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Abstract

The duality between “true” and “false” is a hallmark feature of logic. We show how this duality
can be put to use in the theory and practice of programming languages and their implementations,
too. Starting from a foundation of constructive logic as dialogues, we illustrate how it describes a
symmetric language for computation, and survey several applications of the dualities found therein.
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1 Introduction

Mathematical logic, through the Curry-Howard correspondence [25], has undoubtably proved
its usefulness in the theory of computation and programming languages. It gave us tools
to reason e�ectively about the behavior of programs, and serves as the backbone for proof
assistants that let us formally specify and verify program correctness. We’ve found that
the same correspondence with logic provides a valuable inspiration for the implementation
of programming languages, too. The entire computer industry is based on the di�erence
between the ability to know something versus actually knowing it, and the fact that real
resources are needed to go from one to the other. In other words, the cost of an answer is
just as important as its correctness. Thankfully, logic provides solutions for both.

We start with a story on the nature of “truth” (Section 2), and investigate di�erent logical
foundations with increasing nuance. The classical view of ultimate truth is quite di�erent
from constructive truth, embodied by intuitionistic logic, requiring that proofs be backed
with evidence. However, the intuitionistic view of truth sadly discards many of the pleasant
dualities of classical logic. Instead, we can preserve duality in constructivity by re-imagining
logic not as a solitary exercise, but as a dialogue between two disagreeing characters: the
optimistic Sage who argues in favor, and the doubtful Skeptic who argues against. Symmetry
is restored – still backed by evidence – when both sides can enter the debate.

This dialogic notion of constructive classical logic can be seen as a symmetric language
for describing computation (Section 3). The Sage and Skeptic correspond to producers
and consumers of information; their debate corresponds to interaction in a program. The
two-sided viewpoint brings up many dualities that are otherwise hidden implicitly in today’s
programming languages: questions versus answers, programs versus contexts, construction
versus destruction, and so on. But more than this, the symmetric calculus allows us to
express more types – and more relationships between them – than possible in the conventional
programming languages used today.
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1:2 Duality in Action

From there, we survey several applications of computational duality (Section 4) across
both theoretical and practical concerns. The theory of the untyped ⁄-calculus can be
improved by viewing functions as codata (Section 4.1). Duality can help us design and
analyze di�erent forms of loops found in programs and proofs (Section 4.2). Compilers use
intermediate languages to help generate code and perform optimizations, and logic can be put
to action at this middle stage in the life of a program (Section 4.3). To bring it all together, a
general-purpose method based on orthogonality provides a framework for developing models
of safety that let us prove that well-typed programs do what we want (Section 4.4).

2 Logic as Dialogues

One of the most iconic principles of classical logic is the law of the excluded middle, A ‚ ¬A:
everything is either true or false. This principle conjures ideas of an omniscient notion of
truth. That once all is said and done, every claim must fall within one of these two cases.
While undoubtedly useful for proving theorems, the issue with the law of the excluded middle
is that we as mortals are not omniscient: we cannot decide for everything, a priori, which
case it is. As a consequence, reckless use of the excluded middle means that even if we know
something must be true, we might not know exactly why it is true.

Consider this classic proof about irrational power [20].

I Theorem 1. There exist two irrational numbers, x and y, such that x
y
is rational.

Proof. Since
Ô
2 is irrational, consider

Ô
2

Ô
2. This exponent is either rational or not.

If
Ô
2

Ô
2 rational, then x = y =

Ô
2 are two irrational numbers (coincidentally the same)

whose exponent is rational (by assumption).
Otherwise,

Ô
2

Ô
2 must be irrational. In this case, observe that the exponent (

Ô
2

Ô
2)

Ô
2

simplifies down to just 2, because
Ô
22 = 2, like so: (

Ô
2

Ô
2)

Ô
2 =

Ô
2

Ô
22 =

Ô
22 = 2.

Therefore, the two chosen irrational numbers are x =
Ô
2

Ô
2 and y =

Ô
2 whose exponent

is the rational number 2. J
On the one hand, this proof shows Theorem 1 is true in the sense that appropriate values
for x and y cannot fail to exist. On the other hand, this proof fails to actually demonstrate
which values of x and y satisfy the required conditions; it only presents two options without
definitively concluding which one is correct. The root problem is in the assertion that the
“exponent is either rational or not.” If we had an e�ective procedure to decide which of the
two options is correct, we could simply choose the correct branch to pursue. But alas, we do
not. Depending on an undecidable choice results in a failure to provide a concrete example
verifying the truth of the theorem. Can we do better?

2.1 Constructive truth

In contrast to the proof of Theorem 1, constructive logic demands that proofs construct real
evidence to back up the truth of a claim. The most popular constructive logic is intuitionistic
logic, wherein a proposition A is only considered true when a proof produces specific evidence
that verifies the truth of A [3, 24]. As such, the basic logical connectives are interpreted
intuitionistically in terms of the shape of the evidence needed to verify them.

Conjunction Evidence for A · B consists of both evidence for A and evidence for B.
Disjunction Evidence for A ‚ B can be either evidence for A or evidence for B.
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Existence Evidence for ÷x:D.P (x) consists of a specific example value n œ D (e.g., a concrete
number when the domain of objects D is N) along with evidence for P (n).

Universal Evidence for ’x:D.P (x) is an algorithm that, applied to any possible value n in
the domain D, provides evidence for P (n).

Negation Evidence for ¬A is a demonstration that evidence for A generates a contradiction.

The most iconic form of evidence is for the existential quantifier ÷x:D.P (x). Intuitionist-
ically, we must provide a real example for x such that P (x) holds. Instead, classically we are
not obligated to provide any example, but only need to demonstrate that one cannot fail to
exist, as in Theorem 1. This is why intuitionistic logic rejects the law of the excluded middle
as a principle that holds uniformly for every proposition. Without knowing more about the
details of A, we have no way to know how to construct evidence for A or for ¬A. But still,
A ‚ ¬A is never false; intuitionistic logic admits there may be things not yet known.

Intuitionistic logic is famous for its connection with computation, the ⁄-calculus, and
functional programming [25]. Constructivity also gives us a more nuanced lens to study
logics. For example, one way of understanding and comparing di�erent logics is through
the propositions they prove true. In this sense, intuitionistic and classical logic are di�erent
because classical logic accepts that A ‚ ¬A is true in general for any A, but intuitionistic
logic does not. But this reduces logics to be merely nothing more than the set of their true
propositions, irrespective of the reason why they are true. In a world in which we care about
evidence, this reductive view ignores all evidence. Instead, we can go a step further to also
compare the informational content of evidence provided by di�erent logics.

In this sense, intuitionistic logic does very well in describing why propositions are
true, especially compared to classical logic. The evidence supporting the truth of di�erent
connectives (like conjunction and disjunction) and quantifiers (like existential and universal)
are tailor-made to fit the situation. But the evidence demonstrating falsehood is another
story. Indeed, intuitionistic logic does not speak directly about what it means to be false.
Rather, it instead says indirectly that “not A is true,” i.e., ¬A. In this case, the evidence of
falsehood is rather poor, and always cast in the same form as a hypothetical: truth would
be contradictory. For example, concrete evidence that ’x:N. x + 1 ”= 3 is false should be
a specific counterexample for which the property fails; the same informational content as
the evidence needed to prove ÷x:N.x+ 1 = 3 is true. For example, choosing 2 for x leads
to 2 + 1 ”= 3, which is obviously wrong. Yet, an intuitionistic proof of ¬’x:N.x+ 1 ”= 3 is
under no such obligation to provide a specific counterexample, it only needs to show that a
counterexample cannot fail to exist. The intuitionistic treatment of falsehood sounds awfully
similar to the noncommittal vagueness of classical truth. Can we do better?

2.2 Constructive dialogues

The famous asymmetry of intuitionism is reflected by its biased treatment of the two basic
truth values: it demands concretely constructed evidence of truth, but leaves falsehood as
the mere shadow left behind from the absence of truth. This models the scenario of a solitary
Sage building evidence to support a grand theorem. When the wise Sage delivers a claim we
can be sure it is true – and verify the evidence for ourselves – but what if the Sage is silent?
Is that passive evidence of falsehood, or just merely an artifact that work takes time? What
is missing is a devil’s advocate to actively argue the other side.

In reality, the uncharted frontier on the edge of current knowledge is occupied by
contentious debate. Before something is fully known, there is a space where multiple people
can honestly hold di�erent, conflicting claims, even though they are all ultimately interested

FSCD 2021



1:4 Duality in Action

in discovering the same shared truth. There is no need to be confined to the isolated work
of cloistered ivory towers. Instead, there can be a dialogue between disagreeing parties,
who influence one another and poke holes in questionable lines of reasoning. The search
for truth is then found inside the dialogue of debate, of (at least) two sides exchanging
probing questions and rebutting answers, where the victorious side defeats their opponent by
eventually constructing the complete body of evidence that finally proves their position.

To keep things simple, let’s assume the proposition A is under dispute by only two people:
the Sage and the Skeptic. Whereas the Sage is optimistically trying to prove A is true, as
before, the Skeptic is doubtful and asserts A is false. The dispute over A is resolved by the
process of dialogue between the Sage and the Skeptic. But who is responsible for providing
the first piece of evidence supporting their claim? Whoever has the burden of proof.

A positive burden of proof is when the Sage must provide evidence supporting that A is
true. The shape of evidence for A’s truth follows the shape of the disputed proposition A,
and shares similarities with the evidence of truth for the same intuitionistic logical concepts.

Conjunction Evidence for A ¢ B is both evidence for A and evidence for B.
Disjunction Evidence for A ü B is either evidence for A or evidence for B.
Existence Evidence for ÷x:D.P (x) is an example value n œ D along with evidence for P (n).
Negation Evidence for °A is the same as evidence against A.

Notice that new symbols are used for the connectives, and the evidence for negation is
completely di�erent. Both changes are due to the fact that there are other logical concepts
that demand evidence of falsehood, rather than truth. These involve a negative burden of

proof, where the Skeptic must provide evidence supporting that A is false. Just like the
positive burden of proof (and contrary to intuitionistic logic), the shape of the evidence
against A depends on the shape of A.

Conjunction Evidence against A&B is either evidence against A or evidence against B.
Disjunction Evidence against A &

B is both evidence against A and evidence against B.
Universal Evidence against ’x:D.P (x) is a counterexample value n œ D (e.g., a concrete

number when D is N) along with evidence against P (n).
Negation Evidence against ¬A is the same as evidence for A.

Now we can see that the new symbols for conjunction and disjunction disambiguate
between the positive and negative burdens of proof, which carry complementary forms of
evidence. In contrast, the two quantifiers ÷ and ’ are not duplicated, but rather arranged to
prioritize “finite” evidence (one specific example or counter example in the domain) instead
of “infinite” hypothetical evidence (a general algorithm for generating evidence based on
any object in the domain). Furthermore, there are two di�erent notions of negation, the
positive °A and negative ¬A, internalizing the duality between evidence for and against.
The construction of evidence for or against each connectives is captured by these inference
rules with two judgments: A true directly verifies A’s truth and A false directly refutes it.

A true B true
A ¢ B true

A true
A ü B true

B true
A ü B true

n œ D P (n) true
÷x:D.P (x) true

A false
°A true

A false B false
A

&

B false
A false

A&B false
B false

A&B false
n œ D P (n) false

’x:D.P (x) false
A true
¬A false

What does the other party without the burden of proof do? While they can wait to
rebut the specific evidence they are given, it may take a long time (perhaps forever) for
that evidence to be constructed. And absence of evidence does not imply the evidence of
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absence. For example, the Skeptic may doubt a universal conjecture, but cannot come up
with a counterexample that shows it false yet; this alone does not prove the conjecture true.
Instead, in the face of negative burden of proof, the Sage can prove truth with a hypothetical
argument that no such evidence against exists: systematically consider all possible evidence
for the falsehood of A and show that each one leads to a contradiction. Dually, the Skeptic –
waiting for the positive burden of proof to be fulfilled – can prove falsehood by hypothetically
refuting all evidence of truth, showing all possible evidence for the truth of A leads to a
contradiction. These proofs by contradiction are captured by the following inference rules for
a proposition A (having positive burden of truth) and B (having negative burden of proof)
using a third and final judgment contra representing a logical contradiction.

