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Abstract
This paper proposes to use intrinsic examples as a DNN fingerprinting technique

for the functionality verification of DNN models implemented on edge devices. The

proposed intrinsic examples do not affect the normal DNN training and can enable the

black-box testing capability for DNN models packaged into edge device applications.

We provide three algorithms for deriving intrinsic examples of the pre-trained model

(the model before the DNN system design and implementation procedure) to retrieve

the knowledge learnt from the training dataset for the detection of adversarial third-party

attacks such as transfer learning and fault injection attack that may happen during the

system implementation procedure. Besides, they can accommodate the model transfor-

mations due to various DNN model compression methods used by the system designer.

1 Introduction
With the rapid development of deep learning (DL) and artificial intelligence [11, 13, 25,

35, 36, 56, 61, 62, 66, 75, 76], discovering or searching for more efficient DNN model

structures has become one of the essential research objectives of DL community. Due to

high efficiency and reliability, low cost, small footprint, and reprogrammability, embedded

system-based edge devices have become important carriers for DL tasks [23, 31, 50, 70].

However, significant challenges exist when executing DNN models on edge devices, and ex-

tensive research efforts have been devoted to address the challenges [8, 9, 24]. The problem
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Figure 1: Verify the functionality with the proposed intrinsic examples.

is how to achieve efficient inference given the limited computation and storage resources on

edge devices. To accelerate DNN execution on edge devices, various model compression

techniques have been proposed, such as weight pruning [19, 42, 72] and weight quantization
[22, 26, 33, 52], which can be considered as a re-training to derive a sparse model from the

pretrained model.

This paper investigates functionality verification of DNNs implemented on edge devices

for on-device inference applications. To satisfy design requirements on inference latency and

memory footprint, even a trustworthy system designer may perform model compression too

aggressively with severe accuracy loss. Furthermore, if the DNN implementation procedure

is compromised by some adversarial third-party entity, the implemented models may be

embedded with delicately crafted mis-behaviors through transfer learning [51, 63, 68] and

fault injection attack [5], which are violations of functionality by integrity breach.

To address these problems, we propose to extract Intrinsic Examples as a novel DNN

fingerprinting technique, which effectively addresses the limitations of previous watermark-

ing and fingerprinting methods, with the following advantages: (i) its generation process

does not interfere with the training phase; (ii) it does not require any realistic data from the

training/testing set; (iii) it can detect adversarial third-party attacks that embed misbehaviors

through re-training; and (iv) it is robust to potential model transformations of normal system

design and implementation procedure (e.g., model compression), as long as the implemented

model preserves original functionality. We summarize our contributions below.

• We are the first to propose a novel and practical fingerprinting method aiming for function-

ality verification of DNN models implemented on edge devices for on-device inference

applications. In particular, we develop three algorithms to derive intrinsic examples based

on the pre-trained model with various applicability and computation cost.

• Compared with the existing works of DNN watermarking [1, 7, 12, 15, 18, 46, 57, 71]

or fingerprinting [21, 32], using intrinsic examples does not interfere with the training

phase nor the training data. Meanwhile, our mechanisms feature high-robustness to the

compressed models while keeping high-sensitivity to third-party adversaries.

• To better evaluate the performance of the fingerprints, we propose to use the accuracy of

the intrinsic examples as the intrinsic score to evaluate the functionality of implemented

model. Intrinsic scores of the proposed methods outperform other fingerprinting methods

by a large margin. Specifically, the intrinsic scores of Algorithm 2 and Algorithm 3 out-

perform the baseline by over 80% on functionality remained CNN models on CIFAR-10.

2 Background and Related Work
2.1 IP Protection of Deep Neural Networks
There are extensive research efforts on DNN watermarking or fingerprinting for DNN intel-

lectual property (IP) protection [1, 7, 12, 15, 18, 32, 46, 57, 71] and model integrity verifica-

tion [21]. They can be classified into three categories: (1) DNN watermarking [7, 12, 15, 57];

(2) Watermarking by backdooring [1, 18, 46, 71]; and (3) DNN fingerprinting [21, 32].
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DNN watermarking embeds watermarks into the model weight parameters through train-

ing from scratch, retraining, or distillation, and requires white-box access to the model to be

tested. Uchida et al. first investigate DNN watermarking by embedding a watermark in

model weight parameters, using a parameter regularizer [57]. Other works proposed by

Rouhani et al. [12], Chen et al. [7] and Fan et al. [15] also contribute towards this approach.

