynamics of human brain networks [60]. Moreover,
for many multi-subject fMRI studies, shared response models [15], abbreviated as SRMs, have
proven effective. SRMs ‘learn’ a mapping of multiple subjects into the same space, enabling the
detection of group differences, or the study of relations between brain activity and movie annotations,
for example [62]. SRM was recently used to map voxel activity into a functional space (as opposed
to an anatomical one) in order to study the brain representation of, among others, visual and auditory

1We will deviate from this notion later on in this paper but follow the conventional exposition for now, which
focuses primarily on a simplicial view.
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information while receiving naturalistic audiovisual stimuli [36]. Nevertheless, while it is one of the
most powerful techniques for extracting cognitively-relevant signals from fMRI data, there is still
room for improvement.

Previous work fusing (f)MRI analysis and topological data analysis is either based on auxiliary (topo-
logical) representations [51, 56], such as the MAPPER algorithm [55] which operates on graphs, and
requires numerous parameter choices, or it makes use of functional connectivity information (in-
formation about connectivity between brain regions sharing functional properties) and pre-defined
regions of interest [5, 17, 27, 31, 52]. Some studies have investigated topological approaches on other
measuring modalities, such as structural MRI for anatomical analyses [16], or diffusion MRI/DTI for
studying white matter integrity [17]. By contrast, our method operates directly on fMRI volumes,
requiring neither additional location information nor auxiliary representations. We will instead make
use of cubical complexes, for which we essentially replace triangles by squares and tetrahedra by
cubes (see Figure 1c and the subsequent section for details). Cubical complexes and their homology
are well-studied in algebraic topology, but their use in real-world applications used to be limited to
image segmentation [2]. This changed with the rise of persistent homology, which was extended to
the cubical setting [44, 59, 63], leading to cubical persistent homology [23, 41, 64].

4 A topology-based framework for fMRI data sets

In the following, we will be dealing with time-varying fMRI. By this, we mean that we are observing
an activation function f : V × T → R over a 3D bounded volume V ⊂ R3 and a set of time steps T .
The alignment of V across different subjects is highly non-trivial; we provide more details about
this at the beginning of Section 5. For t ∈ T , the function f(·, t) is typically visualised using either
stacks of images (Figure 1a) or volume rendering (Figure 1b). While it would be possible to analyse
the topology of individual images [9], we want a holistic view of the topology of V . To this end, we
transform V into a cubical complex C, i.e. an equivalent of a simplicial complex, in which triangles
and tetrahedra are replaced by squares and cubes (see Figure 1c). Cubical complexes are perfectly
suited to represent an fMRI volume V because each voxel corresponds precisely to one cubical
simplex (whereas if we were to use a simplicial complex, we would have to employ interpolation
schemes as there is no natural mapping from voxels to tetrahedra; see Figure A.3 for more details).

Terminology. We assume that we are given a data set of n volumes V1, . . . ,Vn, corresponding to n
different individuals, and a set of m time steps T = {t1, . . . , tm} ⊂ N. We use vert(Vi) to denote
the vertex (i.e. voxel) set of Vi, and fi to denote its activation function, i.e. fi : Vi × T → R, Here,
the activation functions are aligned with respect to their time steps; this is an assumption that greatly
simplifies all subsequent analysis steps. It does not impose a large restriction in practice.

Topological features from fMRI data. We obtain topological features of each fi following a three-
step procedure, namely (1) cubical complex conversion, (2) filtration calculation, and (3) persistence
diagram calculation. The conversion of a volume Vi to a cubical complex Ci is simple, as Vi and
Ci share the same cubical elements and connectivities. Thus, the vertices of Ci are the voxels of Vi
and there are edges between neighbouring vertices as defined by a regular 3D grid, in which each
vertex has six neighbours (two per coordinate axis). These neighbourhoods implicitly define the
connectivity of higher-dimensional elements (squares and cubes). We will use σ to denote an element
of a cubical complex2. Next, we impose a filtration—an ordering—of the elements of Ci. Since we
want to analyse topological features over time, we have to calculate one filtration for every time step.
Given tj ∈ T , we assign the values of fi(·, tj) to Ci. We use the most natural assignment: each
vertex (voxel) of Ci receives its activation value at time tj , while a higher-dimensional element σ
is assigned a value recursively via fi(σ, tj) := maxv∈vert(σ) fi(v, tj). We then sort the cubical
complex Ci in ascending order according to these values; in case of a tie, a lower-dimensional
element (e.g. an edge) precedes a higher-dimensional one (e.g. a square). Having obtained a filtration
according to Equation 1, we may now calculate the persistent homology of Ci at time step tj ,
resulting in a collection of persistence diagrams. Since each Vi is three-dimensional, we obtain a
triple