A true....
contra
A false

B false....
contra
B true

We can now see that the evidence for ¬A’s truth hasn’t changed from Section 2.1. To show
¬A true via proof by contradiction, we assume evidence that ¬A is false – the same as
assuming evidence A is true – and derive a contradiction. In contrast, °A is entirely new.

2.3 The duality of constructive evidence

Viewing logic as a dialogue between an advocate and adversary – rather than just a lone
advocate building constructions by themself – already improves the evidence of falsehood by
giving the adversary a voice. Moreover, it improves some pleasant symmetries of truth with
a more nuanced library of logical connectives expressing the full range of burden of proof.

For example, consider the classical law of double-negation elimination, ¬¬A =∆ A

(where =∆ stands for implication): if A cannot be untrue, then A is true. Intuitionists reject
this law because the evidence for ¬¬A is much weaker than for A. For example, the evidence
for ¬¬÷x:N.÷y:N. x2 = y is a hypothetical argument that only says that it is contradictory
for ÷x:N.÷y:N. x2 = y to lead to a contradiction. In contrast, one example of direct evidence
for ÷x:N.÷y:N. x2 = y is the witness that for x = 3 and y = 9, we have 32 = 9. One possible
conclusion, taken by intuitionists, is that double-negation elimination is just incompatible
with constructive evidence. But another conclusion is that the wrong negation has been
used. Instead, consider the shape evidence for °¬÷x:N.÷y:N. x2 = y given by the more
refined, dual definitions of ° and ¬ in Section 2.2: evidence proving °¬÷x:N.÷y:N. x2 = y

true consists of evidence proving ¬÷x:N.÷y:N. x2 = y false, which in turn is the same as just
evidence proving ÷x:N.÷y:N. x2 = y true. So while ¬¬A =∆ A for a generic A might not
be considered constructive, °¬A =∆ A definitively is.

More generally, we can look at how negation interacts with the other logical connectives.
In classical logic, the de Morgan laws describe how negation distributes over dual connectives,
converting between conjunction (·) and disjunction (‚) as well as existential (÷) and universal
(’) quantifiers, like so (where ≈∆ means “if and only if”):

¬(A ‚ B) ≈∆ (¬A) · (¬B) ¬(÷x:D.P (x)) ≈∆ ’x:D.¬P (x)
¬(A · B) ≈∆ (¬A) ‚ (¬B) ¬(’x:D.P (x)) ≈∆ ÷x:D.¬P (x)

However, not all of these laws hold intuitionistically. In particular, ¬(A·B) ”=∆ (¬A)‚(¬B)
because knowing that the combination of A and B is contradictory is not enough to show
definitively which of A or B is contradictory. Likewise, ¬(’x:D.P (x)) ”=∆ ÷x:D.¬P (x)
because, as we have seen before, knowing that it is contradictory for P (x) to be universally
true does not point out the specific element of D where P fails.

FSCD 2021



1:6 Duality in Action

Figure 1 Law of excluded middle A ü ¬A as a miraculous feat of time travel.

Figure 2 Law of excluded middle A

&¬A as a mundane contradiction of falsehood.

Again, this problem with the asymmetry of the De Morgan laws can be seen as the
classical logician being too vague about the burden of proof in their connectives. Rephrasing,
we get the following symmetric versions of the De Morgan laws in terms of ¬ and ° that are
nonetheless constructive:

¬(A ü B) ≈∆ (¬A) & (¬B) °(A&B) ≈∆ (°A) ü (°B)
¬(A ¢ B) ≈∆ (¬A) &(¬B) °(A &

B) ≈∆ (°A) ¢ (°B)
¬(÷x:D.P (x)) ≈∆ ’x:D.¬P (x) °(’x:D.P (x)) ≈∆ ÷x:D. ° P (x)

Note the new meanings of the previously o�ensive directions. On the one hand, evidence for
°(A&B) consists of evidence against A&B that boils down to either evidence against A or
evidence against B; exactly the same as the evidence for (°A) ü (°B). On the other hand,
evidence against ¬(A ¢ B) is the same as evidence for A ¢ B which consists of evidence
for both A and B simultaneously; exactly the same as the evidence against (¬A) &(¬B).
Similarly, evidence for °(’x:D.P (x)) is a specific counterexample n in D such that P (n) is
false, which is exactly the same evidence needed to prove ÷x:D. ° P (x) true.

Finally, let’s return to the troublesome law of the excluded middle, A‚¬A that we started
with. Now equipped with two di�erent versions of disjunction, we can understand this law
constructively in two very di�erent ways. The first understanding is based on the connection
of classical logic with control [23], which represents the excluded middle as the seemingly
impossible choice A ü ¬A. This proposition is true through a cunning act of bait and switch
as shown in Figure 1. First, the Sage (in the blue academic square cap) baselessly asserts
that ¬A is true hoping that this is ignored. Later the Skeptic (in the Sherlock Holmesian
brown deerstalker) can call the Sage’s blu� by providing evidence that A is in fact true.
In response, the Sage miraculously turns back the clock and changes their claim, instead
asserting that A is true by using the Skeptic’s own evidence against them. Now, the use of
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time travel to change answers might seem a bit excessive, but luckily there is a much more
mundane understanding based on the more modest A &

¬A. This proposition is true, almost
trivially, as a basic contradiction shown in Figure 2, based on the fact that evidence for A
is identical to evidence against ¬A. Here, the Sage merely asserts that A cannot be both
true and false at the same time, to which the Skeptic has no retort. Thus, restoring the
balance between true and false does a better job of explaining the constructive evidence of
both classical and intuitionistic logic.

3 Computing with Duality

What does a calculus for writing logical dialogues look like? In order to prepare for repres-
enting hypothetical arguments, we will use a logical device called a sequent written:

A1, A2, . . . , An „ B1, B2, . . . , Bm

that groups together multiple propositions into a single package revolving around a central
entailment denoted by the turnstyle („). This sequent can be read as “if A1, A2, . . . , An

are all true, then something among B1, B2, . . . , Bm must be true,” or more simply “the
conjunction of the left (A1, . . . , An) implies the disjunction of the right (B1, . . . , Bm).” In
order to understand the practical meaning of the compound sequent, it can help to look at
special cases where it contains at most one proposition, forcing either the left or the right
side of entailment to be empty (denoted by •).

True The sequent • „ A means that A is true. The assumption is trivial because the
conjunction of nothing is true (asserting everything in an empty set passes some test is a
vacuously true statement). Since A is the only option on the right, A must be true.

False The sequent A „ • means that A is false. The conclusion is impossible because the
disjunction of nothing is false (asserting that a true element is found among an empty set
is immediately false). Since assuming A is true implies falsehood, A must be false.

Contradiction The sequent • „ • denotes a contradiction. Following the reasoning above,
• „ • means “true implies false,” which is just plainly impossible.

Thus far, this is just rephrasing the basic judgments we had discussed in Section 2.2
(therein written A true, A false, and contra, respectively). What is more interesting is
how these forms of logical judgments can be reinterpreted as analogous forms of expressions
in a calculus for representing computation as interaction.

Production The typing judgment • „ v : A | means that the term v produces information of
type A. By analogy with Section 2.2, v represents the Sage who is trying to prove that A
is true, and the value returned by v represents the evidence (of type A) that verifies the
veracity of their claim.

Consumption The typing judgment | e : A „ • means that the coterm (a.k.a continuation) e
consumes information of type A. The coterm e is analogous to the Skeptic who is trying
to prove that A is false. In this sense, the covalue returned by e represents the evidence
of a counter argument (of type A), which refutes values of type A.

Computation The typing judgment c : (• „ •) means that the command c is an executable

statement. Commands are the computational unit of the language where all reductions
happen; each step of reduction corresponds to the back-and-forth dialogue between the
Sage and the Skeptic. The fundamental form of commands is an interaction Èv||eÍ between
a term v and a coterm e. The command Èv||eÍ means that the value returned by v is
given to e as input, or dually the covalue constructed by e inspects v’s output.

FSCD 2021



1:8 Duality in Action

Note that, whereas terms • „ v : A | produce output (i.e., provide answers) and coterms
| e : A „ • consume input (i.e., ask questions), the command c : (• „ •) does not produce or
consume anything itself, and acts as an isolated computation. To interact with a command,
it is necessary to provide for free variables x which stand for places to read inputs and free
covariables – standing for places to send outputs. Open commands with free (co)variables
have the more general typing judgment

c : (x1 : A1, x2 : A2, . . . , xn : An „ –1 : B1,–2 : B2, . . . ,–m : Bm)

As shorthand, we use � to denote a list of inputs x1 : A1, . . . , xn : An and � to denote a list
of outputs –1 : B1, . . . ,–m : Bm. Similar to open commands of type c : (� „ �), we also
have open terms � „ v : A | � and open coterms � | e : A „ � which might also use free
(co)variables in � and �. Reference to these free (co)variables looks like this:1

�, x : A „ x : A | � V arR � | – : A „ – : A,� V arL

As another example, the typing rule for safe interactions in a command Èv||eÍ corresponds to
the Cut rule, which only connects together a producer and consumer that agree on a shared
type A of information being exchanged:

� „ v : A | � � | e : A „ �
Èv||eÍ : (� „ �) Cut

The exciting part of this language is the way it renders the many dualities in logic directly
in its syntax. We know that true is dual to false, and for the same reason things on the left
of a sequent (i.e., to the left of „) are dual to things on the right. In this sense, the turnstyle
„ serves as an axis of duality in logic. The same axis exists in the form of commands Èv||eÍ,
where the left and right components are dual to one another. The most direct way to see this
duality is in the exchange of answers and questions between the two sides of a command.

Èv||eÍ

Answers

Questions

However, there are many other dualities besides the answer-question dichotomy to explore
along this same axis. While we imagine that information flows left-to-right, it turns out
that control flows right-to-left. There is the construction-destruction dynamic between
the creation of concrete evidence and the inspection of it, which can be arranged in either
direction. Likewise, abstraction over types and hidden information gives rise to dual notions of
generics (à la parametric polymorphism in functional languages and Java generics) which hide
information in the consumer/client and modules (à la the SML module system) which hide
information in the producer/server. So now let’s consider how each of these computational
dualities manifest themselves in the logical foundation of this language.

1 The rules are named with an R and L because their conclusion below the horizontal line of inference
introduces a new term on the Right of the turnstyle („) and a new coterm on the Left, respectively.
This naming convention comes from the sequent calculus, which we will follow throughout the paper.
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3.1 Positive burden of proof as data

In the constructive dialogues of Section 2.2, consider the case where the Sage has the positive
burden of truth, and is responsible for constructing a concrete piece of evidence that backs up
their claim that some proposition is true. The shape of the Sage’s evidence depends on the
proposition in question, and will contain enough information to fully justify truth in a way
the Skeptic can examine. In computational terms, constructing this positive form of evidence
corresponds to constructing values of a data type. In this sense, the Sage constructing
evidence of A’s truth is analogous to a producer v which constructs a value of type A.