Watermarking by backdooring leverages the DNN backdoor attacks [17] to embed wa-

termarks while using trigger images to test IP infringement [1, 18, 46, 71]. Comparing with

DNN watermarking, it enables the black-box testing capability but still involves re-training

of the DNN model to embed watermarks. DNN fingerprinting instead extracts adversarial

examples [32] or sensitive examples [21] from a DNN as its fingerprints, which eliminates

the need of training or re-training and enables the black-box testing capability.

Besides the above mentioned works, Mahendran et al. propose a general framework to

invert representations [45] which also trying to understand the relationship between recon-

structed images and neural network models.

2.2 DNN Model Compression
DNN model compression techniques have been proposed for simultaneously reducing stor-

age/computation and accelerating on-device inference, with minor accuracy loss. Two im-

portant DNN compression techniques are: i) weight pruning and ii) weight quantization.

DNN weight pruning can be categorized into the unstructured sparsity scheme by ir-

regular pruning methods [42, 72], the structured sparsity scheme by filter pruning methods

[41, 64] and by column pruning methods [37, 73], and the most recent fine-grained struc-

tured sparsity scheme by pattern-based pruning methods [43, 49, 67]. Detailed discussion

about different sparsity schemes and pruning methods are introduced in Appendix A. Weight

quantization reduces redundancy in bit representation of weights [22, 26, 33]. With a k-bit

weight representation, quantization maps weights into a total of 2k quantized levels.

2.3 Fault Injection Attack
The fault injection techniques including laser beam [4, 53] and row hammer [27, 58, 65]

attempt to flip logic values in the memory. Motivated by these hardware fault injection tech-

niques, DNN fault injection attacks [40, 74] are proposed to inject faults for a given model

such that the model makes specific mis-classifications on a particular set of inputs, while

keeping normal predictions on other inputs, by finding the minimum set of weight parame-

ters. Recently, [5] implements the DNN fault injection attack [40] physically on embedded

systems using laser beams, demonstrating the possibility of practical fault injection.

3 Overview
It is well accepted that the trained DNN models should be protected as IP. Towards this

end, extensive research efforts have been devoted to DNN watermarking or fingerprinting

[1, 7, 12, 15, 18, 21, 32, 46, 57, 71]. The DNN training process learns from the training data

of practical applications and extracts the information into the trained model. It is essential to

protect the model functionality. We proposes to use fingerprinting for verifying functionality

(and integrity) of DNN models implemented on edge devices. The proposed methods focus

on the model functionality instead of a particular model representation, and therefore can

effectively detect adversarial third-party attacks that violate model integrity (i.e., function-

ality). Besides, it is robust to potential model transformations due to normal system design

and implementation procedure as long as it preserves the original functionality.
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3.1 Threat Model
This paper addresses the problem of verifying the functionality of DNN models during DL

system design and implementation procedure, where the client provides a pretrained model
to the system designer, and the system designer mainly performs model compression to

implement a model on edge devices for supporting on-device inference. We consider the

following scenarios that may violate the model functionality (and integrity): (i) To meet the

design goals on inference latency and memory footprint, the system designer pursues the

extreme model sparsity, such that the model accuracy loss may be higher than an accept-

able threshold. (ii) A third-party entity performs a fault injection attack which modifies a

minimum set of DNN weight parameters with a small set of data, such that the implemented

model mis-classifies certain specific inputs while keeping normal predictions on other inputs.

In this paper, we assume the client does not release the training dataset to the system

designer or anyone else, due to IP considerations. For model compression, there are recent

research efforts to preserve data privacy [6, 47, 60, 69], where the original training dataset

can be kept confidential with the model owner (client) during model compression.

3.2 Intrinsic Examples for DNN Fingerprinting
Suppose the client has trained a model Fθ with training data {(x, l)}, where (x, l) represents

the data and label pair, and θ denotes model weight parameters. In addition, the client

generates a group of intrinsic examples {(xIE , lIE)} based on the pretrained model Fθ . The

client gives the pretrained model Fθ to the system designer for implementations of on-device

inference. The implemented model Fθ ′ may be a transformation of the pretrained model

with a different set of weight parameters represented by θ ′. The model transformation could

be model compression by the system designer or attacks (e.g., fault injection attack) by

certain adversarial third-party entity. The system designer is not allowed to modify the model

structure. Likewise, the adversarial third-party entity does not modify the model structure.