(
D(i,j)

0 ,D(i,j)
1 ,D(i,j)

2

)
for every time step tj ; persistence diagrams for d ≥ 3 are all empty.

Notice that the calculation of persistence diagrams for a participant i and a time step tj can be easily
2These elements are the ‘simplices’ of the cubical complex, but we refrain from re-using the term ‘simplex’

so as not to confuse ourselves or the reader.
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parallelised since we treat time steps independently. Subsequently, we will use D(i) to denote the set
of all persistence diagrams associated with the ith participant. We can plot the resulting persistence
diagrams of each participant as a set of diagrams in R3, with the additional axis being used to
represent time (Figure 1d).

The filtration that we employ here is also known as a sublevel set filtration. Other filtrations [3] could
also be used (our method is not restricted to any specific one), but a symmetry theorem [21] states
that unless we are willing to modify the activation function values themselves we are not gaining
any more information about the topology of our input data. For the subsequent analyses, we will be
dealing with collections of persistence diagrams D(i). The space of persistence diagrams affords
several metrics [20, 22], but they are computationally expensive and infeasible for the cardinalities
we are dealing with (a typical persistence diagram of a participant contains about 10,000 features).
We will thus be working with topological summary statistics and persistence diagram vectorisations.

Properties. Prior to delving deeper into our pipeline, we describe some properties of our approach
and why topological features are advantageous. Topology is inherently coordinate-free, meaning that
all the features we describe are invariant to homeomorphism, i.e. stretching and bending. Moreover,
the persistence diagrams of spaces of different cardinalities and scales can be compared, making it
possible to ‘mix’ participants from studies with different imaging modalities or resolutions (of course,
this should not be done indiscriminately). Arguably the largest advantage of persistent homology is
its stability with respect to perturbations [20, 22, 57]. This is quantified by the following theorem,
whose proof we defer to Section A.6.

Theorem 1. Let f : V → R and g : V → R be two activation functions. Then their corresponding
persistence diagrams Df and Dg satisfy W∞(Df ,Dg) ≤ ‖f − g‖∞, where W∞ denotes the bottle-
neck distance between persistence diagrams, defined as W∞(Df ,Dg) := infη : D→Dg

supx∈Df
‖x−

η(x)‖∞, with η : Df → Dg denoting a bijection between the points of the two diagrams, and ‖ · ‖∞
referring to the L∞ norm.

The consequence of this stability theorem is that the persistence diagrams that we calculate are
stable with respect to perturbations, provided those perturbations are of small amplitudes. This is a
desirable characteristic for a feature descriptor because it provides us with well-defined bounds for
its behaviour under noise. A more precise version of this stability theorem exists [22], but requires
a more involved setup3, which we leave for future work. In general, we note that time-varying
TDA is still a rather nascent sub-field of TDA. A standard approach, namely the calculation of
‘persistence vineyards’ [19], resulting in a decomposition of a time-varying persistence diagram into
individual ‘vines’, is not applicable here because the changes between different time steps are not
infinitesimal (there is a large amount of temporal coherence between consecutive time steps, but there
is no guarantee that the change between them is upper-bounded). It is still unknown in our setting
whether a vineyard representation with unique vines exists at all [42]. We therefore prefer to treat the
individual time steps as independent calculations but note that future work should address a more
efficient computation by exploiting similarities between consecutive time steps.