For example, consider the basic cases for positive evidence of conjunction (A ¢ B) and
disjunction (A ü B). The evidence of the conjunction A ¢ B is made up of a combination of
evidence v of A along with evidence w of B. In other words, it is a pair (v, w) of the tuple
type A ¢ B. In contrast, the evidence of the disjunction A ü B is a choice of either evidence
v for A or evidence w for B. In other words, it is one of the two tagged values ÿ1v or ÿ2w of
the sum type A ü B. These constructions are captured by the following typing rules, which
resemble the inference rules for A ¢ B true and A ü B true in Section 2.2:

� „ v : A | � � „ w : B | �
� „ (v, w) : A ¢ B | � ¢R

� „ v : A | �
� „ ÿ1v : A ü B | � üR1

� „ w : B | �
� „ ÿ2w : A ü B | � üR2

How, then, might the Skeptic respond to the evidence contained in these values? In
general, the Skeptic is only obligated to show that evidence following these rules cannot
be constructed, because their existence would lead to a contradiction. This corresponds
to pattern matching or deconstructing on the shape of all possible values of a data type.
A rebuttal of A ¢ B is a process demonstrating a contradiction c given any generic pair
(x, y) : A ¢ B, i.e., in the context of two generic values x : A and y : B. Similarly, a rebuttal
of A ü B is a process that demonstrates two di�erent contradictions: c1 which responds to a
tagged value ÿ1x : AüB (i.e., in the context of a generic value x : A) and c2 which responds
to a tagged value ÿ2y : A ü B (i.e., in the context of y : B). The two rebuttals are captured
by the deconstructing consumers µ̃(x, y).c and µ̃[ÿ1x.c1 | ÿ2y.c2] given by these typing rules:

c : (�, x : A, y : B „ �)
� | µ̃(x, y).c : A ¢ B „ � ¢L

c1 : (�, x : A „ �) c2 : (�, y : B „ �)
� | µ̃[ÿ1x.c1 | ÿ2y.c2] : A ü B „ � üL

Although more intricate, the evidence for or against an existential follows this same
pattern of constructing values in the term and deconstructing them in the coterm. For
simplicity, assume that the quantifiers’ domain ranges over other types. ÷X.B describes
values of type B, which might reference a hidden type X. This kind of information hiding
corresponds to modules in a program where the code implementing the module is written
with full knowledge of a specific type X, but the client code using the module does not know
which type was used for X. To be explicit about the module’s hidden choice for X, we can
use the (Sage’s) constructor form (A, v) which means to produce the value v whose type
depends on A. The client (Skeptic) side can unpack a generic value (evidence) of the form
(X, y) to run a command (demonstrate a contradiction), which looks like µ̃(X, y).c. This
pair of construction-deconstruction looks like:2

2 The ÷L rule has the additional side condition X /œ FV (� „ �), meaning the type variable X is not
found among the free variables of environments � and �. The side condition makes sure that X stands
for a truly generic type parameter, which would be ruined if � and � constrained X with additional
assumptions about it. Similar side conditions weren’t needed in ¢L and üL because ordinary variables
x, y cannot be referenced by types in � and � without dependent types. Alternatively, we could have
also introduced yet another environment � = X,Y, Z, . . . for keeping track of the free type variables in
the sequent, as is often done in the type systems in polymorphic languages like System F [22].
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� „ v : B{A/x} | �
� „ (A, v) : ÷X.B | � ÷R

c : (�, y : B „ �) X /œ FV (� „ �)
� | µ̃(X, y).c : ÷X.B „ � ÷L

3.2 Negative burden of proof as codata

If the positive burden of truth corresponds to constructing values of a data type, then what
is the computational interpretation of the negative burden of proof? Applying syntactic
duality of our symmetric calculus – that is, flipping the roles of producers v and consumers e
in the command Èv||eÍ to get the analogue of Èe||vÍ – leaves us only one answer: constructing
covalues of a codata type, which are defined in terms of observations rather than values. This
corresponds to the evidence constructed by the Skeptic within a negative burden of proof,
which has a di�erent shape depending on the proposition A being argued against. Thus, the
Skeptic’s evidence can be represented by a consumer e of type A.

Consider the basic cases for negative evidence against conjunctions (A&B) and disjunc-
tions (A &

B). Contrary to before, the evidence against a conjunction comes in one of two
forms: either evidence e against A or evidence f against B. In other words, it is a first
projection fi1e or second projection fi2f out of a product type A&B. The evidence against
a disjunction instead has just one form, containing both evidence e against A and evidence
f against B. Taken together, this is a pair [e, f ] – dual to a tuple of values – of the type
A

&

B. These constructions of consumers are captured by the following typing rules, which
resemble the inference rules for A&B false and A

&

B false from Section 2.2:

� | e : A „ �
� | fi1e : A&B „ � &L1

� | f : B „ �
� | fi2f : A&B „ � &L2

� | e : A „ � � | f : B „ �
� | [e, f ] : A &

B „ �

&

L

If the Skeptic is now constructing concrete evidence, then the Sage must be the one
responding to it in some way. This proof of truth involves arguing that the Skeptic cannot
possibly argue against the proposition: every potential piece of negative evidence that might
be constructed leads to a contradiction. The computational interpretation of the Sage’s
response corresponds to an object that defines a reaction to every possible observation on it,
which can be written via copattern matching [1] which deconstructs the shape of its observer.

A rebuttal in favor of A&B is a process that demonstrates two di�erent contradictions:
c1 which responds to a generic first projection fi1– : A & B, and c2 which responds to a
generic second projection fi2— : A&B. Instead, a rebuttal in favor of A &

B responds with
just one contradiction c, given a generic [–,—] : A &

B that combines both pieces of negative
evidence (– against A and — against B). The two rebuttals in favor of A&B and A

&

B are
captured by the copattern-matching producers µ(fi1–.c1 | fi2—.c2) and µ[–,—].c, respectively,
given by these two typing rules:

c1 : (� „ – : A,�) c2 : (� „ — : B,�)
� „ µ(fi1–.c1 | fi2—.c2) : A&B | � &R

c : (� „ – : A,— : B,�)
� „ µ[–,—].c : A &

B | �

&

R

Universal quantification can be derived mechanically as the dual of existential quanti-
fication, where the roles of information hiding have been flipped between the implementor
and client. With the polymorphic type ’X.B – describing values of type B that are generic
in type X – it is now the clients using values of type ’X.B that get to choose X. For
example, consider the polymorphic function ’X.X æ X: the callers of this function get to
choose the specific type for X – it could be integers, booleans, lists, etc.– before passing an
argument of that type to receive a returned value of the same type. The implementor which
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produces a value of type ’X.B must instead be generic in X: it cannot know which X was
chosen because di�erent clients might all choose di�erent specializations for X. Thus, the
implementation (Sage) side can unpack a generic covalue (evidence) of the form [X,—] to
run a command (demonstrate a contradiction), which looks like µ[X,—].c corresponding to
System F’s �X.v [22]. These (de)constructors follow rules dual to ÷R and ÷L:

� | e : B{A/X} „ �
� | [A, e] : ’X.B „ � ’L

c : (� „ — : B,�) X /œ FV (� „ �)
� „ µ[A,—].c : ’X.B | � ’R

3.3 The two dual negations

Now that we have introduced the computational content of both the positive and negative
burden of proof, we can finally examine the nature of negation which reverses these two roles.
In Section 2.2, we had two di�erent forms of negation: °A is described by positive evidence
in favor of it, whereas ¬A is described by negative evidence against it. Following our analogy,
°A corresponds to a data type: the Sage’s evidence in favor of °A, written (e), contains
specific evidence e against A. The Skeptic then responds by showing why any construction
of the form (–) : °A leads to a contradiction c, as expressed by these typing rules:

� | e : A „ �
� „ (e) : °A | � °R

c : (� „ – : A,�)
� | µ̃(–).c : °A „ � °L

The other negation ¬A is its dual codata type: the Skeptic’s evidence against ¬A, written [v],
contains specific evidence v in favor (i.e., producing a value) of A. The Sage then responds
by showing why any construction of the form [x] : ¬A leads to a contradiction c, as in:

� „ v : A | �
� | [v] : ¬A „ � ¬L

c : (�, x : A „ �)
� „ µ[x].c : ¬A | � ¬R

3.4 Proof by contradiction as control

We have talked about many di�erent indirect proofs and (co)terms: those that show how
potential constructions lead to a contradiction (i.e., command), rather than giving a concrete
construction itself. These include all the coterms which pattern-match on specific values of
data types, as well as all the terms which copattern-match on the specific covalues of codata
types. But in practical programming languages, we aren’t forced to always match on the
shape of a value. We can also just give any value a name, as in the expression let z = v inw

found in many functional languages. What does this look like in our symmetric language?
We could generalize coterms like µ̃(x, y).c to just the generic µ̃z.c which names their input
before running a command c (just like let z = v inw names v before running w). The dual
of the generic µ̃ is a generic µ: the term µ–.c names its output before running a command
c.3 The typing rules for these two dual abstractions correspond to the two forms of proof by
contradiction from Section 2.2: if assuming A true leads to a contradiction, then A false;
and dually if assuming A false leads to a contradiction, then A true.

c : (�, x : A „ �)
� | µ̃x.c : A „ � ActL

c : (� „ – : A,�)
� „ µ–.c : A | � ActR

Notice how these two rules can be seen as simplifications of matching rules on the left (¢L,
üL, ÷L) and right (&R, &

R, ’R) to not depend on the structure of the abstracted type.

3 The term µ–.c gets the simpler name because it came first in Parigot’s ⁄µ-calculus [31] for classical
logic. The dual coterm µ̃x.c was derived after in the sequent calculus [4] for call-by-value computation.
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Although generic µ and µ̃ might seem innocuous, they can have a serious impact on
computational power. Whereas µ̃ corresponds to the pervasive (and relatively innocent)
feature of value-naming as expressed by basic let-bindings, µ corresponds to a notion of
control e�ect equivalent to Scheme’s call/cc operator [7]. In terms of a logic, µ can also
increase the propositions that can be proven true.

For example, consider the two di�erent interpretations of the law of the excluded middle
from Section 2.3. The negative version, A &

¬A corresponds to the term µ[–, [x]].Èx||–Í
written in terms of nested copatterns. Intuitively, this term is isomorphic to the identity
function, ⁄x.x : A æ A, and it’s typing derivation (i.e., proof) is given like so:

x : A „ x : A | – : A,— : ¬A V arR
x : A | – : A „ – : A,— : ¬A V arL

Èx||–Í : (x : A „ – : A,— : ¬A) Cut

„ µ[x].Èx||–Í : ¬A | – : A,— : ¬A ¬R | — : ¬A „ – : A,— : ¬A V arL

Èµ[x].Èx||–Í||—Í : („ – : A,— : ¬A) Cut

„ µ[–,—].Èµ[x].Èx||–Í||—Í : A &

¬A |

&

R

Notice how – in addition to the core Cut and V ar rules – we only use the type-specific
matching rules for &and ¬ here. There is no need to resort to the generic ActR or ActL.

In contrast, the positive law of the excluded middle, A ü ¬A, corresponds to the term
µ–.Èÿ2µ[x].Èÿ1x||–Í||–Í. Notice the use of the generic µ– . . . , requiring the ActR rule in its
typing derivation (omitting the names for V ar and Cut rules):

x : A „ x : A | – : A ü ¬A
x : A „ ÿ1x : A ü ¬A | – : A ü ¬A üR1

x : A | – : A ü ¬A „ – : A ü ¬A
Èÿ1x||–Í : (x : A „ – : A ü ¬A)

„ µ[x].Èÿ1x||–Í : ¬A | – : A ü ¬A ¬R

„ ÿ2µ[x].Èÿ1x||–Í : A ü ¬A | – : A ü ¬A üR2 | – : A ü ¬A „ – : A ü ¬A
Èÿ2µ[x].Èÿ1x||–Í||–Í : („ – : A ü ¬A)
„ µ–.Èÿ2µ[x].Èÿ1x||–Í||–Í : A ü ¬A | ActR

Whereas A &

¬A is like the simple identity function, the term of type Aü¬A invokes a serious
manipulation of control flow. Intuitively, this term corresponds to the Scheme expression:

(call/cc (lambda (alpha)

(cons 2 (lambda (x) (alpha (cons 1 x)))))))

Here, the “time travel” needed to implement the positive law of the excluded middle
is expressed by the control operator call/cc. Before doing anything else, the current
continuation is saved (in alpha), just in case we need to change our answer. Then, we
first return the second option (represented by a numerically-labeled cons-cell (cons 2 ...))
containing a function. If that function is ever called with a value x of type A, then we invoke
the continuation alpha which rolls back the clock and lets us change our answer to the first
option (cons 1 x): deftly giving back the value we were just given.