Figure 1 provides an overview of the DL system design and implementation procedure

using the proposed intrinsic examples for verifying the functionality. To verify the imple-

mented model, the client can analyze the accuracy of intrinsic examples by querying the

implemented model y = Fθ ′(xIE) with intrinsic examples. Note that the client does not re-

lease the intrinsic examples {(xIE , lIE)} to the system designer, out of privacy concerns.

Also, when testing functionality, the client only has black-box access to Fθ ′ , because the

model is already packaged into the edge devices for on-device inference.

There are three reasons why we prefer using intrinsic examples rather than the testing

dataset for verifying model functionality and integrity. (i) Intrinsic examples can signifi-

cantly accelerate the verification procedure, since it is time-consuming to run the whole test-

ing dataset with the limited resources on edge devices. (ii) With intrinsic examples, we can

isolate the verification procedure from the whole or a subset of testing dataset, which pro-

vides an additional layer of protection on the data privacy and therefore IP. (iii) The intrinsic

examples are more sensitive than the whole or a subset of testing data for the functional ver-

ification, for example, at a high pruning ratio when the testing accuracy loss is around 2%,

the accuracy on the intrinsic examples (named intrinsic score) drops significantly, indicating

a potential functionality violation.

4 Methodology
In this section, our main methods are introduced in the image classification task by DNNs.
We stress, however, that the proposed approach can be generalized to other types of tasks,
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data, and classification models. Let x ∈R
3×H×W denote a colored RGB image, where H and

W are the image height and width, respectively. The pixel values of x are scaled to [0,1] for
mathematical simplicity. Fθ denotes the pre-trained Base Model, which outputs yyy = Fθ (x) as
a probability distribution for a total of M classes. The element yi represents the probability
that an input x belongs to the i-th class. Generating intrinsic examples can be formulated as:

min
x

Loss(θ ,x, l), s.t. x ∈ [0,1]n. (1)

where Loss(θ ,x, l) denotes the loss function, for instance, the cross-entropy loss for the

DNN model Fθ . The above formulation (given the model Fθ ) finds the optimal x (i.e., the

intrinsic example) to minimize the loss function with respect to a class label l.
The process of generating a small group of intrinsic examples {(x j, l j)} is as follows:

1. Select a subset {l1, l2, . . . , l j, . . . , lK} of K labels randomly from the available labels.

2. Solve the problem (1) K times, each with a label l j.

The generated intrinsic examples are used for testing the implemented model Fθ ′ on the edge

device. We provide three algorithms for DNN fingerprinting, each with unique characteris-

tics for dealing with different threat scenarios in the DNN system design. The algorithms are

general for various kinds of DNN architectures since they do not depend on a specific model

architecture during the intrinsic examples generation. We use the gradients with reference to

the inputs to generate intrinsic examples, without any requirement on the model architecture.

4.1 Algorithm 1: Proposed Intrinsic Examples
The intrinsic examples generation can be considered as retrieving knowledge learnt by the
pretrained model from training dataset. Therefore, intrinsic examples can keep high robust-
ness from the pretrained model Fθ to the implemented model Fθ ′ on edge devices as long as
Fθ ′ has the same functionality. We compare the robustness of intrinsic examples with adver-
sarial examples in Appendix B. To be independent of training/test data, we use random seeds
to generate intrinsic examples, and thus intrinsic examples are distinct from natural images.
We use projected gradient decent (PGD) [29, 30, 34, 44] to generate intrinsic examples:

xt+1 = ∏
x0+E

(
xt −α · sign(∇xLoss(θ ,xt , l))

)
, (2)

where t is the iteration index; x0 is the random starting point; E is the �∞-ball around x0

bounded by ε , ∏x0+E means the projection onto the set x0 + E ; α is the step size; sign(·)
returns the element-wise sign of a vector; and ∇x calculates gradients. In summary, PGD

iteratively makes updates based on gradients and then clipping into the �∞-ball around x0.

