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Abstract Neighborhood effects have an important role
in evacuation decision-making by a family. Owing to

peer influence, neighbors evacuating can motivate a fam-
ily to evacuate. Paradoxically, if a lot of neighbors evac-
uate, then the likelihood of an individual or family de-

ciding to evacuate decreases, for fear of crime and loot-
ing. Such behavior cannot be captured using standard
models of contagion spread on networks, e.g., thresh-
old, independent cascade, and linear threshold mod-

els. Here, we propose a new threshold-based graph dy-
namical system model, 2mode-threshold, which cap-
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tures this dichotomy. We study theoretically the dy-
namical properties of 2mode-threshold in different
networks, and find significant differences from a stan-
dard threshold model. We build and characterize small
world networks of Virginia Beach, VA, where nodes

are geolocated families (households) in the city and
edges are interactions between pairs of families. We
demonstrate the utility of our behavioral model through

agent-based simulations on these small world networks.
We use it to understand evacuation rates in this re-
gion, and to evaluate the effects of modeling parame-
ters on evacuation decision dynamics. Specifically, we

quantify the effects of (i) network generation parame-
ters, (ii) stochasticity in the social network generation
process, (iii) model types (2mode-threshold vs. stan-

dard threshold models), (iv) 2mode-threshold model
parameters, (v) and initial conditions, on computed
evacuation rates and their variability. An illustrative
example result shows that the absence of looting effect
can overpredict evacuation rates by as much as 50%.

1 Introduction

1.1 Background

Extreme weather events displaced 7 million people from
their homes just in the first six months of 2019 (Sen-
gupta, 2019). With the rise in global warming, the fre-
quency of these events is increasing and they are also
becoming more damaging (Coumou and Rahmstorf, 2012).
Just in 2017-2018, there were 24 major events. In 2017,
there was a total of 16 weather events that together
costed over $306 billion, according to NOAA. In 2018,

there were eight hurricanes, out of which two were cat-
egory 3 or higher and caused more than $50 billion in



2 Chris J. Kuhlman et al.

damages. As of this writing, the 2020 hurricane sea-
son, well underway, is anticipated to have near-record-
breaking counts, with ten total hurricanes including
four major ones (Saunders and Lea, August 2020).

1.2 Motivation for Studying Fear of Looting in
Natural Disaster Contexts

Timely evacuation is the only action that can reduce
risk in many of these events. Although more people
are exposed to these weather events, technological im-
provements in weather prediction, early warning sys-
tems, emergency management, and information shar-
ing through social media, have helped keep the number
of fatalities fairly low. During Hurricane Fani (Kumar,
2019), a record 3.4 million people were evacuated in In-
dia and Bangladesh and fewer than 100 fatalities were
recorded (Sengupta, 2019). However, in many disaster
events, e.g. Hurricane Sandy, the fraction of people who
evacuated has been much lower than what local govern-

ments would like.

The decision to evacuate or not is a very complex
one and depends on a large number of social, demo-
graphic, familial, and psychological factors, including

forecasts, warnings, and risk perceptions (Madireddy
et al., 2015; Yang et al., 2019; Hasan and Ukkusuri,
2011; Widener et al., 2013; Halim and Mozumder, 2020).

Two specific factors have been shown to have an im-
portant effect on evacuation decisions. First, peer ef-
fects, i.e., whether neighbors and others in the commu-
nity have evacuated. Up to a point, this has a positive

impact on the evacuation probability of a household,
i.e., as more neighbors evacuate, a household becomes
more likely to evacuate. Second, concerns about prop-
erty loss, via looting for example, can counteract the
positive peer effect. That is, when most neighbors are
away and the neighborhood is empty, the remaining

households may decide not to evacuate, fearing prop-
erty loss via looting. Therefore, fear of looting has a
negative impact on the probability of evacuation. An
important public policy goal in disaster planning and
response is to increase the evacuation rates in an af-
fected region; so understanding the interaction between
these two effects becomes crucial.

1.3 Concerns Over Looting: Motivation From Other

Contexts

Fear of looting is an issue of importance in other related
and unrelated contexts, both in the US and abroad.
Concern over crime and looting was first documented in
public opinion polls in the U. S. when it ranked second

in a listing of perceived national problems, in 1968 (Er-
skine, 1974). Looting in the context of civil disturbances
is discussed by Dynes and Quarantelli (1968). In flee-
ing the on-coming of enemies across national borders,
parents may leave one of their children to guard family
property, for fear of looting (Nguyen, 2018). Individual
looting of civilians by government soldiers is studied
in Azam (2002). Financial looting has also been identi-
fied as a driver for unethical, if not illegal, profiteering
by realizing financial gain with the intention of going
broke later at society’s expense (Akerlof et al., 1993).
For these and other reasons, the study of the effects of
looting on human decision-making is of interest. Here,
we study it in the context of natural disasters.

1.4 Summary of Results

There is a lot of work on modeling peer effects, e.g.,
the spread of diseases, information, fads and other con-
tagions (Beckman et al., 2011; Chen et al., 2017; Aral

and Nicolaides, 2017). A number of models have been
proposed, such as independent cascade (Kempe et al.,
2003), and different types of threshold models, e.g., (Gra-
novetter, 1978; Watts, 2002; Centola and Macy, 2007).

These are defined on a network, with each node in state
0 (representing non-evacuation) or 1 (representing evac-
uation), and a rule for a node to change state from 0 to

1. For instance, in a τ -threshold model, a node switches
from state 0 to state 1 if at least a τ -fraction of its
neighbors are in already in state 1. All prior models
only capture the first effect above, i.e., as the num-

ber of affected neighbor increases, a node is more likely
to switch to state 1. Here, we propose a new thresh-
old model, referred to as 2mode-threshold, which
inhibits a transition from state 0 to 1 if a sufficiently
large fraction of a family’s neighborhood is in state 1.
That is, contrary to other models, 2mode-threshold

captures the phenomenon that if too many neighbors
are in state 1, then a node will not transition from 0
to 1. We demonstrate its use in a large scale study. Our
results are summarized below.

1. Development of the 2mode-threshold model
(results in Section 2). We introduce and formalize
evacuation decision making as a graph dynamical sys-

tem (GDS) (Mortveit and Reidys, 2007; Adiga et al.,
2018) using 2mode-threshold functions at nodes. This
model follows observations from surveys which show
families are more likely to evacuate as more of their
neighbors evacuate, but only up to a point. When too
many neighbors have evacuated, a family becomes con-
cerned about looting (crime) and hence is more likely
to not evacuate (i.e., remain behind). This model is
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akin to threshold-characterized influence models (Gra-
novetter, 1978; Watts, 2002; Schelling, 2006; Centola
and Macy, 2007) that have been demonstrated through
observations to capture decision-making, e.g., Centola
(2010); Gonzalez-Bailon et al. (2011); Romero et al.
(2011); Centola (2011). However, the influence only op-
erates up to some fraction of neighbors which we denote
as ηc; for fractions of neighbors > ηc, the influence to
evacuate is zero.

2. Theoretical results of the 2mode-threshold
model (results in Section 3). We study the dynam-
ics of 2mode-threshold in different networks, and
show significant differences from the standard thresh-
old model that has no drop off. Specifically, we find
that starting at a small set of nodes in state 1, the dif-
fusion process does not go beyond a constant fraction
of the network. System configurations in which more
nodes are 1’s (e.g., all 1’s vector of node states) are
also fixed points, but our results imply that one cannot
reach such fixed points with lots of 1’s from most initial

configurations that have a small number of 1’s.

3. Social network representations of Virginia Beach,
VA (results in Section 4). We build a family of social

networks to represent Virginia Beach, Virginia, that is
on the Eastern Seaboard of Virginia and was impacted
by Hurricane Sandy in 2012. This region has a popula-

tion of over 450,000, and households are geographically
situated based on land-use data, with real geo-locations
that invoke the concepts of neighbors and long range
connections. Nodes in the social networks are families,

and these do not change across social network instances.
Rather, the edges between families, representing two
forms of social influence, change. We add edges be-
tween households based on the Kleinberg small world
(KSW) model (Kleinberg, 1999). There are short-range
and long-range directed edges, where the former is char-
acterized by a short range distance dsr in which each
pair of families whose homes are with this distance are
joined by an edge. The number q of long-range edges is
specified, and these edges can form between two nodes

at any distance > dsr. We build networks using three
values of dsr and five values of q.

We characterize the networks structurally, and find
the following. (i) Networks with no long-range edges
never contain giant components; the largest compo-
nents are about 0.35 fraction of the nodes in the en-
tire network. (ii) It is only with long-range edges that
these smaller components are linked up to form giant
components that encompass the entire network. The gi-
ant components appear for the least non-zero q value
of 2. (iii) The strongly and weakly connected compo-

nents are essentially the same size and composition,

even when q > 0. (The long-range edges are direc-
tional.) (iv) The maximum in-degree of networks does
not change as the short-range distance dsr increases
from 40 m to 60 m, indicating that the maximum den-
sity of homes in geographic regions do not change much
when the short-range distance is changed in this range.
Maximum degree increases significantly when dsr in-
creases to 100 m. Some causes of evacuation response
behaviors are related to these structural properties.