Implementation and complexity. While the general calculation of persistent homology on high-
dimensional simplicial complexes is still computationally expensive, there are highly-efficient algo-
rithms for lower-dimensional calculations [8]. Here, we use DIPHA [7], a distributed implementation
of persistent homology, as it implements an efficient algorithm for computing topological features
of cubical complexes [63]. Space and time complexity is linear in the number of voxels, so our
conversion process does not change the complexity of processing the data. The persistent homology
calculation has a time complexity of O(|V|)ω , with ω ≈ 2.376 [38]. The distributed implementation
of DIPHA is reported [7] to be capable of calculating persistent homology for |V| ≈ 109, making
our pipeline feasible and scalable. For the persistence image calculation in Section 5.2, we use
Scikit-TDA [53]. We make our code publicly available4 to ensure reproducibility.

3We will have to show Lipschitz continuity for the functions, plus certain other properties of the space V .
4https://github.com/BorgwardtLab/fMRI_Cubical_Persistence
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(a) Persistence diagrams (b) Persistence diagram
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(c) Summary statistics

Figure 2: Example of summary statistics calculations. Starting from a sequence of time-varying
persistence diagrams (a) of one participant, for each diagram slice (b), we evaluate a scalar-valued
statistic S : D → R, leading to a time series (c); the corresponding time point is highlighted.

5 Results

We evaluate our topological pipeline using open-source fMRI data [46], available on the OpenNeuro
database (accession number ds000228). The participants comprised 33 adults (18–39 years old;
M = 24.8, SD = 5.3; 20 female) and 122 children (3.5–12 years old; M = 6.7, SD = 2.3; 64 female)
who watched the same animated movie ‘Partly Cloudy’ [58] while undergoing fMRI. Please refer to
Section A.3 and Yates et al. [66] for a full description of the pre-processing. The relevant outputs
of these pre-processing steps are: a 4-dimensional (x × y × z × t, with x, y, z being coordinates,
and t representing time) fMRI time series and a whole-brain mask (BM) for each individual subject.
The 4D volume of each participant has dimensions 65 × 77 × 60 × 168. Each of 168 time steps
of the fMRI time series comprises 2 s of the movie and corresponds to the same point in the movie
for each subject; since for the first five time steps only a blank screen was shown, we remove these
plus two time steps to account for the fMRI hemodynamic lag for all analyses. We supplemented
the whole-brain mask by also creating an ‘occipital-temporal’ mask (OM) for each subject. This
entailed finding the intersection between an individual subject’s whole-brain mask and occipital,
temporal, and precuneus regions of interest defined from the Harvard–Oxford cortical atlas. If our
results reflect patterns relevant to cognitive processing, we would expect similar—if not better—
results using this occipital-temporal mask, since it contains the regions most consistently involved
in movie-watching (e.g. visual regions). Last, we also calculated the ‘logical XOR’ between the
whole-brain mask and the occipital-temporal mask; this mask (XM) makes it possible to study the
relevance of topological features with respect to non-visual regions (including the frontal lobe) in
the brain. To prevent analysis bias, data were initially fully unlabelled during the development of
our pipeline. Later on, participants were assigned to cohorts based on their age group, using the
same bins as Yates et al. [66]; we initially did not know whether cohorts were sorted in ascending
or descending order. The actual ages were only used in the age prediction experiment, which was
performed after method development had ceased.

5.1 Static analysis based on summary statistics

Extracting information from the time-varying persistence diagrams of each participant is impeded by
their complex geometrical structure, making it necessary to use summary statistics. We first focus on
a description of global properties of participants, restricting ourselves to persistence diagrams with
d = 2 (i.e. we are studying voids of the activation function). To this end, we calculate topological
summary statistics of the form S : D → R. We calculate two related summary statistics here, namely
the infinity norm ‖D‖∞ of a persistence diagram [20] and the p-norm5 ‖D‖p [14, 22], defined by

‖D‖∞ := max
x,y∈D

pers(x, y)p and ‖D‖p := p

√ ∑
x,y∈D

pers(x, y)p, (2)

with p ∈ R. We found p = 1 to be sufficient, thus using unscaled persistence values. Since both
norms in Equation 2 yield one scalar value for a persistence diagram, the summary statistics turn a
sequence of time-varying persistence diagrams into a time series of scalar-valued summary statistics.
Figure 2 depicts this for a single participant from our data (for illustrative purposes, we show all 168
time steps; as specified before, only 161 time steps will be used for the subsequent analyses).