3.5 A symmetric system of computation

Thus far, we have only discussed how to build objects (producers and consumers) following
this two-sided method of interaction. That alone does not tell us how to compute; we also
need to know how the interaction unfolds over time.



P. Downen and Z.M. Ariola 1:13

(—¢) È(v, w)||µ̃(x, y).cÍ = Èv||µ̃x.Èw||µ̃y.cÍÍ (÷¢) µ̃(x, y).È(x, y)||–Í = – (– : A ¢ B)
(—ü) Èÿiv||µ̃[ÿixi.ci]Í = Èv||µ̃xi.ciÍ (÷ü) µ̃[ÿixi.Èÿixi||–Í] = – (– : A ü B)
(—÷) È(A, v)||µ̃(X, y).cÍ = Èv||µ̃y.c{A/X}Í (÷÷) µ̃(X, y).È(X, y)||–Í = – (– : ÷X.B)
(—°) È(e)||µ̃(–).cÍ = Èµ–.c||eÍ (÷°) µ̃(—).È(—)||–Í = – (– : °A)
(—&) Èµ(fii–i.ci)||fiieÍ = Èµ–i.ci||eÍ (÷&) µ(fii–i.Èx||fii–iÍ) = x (x : A&B)
(— &) Èµ[–,—].c||[e, f ]Í = Èµ–.Èµ—.c||fÍ||eÍ (÷ &) µ[–,—].Èx||[–,—]Í = x (x : A &

B)
(—’) Èµ[X,—].c||[A, e]Í = Èµ—.c{A/x}||eÍ (÷’) µ[X,—].Èx||[X,—]Í = x (x : ’X.B)
(—¬) Èµ[x].c||[v]Í = Èv||µ̃x.cÍ (÷¬) µ[y].Èx||[y]Í = x (x : ¬A)

Plus compatibility, symmetry, reflexivity, and transitivity.

Figure 3 Equational reasoning for (co)pattern matching in the dual core sequent calculus.

One of the simplest ways of viewing the computation of interaction is through the axioms
which characterize the equality of expressions. These axioms, given in Figure 3, come in two
main forms. The — family of laws say what happens when a matching term and coterm of a
type meet up in a command. For example, when the tuple construction (v, w) meets up with
a tuple deconstruction µ̃(x, y).c, the interaction can be simplified with —¢ by matching the
structure of (v, w) with the pattern (x, y), and bind v to x and w to y (with the help of the
generic µ̃). When there is a choice like in the sum type AüB, then the appropriate response
is selected by —ü. When the right construction ÿ2v meets up with the sum deconstruction
µ̃[ÿ1x.c1 | ÿ2y.c2], then the result is c2 with v bound to y from the matching pattern ÿ2y. The
same kind of matching happens for the codata types, but with the roles reversed. Instead, it
is the coterm side that is constructed, like the second projection fi2e of a product type A&B,
and the term side selects a response, like the term µ(fi1–.c1 | fi2—.c2) which matches with
fi2e by binding e to — and running c2 as per —&. Note that the — rules for both negations
(° and ¬) end up swapping the two sides of a command.

The other family of laws are the ÷ axioms, which give us a notion of extensionality. In
each case, the ÷ axioms say that deconstructing a structure and reconstructing it exactly
as it was before does nothing. The side where this simplification applies depends on the
type of the structure in question. For data types, the consumer does the deconstructing,
so the ÷¢, ÷ü, ÷÷, and ÷° axioms apply to a generic unknown coterm – represented by the
covariable – – waiting to receive its input. Whereas for codata types, the producer does
the deconstructing, so the ÷&, ÷ &, ÷’, and ÷¬ axioms apply to a generic unknown term –
represented by the variable x – waiting to receive an output request.

But equational axioms are quite far from a real implementation in a machine. They
give the ultimate freedom of choice on where the rules can apply (in any context, due to
compatibility) and in which direction (due to symmetry). In reality, a machine implementation
will make a (deterministic) choice on the next step to take, and always move forward. This
is modeled by the operational semantics given in Figure 4, where each step c ‘æ c

Õ applies
exactly to the top of the command itself. The happy coincidence of a dual calculus based on
the sequent calculus is that its operational semantics is an abstract machine [10], since there
is never a search for the next redex which is always found at the top. Thus, this style of
calculus is a good framework for studying the low-level details of computation needed to
implement languages in real machines.
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Call-by-value definition of values (V+) and covalues (E+):

Value+ – V+,W+ ::= x | (V+,W+) | ÿ1V+ | ÿ2V+ | (A, V+) | (E+)
| µ(fi1–.c1 | fi2—.c2) | µ[–,—].c | µ[X,—].c | µ[x].c

CoValue+ – E+, F+ ::= e

Call-by-name definition of values (V≠) and covalues (E≠):

Value≠ – V≠,W≠ ::= v

CoValue≠ – E≠, F≠ ::= – | [E≠, F≠] | fi1E≠ | fi2E≠ | [A,E≠] | [V≠]
| µ̃[ÿ1x.c1 | ÿ2y.c2] | µ̃[x, y].c | µ̃(X, y).c | µ̃(–).c

Reduction rules for call-by-value (s = +) and call-by-name (s = ≠) evaluation.

(—s
¢) È(Vs,Ws)||µ̃(x, y).cÍ ‘æ c{Vs/x,Ws/y} (Îs¢) È(v, w)||EsÍ ‘æ Èv||µ̃x.Èw||µ̃y.È(x, y)||EsÍÍÍ

(—s
ü) ÈÿiVs||µ̃[ÿixi.ci]Í ‘æ ci{Vs/xi} (Îsü) Èÿiv||EsÍ ‘æ Èv||µ̃x.Èÿix||EsÍÍ

(—s
÷) È(A, Vs)||µ̃(X, y).cÍ ‘æ c{A/X, Vs/y} (Îs÷) È(A, v)||EsÍ ‘æ Èv||µ̃x.È(A, x)||EsÍÍ

(—s
°) È(Es)||µ̃(–).cÍ ‘æ c{Es/–} (Îs°) È(e)||EsÍ ‘æ Èµ–.È(–)||EsÍ||eÍ

(—s
&) Èµ(fii–i.ci)||fiiEsÍ ‘æ ci{Es/–i} (Îs&) ÈVs||fiieÍ ‘æ Èµ–.ÈVs||fii–Í||eÍ

(—s &) Èµ[–,—].c||[Es, Fs]Í ‘æ c{Es/–, Fs/—} (Îs&) ÈVs||[e, f ]Í ‘æ Èµ–.Èµ—.ÈVs||[–,—]Í||fÍ||eÍ
(—s

’) Èµ[X,—].c||[A,Es]Í ‘æ c{A/x,Es/—} (Îs’) ÈVs||[A, e]Í ‘æ Èµ–.ÈVs||[A,–]Í||eÍ
(—s

¬) Èµ[x].c||[Vs]Í ‘æ c{Vs/x} (Îs¬) ÈVs||[v]Í ‘æ Èv||µ̃x.ÈVs||[x]ÍÍ

In each of the Î
s rules, assume that (v, w), ÿiv, (A, v), and (e) are not in Values,

respectively, and fiie, [e, f ], [A, e], and [v] are not in CoValues, respectively.

Figure 4 Operational semantics for (co)pattern matching in the dual core sequent calculus.

The di�erence between the — rules in the operational semantics (Figure 4) from the
ones in the equational theory (Figure 3) is that the operational rules completely resolve
the matching in one step. Rather than forming new bindings with generic µs and µ̃s, the
components of the construction (on either side) are substituted directly for the (co)pattern
variables. To do so, we need to use a notion of evaluation strategy which informs us which
terms can be substituted for variables (we call these values) and which coterms can be
substituted for covariables (we call these covalues, which represent evaluation contexts).

Call-by-value evaluation simplifies terms first before substituting them for variables, so it
has a quite restrictive notion of value (V+) for constructed values like (V+,W+) and ÿiV+,
but all coterms represent call-by-value evaluation contexts (hence every e is substitutable).
Dually, call-by-name evaluation will substitute any term for a variable (hence a value V≠
could be any v), but only certain coterms represent evaluation contexts: for example, the
projection fi1E≠ only represents an evaluation context because E≠ does, but fi1e does not
when e does not need its input yet.

The other cases of reduction are handled by the Î rules, which say what to do when
a construction isn’t a (co)value yet. In a call-by-value language like OCaml, the term
(1+2, 3+4) first evaluates the two components before returning the pair value (3, 7). This
scenario is handled by the Î

+
¢ step, which lifts the two computations in the tuple to the top

of the command, replacing È(1 + 2, 3 + 4)||–Í with È1 + 2||µ̃x.È3 + 4||µ̃y.È(x, y)||–ÍÍÍ; now we
know that the next step is to simplify 1 + 2 before binding it to x.
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Equational axioms for µµ̃ in both call-by-value (s = +) and call-by-name (s = ≠) reduction:

(—s
µ) Èµ–.c||EsÍ = c{Es/–} (÷µ) µ–Èv||–Í = v (– /œ FV (v))

(—s
µ̃) ÈVs||µ̃x.cÍ = c{Vs/x} (÷µ̃) µ̃x.Èx||eÍ = e (x /œ FV (e))

Operational semantics for µµ̃ in both call-by-value (s = +) and call-by-name (s = ≠):

(—s
µ) Èµ–.c||EsÍ ‘æ c{Es/–} (—s

µ̃) ÈVs||µ̃x.cÍ ‘æ c{Vs/x}

Figure 5 Rules for data flow and control flow in the dual core sequent calculus.

dataA ü Bwhere
ÿ1 : A „ A ü B |
ÿ2 : B „ A ü B |

dataA ¢ Bwhere
(_,_) : A,B „ A ¢ B |

data°Awhere
(_) : „ °A | A

data ÷F where
(_,_) : F A „ ÷F |

codataA&Bwhere
fi1 : | A&B „ A

fi2 : | A&B „ B

codataA &

Bwhere
[_,_] : | A

&

B „ A,B

codata¬Awhere
[_] : A | ¬A „

codata ’F where
[_,_] : | ’F „ F A

Figure 6 (Co)Data declarations of the core connectives and quantifiers.

The last piece of the puzzle is what to do with the generic µs and µ̃s. Fortunately, these
are simpler than the individual rules for the various connectives and quantifiers. A coterm
µ̃x.c binds its partner to x wholesale, without inspecting it further, and likewise µ–.c binds
its entire partner to –. These two actions are captured by —

s
µ̃ and —

s
µ in Figure 5 which,

like the rules in Figure 4, are careful to only substitute values and covalues. This careful
consideration of substitutability prevents the fundamental critical pair between µ and µ̃:

c1{µ̃x.c2/–} Ω[—+
µ

Èµ–.c1||µ̃x.c2Í ‘æ—≠
µ̃
c2{µ–.c1/x}

This restriction is necessary for both the equational axioms as well as the operational reduction
steps (which are identical in name and result). These restrictions ensure that the operational
semantics is deterministic and the equational theory is consistent (i.e., not all commands
are equated). Similarly, the ÷ axioms for µ and µ̃ say that binding a (co)variable just to
use it immediately does nothing. While the ÷ laws in Figures 3 and 5 are not themselves
necessary for computation, they do give us a hint on how to keep going when we might get
stuck. Specifically, the Î rules from Figure 4 can be derived from —÷ equality, showing that
these two families of axioms are complete for specifying computation [8].

I Observation 2. If c ‘æ—Î c
Õ
then c =—÷ c

Õ
.

3.6 (Co)Data in the wild

The connectives from Sections 3.1 and 3.2 originally arose from the field of logic, but that
doesn’t mean they are disconnected from programming. Indeed, the concept of data and
codata they embody can be found to some degree in programming languages that are already
in wide use today, although not in their full generality.
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First, we can imagine a mechanism for declaring new connectives as (co)data types which
list their patterns of construction. For example, all the connectives we have seen so far are
given declarations in Figure 6. Each (term or coterm) constructor is given a type signature
in the form of a sequent: input parameters are to the left of „, and output parameters are to
the right. For data types, constructors build a value returned as output, whose type is given
in a special position to the right of the turnstyle between it and the vertical bar (i.e., the A

in · · · „ A | . . . ). Dually for codata types, constructors build a covalue that takes an input,
whose type is given in the special position on the left between the turnstyle and the vertical
bar (i.e., the A in · · · | A „ . . . ).

