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Abstract. We study evacuation dynamics in a major urban region (Mi-
ami, FL) using a combination of a realistic population and social contact
network, and an agent-based model of evacuation behavior that takes
into account peer influence and concerns of looting. These factors have
been shown to be important in prior work, and have been modeled as
a threshold-based network dynamical systems model (2mode-threshold),
which involves two threshold parameters—for a family’s decision to evac-
uate and to remain in place for looting and crime concerns—based on
the fraction of neighbors who have evacuated. The dynamics of such
models are not well understood, and we observe that the threshold pa-
rameters have a significant impact on the evacuation dynamics. We also
observe counter-intuitive effects of increasing the evacuation threshold
on the evacuated fraction in some regimes of the model parameter space,
which suggests that the details of realistic networks matter in designing
policies.

Keywords: network science, graph dynamical systems, agent-based mod-
els, natural disasters, evacuation

1 Introduction
Background and Motivation. The 2020 Atlantic hurricane season produced
30 named storms, of which 14 developed into hurricanes, and 7 intensified into
major hurricanes. It was the most active season on record and the fifth consec-
utive above-average season since 2016. Total estimated costs to the U.S. from
hurricanes and tropical storms in 2020 was $95 billion, which was the 4th largest
inflation-adjusted annual cost and more than twice the 41 year average of $45.7
billion since 1980 [16]. See [13] for more details about hurricane season 2020 and
others. Over the years, hurricanes are becoming more frequent and more intense,
and inflict major physical and economic damage annually [15].

Timely evacuation during a hurricane can lead to greater safety and may
even save lives. Not heeding evacuation orders can not only put individuals’
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lives at risk but also the lives of first responders. Power outage, flooding, issues
with water supply, access to internet, food, etc. can make it hard to survive
without help from emergency workers. However, there are many factors that go
into a family’s decision of whether or not to evacuate in the face of an oncoming
hurricane. These can be broken into categories such as storm characteristics,
family demographics, geography, and risk perceptions. Two factors that are of
particular importance are: (i) evacuation behavior of peers, which can influence
others to evacuate and (ii) concerns about looting and crime, if too many people
evacuate from the neighborhood. Looting has a countering effect to peer influence
on evacuation: concerns over looting in a depopulated area may inhibit families
from leaving who would otherwise evacuate [9].

Our Contributions. We study the impact of peer influence and looting on
evacuation during a natural disaster, using a detailed agent-based simulation
(ABS) of a network dynamical system model. While the underlying network is
realistic, the dynamical system model is stylized, and our goal is to understand
its phase space properties. In another paper submitted to this conference, we
study how survey data can be combined with agent based models; the analysis
in this paper can help in validation of such methods. This paper takes a more
mechanistic approach to evacuation modeling; the other paper takes a more data-
driven approach. The former approach has the benefit that mechanistic models
are typically more transferable to other situations (e.g., different hurricanes in
different cities); the latter has the benefit that the model is guided by real data.
Our ultimate goal is to combine these two approaches, but each is significant in
its own right. Our specific contributions in this work are summarized below.

1. Study of evacuation behavior in a large urban region using detailed
agent-based models. We develop a detailed agent-based model (ABM) for
evacuation in Miami, FL. This combines a high resolution population and social
contact network of Miami, with an ABM of evacuation. The population model
integrates diverse kinds of commercial and open source datasets, including U. S.
Census, American Community Survey (ACS), Public Use Microdata Sample
(PUMS), National Household Travel Survey (NHTS), transportation network
data, and land use data (see a summary of this process in [2,5]). Our agent-based
evacuation behavior model represents peer influence and concerns of looting, as
in [9], but considers more realistic parameter ranges.

2. Simulation based analysis of evacuation behavior. First, we provide
some terminology; these concepts are detailed in Section 3. The evacuation
threshold ηmin (respectively, the looting threshold (ηmin + ηc)) is the minimum
(respectively, maximum) fraction of neighbors of a non-evacuating family (node)
vi in the social network G that must be in the evacuating stating for vi to have a
non-zero probability of evacuating. Hence, ηc is the regime over the range [0, 1]
in fraction of neighbors evacuating where a family has a non-zero probability of
evacuation.