4. Agent-based modeling and simulation (results
in Section 5). We develop an agent-based model and
simulation (ABMS) of the 2mode-threshold model
on realistic small world networks of Virginia Beach,
VA. Our ABM enables us to capture heterogeneities
in the modeling of the evacuation decision-making pro-
cess. This includes not only heterogeneities in families,
but also differences in (local) neighborhoods of families
as represented in social networks. We use it to under-
stand the evacuation rates in this region, and evalu-

ate the effects of different initial conditions (e.g., num-
ber of seeds) [seeds are families who are the first ones
to evacuate] on evacuation decision dynamics. A se-

lection of results follow. (i) The variability of evacu-
ation results (in terms of the fraction of the population
that evacuates) is small across 100 seed sets. (ii) The
variability in evacuation rates across five network in-

stances for a fixed pair (dsr, q) is small. (iii) The effects
of looting—quantified by 2mode-threshold model—
can reduce evacuation rates by 50% compared to the

classic Granovetter-type threshold influence model (Gra-
novetter, 1978; Watts, 2002; Schelling, 2006; Centola
and Macy, 2007). (iv) The effects of network struc-

ture can be large. For example, as dsr increases from
0.04 km to 0.10 km, evacuation rates can increase by
2 to 10 times. Even greater changes in the fraction
of evacuating families can be observed as q increases

from 0 to 16. (v) The parameters pe,max and ηc of the
2mode-threshold model can produce changes in the
fraction of evacuating families up to 0.38. (See Figure 1:
pe,max is the non-zero probability of a family evacuat-
ing.) (vi) These two parameters, pe,max and ηc, also
combine with network structure to produce interesting

effects, when node degrees are large. First, as pe,max
increases, the rate of increase in the final fraction of
evacuating families can decrease. Second, as pe,max in-
creases, the magnitude of the final fraction of evacuat-
ing families can decrease.

1.5 Novelty and Implications

Models of type 2mode-threshold have not been stud-

ied before. Our ABM approach can help (i) under-
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stand how planners and managers can more effectively
convince families that are in harms way to evacuate;
(ii) understand the effects of families’ social networks
on evacuation decisions (Widener et al., 2013; Ferris
et al., 2016; Yang et al., 2019); and (iii) establish down-
stream conditions after the evacuation decision has been
made, to support additional types of analyses. For ex-
ample, results from these studies can be used to fore-
cast traffic congestion (spatially and temporally) during
the exodus (Madireddy et al., 2015), and to determine
places where shelters and triage centers should be es-
tablished. We put our work in the context of previous
works in Related Work, Section 6.

1.6 Extensions from Preliminary Version

A preliminary version of this paper appears in (Halim
et al., 2020). The contents of that paper are extended in

the following ways. (1) The number of types of networks
(characterized by (dsr, q) pairs) is 3× that in the pre-
liminary version. (2) Structural properties of these Vir-

ginia Beach, VA networks are presented and contrasted.
(3) Many more simulation parameters have been con-
sidered and analyzed. (4) A more thorough analysis of

the parameter values is done. Accordingly, the num-
ber of simulations has increased by over 300%, and the
number of results shown in plots has increased 3-fold.

1.7 Paper Organization

The graph dynamical systems (GDS) framework and

the 2mode-threshold model are presented in Sec-
tion 2. Theoretical results are provided in Section 3.
Social network construction and networks are described
and characterized in Section 4. Section 5 describes the

simulation process and presents simulation results. Sec-
tion 6 provides related work, and conclusions are in
Section 7.

2 Evacuation Decision-Making Model

2.1 Motivation From Social Science

Our model is motivated by the analysis of a survey in
the counties affected by Hurricane Sandy in the north-
eastern United States by Halim and Mozumder (2020)

which is briefly summarized here. The goal of this sur-
vey was to assess factors driving evacuation decisions (Meng
and Mozumder, 2020). The survey had a response rate
of 61.93%, with over 1200 responses. A Binomial Logit
model was applied to the survey data and tested for

the factors associated with households’ evacuation be-
haviors (Halim and Mozumder, 2020). The results indi-
cate that a respondent’s employment status, considera-
tion of neighbors’ evacuation behavior, concerns about
neighborhood criminal activities or looting, access to
the internet in the household, age, and having flood in-
surance, each plays a significant role in a respondent’s
decision to evacuate during Hurricane Sandy. Notewor-
thy was the influence of neighbors’ evacuation behav-
iors, and concerns about looting and criminal behav-
ior. Neighbors’ evacuations had a statistically signifi-
cant and positive effect on evacuation probability but
concerns about criminal and looting behavior had a
significant negative effect—implying that if too many
neighbors left, then the remaining households are less
likely to evacuate.

2.2 A Graph Dynamical Systems Framework

A graph dynamical system (GDS) (Mortveit and Rei-

dys, 2007; Adiga et al., 2018) is a mathematical ab-
straction that is used to build quantitative models of
human behavior. These models can be used in agent-

based modeling (ABM) approaches. We use it here to
develop a model of evacuation behavior, motivated by
the survey analysis described above. A GDS S describes

the evolution of the states of a set of agents. Let xt ∈
{0, 1}n denote the vector of agent states at time t, with
xtv = 1 indicating that agent v has evacuated. xtv = 0
means that agent v has not evacuated at time t. A GDS

S consists of two components: (1) an interaction net-
work G = (V,E), where V represents the set of agents
(in our case, the households which are deciding whether
or not to evacuate), and E represents a set of edges,
with e = {u, v} ∈ E if agents u and v can influence
each other; and (2) a set F = {fv : v ∈ V } of lo-

cal functions fv : {0, 1}deg(v) → {0, 1} for each node
v ∈ V , which determines the state of node v in terms
of the states of N(v), the set of neighbors of v. Given
a vector xt describing the states of all agents at time
t, the vector xt+1 at the next time is obtained by up-
dating xt+1

v using its local function fv(·). We say that
a state vector xt is a fixed point of S if the node states

do not change, i.e., xt+1 = xt.

2.2.1 The 2mode-threshold local functions:
modeling evacuation behavior.

The 2mode-threshold function fv(·) will be proba-

bilistic, and will depend on the probability of evacua-
tion, in order to capture the qualitative aspects of the
results of Halim and Mozumder (2020). This is shown in
Figure 1a and specifies the probability of evacuation pe
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for agent vi as a function of the fraction η1 of neighbors
of vi in state 1. We have pe = pe,max for η1 ∈ (ηmin, ηc],
and pe = 0 for η1 ∈ [0, ηmin] and η1 > ηc. In this pa-
per, we primarily focus on ηmin = 0. Specifically, this
captures the following effects: (i) peer (neighbor) in-
fluence can cause families to evacuate and (ii) if too
many of a family’s neighbors evacuate, there are not
enough neighbors remaining behind to dissuade poten-
tial looters, so a family reduces its probability of evac-
uation. The first effect makes pe = pe,max for η1 > 0,
and the second effect results in pe dropping to zero at
η1 = ηc. Note that the special case where pe = pe,max
for η1 > ηmin = 0 is a probabilistic variant of the ηmin-
threshold function (e.g., Centola and Macy (2007)); we
will sometimes refer to this as the “regular probabilis-
tic threshold” model, and denote it by rp-threshold.
This model is shown in Figure 1b. These are models
that can be assigned to any agent; in GDS, an agent is
a node that resides in a networked population.
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(b) rp-threshold model

Fig. 1: Dynamics models—probability of evacuation

curve—for probability pe of evacuation for a family ver-
sus the fraction η1 of its neighbors in state 1 (i.e., evac-
uating). (a) The 2mode-threshold model: the evac-

uation probability is pe = 0 for η1 = ηmin = 0 and for
η1 > ηc. The maximum probability is pe = pe,max in
the interval (ηmin, ηc]. (b) The rp-threshold model:
this curve is similar to the previous curve, except that
pe = pe,max for η1 > ηmin. This is a special case
of 2mode-threshold, but is a variation of the regu-
lar probabilistic threshold model (Watts, 2002; Centola
and Macy, 2007). As an illustration, if an agent has 50%
of its neighbors in state 1, then the model in (a) shows
that pe = 0, while (b) shows that pe = pe,max > 0.
An example with values for these parameters is given
in the text.

2.2.2 Network Models

We present the details of the network construction pro-
cess in Section 4.1. We summarize the notation of a

social network here. The contact network G = (V,E) is
the other component of a GDS S. A node vi ∈ V rep-
resents a family, or a household. Edges represent inter-
action channels, for communication and observations.
Edges are directed : a directed edge (vj , vi) ∈ E, with
vi, vj ∈ V , means that family vj influences family vi.