This notion of data type corresponds to algebraic data types in typed functional languages.
For example, the declarations for A ü B and A ¢ B correspond to the following Haskell
declarations for sum (Either) and pair (Both) types:

data Either a b where

Left :: a -> Either a b

Right :: b -> Either a b

data Both a b where

Pair :: a -> b -> Both a b

Even the existential quantifier corresponds to a Haskell data type, whose constructor
introduces a new generic type variable a not found in the return type Exists f.

data Exists f where Pack :: f a -> Exists f

However, the negation °A does not correspond to any data type in Haskell. That’s because
°A’s constructor requires two outputs (notice the two types to the right of the turnstyle: the
main °A plus the additional output parameter A). This requires some form of continuations
or control e�ects, which is not available in a pure functional language like Haskell.

The dual notion of codata type corresponds to interfaces in typed object-oriented lan-
guages. For example, the declaration for A&B corresponds to the following Java interface
for a generic Product:

interface Product<A,B> { A first(); B second(); }

Java’s type system is not strong enough to capture quantifiers.4 However, if its type system
were extended so that generic types could range over other parameterized generic types, we
could declare a Forall interface corresponding to the ’ quantifier:

interface Forall<F> { F<A> specialize<A>(); }

Unfortunately, the types A &

B and ¬A su�er the same fate as °A; their constructors require
a number of outputs di�erent from 1: [–,—] has two outputs (both – and —), and [x] has
no outputs (x is an input, not an output). So they cannot be represented in Java without
added support for juggling multiple continuations.

The possibilities for modeling additional information in the constructions of the type –
representing pre- and post-conditions in a program – become much more interesting when
we look at indexed (co)data types. For a long time, functional languages have been using
generalized algebraic data types (GADTs), also known as indexed data types, that allow each
constructor return a value with a more constrained version of that type. The classic example

4 Unlike Haskell, Java does not support generic type variables with higher kinds. The Haskell declaration
of Exists f relies on the fact that the type variable f has the kind * -> *, i.e., f stands for a function
that turns one type into another.
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of indexed data types is representing expression trees with additional typing information.
For example, here is a data type representing a simple expression language with literal values,
plus and minus operations on numbers, an “is zero” test, and an if-then-else expression:

data ExprXwhere
Literal : X „ ExprX |

Plus : Expr Int, Expr Int „ Expr Int |
Minus : Expr Int, Expr Int „ Expr Int |

IsZero : Expr Int „ Expr Bool |
IfThenElse : Expr Bool, ExprX, ExprX „ ExprX |

The type parameter X acts as an index, and it lets us constrain the types of values an
expression can represent. For example, IsZero expects an integer and returns a boolean.
This lets us write a typed evaluation function eval : ExprX æ X, and not worry about
mistyped edge cases because the type system rules out poorly-constructed expressions.

The dual of indexed data types are indexed codata types, which let us constrain each
observation of the codata type to only accept certain inputs which model another form of pre-
and post-conditions [18]. For example, we can embed a basic socket protocol – for sending
and receiving information along an address – inside this indexed codata type:

codata SocketXwhere
Bind : String | Socket Raw „ Socket Bound

Connect : | Socket Bound „ Socket Live

Send : String | Socket Live „ ()
Receive : | Socket Live „ String

Close : | Socket Live „ ()

A new Socket starts out as Raw. We can Bind a Socket Raw to an address, after which it is
Bound and can be Connected to make it Live. A Socket Live represents a connection we
can use to Send and Receive messages, and is discarded by a Close.5

4 Applications of Duality

So a constructive view of symmetric classical logic gives us a dual language for expressing
computation as interaction. Does this form of duality have any application in the broader
scope of programs? Yes! Let’s look at a few examples where computational duality can be
put into action for solving problems in programming.

4.1 Functions as Codata

There is a delicate trilemma in the theory of the untyped ⁄-calculus: one cannot combine
non-strict weak-head reduction, function extensionality, and computational e�ects. The
specific reduction we are referring to follows two properties: “non-strict” means that functions
are called without evaluating their arguments first, and “weak-head” means that evaluation
stops at a ⁄-abstraction. Function extensionality is captured by the ÷ law – ⁄x. f x = f –
from the foundation of the ⁄-calculus. And finally e�ects could be anything – from mutable

5 This interface can be further improved by linear types, which ensure that outdated states of the Socket

cannot be used, and forces the programmer to properly Close a Socket instead of leaving it hanging.
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state to exceptions – but for our purposes, non-termination introduced by general recursion
is enough. That is to say, the infinite loop � = (⁄x.x x) (⁄x.x x) already expressible in the
“pure” untyped ⁄-calculus counts as an e�ect.

So what is the problem when all three are combined in the same calculus? The conflict
arises when we observe a ⁄-abstraction as the final result of evaluation. Because of weak-
head reduction, any ⁄-abstraction counts as a final result, including ⁄x.�x. Because of
extensionality, the ÷ law says that ⁄x.�x is equivalent to �. Taken together, this means that
a program that ends immediately is the same as one that loops forever: an inconsistency.

4.1.1 E�cient head reduction

One way to fix the trilemma is to change from weak-head reduction to head reduction. With
head reduction, evaluation no longer stops at a ⁄-abstraction. Instead, head reduction looks
inside of ⁄s to keep going until a head-normal form of the shape ⁄x1 . . .⁄xn.xi M1 . . .Mm is
found. But going inside ⁄s means that evaluation has to deal with open terms, i.e., terms
with free variables in them. How can we perform head reduction e�ciently, when virtually
all e�cient implementations assume that evaluation only handles closed terms?

Our idea is to look at functions as yet another form of codata, just like A

&

B and A&B.
Following the other declarations in Figure 6, the type of functions can be defined as:

codataA æ Bwhere _ ·_ : A | A æ B „ B

This says that the coterm which observes a function of type A æ B has the form of a call

stack v · e, where v is the argument (of type A), and e represents a kind of “return pointer”
(expecting the returned B). The stack-like nature can be seen in the way a chain of function
arrows requires a stack of arguments; for instance a coterm of type Int æ Int æ Int æ Int

has the stack shape 1 · 2 · 3 · –, where – is a place to put the result.
Rather than the usual ⁄-abstraction, the codata view suggests that we can instead write

functions in terms of copattern matching: µ[x · —].c is a function of type A æ B where c is
the command to run in the scope of the (co)variables x : A and — : B. Both forms of writing
functions are equivalent to one another (via general µ):

µ[x · —].c = ⁄x.µ—.c ⁄x.v = µ[x · —].Èv||—Í (— /œ FV (v))

This way, the main rule for reducing a call-by-name function call is to match on the structure
of a call stack (recall from Section 3.5 that call-by-name covalues are restricted to E≠, so
covalue call stacks have the form v · E≠ in call-by-name) like so:

Èµ[x · —].c||v · E≠Í ‘æ c{v/x,E≠/—}

But what happens when we encounter a function at the top-level? This is represented
by the command Èµ[x · —].c||tpÍ where tp is a constant standing in for the empty, top-level
context. Normally, we would be stuck, so instead lets look at functions from the other side.
A call stack v · E≠ is similar to a pair (v, w). In some programming languages, we access
a pair by matching on its structure (analogous to µ̃(x, y).c). But in other languages, we
are given primitive projections for accessing its fields. We can make the same change with
functions: rather than matching on the structure of a call (with µ[x · —].c or ⁄x.v), we can
instead project out of a call stack [26]. The projection arg[v · E≠] gives us the argument v
and ret[v ·E≠] gives us the return pointer E≠. These two projections let us keep going when
a function reaches the top level, by projecting the argument and return pointer out of tp:

Èµ[x · —].c||tpÍ ‘æ c{arg tp /x, ret tp /—}
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This goes “inside” the function, and yet there are no free variables in sight. Instead, the
would-be free x is replaced with the placeholder arg tp, and we get a new “top-level” context
ret tp, which stands for the context expecting the result of an implicit call with arg tp.

As we keep going, we may return another function to ret tp, and the process continues
with the new placeholder argument arg[ret tp] and the next top-level ret[ret tp]. Rewriting
these rules in terms of the more familiar ⁄-abstractions, we get the following small abstract
machine for closed head reduction, which says what to do when a function is called (with
w · E≠) or returned to any of the series of “top-level” contexts (retn E≠):

Èv w||E≠Í ‘æ Èv||w · E≠Í
È⁄x.v||w · E≠Í ‘æ Èv{w/x}||E≠Í

È⁄x.v||retn tpÍ ‘æ Èv{arg[retn tp]/x}||retn+1
tpÍ

For example, the ÷-expansion of the infinite loop � also loops forever, instead of stopping:

È⁄x.�x||tpÍ ‘æ È� (arg tp)||ret tpÍ ‘æ È�||arg tp · ret tpÍ ‘ææ È�||arg tp · ret tpÍ . . .

4.1.2 E�ective confluence

A similar issue arises when we consider confluence of the reduction theory. In particular, the
call-by-name version of ÷ for functions can be expressed as simplifying the deconstruction-
reconstruction detour µ[x ·—].Èv||x · —Í æ÷≠

æ
v, similar to Figure 3.6 We might expect that —÷

reduction is now confluent like it is in the ⁄-calculus. Unfortunately, it is not, due to a critical
pair between function extensionality and a general µ (_ stands for an unused (co)variable):7

µ_.c Ω÷≠
æ

µ[x · —].Èµ_.c||x · —Í æ—≠
µ
µ[x · —].c

Can we restore confluence of function extensionality in the face of control e�ects? Yes! The
key to eliminating this critical pair is to replace the ÷

≠
æ rule with an alternative extensionality

rule provided by viewing functions as codata types, equipped with projections out of their
constructed call stacks. Under this view, every function is equivalent to a µ–.c, where arg–

replaces the argument, and ret– replaces the return continuation. Written as a reduction
that replaces copatterns with projections, we have:

µ[x · —].c æµæ µ–.c{arg–/x, ret–/—}

Analogously, the µæ rule can be understood in terms of the ordinary ⁄-abstraction as
⁄x.v æ µ–.Èv{arg–/x}||ret–Í. If all functions immediately reduce to a general µ, then how
can we execute function calls? The steps of separating the argument and the result are done
by the rules for projection, which have their own form of —-reduction along with a di�erent
extensionality rule surjæ capturing the surjective pair property of call stacks:

arg[v · E≠] æ—arg v ret[v · E≠] æ—ret E≠ [argE≠] · [retE≠] æsurjæ E≠

The advantage of these rules is that they are confluent in the presence control e�ects [27].
Even though surjective pairs can cause non-confluence troubles in general [28], the coarse
distinction between terms and coterms is enough to resolve the problem for call-by-name call
stacks. Moreover, these rules are strong enough to simulate the ⁄-calculus’ —÷ laws:

6 This is the call-by-name version of µ[x · —].Èy||x · —Í æ÷æ y because we have substituted a call-by-name
value v œ Value≠ for the variable y.

7 Note, this is not just a problem with copatterns; the same issue arises in Parigot’s ⁄µ-calculus with
ordinary ⁄-abstractions and ÷ law: µ_.c Ω ⁄x.(µ_.c) x æ ⁄x.µ_.c.
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(⁄x.v) w = µ–.Èµ[x · —].Èv||—Í||w · –Í æµæ µ–.Èµ“.Èv{arg “/x}||ret “Í||w · –Í
æ—≠

µ
µ–.Èv{arg[w · –]/x}||ret[w · –]Í ææ—ret—arg µ–.Èv{w/x}||–Í æ÷µ v{w/x}

⁄x.(v x) = µ[x · —].Èv||x · —Í æµæ µ–.Èv||[arg–] · [ret–]Í æsurjæ µ–.Èv||–Í æ÷µ v

4.2 Loops in Types, Programs, and Proofs

Thus far, we’ve only talked about finite types of information: putting together a fixed number
of things. However, real programs are full of loops. Many useful types are self-referential,
letting them model information whose size is bounded but arbitrarily large (like lists and
trees), or whose size is completely unbounded (like infinite streams). Programs using these
types need to be able to loop over arbitrarily large data sets, and generate infinite objects
in streams. Once those loops are introduced, reasoning about programs becomes much
harder. Let’s look at how duality can help us understand the least understood loops in types,
programs, and proofs.