5The term total persistence is sometimes used interchangeably for this norm.
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(a) BASELINE-TT (b) BASELINE-PP

(c) ‖D‖1 (d) ‖D‖∞

Method BM OM XM

BASELINE-TT 0.09 0.02 0.24
BASELINE-PP 0.41 0.40 0.40
TT-CORR-TDA 0.17 0.11 0.23
PP-CORR-TDA 0.25 0.27 0.23

SRM 0.44 — —

‖D‖1 0.46 0.67 0.48
‖D‖1 parcellated 0.32 0.50 0.34
‖D‖∞ 0.61 0.77 0.73
‖D‖∞ parcellated 0.67 0.50 0.33

(e) Age prediction task

Figure 3: An embedding of the distances for different baselines and topological summaries, based on
the whole-brain mask (BM); colour-coding refers to the age group of participants. The table depicts
the results of the age prediction task, stratified by different brain masks; performance is measured as
a correlation coefficient (bold indicates the best results).

Qualitative evaluation. Figure 3 shows an embedding obtained from our topological summary
statistics (using multidimensional scaling based on the Euclidean distance between per-participant
curves) compared to baseline embeddings, which we obtain from the two correlation matrices
described in Section 3. We refer to them as BASELINE-TT (time-based) and BASELINE-PP (voxel-
based; parcellated for computational ease), respectively (see Section A.4 for additional details). Both
topology-based embeddings are showing a split between participants. By colour-coding the age group
of each participant, we see that topology-based embeddings separate adults (red) from children (other
colours). The baselines, by contrast, do not exhibit such a clear-cut distinction.

Quantitative evaluation. To quantify the benefits of our proposed topological feature extraction
pipeline, we set up a task in which we predict the age of the non-adult participants. Using a
ridge regression and leave-one-out cross-validation (see Section A.4 for detailed descriptions of
all comparison partners and Section A.5 for additional experimental details), we train models on
either the curves of summary statistics (not the embeddings) the baseline matrices, and additional
topological baselines, reporting the correlation coefficient in the table in Figure 3. Higher values
indicate that the model is better suited to predict the age. The SRM result comes from previous work
on the same data set [66]; we note that our task is slightly different6. Overall, we observe strong
correlations, indicating that topological features are highly useful for age prediction and carry salient
information. Performance based on the occipital-temporal mask (OM) and on the XOR mask (XM)
is higher than for the whole-brain mask (BM); we hypothesise that this is partially due to the higher
noise level of BM, whereas OM and XM focus only on a subset of the brain (which decreases the
noise level). We also note that ‖D‖∞, which only considers the most persistence topological feature
of a persistence diagram, performs best in the prediction task, possibly because it is more robust to
small-scale noise. Interestingly, parcellated data (i.e. highly coarse representations) applied to our
cubical complex filtration outperforms the whole-brain mask. This is the only one of the parcellated
volumes to do so. We speculate that the coarsening helps to remove some noise here, whereas the
other masks, containing fewer voxels, are less noisy by construction and contain more fine-grained
information that is suppressed by the coarsening.