2.3 Example of GDS

Figure 1a shows an example of the 2mode-threshold
model with the parameters pe,max = 0.2, and ηc = 0.4.
Figure 1b shows a rp-threshold model. The purpose
of this example is to illustrate the dynamics of these
models on a network of five agents. In Figure 2, x0

is the initial configuration with node 1 evacuated (in
state 1, shaded), and nodes 2, 3, 4, and 5 not evac-

uated (in state 0, not shaded). Nodes 2 and 3 have
η1 = 1/3 < ηc = 0.4, and so for both of them, the
evacuation probability is pe = 0.2. Nodes 4 and 5 have

η1 = 0, so pe = 0 for them. Therefore, the probability
that the state vector is x1 at the next time step (see
Figure 2) is pe,max(1− pe,max) = 0.2 · 0.8 = 0.16, since

only node 2 switches to 1. With respect to the config-
uration x1, nodes 3, 4, and 5 have η1 = 2

3 , 1 and 0,
respectively. Therefore, pe = 0 for all these nodes, and
x1 is a fixed point of the S with the 2mode-threshold

functions. However, for the regular probabilistic thresh-
old model, rp-threshold, with ηmin < 0.3, x1 is not a
fixed point, since nodes 3 and 4 both have pe = pe,max
probability of transitioning (since they have η1 > ηmin).
Therefore, in the regular probabilistic threshold model,
rp-threshold, the x1 → x2 transition occurs with

probability p2e,max = 0.04.

2.4 Problems of Interest

We will refer to a GDS system S2m = (G,F) in which
the local functions are 2mode-threshold functions as
a 2mode-threshold-GDS. Our objective in this pa-

per is to study the following problems on a S2m system:
(1) How do the dynamical properties of 2mode-threshold
GDS systems differ from those of S with rp-threshold
model functions? Do they have fixed points, and what
are their characteristics?
(2) How do the number of 1’s in the fixed point depend
on the initial conditions, and the model parameters,
namely pe,max and ηc? How can this be maximized?
We provide solutions to these problems next.
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Fig. 2: An example showing the transitions in a S on a graph with five nodes, and 2mode-threshold local
functions, with parameters pe,max = 0.2 and ηc = 0.4. The figure shows a transition of the dynamics model from
configuration x0 to x1, with shaded nodes indicating evacuation. The x0 → x1 transition occurs with probability
pe,max(1 − pe,max) = 0.16. For the above parameters, x1 is a fixed point, and the node states do not change.
However, if we had ηc = 1 (i.e., this is a regular probabilistic threshold), x1 is not a fixed point, and there can be
a transition to configuration x2 with probability p2e,max = 0.04 (indicated as a dashed arrow).

3 Analyzing dynamical properties in different
network models

It can be shown that any S2m converges to a fixed point
in at most n/pe,max steps. S2m systems have signifi-
cantly lesser levels of diffusion (i.e., number of nodes
ending up in state 1), compared to the rp-threshold
model, as we discuss below.

Lemma 1 Consider a S2m with G = Kn being a com-
plete graph on n nodes. Starting at a configuration x0

with a single node in state 1, S2m converges to a fixed
point with at most (pe,max+ηc)n nodes in state 1, in ex-

pectation. In contrast, in a regular probabilistic thresh-
old system on Kn with ηmin = 0, the system converges
to the all 1’s vector xt as a fixed point.

Proof Consider the 2mode-threshold model and a
state vector xt with k nodes in state 1. Consider any
node v with xt

v = 0. If k ≤ ηcn, then, Pr[node v switches to 1] =

pe,max. Therefore, the expected number of nodes which
switch to 1 is pe,max(n − k) ≤ npe,max. If k > ηcn, for
every node in state 0, the probability of switching to 1 is
pe = 0. Therefore, the expected number of 1’s in a fixed
point is at most npe,max+nηc. On the other hand, in a
regular probabilistic threshold model rp-threshold,
the system does not converge until each node in state

0 switches to 1 (since pe = pe,max for all η1 > 0).

We observe below that starting at an initial config-
uration with a single node in state 1, S2m converges to
a fixed point with at most a constant fraction of nodes
in state 1. Note, however, that configurations xt with
more than that many nodes in state 1, e.g., the all 1’s
vector, are also fixed points. The result below implies
that those fixed points will not be reached from an ini-
tial configuration with a few 1’s.

Lemma 2 Consider a S2m on a G(n, p) graph with
pηc ≥ 6

ε2
logn
n , for any ε ∈ (0, 1). Starting at a configura-

tion x0 with a single node in state 1, S2m converges to

a fixed point with at most (1+2ε)(ηc+pe,max)n nodes in
state 1, in expectation. In contrast, in a regular prob-
abilistic threshold system on Kn with ηmin = 0, the
system converges to the all 1’s vector as a fixed point.

Proof (Sketch) Let deg(v) denote the degree of v. For
a subset S, let degS(v) denote the degree of v with re-

spect to S, i.e., the number of neighbors of v in S. For
any node v, we have E[deg(v)] = np. By the Chernoff
bound (Dubhashi and Panconesi, 2009), it follows that

Pr[deg(v) > (1 + ε)np] ≤ e−ε
2np/3 ≤ 1/n2. Consider a

set S of size 1+ε
1−εηcn. For v 6∈ S, E[degS(v)] = |S|p, and

so Pr[degS(v) < (1 − ε)|S|p] ≤ e−ε
2|S|p/2 ≤ 1/n2. For

|S| ≥ 1+ε
1−εηcn, we have (1−ε)|S|p ≥ (1+ε)ηcnp. Putting

these together, with probability at least 1 − 2/n, we
have deg(v) ≤ (1 + ε)np and degS(v) ≥ (1 + ε)ηcnp ≥
ηcdeg(v), for all nodes v. Therefore, if S2m reaches a

configuration with nodes in set S of size 1+ε
1−εηcn <

(1+2ε)ηcn, with probability 1−2/n, S is a fixed point.
With probability ≤ 2/n, S is not a fixed point, and the
process converges to a fixed point with at most n 1’s,

so that the expected number of 1’s in the fixed point
is at most |S| + 2 ≤ (1 + 2ε)ηcn. On the other hand,
consider the last configuration S′ which has size |S′| <
(1 + 2ε)ηcn. Then, in expectation, at most pe,maxn ad-
ditional nodes switch to state 1, after which point, the
configuration has more than (1 + ε)ηcn 1’s. Therefore,
the expected number of 1’s in the fixed point is at most
(1 + 2ε)(ηc + pe,max)n.

4 Social Networks

4.1 Network Construction and Semantics

We describe the models for the contact network G =
(V,E), which is another component of a GDS S. A node
vi ∈ V represents a family, or a household. Edges repre-
sent interaction channels, for communication and obser-
vations. Edges are directed : a directed edge (vj , vi) ∈ E,
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with vi, vj ∈ V , means that family vj influences family
vi. We use the synthetic population model developed
in Barrett et al. (2009) for representing the set V of
households.

The synthetic population of Virginia Beach VA, is
a set of individuals each endowed with demographic
variables drawn from the US census. Each synthetic in-
dividual is placed in a household with other individuals
and each household is located geographically in such
a way that if it is aggregated to a block group level,
a census of this synthetic population will yield results
that are statistically indistinguishable from the original
census data.

In particular, the locations of all households (family
residences) are determined, which result in longitude,
latitude (i.e., (lon, lat)) coordinates for each household.
These are used to compute distances between family
residences.

Figure 3 summarizes the process of producing a so-
cial network on the families of a city. Edges are spec-

ified using the Kleinberg small world (KSW) network
approach (Kleinberg, 1999), and there are two types of
edges: short range and long range. Short range edges
(vj , vi) represent either (i) a family vi speaks with (is

influenced by) another family vj in the neighborhood
about evacuation decisions, or (ii) a family vi observes
vj ’s home and infers whether or not a family vj has

evacuated. A long-range edge represents a member of
one family vi interacting with another family far away
who is a relative or friend or colleague at work vj .
Each edge has a label of distance between homes, us-

ing (lon, lat) coordinates of each home. Thus, the KSW
model has the following parameters: the node set V and
their attributes, the short-range distance dsr over which

short-range edges are placed between nodes, and the
number q of long range edges incident on each node vi.
For each node vi, (i) short range edges (vj , vi) are con-
structed, where d(vj , vi) ≤ dsr; and (ii) q long range
edges (vk, vi) are placed at random, with probability
proportional to 1/d(vk, vi)

α, for a parameter α. Note
that for each short range edge (vj , vi), there is a corre-
sponding edge (vi, vj). See Kleinberg (1999) for details.
Semantics of edges, for our application, are provided in
Figure 4.