4.2.1 (Co)Recursion

Lists and trees – which cover structures that could be any size, as long as they’re finite –
are modeled by the familiar concept of inductive data types found in all mainstream, typed
functional programming languages. The dual of these are coinductive codata types, which is a
relatively newer feature that is finding its way into more practical languages for programming
and proving. We already saw instances of both of these as Expr and Socket from Section 3.6.
The canonical examples of (co)inductive (co)data are the types for natural numbers and
infinite streams, which are defined like so:

data Natwhere
Zero : „ Nat |
Succ : Nat „ Nat |

codata StreamXwhere
Head : | StreamX „ X

Tail : | StreamX „ StreamX

The recursive nature of these two types are in the fact that they have constructors that take
parameters of the type being declared: Succ takes a Nat as input before building a new Nat,
whereas Tail consumes a StreamX to produce a new StreamX as output.

To program with inductive types, functional languages allow programmers to write
recursive functions that match on the structure of its argument. For example, here is a
definition of the addition function plus:

plus Zero x = x plus (Succ y) x = plus y (Succx)

We know that this function is well-founded – that is, it always terminates on any input –
because it’s structurally recursive: the first argument shown in red shrinks on each recursive
call, where Succ y is replaced with the smaller y. The second argument in blue doesn’t
matter; it can grow from x to Succx since we already have a termination condition.

Translating this example into the dual language reveals that the same notion of structural
recursion covers both induction and coinduction [16]. Instead of defining plus as matching
on just its arguments, we can define it as matching on the structure of its entire call stack
– in the command Èplus||–Í. Generalizing to the entire call stack lets us write coinductive
definitions using the same technique. For example, here is the definition of plus in the dual
language alongside count which corecursively produces a stream of numbers from a given
starting point (i.e., count x = x, x+ 1, x+ 2, x+ 3, . . . ):
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Èplus||Zero · x · –Í = Èx||–Í Èplus||Succ y · x · –Í = Èplus||y · Succx · –Í
Ècount||x · Head–Í = Èx||–Í Ècount||x · Tail–Í = Ècount||Succx · –Í

Both definitions are well-founded because they are structurally recursive, but the di�erence
is the structure they are focused on within the call stack. Whereas the value Succ y shrinks
to y in the recursive call to plus, it’s the covalue Tail– that shrinks to – in the corecursive
call to count. In both, the growth in blue doesn’t matter, since the red always shrinks.

Here are two more streams defined by structural recursion on the shape of the stream
projection Head– or Tail–. iterate repeats the same function over and over on some starting
value (i.e., iterate f x = x, f x, f(f x), f(f(f x)), . . . ) and maps modifies an infinite stream
by applying a function to every element (i.e., maps f (x1, x2, x3 . . . ) = f x1, f x2, f x3, . . . ):

Èiterate||f · x · Head–Í = Èf ||x · –Í
Èiterate||f · x · Tail–Í = Èiterate||f · µ—.Èf ||x · —Í · –Í
Èmaps||f · xs · Head–Í = Èf ||µ—.Èxs||Head—Í · –Í
Èmaps||f · xs · Tail–Í = Èmaps||f · µ—.Èxs||Tail—Í · –Í

4.2.2 (Co)Induction

Examining the structure of (co)values isn’t just good for programming; it’s good for proving,
too. For example, if we want to prove some property � about values of type A ü B, it’s
enough to show it holds for the (exhaustive) cases of ÿ1x1 : A ü B and ÿ1x2 : A ü B like so:

�(ÿ1x1) : (�, x1 : A „ �) �(ÿ2x2) : (�, x2 : B „ �)
�(x) : (�, x : A ü B „ �) üInduction

Exhaustiveness is key to ensure that all cases are covered and no possible value was left
out. This becomes di�cult to do directly for recursive types like Nat, because it represents
an infinite number of cases (0, 1, 2, 3, . . . ). Instead, we can prove a property � indirectly
through the familiar notion of structural induction: prove �(Zero) specifically and prove
that the inductive hypothesis �(y) implies �(Succ y) as expressed by this inference rule

�(Zero) : (� „ �)

�(y) : (�, y : Nat „ �) IH

....
�(Succ y) : (�, y : Nat „ �)

�(x) : (�, x : Nat „ �) NatInduction

But how can we deal with coinductive codata types? There are also an infinite number
of cases to consider, but the values don’t follow the same, predictable patterns. Here is a
conventional but questionable form of coinduction that takes the entire goal �(x) to be the
coinductive hypothesis, as in:

�(x) : (�, x : StreamA „ �) CoIH

.... ???
�(x) : (�, x : StreamA „ �)
�(x) : (�, x : StreamA „ �)

Questionable CoInduction
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But this rule obviously has serious problems: CoIH could just be used immediately, leading
to a viciously circular proof. To combat this clear flaw, other secondary, external checks
and guards have to be put into place that go beyond the rule itself, and instead analyze the
context in which CoIH is used to prevent circular proofs. As a result, a prover can build a
coinductive proof that follows all the rules, but run into a nasty surprise in the end when the
proof is rejected because it fails some implicit guard. Can we do better?

Just like the way structural induction looks at the shape of values, structural coinduction
looks at the shape of covalues which represent contexts [12]. For example, here is the
coinductive rule dual to üInduction for concluding that a property � holds for any output
of A&B by checking the (exhaustive) cases fi1–1 : A&B and fi2–2 : A&B:

�(fi1–1) : (� „ –1 : A,�) �(fi2–2) : (� „ –2 : A,�)
�(–) : (� „ – : A&B,�) &CoInduction

Just like Nat, streams have too many cases (Head—, Tail[Head—], Tail[Tail[Head—]], . . . ) to
exhaustively check directly. So instead, here is the dual form of proof as NatInduction for
proving � for any observation – of type StreamA: it proves the base case �(Head—) directly,
and then shows that the coinductive hypothesis �(“) implies the next step �(Tail “), like so:

�(Head—) : (� „ — : A,�)

�(“) : (� „ “ : StreamA,�) CoIH

....
�(Tail “) : (� „ “ : StreamA,�)

�(–) : (� „ – : StreamA,�) StreamCoInduction

Notice the similarities between this rule and the one for Nat induction. In the latter, even
though the inductive hypothesis �(y) is assumed for a generic y, then there is no need
for external checks because we are forced to provide �(Succ y) for the very same y. The
information flow between the introduction of y in IH and its use in the final conclusion
of �(Succ y) prevents viciously circular proofs. In the same way, the coinductive rule here
assumes �(“) for a generic “, but we are forced to prove �(Tail “) for the very same “. In
this case, there is an implicit control flow between the introduction of “ in CoIH and its use
in the final conclusion �(Tail “). Thus, CoIH can be used in any place it fits, without any
secondary guards or checks after the proof is built; StreamCoInduction is sound as-is.

How can this form of coinduction be used to reason about corecursive programs? Con-
sider this interaction between maps and iterate: maps f (iterate f x) = iterate f (f x).
Written in the dual language, this property translates to an equality between commands:
Èmaps||f · µ—.Èiterate||f · x · —Í · –Í = Èiterate||f · µ—.Èf ||x · —Í · –Í.We can prove this property
(for any starting value x) using coinduction with these two cases:
– = Head–Õ

. The base case follows by direct calculation with the definitions.

Èmaps||f · µ—.Èiterate||f · x · —Í · Head–ÕÍ = Èf ||µ—.Èiterate||f · x · Head—Í · –ÕÍ (maps,—µ)
= Èf ||µ—.Èf ||x · —Í · –ÕÍ (iterate)
= Èiterate||f · µ—.Èf ||x · —Í · Head–ÕÍ (iterate)

– = Tail–Õ
. First, assume the coinductive hypothesis (CoIH) which is generic

in the value of the initial x: for all x, Èmaps||f · µ—.Èiterate||f · x · —Í · –
ÕÍ =

Èiterate||f · µ—.Èf ||x · —Í · –
ÕÍ. The two sides are equated by applying CoIH with an

updated value for x:
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Èmaps||f · µ—.Èiterate||f · x · —Í · Tail–
ÕÍ

= Èmaps||f · µ—.Èiterate||f · x · Tail—Í · –
ÕÍ (maps,—µ)

= Èmaps||f · µ—.Èiterate||f · µ“.Èf ||x · “Í · —Í · –
ÕÍ (iterate)

= Èiterate||f · µ—.Èf ||µ“.Èf ||x · “Í · —Í · –
ÕÍ (CoIH{µ“.Èf ||x · “Í/x})

= Èiterate||f · µ“.Èf ||x · “Í · Tail–
ÕÍ (iterate)

4.3 Compilation and Intermediate Languages

In Section 3, we saw how a symmetric language based on the sequent calculus closely resembles
the structure of an abstract machine, which helps to reveal the details of how programs are
really implemented. This resemblance raises the question: does a language based on the
sequent calculus be a good intermediate language (IL) used to compile programs to machine
code? The ⁄-calculus’ syntax structure buries the most relevant part of an expression. For
example, applying f to four arguments is written as ((((f 1) 2) 3) 4); we are forced to search
for the next step – f 1 – found at the bottom of the tree. Instead, the syntax of the dual
calculus raises up the next step of a program to the top; the same application is written as
Èf ||1 · (2 · (3 · (4 · –)))Í, where calling f with 1 is the first part of the command.

We have found that the sequent calculus can in fact be used as an intermediate language
of a compiler [17]. The feature of bringing out the most relevant expression to the top of a
program is shared by other commonly-used representations like continuation-passing style

(CPS) [2] and static single assignment (SSA) [5]. However, the sequent calculus is uniquely
flexible. Unlike SSA which is an inherently imperative representation, the sequent calculus is
a good fit for both purely functional and e�ectful languages. And unlike CPS, the sequent
calculus preserves enough of the original structure of the program to enable high-level rewrite
rules expressed in terms of the source, as done by the Glasgow Haskell Compiler (GHC).
Besides these advantages, our experience with a sequent calculus IL has led the following
new techniques, which apply more broadly to other compiler ILs, too.

4.3.1 Join points in control flow

Join points are places where separate lines of control flow come back together. They are as
pervasive as the branching structures in a program. For example, the statement

if x > 100: print "x is large"

else: print "x is small"

print "goodbye"

splits o� in two di�erent directions to print a di�erent statement depending on the value
of x. But in either case, both branches of control flow will rejoin at the shared third line
to print "goodbye". Compilers need to represent these join points for code generation and
optimization, in a way that is e�cient in both time and space. Ideally, we want to generate
code to jump to the join point in as few instructions as possible. And it’s not acceptable to
copy the common code into each branch; this leads to a space ine�ciency that can cause an
exponential blowup in the size of the generated code.