5.2 Dynamic analysis based on brain state trajectories

So far, we dealt only with overall summary statistics. Our framework also enables analysing
the brain state of participants over time. We sidestep the aforementioned issue of persistence
diagram metric computations by calculating persistence images [1] from the persistence diagrams.
A persistence image is a function Ψ: R2 → R that turns a diagram D into a surface via Ψ(z) :=∑

x,y∈D w(x, y)Φ(x, y, z), where w(·) is a fixed piecewise linear weight function and Φ(·) denotes
a probability distribution, which is typically chosen to be a normalised symmetric Gaussian. By

6Yates et al. [66] learn a shared set of features in adult participants to predict the age of non-adults.
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3.5–4.5yr 4.5–5.5yr 5.5–7.5yr 7.5–9.5yr 9.5–12.3yr 18–39yr

(a) Whole-brain mask (entropy: 0.61, 0.97, 1.73, 1.15, 1.30, 1.67)

3.5–4.5yr 4.5–5.5yr 5.5–7.5yr 7.5–9.5yr 9.5–12.3yr 18–39yr

(b) Occipital-temporal mask (entropy: 0.87, 0.65, 1.03, 0.94, 0.82, 1.46)

3.5–4.5yr 4.5–5.5yr 5.5–7.5yr 7.5–9.5yr 9.5–12.3yr 18–39yr

(c) XOR mask (entropy: 0.86, 0.85, 1.13, 0.60, 0.88, 0.87)

Figure 4: Cohort brain state trajectories for different brain masks, embedded using PHATE [39].
Annotations provide the age range of subjects in one cohort. We also report the von Neumann entropy
of the respective diffusion operator [4].

discretising Ψ (using an r × r grid), a persistence diagram is transformed into an image7; this is
depicted in Figure 1e. The main advantage of Ψ lies in embedding persistence diagrams into a space
that is amenable to standard machine learning tools; moreover, Ψ affords defining and calculating
unique means, as opposed to persistence diagrams [42, 43, 61]. Subsequently, we use r = 20 and a
Gaussian kernel with σ = 1.0; Ψ is known to be impervious to such choices [1].

5.2.1 Cohort brain state trajectories

By evaluating Ψ(D(i,j)
2 ) for each time step tj , we turn the sequence of persistence diagrams of

the ith participant into a matrix X(i) ∈ Rm×r
2

, where the jth row corresponds to the ‘unravelled’
persistence image of time step tj . We now calculate the sample mean Xk of each participant cohort,
resulting in six matrices whose rows represent the average topological activity of participants in the
respective cohort. Taking the Euclidean distance between persistence images as a proxy for their
actual topological dissimilarity [1, Theorem 3], we calculate pairwise distances between rows of each
Xk and embed them using PHATE [39], a powerful embedding algorithm for time-varying data. This
turns Xk into a 2D brain state trajectory (where the state is measured using topological features).
Figure 4 depicts the resulting trajectories for different masks. All brain state trajectories exhibit
visually distinct behaviour in older and younger subjects. The youngest subjects are characterised by
a simple ‘linear’ trajectory in the whole-brain mask, indicating that their processing of the movie
is more sensory-driven. This pattern is visible in Figure 4b for young children in general: until
7.5 yr, sensory processing, analysed using the occipital-temporal mask, is comparatively simple. In
older subjects, we observe more complex trajectories with higher entropy generally. Developmental
differences are best indicated in Figure 4c, where we see that the overall trajectory shape becomes
‘adult-like’ earlier (and thus more complex). Since this mask is composed of more cognitive brain
regions (rather than sensory ones), we hypothesise that this could indicate that older participants,
including older children, are capable of connecting different aspects of the movie to their memories,
for example, whereas the simpler trajectories of the two youngest cohorts in all brain masks may
indicate that these participants are not comprehending the movie on a non-superficial level.

7Intuitively, this can also be seen as a form of kernel density estimation on persistence diagrams.
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Figure 5: Histograms showing the mean across-cohort variability as a function of the distance to an
event. The x-axis shows the time steps prior to (negative) or after (positive) an event boundary, while
their y-axis depicts across-cohort variability. Please refer to Section 5.2.2 for more details.