4.2 Networks

Table 1 provides the social networks (and selected prop-

erties) that are used in simulations of evacuation deci-
sion making. The network model of Section 4.1 was used
to generate KSW networks for Virginia Beach, VA. In-
puts for the model were n = 113967 families forming
the node set V , with (lat, long) coordinates; dsr = 40,












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






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







Fig. 3: (Left) Depiction of a toy population network
with families represented as nodes and edges represent-
ing possible interactions. (Right) Focus on the yellow
ego node and the edges for families that influence it.
The nodes are the same as those on the left plot. Ego
node (in yellow) and edges formed using the KSW pro-
cess. Short-range edges (blue) are formed with the ego
family by identifying all families (brown) within short
range distance dsr of the ego family. A number q of long-
range edges (magenta) are selected at random from all

families (green) located at distance greater than dsr
from the ego family. (In this figure, q = 2.) All edges
are directed to the ego family, i.e., all brown and green

nodes with edges to the ego node influence the ego node.
All (lon,lat) coordinate locations are for family house-
holds.

Fig. 4: Semantics of edges into yellow ego node, from
Figure 3. (Left) Short range edges can mean that the
ego family observes neighboring families’ evacuation
statuses, or talks to neighbors. (Right) Long range
edges represent friends, relatives, or coworkers who live
far away from the ego family.

60, and 100 m; α = 2.5 (see Kleinberg (1999)); and

q = 0 to 16. Five graph instances were generated for
each (dsr, q) combination. Network properties are dis-
cussed in the next subsection.

4.3 Structural Properties

Structural analyses were performed with SNAP (Leskovec
and Sosič, 2016) and NetworkX (Hagberg et al., 2008)
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Table 1: Kleinberg small world (KSW) networks used in our experiments and their properties. The number n of
nodes is 113,967 for all graphs. The short range distance dsr, over which short-range edges are constructed with
probability of 1.0, ranges from 40 meters to 100 meters. The exponent α = 2.5 is for computing the probabilities
of selecting nodes with which to form long-range edges with each node vi ∈ V . Column “Num LR Edges” i.e. (q)
means number of long-range edges incoming to each node vi; the edges are chosen randomly. There are five graph
instances for every (dsr, q) combination. Average degree is dave and maximum degree is dmax, for in-degree and
out-degree. There are three values for each degree heading, one corresponding to each of the three values of dsr in
the second column. For example, for KSW2 (where q = 2), and dsr = 40, 60, and 100 m, the average degrees in
the graphs are, respectively, 11.70, 20.34, and 43.86.

Network

Class

Distance

for Short-
Range

Edges, (m)

Num

LR
Edges

Avg. In-Deg.

(=
Avg. Out-Deg.)

Max. In-Deg. Max. Out-Deg.

KSW0 40, 60, 100 0 10.11, 18.56, 41.98 380, 380, 432 380, 380, 432
KSW2 40, 60, 100 2 11.70, 20.34, 43.86 382, 382, 434 381, 383, 438
KSW4 40, 60, 100 4 13.70, 22.34, 45.86 384, 384, 436 381, 383, 445
KSW8 40, 60, 100 8 17.70, 26.34, 49.86 388, 388, 440 382, 383, 449
KSW16 40, 60, 100 16 25.70, 34.34, 57.86 396, 396, 448 383, 384, 469

through the codes in the net.science cyberinfrastruc-

ture (Ahmed et al., 2020).

Number of graph edges as a function of dsr and
q. Figure 5 show the number of edges in graphs, as a
function of graph structure. This structure is given by

the short-range distance dsr and the deterministic edges
that result, and the number q of stochastic long-range
edges. (Stochasticity comes in the from of what nodes

vk form q long ranges edges (vk, vi) with node vi.) From
the graph generation description above the number of
edges will be linear in q, as shown. The data at q = 0

shows the effect of dsr; a nonlinear effect of dsr on the
number of edges.

Fig. 5: Count of edges in each type class of network,

where each class is given by the pair (dsr, q). Number
of edges is in millions.

In-degree and out-degree distributions. Figure 6
shows the in-degree distributions for the different classes
of networks. The plots, left to right, are for dsr values of
0.04 km, 0.06 km, and 0.10 km. In each plot are degree
distributions for q values of 0 through 16, in powers of 2.

Figure 7 shows the respective out-degree distributions

for the different classes of networks.

Essentially, in-degree distributions, per (dsr, q), take
the same form, but shift to the right in Figure 6 be-
cause as q increases, the in-degree of each node vi in-

creases: q is the number of long-range edges added per
vi (the directed edge is oriented in to vi), to the graph
of short-range edges. The out-degree distributions in
Figure 7 also shift to the right as q increases in each

plot, but there are now small numbers of nodes with
small degrees because tail nodes are selected randomly
for each head node, for long-range edges. (A directed

edge (vj , vi) is the edge from vj to vi, where vj is the
tail node and vi is the head node.)

It is interesting that the maximum in-degrees for
dsr = 40 m are the same as those for dsr = 60 m in
Table 1. This is due to the “isolation” of a dense re-
gion that does not reach other nodes as dsr increases
in this range. (The average degree does increase for
dsr = 60 m, and one can see this increase in the entire
degree distribution, except for the maximum degree.
For example, the number of nodes with the maximum
degree increases.) However, when dsr increases further
to 100 m, the maximum in-degree increases substan-
tially.

The average in-degree and out-degree values are in
the fourth column of Table 1 for, respectively, dsr =
0.04, 0.06, and 0.1 km. The set of three values in succes-
sive rows are for increasing q values (Num LR Edges).
Note that these average degrees increase by the increase
in q in going from one row to the next, except for the
case in going from q = 0 to q = 2. When q = 0,

some nodes are isolated and therefore are not consid-
ered in the structural properties. When q > 0, all nodes
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form edges because of the way long-range edges are con-
structed.

Strongly and weakly connected components in
graphs. Graphs are broken into two groups, depending
on their sizes of weakly connected components (WCCs).
The first group is those networks where q = 0 for all dsr
values: these graphs do not form a single component,
or even a giant component. The largest component is
0.35 fraction of nodes for dsr = 0.10 km (defining a
giant component to be at least one-half of nodes). The
second group of networks is q ≥ 2 for all dsr, where all
nodes (or for dsr = 0.04 km, almost all nodes) are in
one component. See Table 2.

As the Table 2 caption indicates, the strongly con-
nected components (SCCs) are of comparable sizes to
the WCC sizes. The component sizes for q = 0 are iden-
tical to the WCC sizes because the short-range edges
are bi-directional. For q ≥ 2, the SCC sizes are within
a percent or two of the WCC sizes.

Hence, the long-range edges are accomplishing what

they are designed to do in the Kleinberg network gen-
eration process: they provide non-local edges, that in
these cases, connect otherwise disparate components.

This is important because these longer-range edges en-
able the evacuation contagion, in the simulations in Sec-
tion 5, to spread throughout the graphs.

Table 2: Sizes of weakly connected components (WCCs)

and strongly connected components (SCCs) for the
Kleinberg small world (KSW) networks. The table val-
ues are for the WCCs. The largest SCCS are of approx-

imately the same size; the differences, if any, are on the
order of 1% to 2% at most.

dsr (km) q Size (Fraction of Nodes)

of Largest Connected

Component

0.04 0 381 (0.0035)
0.04 q = 2 113955 (> 0.99)
0.04 q ≥ 4 113967 (1.0)

0.06 0 6146 (0.055)
0.06 q ≥ 2 113967 (1.0)

0.10 0 39287 (0.35)
0.10 q ≥ 2 113967 (1.0)

5 Agent-Based Simulations and Results

5.1 Simulation Process

Inputs to a simulation are a social network (Section 4),
a set of local functions that quantifies the evacuation

decision making process of each node vi ∈ V (see Sec-
tion 2), and a set of seed nodes whose state is 1 (i.e.,
these nodes are set to “evacuate” at the start of a sim-
ulation at time t = 0). All other nodes at time t = 0 are
in state 0 (the non-evacuating state). We vary a number
of input parameters across simulations. Each simulation
instance or run consists of a particular set of seed nodes
at t = 0, and time is incremented in discrete timesteps,
from t = 0 to tmax. Here, tmax = 10 days, to model
the ten days leading up to hurricane arrival. Hurricane
arrival is day 10. At each timestep, nodes that are in
state 0 may change to state 1, per the models in Sec-
tion 2. At each 1 ≤ t ≤ tmax, the state of the system
at time t− 1 is used to compute the next state of each
vi ∈ V (corresponding to time t) synchronously ; that
is, all nodes (families) vi update their states in parallel
at each t. A simulation consists of 100 runs, where each
run has a different seed set. The network and dynamics
model are fixed in a simulation across runs.

Since each social network has the same node IDs

(that represent families), we use the same seed collec-
tion for a specified number ns of seed nodes. Since there
are 100 runs per simulation, there are 100 seed sets
within one seed collection. Thus, as an example, a sim-

ulation with a graph such that dsr = 0.06 km and q = 4
uses the same 100 seeds sets as a simulation on a graph
with dsr = 0.1 km and q = 16, for a specified value of

ns. This eliminates variability in seed sets when assess-
ing effects of graph structure.

Results below are plotted in groups of simulations.