In the past, GHC represented these join points as ordinary functions bound by a let-
expression. For example, the function j in let j x = . . . x . . . in if z then j 10 else j 20 serves
as the join point for both branches of the if-expression. Of course, this is space e�cient,
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since it avoids duplicating code of j. But a full-fledged function call is much less e�cient
than a simple jump. Fortunately, the local function j has some special properties: it is
always used in tail-call position and never escapes the scope of the let . These properties
let GHC compile the calls j 10 and j 20 as e�cient jumps. Unfortunately, the necessary
properties for optimization aren’t stable under other useful optimizations. For example, it
usually helps to push (strict) evaluation contexts inside of an if-then-else or case-expression.
While semantically correct, this can break the tail-call property of join points like here:

3 + let j y = 10 + (y + y)
in casexof

ÿ1z1 æ j z1
ÿ2z2 æ j (≠z2)

æ

let j y = 10 + (y + y)
in casexof

ÿ1z1 æ 3 + (j z1)
ÿ2z2 æ 3 + (j (≠z2))

Before, j could be compiled as a join point, but after it is used in non-tail-call positions
3 + (j z1) and 3 + (j (≠z2)). To combat this issue, we developed a ⁄-calculus with purely-
functional join points [29]. While this calculus ostensibly contains labels and jumps – which
are indeed compiled to jumps into assembly code – from the outside there is no observable
e�ect. Instead, this calculus gives rules for optimizing around join points while ensuring they
are still compiled e�ciently. The example above is rewritten like so, where the context 3 +⇤
is now pushed into the code of the join point, rather than inside of the case-expression:

3 + join j y = 10 + (y + y)
in casexof

ÿ1z1 æ jump j z1
ÿ2z2 æ jump j (≠z2)

æ

join j y = 3 + 10 + (y + y)
in casexof

ÿ1z1 æ jump j z1
ÿ2z2 æ jump j (≠z2)

æ

join j y = 13 + (y + y)
in casexof

ÿ1z1 æ jump j z1
ÿ2z2 æ jump j (≠z2)

Besides preserving the e�ciency of j itself, this new form of code movement enables new
optimizations. In this case, we can perform some additional constant folding of 3 + 10, and
other optimizations such as loop fusion can be expressed in this way as well.

4.3.2 Polarized primitive types

Another key feature found in the duality of logic is the polarization of di�erent propositions.
In terms of computation [33, 30], polarization is the combination of an “ideal” evaluation
strategy based on the structure of types. Consider the ÷ laws expressing extensionality of
the various types in Figure 3. All the ÷ laws for data types (e.g., built with ¢, ü, °, and ÷)
are about expanding covalues –. These laws are the strongest in the call-by-value strategy,
which maximizes the number of covalues. Dually, the ÷ laws for codata types (e.g., built
with &, &, ¬, and ’) are about expanding values x. These are the strongest in call-by-name.

Usually, we think of picking one evaluation strategy for a language. But this means that
in either case, we are necessarily weakening extensionality of data or codata types (or both,
if we choose something other than call-by-value or call-by-name). Instead, we can use a
polarized language which improves ÷ laws for all types by combining both strategies. This
involves separating types into two di�erent camps – the positive Type+ and the negative
Type≠ – following our analogy of the burden of proof from Section 2.2 like so:

Sign – s ::= + | ≠
Type+ – A+, B+ ::= X+ | A+ ü B+ | A+ ¢ B+ | ÷Xs.A+ | °A≠ | ´A≠

Type≠ – A≠, B≠ ::= X≠ | A≠ &B≠ | A≠

&

B≠ | ’Xs.A≠ | ¬A+ | ˆA+

By separating types in two, we also have to add the polarity shifts ´A≠ and ˆA+ so they can
still refer to one another. For example, the plain A ü (B & C) becomes A+ ü ´(B≠ & C≠).
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Once this separation of types has occurred, we can bring them back together and
intermingle both within a single language. The distinction can be made explicit in a refined
Cut rule, which is the only rule which creates computation, so that the type (and its sign)
becomes part of the program:

� „ v : A | � A : s � | e : A „ �
Èv|A:s|eÍ : (� „ �) Cut

Since there is no longer one global evaluation strategy, we instead use types to determine the
order. The additional annotation in commands let us drive computation with more nuance,
referring to the sign s of the command to determine the priorities of µ and µ̃ computations:

(—s
µ) Èµ–.c|A:s|EsÍ = c{Es/–} (—s

µ̃) ÈVs|A:s|µ̃x.cÍ = c{Vs/x}

The advantage of this more nuanced form of computation is that the types of the language
express the nice properties that usually only hold up in an idealized, pure theory; however,
now they hold up in the pragmatic practice that combines all manner of computational
e�ects like control flow, state, and general recursion. For example, we might think that
curried and uncurried functions – A æ (B æ C) versus (A¢B) æ C – are exactly the same.
In both Haskell and OCaml, they are not, due to interactions with non-termination or side
e�ects. But in a polarized language, they are the same, even with side e�ects.

These ideal properties of polarized types let us encode a vast array of user-defined
data and codata types into a small number of basic primitives. We can choose a perfectly
symmetric basis of connectives found in Section 3 [11] or an asymmetric alternative that
is suited for purely functional programs [9]. The ideal properties provided by polarization
can be understood in terms of the dualities of evidence in Section 2.3. For example, the
equivalence between the propositions °¬A and A corresponds to an isomorphism between
the polarized types °¬A+ and A+ (and dually ¬ ° A≠ and A≠). Intuitively, the only
(closed) values of type °¬A have exactly the form ([Vv]), which is in bijection with the plain
values Vv. And coterms of those two types are also in bijection due to the optimized ÷ laws.
All the de Morgan equivalences in Section 2.3 correspond to type isomorphisms, too. For
example, the only (closed) values of °’Xs.B≠ have the form ([As, E≠]), which is in bijection
with ÷Xs. ° B≠’s (closed) values of the form (As, (E≠)). In contrast, the other negation
¬´’Xs.B≠ includes abstract values of the form µ[x].c, which are not isomorphic to the more
concrete values (As, µ[x].c) of ÷Xs.¬´B≠ that witness their chosen As. Thus, constructivity,
computation, and full de Morgan symmetry depend on both polarized negations.

Polarization itself only accounts for call-by-value and call-by-name evaluation. However,
other evaluation strategies are sometimes used in practice for pragmatic reasons. For
example, implementations of Haskell use call-by-need evaluation, which can lead to better
asymptotic performance than call-by-name. How do other evaluation strategies fit? We can
add additional signs – besides ≠ and + – that stand in for other strategies like call-by-need.
But do we need to duplicate the basic primitives? No! We only need additional shifts that
convert between the new sign(s) with the original + and ≠, four in total:

data ´s(X : s) : +where
Boxs : X : s „ ´sX : + |

data «s(X : +) : swhere
Returns : X : + „ «s

X : s |
codata ˆs(X : s) : ≠where
Evals : | ˆsX : ≠ „ X : s

codata »s(X : ≠) : swhere
Enters : | »sX : s „ X : ≠
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4.3.3 Static calling conventions

Systems languages like C give the programmer fine-grained control over low-level represent-
ations and calling conventions. When defining a structure, the programmer can choose if
values are stored directly or indirectly (i.e., boxed) as a pointer into the heap. When calling
a function, the programmer can choose how many arguments are passed at once, and if
they are passed directly in the call stack, or indirectly by reference. High-level functional
languages save programmers from these details, but at the cost of using less e�cient – but
more uniform – representations and calling conventions. Is there a way to reconcile both
high-level ease and low-level control?

It turns out that polarization also provides a logical foundation for e�cient representations
and calling conventions, too. Decades ago [32], Haskell implementors designed a way to add
unboxed representations into the compiler IL, making it possible to more e�ciently pass
values directly in registers. However, doing so required extending the language, because
unboxed values must be call-by-value, and the types of unboxed values are di�erent from the
other, ordinary Haskell types. This sounds awfully similar to polarization: unboxed values
correspond to positive data types, which have a di�erent polarity from Haskell’s types.

With this inspiration, we considered the dual problem: what do negative types correspond
to? If an unboxed pair (V+,W+) is described by the positive type A+ ¢ B+, then does an
unboxed call stack V+ · E≠ correspond to the negative function type A+ æ B≠? In [19], we
found that negative functions correspond to a more primitive type of functions found in
the machine, where the power of the polarized ÷ law lets us express the arity of functions
statically in the type. Static arity is important for optimizing higher-order functions. In

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith f _ _ = []

we cannot compile f a b as a simple binary function call even though f’s type suggests so.
It might be that f only expects one argument, then computes a closure expecting the next.
Instead, using negative functions, which are fully extensional, lets us statically optimize
zipWith to pass both arguments to f at once.

However, this approach runs into some snags in practice, due to polymorphism. In order
to be able to statically compile code, we sometimes need to know the representation of a
type (to move its values around) or the calling convention of a type (to jump to its code in
the correct environment). But if a type is unknown – because it’s some polymorphic type
variable – then that runtime information is unknown at compile time. A solution to this
problem is given in [21], which introduces the idea of storing the runtime representation of
values in the kind of their type. So even when a type is not known statically, their kind is.
Following this idea, we combined the kind-based approach with function arity by storing
both representations and calling conventions in kinds [14].

This can be seen as a refinement on the course-grained polarization from Section 4.3.2.
Rather than just a basic sign – such as ≠ or + – types are described by a pair of both
a representation and a calling convention. Positive types like A ¢ B can have interesting
representations (their values can be tuples, tagged unions, or machine primitives) but have
a plain convention (their terms are always just evaluated to get the resulting value). In
contrast, negative types like A æ B can have interesting conventions (they can be called
with several arguments, which can have their own representations by value or reference) but
have a plain representation (they are just stored as pointers). This approach lets us integrate
e�cient calling conventions in a higher-level language with polymorphism, and also lets us
be polymorphic in representations and calling conventions themselves, introducing new forms
of statically-compilable code re-use.
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4.4 Orthogonal Models of Safety

We’ve looked at several applications based on the dual calculus in Section 3, but how do
we know the calculus is safe? That is, what sorts of safety properties do the typing rules
provide? For example, in certain applications, we might want to know for sure that well-typed
programs, like the ones in Section 4.2, always terminate. We also might want a guarantee
that the —÷ equational theory in Section 3.5 is actually consistent. To reason about the
impact of types, we must identify the safety property we’re interested in. This is done with a
chosen set of commands ‚ called the pole which contains only those commands we deem as
“safe.” Despite being tailor-made to classify di�erent notions of safety, there are shockingly
few requirements of ‚. In fact, the only requirement is that the pole must be closed under

expansion: c ‘æ c
Õ œ ‚ implies c œ ‚. Any set of commands closed under expansion can be

used for ‚. This gives the general framework for modeling type safety a large amount of
flexibility to capture di�erent properties, types, and language features. So in the following,
assume only that ‚ is an arbitrary set closed under expansion, and the sign s can stand for
either + (call-by-value) or ≠ (call-by-name) throughout.

4.4.1 Orthogonality and intuitionistic negation

The central concept in these family of models is orthogonality given in terms of the chosen
pole ‚. At an individual level, a term and coterm are orthogonal to one another, written
v ‚ e, if they form a command in the pole: Èv||eÍ œ ‚. Generalizing to groups, a set of
terms A+ and a set of coterms A≠ are orthogonal, written A+ ‚ A≠, if every combination
drawn from the two sets is orthogonal: v ‚ e for all v œ A+ and e œ A≠. Working with sets
has the benefit that we can always find the biggest set orthogonal to another. That is, for
any set of terms A+, there is a largest set of coterms called A+‚ such that A+ ‚ A+‚ (and
vice versa for any coterm set A≠, there is a largest A≠‚ ‚ A≠), defined as:

e œ A+‚ ≈∆ ’v œ A+
.Èv||eÍ œ ‚ v œ A≠‚ ≈∆ ’e œ A≠

.Èv||eÍ œ ‚

The fascinating thing about this notion of orthogonality is that – despite the fact that it was
designed for symmetric and classical systems – it so closely mimics the properties of negation
from the asymmetric intuitionistic logic. For example, it enjoys the properties analogous to
double negation introduction (A =∆ ¬¬A) and triple negation elimination (¬¬¬A ≈∆ A)
where A±‚ corresponds to the negation of A± (which could be either a set of terms or a set
of coterms) and set inclusion A± ™ B± corresponds to implication.

I Lemma 3 (Orthogonal Introduction/Elimination). A± ™ A±‚‚
and A±‚‚‚ = A±‚

.