We present several new findings. First, in past work [9], the evacuation thresh-
old ηmin was taken as a fixed value, slightly greater than zero (value 0.0001),
which fostered spread of contagion. In this work we systematically study the ef-
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fect of ηmin, and demonstrate a somewhat counterintuitive result: for a fixed ηc,
the fraction of evacuating families can increase as ηmin increases, if the non-zero
probability of evacuation pe,max is sufficiently large. Other findings include, a
precipitous drop in the fraction of evacuating families for increases in ηmin over a
narrow range, suggestive of a phase transformation. This phenomenon is robust
across numbers of seed nodes and probabilities of evacuation pe,max. Finally, the
effect of ηc can be large or small; it is largest for lesser pe,max and lesser ηmin.
But noteworthy is that the effect of ηc captures the primary difference between
the looting model and a standard threshold model (see Section 3 for details), be-
cause as ηc → (1− ηmin), the looting model transforms to the standard relative
threshold model. We find that for conditions studied in this work, evacuation
rates saturate and the peak fraction of evacuations on any given day saturates
at much lesser values of ηc, i.e., saturation of the looting model behavior to the
behavior of the standard relative threshold model occurs for ηc � (1− ηmin).

3. Spatial extent of evacuating families. The population model provides de-
tailed spatio-temporal information for all individuals. We zoom in on the highest
household density region of Miami to evaluate spatial differences in evacuation
rates. We grid this region in to roughly 20,000 rectangular cells and compute
the average evacuation rate of all families within each cell, and plot these results
as heatmaps. Quite surprisingly, we find that although there are variations, the
average evacuation rates are largely homogeneous in space.

Novelty of Our Work. Our work is the first to study the role of peer influence
and looting behavior on a high resolution synthetic population in a major urban
region. While the specific dynamical system model we use here was proposed in
prior work [9], their analysis was restricted to a smaller region (Virginia Beach,
VA), and used a stylized Kleinberg small-world network, instead of more realistic
contact structure based on diverse transportation and land use datasets, as we
do here. We find that the realistic network structure does have an impact on the
observed evacuation behavior. We also find the model is quite sensitive to the
parameters, which was not studied before. Our work points to the importance
of representing realistic populations in such analyses. Other (urban) populations
can be studied.

Related Work. We divide related work into the following two themes.

Factors influencing evacuation decisions. Factors important to families in
evacuation decision-making are: receiving an evacuation notice, traffic gridlock,
presence of children and pets, age of decision-makers, the household’s education
level, property protection, household income, work duties, race, availability of
resources, and having somewhere to stay [12,14,17]. According to [3,6], the most
important factors in choosing to evacuate are past evacuation experience, effec-
tive communication of the risks of staying, and social influences such as support
networks and watching peers evacuate. The most important factors in choosing
not to evacuate are territoriality, wanting to protect from looters, underestimat-
ing the severity of the hurricane, and overestimating household safety [14]. Ex-
tensive media reporting of looting and rioting during Hurricane Katrina caused
officials to strongly warn against it in subsequent natural disasters [7].



4 Matthew Hancock et al.

Evacuation models and simulations. In [18], an ABM models hurricane
evacuation in the Miami-Dade area for a hypothetical category-4 hurricane.
Focus is placed on shadow evacuation, or evacuation occurring outside of the
mandatory evacuation zone. An ABM based on survey data models Hurricane
Sandy in northern New Jersey [19]. In [12], an evacuation model was developed
from survey data from persons’ experiences of Hurricane Sandy. This model in-
cludes factors of peer influence, looting, and household demographics. The work
closest to our is [9]; our extensions of that work are covered in the novelty section.

2 Family Social Contact Network

We briefly summarize the realistic population and social contact network model
for Miami, FL, which we use in our paper; we refer to [2,5] for complete details
about this model. Each individual in the population is represented. Individuals
are organized into households, which are geolocated. A census of these households
at a block group level is statistically indistinguishable from the U.S. census. Each
individual has a normative daily activity schedule, e.g., work, school, home, and
shopping activities etc., with each activity being assigned a location and a start
and an end time. Two people who visit the same location, with overlapping times
of visit, are assumed to come into contact with each other.

In this way, an individual-based social contact network is generated: each
individual is a node in the network, and an undirected edge is placed between
two nodes if they visit the same location and their visits overlap in time. In our
context, contact between individuals implies communication between individuals
about evacuation and an opportunity to influence each other. For evacuation
related decision-making purposes, we assume that only those people in the age
range 18 to 70, inclusive, are relevant and hence only consider edges in the
network between such persons. Younger (and older) individuals that might have
additional information from sources like social media are not taken into account.