That is, each plot typically contains results for many
simulations. Results from the 100 runs of a simulation
are typically averaged, and error bars on results (indi-
cating one standard deviation) are also commonly pro-
vided.

5.2 Simulation Parameters Studied

The input parameters varied across simulations are pro-
vided in Table 3. Results in subsequent subsections in-
vestigate the effects of these variables on the (population-
level) fraction of families that evacuate, designated by
“Frac. Evac.” We study and present results for all of
the parameter values.

5.3 Simulation Results

We note that in the results that follow, the y-axis value
ranges can change across figures. This is because the
2mode-threshold model and the rp-threshold model

can give widely different results, and depending upon
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(a) dsr = 0.04 km, all q (b) dsr = 0.06 km, all q (c) dsr = 0.1 km, all q

Fig. 6: In-degree distributions for the classes of networks. Distributions for all (dsr, q) combinations are provided.
(a) dsr = 0.04 km networks, instance 0. (b) dsr = 0.06 km networks, instance 0. (c) dsr = 0.10 km networks,
instance 0. The degree distributions for the other instances are very close to these; for the case q = 0, the
degree distributions are identical because these graphs have determinstically-placed edges. The same 113967 nodes,
representing families, comprise the node set of each graph.

(a) dsr = 0.04 km, all q (b) dsr = 0.06 km, all q (c) dsr = 0.1 km, all q

Fig. 7: Out-degree distributions for the classes of networks. Distributions for all (dsr, q) combinations are provided.

(a) dsr = 0.04 km networks, instance 0. (b) dsr = 0.06 km networks, instance 0. (c) dsr = 0.10 km networks,
instance 0. The degree distributions for the other instances are very close to these; for the case q = 0, the degree
distributions are identical because these graphs have deterministically-placed edges. The 113967 families, comprise

the node set of each graph.

the parameter values, the results can vary greatly with-
in a model too. Therefore, y-axis ranges are one of 0 to
0.1, 0 to 0.4, or 0 to 1.0.

Results are broken down by types of results in Ta-
ble 4. Subsections of this manuscript containing the re-
sults are given. First, fraction of families that evacu-
ate owing to a simple uniform mixing model are given,
to contrast with the ABS results in all other subsec-

tions. Basic ABS results are then given, showing time
histories of how the fraction of evacuating families in-
creases with time. Next, since our social networks are
particular instances of families of networks, for a fixed
dsr and q, the effects of the graph structure of particu-
lar graph instances, for fixed dsr and q, on evacuation
predictions are given. The next subsection contrasts
the looting model of this work, the 2mode-threshold
model, with the more classic contagion model, referred
to herein as the rp-threshold model, that does not

consider looting effects. All subsequent subsections of
results focus on the 2mode-threshold model, and we

study, in turn, the effects of network structure (as speci-
fied by dsr and q), of model parameters (through pe,max
and ηc), and of initial conditions.

5.3.1 Results of a Uniformly Mixing Population

Daily evacuation probability values for a family—pe,max
in Table 3—for both the 2mode-threshold model
(Figure 1a) and the rp-threshold model (Figure 1b),
are converted to evacuation probability at any time over
a ten-day period in Table 5. The fraction of a population
that evacuates in the face of a hurricane can reach 50%
or more (Hasan and Ukkusuri, 2011; Widener et al.,
2013; Yang et al., 2019). The values in this table do
not account for evacuation-dampening effects like the

fear of looting addressed in this work. Doing so, as we
will see in the results below, produces population-level
evacuation fractions below 50%, and often less than 1/2
of the evacuation rates of the rp-threshold model.
Hence, we examine individual probability values pe,max
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Table 3: Description of the parameters and their values used in the simulations.

Parameter Description

Networks. dsr,
q.

Networks in Table 1. We vary the number q of long-range incoming edges per
node, per the table, from 0 to 16. The short-range distance dsr takes values
0.04 km, 0.06 km, and 0.10 km.

Network
instances.

There are five network instances for each network, labeled 0 to 4.

Num. random
seeds, ns.

Number of seed nodes specified per run (chosen uniformly at random). Values
are 50, 100, 200, 300, 400, and 500.

Threshold
model.

The 2mode-threshold model of Figure 1a and the rp-threshold (i.e., classic)
threshold model of Figure 1b, in Section 2.

Threshold
range, ηc.

The range in relative degree over which nodes can change to state 1. Discrete
values are 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0. Note that ηc = 1 corresponds to the
classic stochastic threshold rp-threshold model (Figure 1b), whereas values of
ηc < 1 correspond to the 2mode-threshold model (Figure 1a).

Maximum
probability,
pe,max.

The maximum daily probability of evacuation pe,max of Figure 1. Discrete values
are 0.01 to 0.07 in 0.01 increments; 0.10, 0.15, 0.20, and 0.25.

Simulation du-
ration tmax.

The duration of all simulations is the 10 days leading up to hurricane impact.
Day 10 is hurricane impact.

Num. of simu-
lation runs

100 runs per each combination of variables, where, given a particular number
ns of seed nodes, there are 100 different sets of seed nodes, all of size ns. This
collection of 100 seed sets is the same for all runs where this ns is specified. For
example, it is the same for the two cases: (dsr, q) = (0.04 km, 4) and (dsr, q) =
(0.1 km, 16), when the specified number of seed nodes is ns.

of greater value, and because of the 2mode-threshold

model, evacuation rates are not excessive.

5.3.2 Basic Agent-Based Simulation Results

Figure 8 provides average fraction of evacuating fami-
lies (Frac. Evac.) as a function of time in days. Time

moves left to right in each plot, starting ten days before
hurricane landfall and ending with hurricane landfall
on the 10th day (day 10). The two plots in the upper

row are fractions of families deciding to evacuate on the
specified day, i.e., these are instantaneous fractions of
new evacuating families. The two plots in the lower row
are the corresponding plots for the cumulative fraction

of families evacuating. We use the 2mode-threshold
model with pe,max = 0.15 and ηc = 0.2 (see Figure 1a).
The two plots in the left column differ from those in
the right column in the number q of long-range edges
in the graphs: on the left, there are q = 4 long-range
incoming edges per node and on the right, there are
q = 16 long-range incoming edges per node. Each plot
contains six curves, for different numbers of seed nodes
(nodes [families] deciding to evacuate at time t = 0),
ranging from 50 to 500. As number ns of random seeds
increases, the curves shift left for the fractions of new
families evacuating, in the top row of plots, meaning
that more families are evacuating earlier. Accordingly,

in the bottom row of plots, at each day, the cumula-
tive fractions fde of families evacuating increases as ns

increases. Also, the fractions of evacuating families in-
creases as the number q of long-range edges increases.

Error bars indicate one standard deviation in results

across 100 runs (i.e., simulation instances). The stan-
dard deviation is very small (the bars are difficult to see
in the plots). Based on the very small variances in these
and other plots, we say no more about the variance in

outputs across the 100 runs comprising a simulation.
Also, because we are interested in the cumulative frac-
tion of families evacuating, we will focus on these plots,
rather than the fraction of instantaneously (or newly)
evacuating families.

5.3.3 Variability of Results Across Graph Instances

Figure 9 provides a series of plots that show the final
fraction of families evacuating (Final Frac. Evac.) for
five graph instances (different graph instances) in each
plot. The goal is to determine the variability in com-
puted evacuation fractions across graph instances for
the same nominal graph construction values. Specifi-

cally, as described in Section 4, a graph instance is spec-
ified by the short-range distance dsr and the number q
of long-range incoming edges per node. The placement
of short-range edges, governed by dsr, is a determinis-
tic process, so these edges are the same in each graph
instance, for a specified dsr. The q long-range edges,
however, are placed at random, and hence give rise to
differences across graph instances.
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Table 4: Results are grouped into the following subsec-
tions.

Section

of Re-
sults

Type of

Results

Description

5.3.1 Uniform
mixing
results.

Simple results for contagion
spreading of evacuation for a
uniform mixing population, to
contrast with the ABS results.

5.3.2 Basic re-
sults.

Curves showing basic trends in
the dynamics of families evacu-
ating.

5.3.3 Network
Variabil-
ity.

Results showing that computed
spread fractions do not vary
significantly across graph in-
stances for a fixed dsr and q.

5.3.4 Model
differ-
ences.

Highlight fundamental dif-
ferences between the 2mode-
threshold model and the rp-

threshold model of Figure 1.
Also studies the transition
between these two models with
ηc.

5.3.5 Network
struc-
ture.

Results showing that computed
spread fractions vary signifi-
cantly for varying dsr and q.

5.3.6 Model
parame-
ters.

Shows the effects of model pa-
rameter values for pe,max in the
2mode-threshold model.

5.3.7 Model
parame-
ters plus
network
struc-
ture.

Shows counter-intuitive effects
in evacuation rates. Increases
in pe,max can lower evacuation
rates in the 2mode-threshold
model.

5.3.8 Initial
condi-
tions.

Shows the effects of number of
seed nodes ns in the 2mode-

threshold model.