However, the classical principle of double negation elimination (¬¬A =∆ A) does not hold
for orthogonality: in general, A±‚‚ * A±. This connection is not just a single coincidence.
Orthogonality also has properties corresponding to the contrapositive (A =∆ B implies
¬B =∆ ¬A) as well as all the intuitionistic directions of the de Morgan laws from Section 2.3
– where set union (A±fiB±) denotes disjunction and intersection (A±flB±) denotes conjunction
– but, again, not the classical-only directions like ¬(A · B) =∆ (¬A) ‚ (¬B).

Where does ‚’s closure under expansion come into play? It lets us reason about sets
of the form A±‚, and argue that they must contain certain elements by virtue of the way
they behave with elements of the underlying A±, rather than the way they were built. For
example, we can show that general µs and µ̃s belong to orthogonally-defined sets, as long as
their commands are safe under any possible substitution.
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IObservation 4. For any set of values A+
, if c{Vs/x} œ ‚ for all Vs œ A+

then µ̃x.c œ A+‚
.

For any set of covalues A≠
, if c{Es/–} œ ‚ for all Es œ A≠

then µ–.c œ A≠‚
.

Proof. For all values, Vs œ A+, observe that ÈVs||µ̃x.cÍ ‘æ—s
µ̃
c{Vs/x} œ ‚. Thus, ÈVs||µ̃x.cÍ œ

‚ by closure under expansion, so µ̃x.c œ A+‚ by definition. The other case is dual. C

Note the fact that Observation 4 starts with only a set of values or covalues, rather than
general (co)terms. This (co)value restriction is necessary to ensure that the —

s
µ̃ and —

s
µ rules

can fire, which triggers the closure-under-expansion result. Formally, we write this restriction
as A±V to denote the subset of A± containing only (co)values, which is built into the very
notion of candidates that model safety of individual types.

I Definition 5 (Candidates). A reducibility candidate, A œ RC, is a pair A = (A+
,A≠) of a

set of terms (A+
) and set of coterms (A≠

) that is:

Sound For all v œ A+
and e œ A≠

, Èv||eÍ œ ‚ (i.e., A+ ‚ A≠
).

Complete If Èv||EsÍ œ ‚ for all covalues Es œ A≠
then v œ A+

(i.e., A≠V‚ ™ A+
).

If ÈVs||eÍ œ ‚ for all values Vs œ A+
, then e œ A≠

(i.e., A+V‚ ™ A≠
).

We write v œ A as shorthand for v œ A+
and e œ A for e œ A≠

.

There are two distinct ways of defining specific reducibility candidates. We could begin
with a set A+ of terms, and build the rest of the candidate around the values of A+, or we
can start with a set A≠ of coterms, and build the rest around the covalues of A≠. These are
the positive (Pos(A+)) and negative (Neg(A≠)) construction of candidates, defined as:

Pos(A+) = (A+V‚V‚
,A+V‚V‚V‚) Neg(A≠) = (A≠V‚V‚V‚

,A≠V‚V‚)

Importantly, these constructions are indeed reducibility candidates, meaning they are both
sound and complete. But why are three applications of orthogonality needed instead of just
two (like some other models in this family)? The extra orthogonality is needed because of the
(co)value restriction A±V interleaved with orthogonality A±‚. Taken together, (co)value-
restricted orthogonality has similar introduction and elimination properties as the general
one (Lemma 3), but restricted to just (co)values rather than general (co)terms.

I Lemma 6. A±V ™ A±V‚V‚V
and A±V‚V‚V‚V = A±V‚V

.

Thus, the final application of orthogonality takes these (co)values and soundly completes the
rest of the candidate.8

4.4.2 An orthogonal view of types

With the positive and negative construction of candidates, we can define operations that
are analogous to the positive and negative burden of proof from Section 2.2. Here, terms
represent evidence of truth, and coterms represent evidence of falsehood, so the various
connectives are built like so:

A ¢ B = Pos{(v, w) | v œ A, w œ B}
A ü B = Pos({ÿ1v | v œ A} fi {ÿ2w | w œ B})

°A = Pos{(e) | e œ A}

A &B = Neg{[e, v] | e œ A, f œ B}
A& B = Neg({fi1e | e œ A} fi {fi2f | f œ B})

¬A = Neg{[v] | v œ A}

8 In fact, the simpler double-orthogonal constructions are valid, but only in certain evaluation strategies.
In call-by-value, where A≠V = A≠ because every coterm is a covalue, the positive construction simplifies
to just the usual Pos(A+) = (A+‚‚,A+‚) when A+ contains only values. Dually in call-by-name, the
negative construction simplifies to just Neg(A≠) = (A≠‚,A≠‚‚) when A≠ contains only covalues.
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Similarly, evidence for or against the existential and universal quantifiers can be defined as
operations taking a function F : RC æ RC over reducibility candidates, and producing a
specific reducibility candidate that quantifies over all possible instances of F(B).9

÷F = Pos{(A, v) | B œ RC, v œ F(B)} ’F = Neg{[A, e] | B œ RC, e œ F(B)}

With a semantic version of the connectives, we have a direct way to translate each
syntactic type to a reducibility candidate. The translation JAK◊ is aided by a map ◊ from
type variables to reducibility candidates, and the cases of translation are now by the numbers:

JXK◊ = ◊(X) JA ¢ BK◊ = JAK◊ ¢ JBK◊ . . . J’X.BK◊ = ’(⁄A:RC.JBK◊{A/X})

Going further, we can translate typing judgments to logical statements.

Jc : (� „ �)K◊ = ’‡ œ J� „ �K◊. c{‡} œ ‚
J� „ v : A | �K◊ = ’‡ œ J� „ �K◊. v{‡} œ JAK◊
J� | e : A „ �K◊ = ’‡ œ J� „ �K◊. e{‡} œ JAK◊

Each judgment is based on a translation of the environment, ‡ œ J� „ �K◊, which says that
‡ is a syntactic substitution of (co)values for (co)variables such that x{‡} œ JAK◊ if x : A is
in �, and similarly for – : A in �. The main result is that typing derivations imply the truth
of their concluding judgment, which follows by induction on the derivation.

I Theorem 7 (Adequacy). c : (� „ �) implies Jc : (� „ �)K◊ (and similar for (co)terms).

4.4.3 Applications of adequacy

Adequacy (Theorem 7) may not seem like a special property, but the generality of the model
means that it has many serious implications. We get di�erent results by plugging in a
di�erent notion of safety for ‚. The most basic corollary of adequacy is given by the most
trivial pole: ‚ = {} is vacuously closed under expansion since it is empty to start with.
By instantiating adequacy with ‚ = {}, we get a notion of logical consistency, there is no
derivation of a closed contradiction c : (• „ •) since Jc : (• „ •)K means that c œ {}.

I Corollary 8 (Logical Consistency). There is no well-typed c : (• „ •).

However, the most interesting results come from instances where ‚ is not empty. For
example, the set of terminating commands, {c | c ‘ææ c

Õ ”‘æ}, is also closed under expansion.
Defining ‚ as this set ensures that all well-typed commands are terminating.

I Corollary 9 (Termination). If c : (� „ �) then c ‘ææ—Î c
Õ ”‘æ.

But perhaps the most relevant application to discuss here is how constructivity from
Section 2 is reconciled with computation in Section 3. The notion of positive constructive
evidence of A ü B (Section 2.2) corresponds directly with the two value constructors: we
have ÿ1V1 : A1 üA2 and ÿ2V2 : A1 üA2 for any value Vi : Ai. Similarly, the evidence in favor
of ÷X.B corresponds directly with the constructed value (A, V ) : ÷X.B where V : B[A/X].

9 Note that there is no connection between the syntactic type A used in (A, v) and [A, e] and the actual
reducibility candidate used in F(B) that classifies v and e. Just like System F’s model of impredicativity
[22], we can get away with this bald-faced lie because of parametricity of ’ and ÷: the (co)term that
unpacks (A, v) or [A, e] is not allowed to react any di�erently based on the choice for A.
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But both of these types also have the general µ abstractions µ–.c : A ü B and µ—.c
Õ : ÷X.B,

which do not directly correspond with either. How do we know that both of these µs will
compute and eventually produce the required evidence? We can instantiate ‚ with only the
commands that do so. For A ü B we can set ‚ = {c | c ‘ææ ÈÿiV ||–Í}, and for ÷X.B we can
set ‚ = {c | c ‘ææ È(A, V )||–Í}; both of these definitions are closed under expansion, which is
all we need to apply adequacy to compute the construction matching the type.

I Corollary 10 (Positive Evidence). If • „ v : A1 ü A2 | then Èv||–Í ‘ææ—sÎs ÈÿiVs||–Í such that

Vs œ JAiK. If • „ v : ÷X.B | then Èv||–Í ‘ææ—sÎs È(A, Vs)||–Í such that Vs œ JBK{JAK/X}.

Dually, we can design similar poles which characterize the computation of negative evidence.
For example, types like A1 &A2 and ’X.B include general µ̃ abstractions of the form µ̃x.c in
addition to the constructed covalues fi1E1 : A1, fi2E2 : A2, and [A,E] : ’X.B that correspond
to the negative evidence of these connectives. Luckily, we can set the global ‚ to either
{c | c ‘ææ Èx||fiiEÍ} or {c | c ‘ææ Èx||[A,E]Í} to ensure that general µ̃s compute the correct
concrete evidence for these negative types.

I Corollary 11 (Negative Evidence). If | e : A1 & A2 „ • then Èx||eÍ ‘ææ—sÎs Èx||fiiEsÍ such

that Es œ JAiK. If | e : ’X.B „ • then Èx||eÍ ‘ææ—sÎs Èx||[A,Es]Í such that Es œ JBK{JAK/X}.

This model is extensible with other language features, too, without fundamentally
changing the shape of adequacy (Theorem 7). For example, because reducibility candidates
are two-sided objects, there are two di�erent ways to order them:

A ı B ≈∆ A+ ™ B+ and A≠ ™ B≠ A Æ B ≈∆ A+ ™ B+ and A≠ ´ B≠

The first order A ı B where both sides are in the same direction is analogous to ordinary set
containment. However, the second order A Æ B where the two sides are opposite instead
denotes subtyping [15]. Besides modeling subtyping as a language feature itself, this idea is
the backbone of several other type features, including (co)inductive types [12], intersection
and union types [13], and indexed (co)data types [16]. It also lets us model non-determinism
[15], where the critical pair between µ and µ̃ is allowed.

We can also generalize the form of our model, to capture properties that are binary relations
rather than unary predicates. This only requires that we make each of the fundamental
components binary, without changing their overall structure. For example, the pole ‚ is
generalized from a set to a relation between commands that is closed under expansion:
c1 ‘ææ c

Õ
1 ‚ c

Õ
2 ΩΩ[ c2 implies c1 ‚ c2. From there, reducibility candidates become a pair of

term relation v A+
v and coterm relation e A≠

e
Õ, where soundness and completeness can be

derived from the generalized notion of orthogonality between relations:

A+ ‚ A≠ ≈∆ ’(v A+
v

Õ), (e A≠
e

Õ). Èv||eÍ ‚ ÈvÕ||eÕÍ

This lets us represent equalities between commands and (co)terms in the orthogonality model,
and prove that the equational theory is consistent with contextual equivalence [6], i.e., equal
expressions produce the same result in any context. As a consequence, (co)values built with
distinct constructors – such as ÿ1 and ÿ2 or fi1 and fi2 – are never equal.

I Corollary 12 (Equational Consistency). The equalities � „ ÿ1Vs = ÿ2V Õ
s : A ü B | � and

� | fi1Es = fi2EÕ
s : A&B „ � are not derivable.
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5 Conclusion

Duality is not just an important idea in logic; it is also a useful tool to study and implement
programs. By re-imagining constructive logic as a fair debate between multiple competing
viewpoints, we derive a symmetric calculus that lets us transfer the logical idea of duality to
computation. This modest idea has serious ramifications, and leads to several applications in
both the theory and practice of programming languages. Moreover, it reveals new ideas and
new relationships that are not expressible in today’s languages. We hope the next generation
of programming languages puts the full force of duality into programmers’ hands.
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