4.2 Algorithm 2: Enhanced Robustness
All the existing works [21, 32] perform fingerprinting or watermarking for a DNN as it is,
which can not differentiate the (benign) model compression. Here, we tackle this challenge
by improving the robustness of intrinsic examples on compressed models. We propose an en-
hancement over Algorithm 1 by adding random perturbations bounded by δ onto the weights
of one or multiple layers in the pretrained model Fθ to mimic the model perturbation due to
the model compression procedure for its implementation on edge devices, where similar idea
is also applied in defending adversarial attacks [39]. Here, the problem can be formulated as

min
x

EΔ∼U(−δ ,δ )

[
Loss(θ +Δ,x, l)

]
, s.t. x ∈ [0,1]n. (3)
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Δ presents uniformly distributed perturbations within [−δ ,δ ]. Algorithm 2 is as follows:

xt+1 = ∏
x0+E

(
xt −α · sign(∇xLoss(θ +Δ,xt , l))

)
. (4)

Furthermore, motivated by Expectation Over Transformation (EOT) which models possi-

ble transformations of adversarial examples into attack generation process [2, 3], we further

enhance Algorithm 2 by calculating the mean of the input gradients in each iteration step.

When computing input gradient, we sample input gradients for q = 10 times and use the

gradients mean in each iteration of generating RC-examples.

4.3 Algorithm 3: Min-Max Robust Optimization
We further provide an alternative algorithm leveraging the min-max robust optimization,
which systematically incorporates weight perturbations from an optimization aspect. Specif-
ically, we investigate the optimization problem as shown below:

min
x

max
Δ

Loss(θ +Δ,x, l), s.t. x ∈ [0,1]n. (5)

We solve problem (5) by alternatively solving the inner maximization and outer minimization
problems with PGD method. The inner maximization problem can be solved as:

Δq+1 = ∏
[−δ ,δ ]

(
Δq +β · sign(∇θ Loss(θ +Δq,xT , l))

)
. (6)

We use Q steps to obtain ΔQ. Then for the outer minimization, PGD is applied below,

xt+1 = ∏
x0+E

(
xt −α · sign(∇xLoss(θ +ΔQ,xt , l))

)
. (7)

We use T steps to obtain xT . These two processes are implemented alternatively. The training

loss of Algorithm 3 is shown in Figure A2 of Appendix C, where fluctuations due to the inner

maximization are observed while following an overall decreasing trend to converge.

4.4 Discussions
Algorithm 1 is derived for a straight forward objective function – the loss function, targeting

for retrieving the knowledge learnt from the training dataset. And Algorithm 1 is therefore

more sensitive to the subtle fault injection attacks. Algorithms 2 and 3 incorporate the poten-

tial DNN model compression methods by adding stochastic weight perturbations and from

an optimization aspect, respectively, towards increasing the robustness of intrinsic examples

through normal DNN system implementation procedure. Although Algorithm 3 provides a

more optimized solution than Algorithm 2, it is computationally expensive, especially on

DNN models trained with large-scale datasets.

The proposed Algorithms 1, 2 and 3 have increasing computation complexity, but various

applicability when dealing with different threat scenarios. For the real application of our

proposed intrinsic examples, we will generate three groups of intrinsic examples, each by one

algorithm, and the intrinsic scores (the accuracy of the intrinsic examples) will be evaluated

on the implemented model, respectively, with three groups of intrinsic examples. If all the

intrinsic scores are high, the implemented model passes the verification. Otherwise, more

investigations are needed to resolve the ambiguity. For example, we could consult with

the system designer which type of model compression methods were used. And the low

intrinsic score by Algorithm 1 and high intrinsic score Algorithm 2 and/or 3 denote potential

fault injection attack as shown in section 7.
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Algorithm
Dense

Model
Unstructured Pruning [19] Irregular Pruning [72] Column Pruning[20] Pattern Pruning[49]

Pruning

Ratio
/ 80% 90% 95% 97% 70% 80% 90% 95% 50% 60% 70% 80% 90% 95% 97% 99%

Model

Acc.
80.5%

80.3%

(-0.2)

80.3%

(-0.2)

79.7%

(-0.8)

78.5%

(-2.0)

84.7%

(+4.2)

83.1%

(+2.6)

81.6%

(+1.1)

78.2%

(-2.3)

83.5%

(+3.0)

82.7%

(+2.2)

80.5%

(0)

76.2%

(-4.3)

83.5%

(+3.0)

83.3%

(+2.8)

83.3%

(+2.8)