Table 1: Structural properties of a family-based social contact network of Miami,
FL. Nodes are families and edges are interactions between families. Properties
computed with the cyberinfrastructure net.science [1].
Network Num.

Nodes
Num. Edges Avg. De-

gree
Max. De-
gree

Avg.
Clust.
Coeff.

Diameter

Miami, FL 1,702,038 42,789,880 50.3 760 0.045 9

Since evacuation decisions are made at the family level, we construct a fam-
ily social contact network from the individual-based network. In this network,
nodes are now families. Two families interact (communicate, form an undirected
edge) if there is at least one edge between one person in one family and one
person in the second family in the individual-based social network, and both
are between 18 and 70 years old. This network has 1.70 million nodes (fami-
lies) and 42.8 million edges; see Table 1 for selected structural properties. Data
used to generate the individuals, the demographics (e.g., age, gender), family
compositions, and activity patterns and locations include, but not limited to,
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American Community Survey (ACS), Public Use Microdata Sample (PUMS),
National Household Travel Survey (NHTS), HERE (here.com), National Center
for Education Statistics (NCES), U. S. Census data, Dun and BradStreet, and
Open Street Maps. See [2, 5] for details.

3 Models
3.1 Network Model

The family social contact network (FSCN) is the graph G(V,E), with node
set V and edge set E, where each family vi ∈ V , i ∈ {1, 2, . . . , n} is a node in
the graph and n = |V |. An undirected edge is placed between two nodes vi and
vj to form edge eij = {vi, vj}, eij ∈ E (i.e., vi and vj communicate) if and only
if at least one family member of vi is co-located with at least one family member
of vj , and both family members are in the age group 18-70.

3.2 Peer Influence Contagion Models

Figure 1 contains the two models used in this study to quantify a family’s
decision-making process in determining whether it will evacuate in the face of an
on-coming hurricane, on any particular day. The models are general so that each
family vi can have different properties such as threshold ηmin,i and maximum
daily probability of evacuation pe = pe,max,i. However, for this paper, we use
homogeneous properties so that ηmin,i = ηmin and pe,max,i = pe,max, etc., for
all i ∈ {1, 2, . . . , n}.

In both models, a node at each time t has a state in K = {0, 1}. For node
vi, state si = 0 means that vi is not evacuating; state si = 1 means that vi
is evacuating. For each vi, there is a function fi:K

d(vi) → K that defines the
process by which a node changes state from si = 0 to si = 1. Once a node
reaches state 1, it stays in state 1, which is a progressive threshold model [10].
The two models differ in the forms of fi.

The first model is the standard-threshold model in Figure 1a, and is based
on the relative threshold model in [4]. Each node vi has an evacuation threshold
ηmin ∈ [0.0, 1.0] and denotes the minimum fraction of its neighbors that must
be in state 1 (i.e., evacuating) in order for vi to change state from 0 → 1. Let
η1 be the fraction of neighbors of vi that are in state 1. At each time t, for each
node vi in state si(t) = 0, the function fi outputs si(t+ 1) = 1 with probability
pe,max if η1 ≥ ηmin; else fi outputs si(t+ 1) = 0.

The second model, in Figure 1b, the 2mode-threshold model, incorporates the
effect of concern for looting, which has been identified as a factor in hurricane
evacuation [8]. This model also has an evacuation threshold ηmin. It is clear
from Figure 1 that this model has a smaller range on the x-axis over which the
probability of evacuation is non-zero, compared to that of the standard-threshold
model. Specifically, families can be concerned that when many of their neighbors
have already evacuated, the neighborhood is more vulnerable to looting and
crime, and hence do not evacuate. Consequently, when too many families have
already evacuated, the looting threshold, denoted by (ηmin + ηc), defines the
fraction η1 when a family’s pe drops back to zero. Therefore, at each time t,
for each node vi in state si(t) = 0, the function fi outputs si(t + 1) = 1 with
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probability pe,max if η1 ∈ [ηmin, ηmin + ηc]; else fi outputs si(t+ 1) = 0. This is
referred to as the 2mode-threshold model, reflecting the influence of two modes:
peer influence to evacuate and looting concern to not evacuate.