Table 5: Family-level probability of evacuation at any

time over the ten days prior to hurricane landfall, as a
function of family-based daily probability of evacuation,
according to p10days = 1− (1− pdaily)tmax .

Daily Probability
pdaily = pe,max

Probability of
Evacuation Any
Time over 10

Days

0.01 0.0956
0.02 0.183
0.03 0.263
0.04 0.335
0.05 0.401
0.06 0.461
0.07 0.516
0.08 0.566
0.09 0.611
0.10 0.651

(a) q = 4 (b) q = 16

(c) q = 4 (d) q = 16

Fig. 8: Simulation results of the fraction of families de-
ciding to evacuate (Frac. Evac.) as a function of time
leading up to the hurricane arrival. We are always mod-

eling the 10 days leading up to the arrival of a hurri-
cane. Day 10 is the arrival of the hurricane; time zero
is the start of the simulation—ten days prior to hurri-

cane landfall. The network here is instance 0 of the (a)
and (c) KSW4 network class (q = 4) and dsr = 40 m,
and (b) and (d) KSW16 network class (q = 16) and
dsr = 40 m. The model is 2mode-threshold with

pe,max = 0.15. The two plots in the top row are the
fractions of newly evacuating families at each day. The
two plots in the bottom row are the cumulative frac-

tions of evacuating families up to, and including, that
day. The two plots in the top row have different y-axis
ranges than the plots in the bottom row. Error bars
denoting one standard deviation from the means are

plotted each integer unit time, but are very small.

Conditions for this evaluation are chosen so that
the evacuating fraction of families is not high. For if
high, then the contagion spreading reaches the looting-
induced ceiling, as in Figure 8d, and hence the variance
in results will be small. This is opposite to our goal, i.e.
to identify large variances. We also prefer conditions
with larger numbers of long-range edges (greater q),
for more variation across networks. Further, we prefer
smaller pe,max, because if pe,max is high (in the extreme,
as pe,max → 1), then the evacuation contagion spread
becomes deterministic. Hence, in some sense, the con-

ditions examined here are among the worse-case condi-
tions.
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(a) q = 16, pe,max = 0.05 (b) legend for (a)

(c) dsr = 0.06 km, pe,max =
0.02, ns = 500

(d) dsr = 0.04 km, q = 4,
pe,max = 0.15

Fig. 9: Simulation results of the fraction of families

deciding to evacuate (Frac. Evac.) as a function of
graph instance. These plots present variability in results
across particular graph instances (0 through 4 on x-

axis), for the same graph generation parameters. (a) all
dsr values, q = 16, pe,max = 0.05, and ns = 50 and 500.
(b) legend for the plots in (a). (c) dsr = 0.06 km, all q
values, pe,max = 0.02, and ns = 500. (d) dsr = 0.04 km,

q = 4, pe,max = 0.15, and all ns values. Emphasis is on
conditions that do not reach the looting-induced spread
fraction ceiling, as in Figure 8d, since this will drive

down variability. Error bars denoting one standard de-
viation from the means are plotted each integer unit
time, but are very small. In all plots, data points show
little variation among the 100 iterations. In all plots,

data points across networks show little variation among
the five graph instances.

In Figure 9, no variability in results across graph in-
stances would be characterized by: (i) curves of different
colors being horizontal—meaning no change in the frac-
tion of families evacuating across graph instances, and
(ii) similar sizes in error bars for each data point [graph
instance] of each curve—indicating the same variabil-
ity in results within graph instances. The plots show
that this is the case, and hence that results—in terms
of fraction of families evaucating—do not vary signifi-

cantly across graph instances.

Figure 10 shows temporal variability in simulation
results, over the 10-day simulation period, rather than
at the end of the 10 days, as done in the previous plots.
Each curve in these plots represents a different graph
instance. In Figure 10a, data are shown for the sec-

ond graph instance for the conditions dsr = 0.06 km
and q = 16. The variability in evacuation fraction, at
each day, across the 100 runs is small; error bars, repre-
senting one standard deviation, are not visible. In Fig-
ure 10b, these same results are again plotted along with
results from instances 0, 1, 3, and 4. All five curves are
essentially coincident, indicating that variability across
graph instances is quite small.

(a) dsr = 0.06 km, q = 16,
pe,max = 0.05, and ns = 500

(b) dsr = 0.06 km, q = 16,
pe,max = 0.05, and ns = 500

Fig. 10: Simulation results of the fraction of evacuating
families (Frac. Evac.) as a function of time for different
graph instances. For all curves, dsr = 0.06 km, q = 16,

pe,max = 0.05, and ns = 500. (a) graph instance 2.
(b) graph instances 0 through 4 (5 total instances). In
(b), the data for all five graphs overlay (see instance 2
in the left plot for comparison). The variability in the

form of one standard deviation is plotted as error bars
for each curve, at each day. The variability in the 100
runs of one simulation (one curve) is small, and the

variability across graph instances is small.

Based on these results illustrating minimal variance
in results, further results below are given for a single
graph instance.

5.3.4 Effect of dynamics model: Looting
2mode-threshold Model Versus Classic Contagion
rp-threshold Model

Comparisons of dynamics models. Results from
the 2mode-threshold model and the rp-threshold
model are compared in Figure 11. Figures 11a through 11c—
the top row of plots—use the 2mode-threshold model.
Figures 11a through 11c show the effect of probability
of evacuation pe,max for different ns. pe,max increases
from 0.05 (Figure 11a) to 0.10 (Figure 11b) to 0.15
(Figure 11c), with ηc = 0.2. The fraction of the popula-
tion evacuating increases as ns increases at the smallest
pe,max, almost plateaus for all ns when pe,max = 0.1,
and increases its speed to plateau for the largest pe,max.
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(a) 2mode-threshold,
pe,max = 0.05

(b) 2mode-threshold,
pe,max = 0.10

(c) 2mode-threshold,
pe,max = 0.15

(d) rp-threshold,
pe,max = 0.05

(e) rp-threshold,
pe,max = 0.10

(f) rp-threshold,
pe,max = 0.15

Fig. 11: Simulation results of cumulative fractions of the population deciding to evacuate (Frac. Evac.) versus
simulation time. Plots are arranged by row and by column. In the top row, all three results in (a) through (c) use
the 2mode-threshold model of Figure 1a with ηc = 0.2, and ns (numbers of random seeds) varies from 50 to

500. In the bottom row, the three results in (d) through (f) use the rp-threshold model of Figure 1b where now
ηc = 1.0, with the same ns values. All results are for one instance of the KSW16 graph class, i.e., q = 16 long range
edges per node (similar results for other graph instances). All plots use dsr = 0.04 km. By column, the left-most

column ((a) and (d)) are results for pe,max = 0.05. The middle column ((b) and (e)) are results for pe,max = 0.10.
The right-most column ((c) and (f)) are results for pe,max = 0.15. As pe,max increases, the differences between the
outbreak fractions for the 2mode-threshold and rp-threshold models increase. That is, the damping effect
from fear of looting becomes more pronounced. Error bars denoting one standard deviation are shown for each

data point, in each curve, indicating the average results from 100 runs, but the variances are small.

The values of pe,max were selected based survey results
(Halim et al., 2020).

Figures 11d through 11f—the second row of plots—
use the rp-threshold model, with the same values
for pe,max and ηc. The corresponding plots stacked two-

high, left to right, can be compared. As pe,max increases,
the discrepancy between the two models increases: con-
cern over looting dampens evacuation in the 2mode-
threshold model. For pe,max = 0.15, the rp-threshold
model results in Figure 11f reach fde > 0.6, while the
corresponding results for 2mode-threshold model in
Figure 11c are only roughly one-half the values of fde
in Figure 11f. The 2mode-threshold model can pro-
duce a large difference (dampening) in the fraction of
families evacuating. Therefore, ignoring the influence
of looting and crime can cause a large overprediction of
family evacuations.

Effect of ηc in transitioning between models. Fig-
ure 12 shows the effect of the range of neighbor fraction

ηc over which the evacuation probability pe,max is non-
zero. See Figure 1a. Note that ηc = 1.0 corresponds to
the rp-threshold model in Figure 1b. In all resullts,

pe,max = 0.05 and ns = 300 and in both plots, q = 4
and 16. Figure 12a provides results for dsr = 0.04 km
and Figure 12b contains results for dsr = 0.1 km. The
increase in dsr generates more edges (greater graph den-
sity) and more contagion spreading. The conditions of
these plots were specifically chosen so that spreading
was not great enough to reach the ceiling of evacuation
fraction imposed by looting concerns; this limit might
skew the results. Nonetheless, interestingly, the plots
show that the evacuation fraction saturates by the time
ηc = 0.4.

When the evacuation probability pe,max increases,
different results are obtained. This can be seen by com-
paring Figures 11c and 11f, where now pe,max = 0.15.
In these plots, for ηc = 0.2 and 1.0, respectively, the fi-
nal fraction of evacuating families increases by 2× as ηc
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increases. This is a much greater increase in evacuation
fraction than shown in Figure 12, for ηc = 0.2 and 1.0,
because pe,max has increased from 0.05 to 0.15.