83.4%

(+2.9)

Baseline (0.025) 100% 18% 18% 16% 14.5% 9% 10.5% 10% 11.5% 5.5% 4% 4.5% 4% 11.5% 9% 11.5% 10%

Baseline (0.05) 100% 42.5% 28% 21.5% 17% 22% 21.5% 17.5% 16% 15.5% 10% 7% 6.5% 24.5% 20% 18.5% 19%

Baseline (0.1) 100% 40.5% 33% 27.5% 26% 30% 30.5% 28% 20% 32% 23% 13% 10% 27.5% 26% 26% 25.5%

Alg.1 100% 98% 88% 64% 36% 85% 84% 65.5% 48% 67% 51.5% 38% 19% 83% 82% 80% 80%

Alg.2 100% 100% 100% 100% 73% 100% 100% 97.5% 80% 90% 78.5% 50.5% 24.5% 100% 99% 99% 99%
Alg.3 100% 100% 100% 83% 54% 100% 96% 81.5% 73% 77% 69% 41.2% 23% 78.3% 66.7% 66.7% 60%

Table 1: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on the CNN

with CIFAR-10 Dataset (whole model pruning). We use dense CNN model as the pretrained model.

Algorithm Dense Model Unstructured Pruning [19] Irregular Pruning [72] Column Pruning [20]

Pruning Ratio / 80% 85% 90% 95% 90% 95% 97% 99% 90% 95% 97% 99%

Model

Acc.
80.5%

78.7%

(-1.8)

79.0%

(-1.5)

78.4%

(-2.1)

77.8%

(-2.7)

82.8%

(+2.3)

83.1%

(+2.6)

83.3%

(+2.8)

81.7%

(+1.2)

81.9%

(+1.4)

81.5%

(+1.0)

81.4%

(+0.9)

79.1%

(-1.4)

Baseline (0.025) 100% 22.5% 22% 26% 24% 18.5% 10% 11.5% 11% 9% 11.5% 13% 11%

Baseline (0.05) 100% 44% 47% 47% 36% 26.5% 27% 24.5% 25% 29% 28% 31% 31%

Baseline (0.1) 100% 50% 52% 50.5% 39.5% 29% 30% 32% 27.5% 42.5% 42% 36% 35.5%

Alg.1 100% 97.5% 97% 97.5% 96% 88.5% 87% 85% 83.5% 90% 88% 83% 76%

Alg.2 100% 95% 94.5% 91.5% 87.5% 85% 86% 84.5% 85.5% 91% 88.5% 80% 71%

Alg.3 100% 100% 100% 100% 100% 98% 97.5% 96.5% 97% 99% 100% 97.5% 88%

Table 2: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on CNN with

CIFAR-10 Dataset (single layer weight pruning). We use dense CNN model as the pretrained model.

5 Implementation Details
The experiments are conducted on machines with NVIDIA GTX 1080 TI GPUs. We adopt

widely used datasets and models in the literature, including CNN models for CIFAR-10 [28]

and SVHN [48] datasets, and VGG-16 [55] models for ImageNet datasets. The model details

are summarized in Table A2 in Appendix D. We demonstrate all the experiment settings for

model compression with various datasets and models in Table A3 of Appendix D.

5.1 Intrinsic Example Generation
The same hyper-parameter setting is utilized for three intrinsic example generation algo-

rithms, among all datasets and DNN models in our experiments. We set the ε = 128/255

which bounds the �∞-ball around x0 since larger ε will not further increase the functionality

verification (or integrity violation detection) performance. The weight perturbation bound

δ is set to 0.05 as larger δ leads to difficulties to convergence. For each pretrained model,

200 intrinsic examples are generated with 200 iteration steps for each intrinsic example. We

visualize the generated intrinsic examples on ImageNet in Figure 2.

Figure 2: Intrinsic examples generated by Algorithm 2 on the ImageNet dataset. Labels used for

generating those intrinsic examples are shown below the images.