(a) standard-threshold model (b) 2mode-threshold model

Fig. 1: Agent threshold models. The x-axis (abscissa) is η1, the fraction of a
node’s (agent’s) neighbors that are in state 1. The y-axis (ordinate) is pe, the
daily probability that a family evacuates. (a) Classic relative threshold model
where the relative threshold ηmin is the value of η1 where the daily probability of
evacuation becomes non-zero. This is called herein the standard-threshold model.
(b) New relative threshold model where there is a concern over looting, where
the daily probability of evacuation pe,max returns to zero at η1 = ηmin +ηc. This
is called herein the 2mode-threshold model.

Fig. 2: (Left) Two configurations showing the five neighbors of node 0 that are in
state 0 in red and in state 1 in green, labelled A and B. (Center) For the standard-
threshold model, as η1 increases, in going from A to B on left, pe increases from 0
to pe,max. (Right) For the 2mode-threshold model, as η1 increases, in going from
A to B on left, pe remains at 0; the block wave where pe = pe,max > 0 is missed.

Examples. Figure 2 provides an example of the behavior of the two models for
a given ego node v0 = 0 that is in state s0(t) = 0. On the left are two subgraphs
labeled A and B. Using the standard-threshold model (center graphic), node 0
in subgraph A has η1 = 1/5 which is less than ηmin = 0.25, and hence pe = 0.
That is, s0(t + 1) = 0. In subgraph B, however, node 0 has η1 = 3/5 which is
greater than ηmin = 0.25, and hence pe = pe,max > 0. That is, s0(t + 1) = 1
with probability pe,max. For the 2mode-threshold model (right graphic), node 0
in subgraph A again produces s0(t + 1) = 0 for the same reason as for the
standard-threshold model. However, for subgraph B, the result for node 0 now
changes from that for the standard-threshold model. Node 0 has s0(t + 1) = 0
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because η1 > (ηc+ηmin). For this last scenario, the contagion has spread through
the network so fast that η1 has “hopped over” the range [ηmin, ηmin + ηc] where
pe > 0. This effect will arise in the simulation results.

4 Simulations and Results

4.1 Simulation Description and Parameters

A simulation instance consists of a set of seed nodes that are in state 1 at
time t = 0. Time progresses forward in integer time steps (each representing one
day), and at each time, each node vi in state si(t) = 0 has its local function fi
executed, in parallel, to determine its next state, i.e., si(t+ 1). If si(t) = 1, then
si(t+ 1) = 1, i.e., a node that reaches state 1 remains in that state. Simulation
instances are run in the interval t ∈ [0, 9] to produce si(1) through si(10) for all
vi ∈ V , 1 ≤ i ≤ n. A simulation consists of a group of simulation instances.
Here, we run 100 instances, each instance having a different seed node set; all
other inputs are the same across instances. We use as output from the raw
simulation results the average and standard deviation of the 100 results at each
t. As described in Section 3, each fi in the computation of si(t + 1) represents
a family behavior such as those in Figure 1. Simulation parameters are given in
Table 2.

Table 2: Summary of the parameters and their values used in the simulations.

Parameter Description

Network Miami, FL.

Number of
seed nodes, ns

Values are 50, 100, 200, 300, 400, and 500 Seed nodes are chosen
uniformly at random.

Threshold model The standard-threshold (i.e., classic) threshold model of Figure 1a
and the 2mode-threshold model of Figure 1b, in Section 3.

Maximum
probability,
pe,max

The maximum probability of evacuation pe,max of Figure 1. This is
a daily probability of evacuation, which is repeated by each family.
Discrete values are 0.05 to 0.30 in increments of 0.05.

Threshold, ηmin The minimum value of ηmin where the probability pe,max becomes
greater than zero. Discrete values are 0.01 through 0.09, in increments
of 0.01.

Active threshold
range, ηc

The range in relative degree over which the probabilities pe = pe,max

are greater than zero. Discrete values are 0.2, 0.4, 0.6, 0.8, 0.90, and
0.95. Values of ηc = 1−ηmin represent the standard-threshold model,
whereas lesser values represent the 2mode-threshold model.