(a) dsr = 0.04 km (b) dsr = 0.10 km

Fig. 12: Simulation results of the fraction of evacuating
families as a function of the range ηc where the evacua-
tion probability pe,max > 0 in the 2mode-threshold
model in Figure 1a. evacuation probability pe,max. All

results use the 2mode-threshold model of Figure 1a,
ηc = 0.05 and ns = 300. In (a), dsr = 0.04 km and
q = 4 and 16. In (b), dsr = 0.1 km and q = 4 and 16.

Number ns of seeds is 300 in all simulations. Conditions
are specifically chosen so as not to hit the upper limit in
spreading due to looting, as in plots such as Figure 11c.

5.3.5 Effect of Network Structure

We study the effects of long-range and short-range edges

in the Virginia Beach network of 113,967 nodes.

Effect of graph structure: long-range edges. The
effect of q, i.e. the number of long range edges, on the
fraction of families evacuating is shown across the five
plots in Figures 13 for the 2mode-threshold model,
where q = 0 to 16. For q = 0, the fraction of the pop-
ulation evacuating (Frac. DE) = fde ≈ 0. This is a

consequence of the networks and findings in Section 4.
When q = 0, there are smaller connected components in
networks (that are obviously not connected, by defini-
tion) because there are no long-range edges. As a result,
contagion cannot move from one component to another.
As q increases to 2 and then to 16 long-range edges per
node, fde increases markedly. In particular, Figure 13e

shows how the spread of evacuation decisions has an up-
per bound in the 2mode-threshold model: too many
families have evacuated, so the remaining families do
not evacuate over concerns of looting and crime. This
behavior is also seen for q = 8, and to a lesser extent,
for q = 4 when ns = 500. This effect of greater conta-
gion spreading as q increases is the “weak link” phone-
mena (Granovetter, 1973), where long-range edges can

(a) q = 0 (b) q = 2

(c) q = 4 (d) q = 8

(e) q = 16

Fig. 13: Simulation results of fraction of evacuating fam-
ilies (Frac. Evac.) versus simulation time. The plots

also show the effects of q, i.e. the number of long-range
edges, and numbers of seed nodes. Each plot has curves
for a different q, from 0 through 16. All results use the

2mode-threshold model of Figure 1a, pe,max = 0.15,
ηc = 0.2, and ns (numbers of random seeds) varies
from 50 to 500 (see legend). Error bars denote vari-
ance across the 100 runs that are used to generate each

curve in each plot. (The variance is very small.) Results
for one graph instance of each of the following graphs:
(a) KSW0, (b) KSW2, (c) KSW4, (d) KSW8, and (e)
KSW16, where each graph class is of the form KSWq.
In all plots, dsr = 0.04 km. As q increases, the fraction
of families evacuating increases, up to the point that
the looting mechanism constrains further evacuation.

cause remote nodes to change their state to 1 (i.e., evac-
uating), thus moving a “contagion” into a different re-
gion of a graph. Note that the speed with which the
maximum of fde = 0.32 is attained increases with ns.

From Table 1, the average in-degree for a node in
KSW0 for dsr = 40m is 10.1. The average in-degree
increases by about 70% to 17.7 for KSW8, and this
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increase is due solely to the long-range edges. Hence,
this figure shows that by the time the average in-degree
of the graphs for dsr = 40m increases by 70% owing to
long-range edges, the effect of looting, in plateauing the
fraction of families evacuating, is observed.

Figure 14 provides the fraction fde of evacuating
families as a function of number of long-range edges for
all three dsr values—0.04 km, 0.06 km, and 0.1 km—
for two numbers ns of seed nodes: 50 and 500. The
two plots are, for left, pe,max = 0.04 and, for right,
pe,max = 0.10 in the 2mode-threshold model of Fig-
ure 1a. Across both plots, fde increases as q increases,
but also as dsr, ns, and pe,max increase. A couple of ob-
servations about the looting model are relevant, but will
return to these issues when the appropriate simulation
input is the focus.

(a) pe,max = 0.04 (b) pe,max = 0.10

(c) legend for both
plots

Fig. 14: Simulation results of the fraction of evacuat-
ing families (Frac. Evac.) as a function of the number
q of long-range (LR) edges. All results use the 2mode-
threshold model of Figure 1a, ηc = 0.2, and ns (num-
bers of random seeds) is 50 and 500 (see legend). Er-
ror bars denote standard deviation. (The variance is
very small.) Results are for one graph instance, instance

0, for each dsr value (0.04 km, 0.06 km, 0.10 km).
The maximum probability in the 2mode-threshold
is (a) pe,max = 0.04 and (b) pe,max = 0.10. The results
show that increasing pe,max by 2.5× results in increases
in fde, particularly at larger q. The increases are lim-
ited by the maximum evacuation fraction of about 0.3.
(c) Legend for both plots.

Effect of graph structure: short-range edges. Fig-

ure 15 shows the effect of short range distance dsr on the
evacuation fraction. For the smallest dsr, there is an ef-

fect of q on the fraction of evacuating families. However,
by the time dsr reaches its greatest value, the number
of short-range edges grows such that for all q ≥ 2, the
evacuation fraction is approaching its maximum value.
In this way, increases in either dsr or q has the same
net effect: increases in either increases the number of
edges in a graph (i.e., increases the graph density) and
hence increases the diffusion of evacuation up to the
looting-imposed ceiling.

Fig. 15: Simulation results of the fraction of evacuat-
ing families (Frac. Evac.) as a function of the short-
range (SR) distance dsr over which SR edges are formed
between pairs of families. All results use the 2mode-

threshold model of Figure 1a, ηc = 0.2, pe,max =
0.05, ns = 200, and all q values (see legend). Error bars
denote standard deviation from 100 runs. (The variance

is very small.) Results are for one graph instance, in-
stance 0, for each dsr value (0.04 km, 0.06 km, 0.10 km).
The results show that for dsr = 0.04 km, there is a
pronounced effect of q. However, as dsr increases, the

number of short range edges increases, giving more op-
portunities for contagion to spread, and by the time
dsr = 0.10 km, the effect of different q ≥ 2 is small, as

the spread of evacuation approaches its limit value.

5.3.6 Effects of Model Parameter pe,max.

Figure 14, described above, shows the effect of increas-
ing pe,max on increasing fde values. First, note that for
pe,max = 0.10, according to Table 5, roughly 0.65 frac-
tion of the families should be evacuating. But because
of the concern over looting, fde is far less (about 1/2 of
the value) in Figure 14b. This same type of comparison
is also provided in Figure 11.

Second, Figure 14a has a sufficiently small pe,max =
0.04 that the overall spread fraction fde is not greater
than about 0.2, which is ηc in Figure 1a. Consequently,
looting does not have a big effect on these results. How-
ever, for the larger pe,max = 0.10 in Figure 14b, some of

the curves plateau at greater q, particularly for dsr =
0.1 km and ns = 500, but also to a lesser extent when
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either dsr = 0.1 km or ns = 500. These curves are reach-
ing a ceiling, indicating that the looting factor is having
an effect. Hence, the looting phenomenon may or may
not be operative when using the 2mode-threshold
model: in Figure 14, this is controlled by pe,max.

5.3.7 Effects of Model Parameters pe,max and ηc
Combined with Network Structure.

Figure 16 shows the explicit dependence of the final
fraction of families evacuating (Final Frac. Evac. in
plots) as a function of the evacuation probability pe,max
of the 2mode-threshold model of Figure 1a. The
number ns of seeds is 400 in all simulations. Figure 16a
fixes dsr = 0.04 km and varies the number q of long-
range edges, while Figure 16b fixes q = 8 and varies
dsr. In the left plot, for fixed dsr, the spread fraction
increases as pe,max and q increase. However, for larger
q of 2, 4, 8 and 16, and for larger pe,max, the largest
q = 16 produces a shallower rate of increase in fde than

do the other q values. Similarly in right plot, as dsr
increases for fixed q = 8, as pe,max increases, there is
a transition in ranking of the short range distance dsr
that causes larger outbreaks. The transition occurs near
pe,max = 0.1.

In both aforementioned plots, the same mechanism

is operative. When the probability pe,max increases to
larger values (roughly for pe,max > 0.1 for these plots)
and when average in- and out-degrees are large (roughly

for dmin = dmax ≥ 20), the spreading is fast. We
can conceptualize a “frontal boundary” that separates
nodes in state 0 from those in state 1. As a contagion

grows, the frontal boundary of state 1 pushes into parts
of the network where nodes are in state 0. For greater
pe,max and greater degree, the front can be widespread
so that nodes in state 0 can have fractions of neighbors

in state 1 that are greater than ηc = 0.2, in which case
these nodes will not transition to state 1, per Figure 1a.
This means that the overall spread fraction is less than
what might otherwise be anticipated.

Thus, dynamics model parameters and network struc-
ture combine to produce two interesting phenomena.