5.2 Comparative Methods
Among existing work on the DNN watermarking or fingerprinting, the methods by [21] and

[32] are the most relevant to our work in terms of methodology, while all the other work

[1, 7, 12, 15, 18, 46, 57, 71] have to interfere with the DNN training process. Comparing

with [21] and [32], our work is the first one targeting for DNN functionality verification,

while [21] is for detecting integrity breach and [32] is for protecting IP.
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Algorithm
Pretrain

Model

Decimal
Float16

Full

Integer3 places 2 places 1 place

Model

Acc.
80.5%

80.5%

(0)

80.4%

(-0.1)

77.1%

(-3.4)

80.4%

(-0.1)

80.4%

(-0.1)

Alg.1 100% 100% 100% 92% 100% 100%

Alg.2 100% 100% 100% 100% 100% 100%

Alg.3 100% 100% 100% 98% 100% 100%

Table 3: Intrinsic Score of Implemented Models by different quantization methods on CIFAR-10.

[32] extracts adversarial examples [16] to watermark DNNs on MNIST. Although the

method in [32] is similar to our Algorithm 1, we highlight that we use random initialization

instead of true data and therefore our method is data-free. In experiments, we report their

performance as a baseline on CIFAR-10 with different settings of step size (0.025,0.05,0.1)

to control the intensity of the adversarial perturbations, detailed in Table 1 and 2.

[21] proposes sensitive examples (based on adversarial examples) from a DNN as its

fingerprints. It regards all pruned models as compression attack and reject pruning even

with minor testing accuracy degradation (e.g., 0.65%). Different from [21], we believe that

an effective fingerprinting method should be robust to pruned models and recognize pruned

models as non-attack. To demonstrate the robustness problem of [21], we use pruned models

to evaluate the robustness of sensitive examples. With 8 sensitive samples, the intrinsic

score on pruned models is only 0.04%, demonstrating that pruning is treated as illegitimate

by sensitive samples, which is unreasonable due to the wide application of DNN pruning for

size reduction and inference acceleration especially on edge devices with limited resources.

Besides, comparisons with adversarial example-based approach is provided in Appendix B.

6 Experiments for Model Compression
In this section, we demonstrate the effectiveness of intrinsic examples on implemented mod-

els obtained with various weight pruning and quantization methods compared with [32]. We

use the three proposed algorithms to generate intrinsic examples with the pretrained model

and calculate the accuracy of intrinsic examples on the implemented models after model

compression. We define the accuracy of intrinsic examples on the model as the intrinsic
score. The intrinsic score of the pretrained model is 100%.

6.1 Weight Pruning

6.1.1 Functionality Verification
Intrinsic examples can verify the functionality of the implemented model with intrinsic
scores from the three algorithms. Table 1 and 2 demonstrate our results using three intrinsic

example generation algorithms to verify the functionality of two pruning modes: pruning

the whole model or pruning only one layer. Note that the pattern pruning method can only

be applied to the convolutional layers. Same experiments have been also performed using

SVHN dataset which are summarized in Appendix E. We observe that the accuracy after

pruning increases, which is also observed in other pruning works [19, 20, 48, 69]. The reason

may be that pruning can mitigate the overfitting problem in overparameterized DNNs. We

summarize our findings as follows:

1 Intrinsic scores of all algorithms outperform the baseline on all kinds of pruned models.

2 For whole model pruning, intrinsic scores of Algorithm 2 outperform both Algorithms 1

and 3 for all pruning methods in Table 1, due to random perturbations during generation.

3 For single layer weight pruning, as shown in Table 2, intrinsic scores of all three algo-

rithms are generally higher than that of whole model pruning, since whole model pruning
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prunes more weights for all layers. Algorithm 3 outperforms both Algorithms 1 and 2,

because of the application of optimized weight perturbations.

4 Generally, intrinsic score is highly correlated with testing accuracy, and is robust to model

transformations by pruning with moderate pruning ratios (i.e., testing accuracy degrada-

tion is small). It is more sensitive to large pruning ratios where the functionality is harmed

by over-aggressive pruning (see column pruning with 80% pruning ratio in Table A4).

6.1.2 Functionality Indication
Intrinsic examples have high fingerprinting capacity. With only limited number of intrin-
sic examples, the intrinsic score can accurately indicate the functionality of implemented
models. We test the intrinsic scores using different numbers of intrinsic examples with Al-

gorithm 1 for unstructured pruned models with various pruning ratios in Figure 3 (Left), and

complete results for all the algorithms are summarized in Figure A3 in Appendix F. For each

data point in Figure 3 (Left) we generate N intrinsic examples and test the intrinsic score.