5.2.2 Variability analysis

To quantify the variability across cohorts, we calculate the per-column maximum of each Xk,
referring to the respective set of values as ‖Xk‖∞ ∈ Rm; the calculated values are the equivalent
of the infinity norm evaluated (per time step) on a mean persistence image of the cohort. We finally
calculate s

(
‖X1‖∞, . . . , |X6‖∞

)
, i.e. the sample standard deviation per time point, thus obtaining a

variability curve of m time steps (see Figure A.5). To use this variability curve, we ran an online
study to discover which salient events are detected by participants in the movie. Using 22 test
subjects (with no overlap to the ones used in the fMRI data acquisition process), we followed Ben-
Yakov and Henson [10] and determined consensus boundaries of events in the movie. We declare
an event boundary to be salient if at least 7 participants agree, resulting in 20 events. Given this
information, we collect the average variability over all events for a window of w = 3 time steps
before and after an event, leading to averaged variabilities {s1, . . . , s7}, where s4 corresponds to the
average variability at the event boundary itself (see Figure 5). It is our hypothesis that post-event
and pre-event variability are different—in other words, our topological features capture cognitive
differences across cohorts and events. To quantify this, we calculate spre := maxi≤3 si −mini≤3 si
and spost := maxi≥5 si − mini≥5 si. We set θ := spre − spost as our test statistic and perform a
bootstrap procedure by sampling 20 time points at random and repeating the same calculation, thereby
obtaining an empirical null distribution. This results in bootstrap samples θ̂1, . . . , θ̂1000 serving as a
null distribution θ̂, from which we obtain the achieved significance level (ASL) as Pr(θ̂ ≥ θ).

The ASL values are 0.084 (whole-brain mask, BM), 0.045 (occipital-temporal mask, OM), and
0.396 (XOR mask, XM), respectively, indicating that the effect of capturing events is strongest in OM
and significant at the α = 0.05 level. This aligns well with the gradual differences between cohorts
expressed in Figure 4b. Event differences are less pronounced in BM (which, as Figure 4a shows,
is capturing more complex cohort patterns). Finally, event differences are absent in XM, showing
that across-cohort variability is not consistent with event boundaries here, hinting at the fact that this
mask might better be used to assess within-cohort variability rather than across-cohort variability.
Please refer to Section A.7 for additional visualisations.

6 Conclusion

This paper demonstrates the potential of an unsupervised, non-parametric topology-based feature
extraction framework for fMRI data, permitting both static and dynamic analyses. We showed that
topological summary statistics are useful in an age prediction task. Using vectorised topological
features descriptors, we also developed cohort brain state trajectories that show the time-varying
behaviour of a cohort of participants (binned by age). Next, to highlight qualitative age-related differ-
ences in the overall cognition of participants, we were also able to uncover quantitative differences in
event processing. In the future, we want to further analyse the geometry of brain state trajectories
and link states back to events; a preliminary analysis (see Section A.8) finds significant differences
between the mean curvature [24] of adult and non-adult participants, thus showcasing the explanatory
potential of topological features. We also plan on investigating geometrical aspects of topological
features [29, 68] as well as their large-scale validation based on synthetic data generators [28].
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Broader impact

The primary contribution of this work—a novel, parameter-free way of extracting informative features
from fMRI data—is of a computational nature. In general, we fully acknowledge that any researcher
dealing with fMRI data analysis (not necessarily restricted to machine learning methods) has a big
responsibility. Since our work is purely computational, we do not believe that it will have adverse
ethical consequences, provided the experimental design is unbiased. For the same reason, our work is
not specifically favouring or disfavouring any groups.

Beyond the immediate applications for fMRI data analysis, our work also has a broader applicability
for the analysis of time-varying or structured neuroscience data in general. This includes other
non-invasive techniques such as EEG or MEG, but also neuronal spike data from cell populations.
Our work is appealing for such data because it does not require auxiliary representations such as
graphs. We are thus convinced that the introduction of our directly-computable topological features
will overall have beneficial outcomes.

As long-term goal, for example, our work could serve as a foundation to investigate neurological
pathologies (such as depressive disorders) from a new, topological perspective. In general, our
dynamic analyses also allow us to capture not just stable traits in different populations, but also
the different mental states participants progress through while undergoing fMRI. As a generic
feature descriptor of brain states, we would welcome a future in which topological features aid in
understanding such traits or states.
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