First, as pe,max increases, the rate of increase in the fi-
nal fraction of evacuating families can decrease. Second,
as pe,max increases, the magnitude of the final fraction
of evacuating families can decrease.

5.3.8 Effects of Numbers of Seed Nodes

Figure 17 provides the final fraction of families evacu-
ating as a function of numbers ns of seed families (that

are evacuating at time t = 0). The effect of numbers of
seeds—like all parameters—is dependent on the regime

(a) dsr = 0.04 km (b) q = 8

Fig. 16: Simulation results of the final fraction of fami-
lies deciding to evacuate (Frac. Evac.) as a function of
the evacuation probability pe,max. All results use the
2mode-threshold model of Figure 1a, ηc = 0.2 and
ns = 400. In (a), the different curves are for different
numbers q of long-range edges, with dsr = 0.04 km. In
(b), the different curves are for dsr values of 0.04 km,
0.06 km, and 0.10 km, for q = 8. For reference, the
brown curve for dsr = 0.04 km and q = 8 is the same

in both plots. Error bars, denoting one standard devia-
tion, are plotted, but variance is very small. The transi-
tions observed in the plots (i.e., intersections of curves)

are caused by greater pe,max and greater degree net-
works (large dsr, large q). In these cases, the fast and
widespread diffusion of contagion can result in nodes
in state 0 having more than ηc = 0.2 fractions of their

neighbors in state 1, and for the 2mode-threshold
model, this means that the nodes will not transition to
state 1. This means that the overall spread size may be

less.

of final evacuation fraction that the conditions produce.

When conditions are such that the evacuation fraction
is less than the looting-induced evacuation fraction ceil-
ing, then the effect of seed nodes can be significant; see

the curve for q = 4. However, when the looting ceil-
ing is reached, which for these conditions occurs when
q = 16, the effect of seed nodes is small.

6 Related Work

Factors affecting evacuation decision. Many stud-
ies have identified factors that affect evacuation decision

making. These include social networks, peer influence,
access to resources, risk perceptions (Riad et al., 1999;
Lindell and Perry, 2005; Dash and Gladwin, 2007) and
household demographics such as nationality, proximity
to hurricane path, pets, disabled family members, mo-
bile home, access to a vehicle etc. (Baker, 1991, 1995; Fu
and Wilmot, 2004a; Dash and Gladwin, 2007; Widener
et al., 2013; Burnside, 2006; Cole and Fellows, 2008;
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Fig. 17: Simulation results of the final fraction of evac-
uating families as a function of the number ns of seed
families (i.e., the number of families evacuating at time
t = 0). Conditions are dsr = 0.04 km, q = 4, 8, and 16,
ηc = 0.2, and pe,max = 0.10 in the 2mode-threshold
model in Figure 1a. The results show that for condi-
tions in which the evacuation fraction looting-induced
ceiling is not reached (here, for q = 4), a 10 fold increase
in ns from 50 to 500, can produce a 4 fold increase in
final evacuation fraction (from 0.035 to 0.15 probabil-
ity). As final evacuation fraction increases such that the
looting-based ceiling is reached (here, for q = 16), the
effect of seed nodes is minimal.

Faucon, 2010; Wong et al., 2018). Evacuation notices
can increase people’s propensity to evacuate (Baker,

1991, 1995; Dash and Gladwin, 2007; O’Neil, 2014).
Mozumder and Vásquez (2015) provide a case study
in which they analyze the role of evacuation expenses

in affecting hurricane evacuation decisions in Harris
and Galveston counties in Texas. Studies also show
the importance of storm characteristics into evacuation
decision-making (Baker, 1991, 1995; Dash and Gladwin,

2007; Mozumder and Vásquez, 2018).

Work by Goldberg et al. shows that a family’s past
decision to evacuate (or not) is a significant predictor
of a similar future intended evacuation behavior if the
family had a high confidence in its past decision (Gold-
berg et al., 2020). Role of strong social ties in evac-
uation behavior is studied in Metaxa-Kakavouli et al.
(2018). Authors show several aspects of social capital

are correlated with evacuation decision, even after ac-
counting for confounding factors. Especially, higher lev-
els of bridging and linking social ties correlate strongly
with evacuation. Miller (2007) examines the role of for-
mal and informal social connections in sharing infor-
mation and shows that the number of contacts as well
as the range of contacts across different contexts (e.g.,
faith-based, school, work, etc.) aided evacuation during
hurricanes Katrina and Rita in East Texas. Influence
of density, diversity, and dependability of social sup-

port and social connections is studied on decisions to
evacuate in Collins et al. (2018).

Agent-based modeling and simulation of evacu-
ation decision-making. Some studies use social net-
works and relative threshold models to model evacu-
ation behavior. A relative threshold θi for agent vi is
the minimum fraction of distance-1 neighbors in a so-
cial network G(V,E) that must be in state 1 in order
for vi to change from state 0 and to state 1 (Watts,
2002; Centola and Macy, 2007). Several studies (Hasan
and Ukkusuri, 2011; Widener et al., 2013; Yang et al.,
2019) assign thresholds to agents in agent-based mod-
els (ABMs) of hurricane evacuation modeling. Stylized
networks of 2000 nodes are used in Hasan and Ukkusuri
(2011) to study analytical and ABM solutions to evac-
uation. In Widener et al. (2013), 12,892 families are in-
cluded in a model of a 1995 hurricane for which 75% of
households evacuated. They include three demographic
factors in their evacuation model, in addition to the
peer influence that is captured by a threshold model.
Small world and random regular stylized networks are
used for social networks.

Dixon et al. (2017) provide a survey-based empirical
analysis for identifying the most salient factors of the
heterogeneous respondents, which inform the rules gov-
erning hurricane evacuation behavior of the subpopula-

tions in an agent-based model. Kuhlman et al. (2020)
develop an agent-based model for evacuation decision-
making from Hurricane Sandy survey data.

Simulations of hurricane evacuation decision-making
in the Florida Keys are presented in Yang et al. (2019).
The simulations cover 24 hours, where the actual evac-

uation rate was about 53%. The social network is a
small-world network, with geospatial home locations,
which is similar to our network construction method.
Edges between homes are placed by using a small world
approach (Watts and Strogatz, 1998); long range edges
are placed by travel times. The dynamics of evacuation
is modeled as a two-step process. First, families receive

a message to evacuate either directly, or via diffusion
through the social network and then families evacuate
based on a relative threshold, i.e., the fraction of a fam-
ily’s neighbors that have decided to evacuate.

In all of these studies, except Kuhlman et al. (2020),
as the number of neighbors of a family vi evacuates,

the more likely it is that vi will evacuate. Our thresh-
old model differs: in our model, if too many neighbors
evacuate, then vi will not evacuate because of concerns
over crime and looting.

ABM requires a representation of a population. Two
studies use synthetic population (i.e., digital twin Bar-
rett et al. (2009)) data to represent a population; they
use US census data, a commercial data set of business
locations, Census Transportation Planning Products,
and other data to produce families and then use stylized
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methods to form edges of the social networks (Widener
et al., 2013; Yang et al., 2019). These approaches are
similar to our work. Works using stylized networks in-
clude Hasan and Ukkusuri (2011); Yang et al. (2019).

Yin et al. (2014) study not only evacuation decision-
making, but also destination selection for evacuation
and travel planning, for Miami-Dade County. They make
use of data from several surveys to develop models.
Zhu et al. (2018) also combine survey data with syn-
thetic data to develop an ABM for evacuation decision-
making, and for travel of families that are evacuating.
They model Hurricane Sandy and four million families
in the north-eastern U.S.

Other modeling approaches. Some studies predict
human evacuation behavior using techniques other than
ABM. Social media data have been used to model hur-
ricane evacuation decision-making and travel patterns.
Roy and Hasan (2021) construct an input-output hid-
den Markov model to predict hurricane evacuations us-

ing Twitter data. Roy et al. (2021) use social media data
to predict traffic demand based on evacuations in the
face of oncoming hurricanes. Fu and Wilmot (2004b)

build a sequential binary logit model to compute the
probability that households evacuate at each time step
as a hurricane approaches land.

7 Summary and Conclusions

We study evacuation decision-making as a graph dy-
namical system using 2mode-threshold functions for

nodes. This work is motivated by the results of a sur-
vey collected during Hurricane Sandy which shows that
concerns about crime motivates families to stay in their

homes, if too many neighbors evacuate. We study the
dynamics of 2mode-threshold in different network
settings, and show significant differences from the stan-
dard threshold model. Result shows that in some cases,
not incorporating the looting effect in the model can
overpredict evacuation rates by as much as 50%. This
has important policy implications. For example, a more

realistic prediction of the size of non-evacuees can be
used by city planners for contingency planning. Plan-
ners can more accurately estimate resources that will
be required for non-evacuees who are left behind in ad-
verse conditions, as well as design interventions that
will address the concerns of crime so that a higher level
of compliance to evacuation may be achieved.
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