4.2 Simulation Results

Comparison of the 2mode-threshold and standard-threshold Models
Basic simulation results in this section are provided for the 2mode-threshold
model. Figure 3a shows the fraction of families newly evacuating on each of the
ten days leading up to hurricane arrival, for numbers ns of seed nodes up to
500 families. Inputs for the 2mode-threshold model are ηmin = 0.05, ηc = 0.2,
and pe,max = 0.3. The fraction of evacuating families is initially small, growing
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noticeably over the last four days. Error bars denoting ± one standard deviation
indicate that the scatter across the 100 simulation instances is relatively small.
Figures 3b and 3c show cumulative fraction of evacuating families for the 2mode-
threshold and standard-threshold models, respectively. The former plot plateaus
for greater numbers of seed nodes, reflecting the looting threshold effect, while
the latter plot shows no such constraint.

(a) 2mode-threshold (b) 2mode-threshold (c) standard-threshold

Fig. 3: Simulation results of the fraction of evacuating families in Miami, FL
versus time. Fractions of (a) newly evacuating families and (b) cumulative evac-
uating families as a function of time for the 2mode-threshold model. Model con-
ditions are ηc = 0.2, ηmin = 0.05, and pe,max = 0.30. (c) Fraction of cumulative
evacuating families for the standard-threshold model, with the same properties,
except that ηc = 1 − ηmin = 0.95. All data points on all plots display ± one
standard deviation; the variability over 100 simulation instances is not large.

Effect of Evacuation Threshold ηmin Figure 4 shows the effect of ηmin

for the 2mode-threshold model for three values of pe,max. Figures 4b and 4c
show that there is a precipitous dropoff in evacuation fraction over a narrow
range in ηmin, indicative of a phase transition. These plots demonstrate that
this phenomenon is persistent across different values of pe,max and ns.

(a) pe,max=0.05 (b) pe,max=0.15 (c) pe,max=0.25

Fig. 4: Effect on cumulative evacuation fraction of ηmin for the 2mode-threshold
model at day t = 10. Here, ηc = 0.2 and pe,max is (a) 0.05 (b) 0.15, and (c) 0.25.
For larger pe,max, the evacuation fraction changes markedly over a small range
in ηmin, suggesting a phase transformation. All data points on all plots display
one standard deviation error bars; the variability over 100 simulation instances
is not large.

Effect of Range ηc Over Which pe,max > 0 Figure 5 shows the effect of ηc
on evacuation fraction (at day 10). The left-most plot is the largest fraction of
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newly evacuating families on any day; the remaining two plots are cumulative
fractions of evacuating families. Most curves in Figure 5a are flat for ηc > 0.4,
indicating a saturation in behavior at larger ηc. This effect is also observed in
Figure 5c, for a greater value of ηmin. Even in the middle plot, the curves saturate
at lesser ηc for pe,max ≤ 0.10, but exhibit more changes in evacuation fraction
with ηc for pe,max > 0.1. The point is that the two models—2mode-threshold
and standard-threshold models—have as their primary difference the values of
ηc. These results demonstrate that behavior of the 2mode-threshold model can
be the same as that of the standard-threshold model for values of ηc that are far
less than ηc = 1 − ηmin, as is the case for the standard-threshold model. This
effect is not observed over all conditions, but nonetheless over a significant range
of conditions.

(a) ηmin = 0, new-evac (b) ηmin = 0, cum-evac (c) ηmin = 0.05, cum-evac

Fig. 5: Effect of ηc on the 2mode-threshold model predictions of evacuation rates
in Miami, FL. Each data point is over the 10 days leading up to hurricane
landfall. Here, ns = 100 families and pe,max is given in legends. (a) Maximum
fractions of new evacuations on any day for ηmin = 0. (b) Cumulative evacuation
curves for ηmin = 0. (c) Cumulative evacuation curves for ηmin = 0.05. All data
points on all plots display ± one standard deviation.

Combined Effect of Evacuation Threshold ηmin and Maximum Prob-
ability pe,max Figure 6 shows the combined effect of variations in ηmin and
pe,max on evacuation fraction. The effect is somewhat surprising in that it can be
considered counterintuitive. Figures 6a and 6b depict, respectively, the largest
fraction of newly evacuating nodes, on any day t ∈ [1, 10], and the cumulative
evacuation fraction. Both plots show curves that are not non-increasing, which
is at first counterintuitive. The curve pe,max = 0.3 in Figure 6b, for example,
shows a discernible increasing trend in evacuation fraction as ηmin increases
in the range [0.01, 0.05]. One would suspect that these curves would be non-
increasing as in Figures 4a and 4b because increasing ηmin means that a node
vi in state 0 with small fractions of neighbors in state 1 would not produce
pe = pe,max > 0 (i.e., a non-zero probability of evacuation).

The reason for this behavior is as follows. Data (not provided here for space
reasons) demonstrate that the speed of contagion spread increases with pe,max.
Thus, for a node vi in state 0, increasing pe,max causes more neighbors of vi
to change to state 1 earlier, in a sense “flooding” the neighborhood of vi. This
means that it is advantageous to increase ηmin so that the block wave in Figure 1b
gets moved to the right so that p = pe,max > 0 is operative for greater η1. If
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the block wave does not move further to the right, then the behavior at the
right in Figure 2, point labeled B, will be operative and the contagion will not
propagate. This reasoning suggests that the effect will become more pronounced
with increasing pe,max, which is what Figure 6b shows.

(a) epi-curves (b) cuminf curves

Fig. 6: Simulation results for Miami, FL. The plots are for the 2mode-threshold
model where ηc = 0.2, and ηmin and pe,max vary per the plots. The number of
seed nodes is 400 families. The y-axes are: (a) largest fraction of families evacu-
ating on any day t ∈ [1, 10], and (b) cumulative fraction of families evacuating.
These plots show counterintuitive results as described in the text.

Spatial Aspects of Evacuation Figure 7 contains heat maps of evacuation
probabilities for the high population density region of Miami, FL. The maps are
generated as follows. Each family dwelling is geo-located. The high population
density region of the city of Miami is gridded into 156 cells in the horizontal and
137 cells in the vertical directions, producing 21372 rectangular cells. For each
of the families vi within a cell, the fraction ρi of the 100 simulation instances in
which the family evacuates is computed. The average value for a cell j, ρcell,j ,
which is plotted, is the average value of all ρi whose homes are in cell j. Results
at t = 10 days are provided for both models. Although there are differences
among cells, the results indicate that at a high level, the evacuation rates across
the high population density region of Miami are fairly uniform. Evacuation rates
are greater for the standard-threshold model.

Policy implication and causal explanation First, a sensible model at an
individual level (e.g., Figure 1) may give rise to counterintuitive behavior such
as that shown in Figure 6. This is a well-know signature of “complex systems.”
Second, from a practical standpoint, the takeaway is that it is important to min-
imize ηmin and to maximize ηmin +ηc in order to keep pe,max operative over the
greatest range of η1. This takeaway is consistent with the statement: to increase
the evacuation, allay families’ concerns over looting. From a modeling perspec-
tive, this means that interventions should seek to make families’ behaviors more
like that in Figure 1a, and less like that in Figure 1b. And while this might seem
obvious from an intuitive viewpoint, the contribution here is that this analysis
provides a causal explanation. Third, the results of this paper suggest the fol-
lowing: government-based interventions to allay people’s concerns about looting
(e.g., via increased patrols)—to increase ηc—and to incentivize evacuation—to
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(a) 2mode-threshold , Day 10 (b) standard-threshold , Day 10

Fig. 7: Heat maps of the high population density region of Miami, representing
the average evacuation rates of all families within each gridcell. There are 156×
137 cells in the horizontal and vertical directions. In these plots, ηmin = 0.05,
pe,max = 0.3, ns = 500, and ηc = 0.2 and 1− ηmin, respectively.

increase pe,max. Looting and rioting experiences from Hurricane Katrina caused
police to warn against human-inflicted damage in future hurricanes [7]. This
work suggested that these warnings may also encourage greater evacuation.

5 CONCLUSIONS

We present the first study of evacuation dynamics in a large urban region. Using
an agent-based model, we find that peer influence and looting concerns have a
significant impact on the fraction of people who evacuate. We observe the evac-
uation dynamics are quite sensitive to the thresholds and probability of evacu-
ation. Our work highlights the importance of modeling detailed representations
of the social network, the geospatial attributes of home locations, and realistic
peer behaviors, in understanding policies and response to natural disasters. A
shortcoming of our work is that we only address human contact networks; we
do not include the effects of social media. We speculate that social media will
not change the overall trends since the looting effect will persist. Future work
includes tailoring the curves of the models in Figure 1 for families based on
household demographics. Our current plan is to make the model available in a
future release of a simulation system [11] within a cyberinfrastructure [1].
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