This process is conducted 10 times to obtain the mean and variance of intrinsic score for

each number N, as denoted by the solid line and shadow area in Figure 3 (Left). For each

pruning ratio, the average intrinsic score is usually in the same level for different number

of intrinsic examples used, demonstrating its steady performance. We note that when the

number of intrinsic examples is smaller than 10, the variance of intrinsic score is relatively

large. But as the example number increases, the variance reduces rapidly. As observed from

Figure 3 (Left), usually 10 intrinsic examples are enough to provide a reliable intrinsic score,

which correspond to only 0.1% of the total size of the testing dataset.

6.2 Weight Quantization
We adopt three widely used post-training weight quantization methods: decimal quantiza-

tion, float16 quantization, and full integer quantization. Table 3 presents results on CIFAR-

10. Intrinsic score is lower than 100% only in the case of decimal quantization with 1 place,

where a relatively large accuracy degradation occurs, demonstrating our effectiveness on

functionality verification. More results on SVHN are shown in Table A6 of Appendix.

7 Integrity Verification
In this section, we demonstrate the performance of intrinsic examples on integrity breach

detection.We consider model modifications that aim to change the original classification task,

i.e., fault injection attack. Fault injection attacks [40, 74] modify the model weights to

change the classification results of the first |S| images in the set R to the incorrect target

labels, while the remaining images in the set R can still be classified correctly. Following the

setting in [74], we modify the weights of the last fully-connected layer and generate 10 fault

Figure 3: Left: Intrinsic score w.r.t the number of examples on CIFAR-10 using Algorithm 1. Each

line is for an unstructured pruned neural network. Right: Result of fault injection attack using different

level of injected faults. All faults are injected without significant accuracy drop (within 5%).
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injected models corresponding to |S|= 1, ...,10 , and with |R|= 1000. The 10 models have

small testing accuracy loss (within 5%) such that the fault injection attacks can be stealthy.

Figure 3 (Right) demonstrates the intrinsic scores by three algorithms on 10 fault in-

jected models. Algorithm 3 keep the intrinsic scores as 100% for all models. And intrinsic

scores by Algorithm 2 show slight degradation as the increase of the number of injected

faults. The reason is that Algorithms 2 and 3 are designed to be more robust to slight weight

modifications of the model, making them unable to effectively detect certain stealthy at-

tacks. Meanwhile, intrinsic examples from Algorithm 1 demonstrate significant degradation

on intrinsic score compared with Algorithms 2 and 3. In the case with only one injected

fault, intrinsic score of Algorithm 1 decreases to 88%, lower than both Algorithms 2 and 3,

demonstrating higher sensitivity in detecting fault injection attacks.

8 Large Scale Classification Task
We also explore the effectiveness of intrinsic examples on ImageNet [14], which contains

over 14 million images and 1000 categories. We use a VGG-16 model achieving top 1

accuracy of 74.6% and top 5 accuracy of 92.4%. For large models like VGG-16, it is hard to

apply Algorithm 3 due to the requirement of more computational resources and difficulty of

convergence. So we use Algorithms 1 and 2 here for VGG-16 on ImageNet dataset.

The visualization results of intrinsic examples generated by Algorithm 1 and Algorithm

2, with different ε values are detailed in Figure A4 in Appendix G. We also summarize the

performance of intrinsic examples on functionality verification for different weight pruning

and quantization methods as shown in Table A7. We can observe that intrinsic scores of

Algorithm 2 outperforms Algorithm 1 for all models, showing its superiority of accurately

verifying the acceptable modifications compared with Algorithm 1. Meanwhile, in the case

of heavy compression with significant accuracy drop, a relatively low intrinsic score can be

obtained (such as 34% from Algorithm 1 and 80% from Algorithm 2 in the case of deci-

mal quantization with 1 place), indicating the unsatisfied performance from the compressed

model. The high correlation between the intrinsic score and testing accuracy demonstrates

that intrinsic examples can verify the model functionality for large scale image recognition

task with a much fewer number of examples.

Alg.
Dense

Model

Unstructured

Pruning

Pattern

Pruning

Decimal

Quantization

30% 60% 55.6% 77.4% 85.7% 87.5% 3 places 2 places 1 place

Acc.
Top1: 74.6%

Top5: 92.4%

74.3%

(-0.3)

74%

(-0.6)

74.6%

(0)

74.3%

(-0.3)

73.9%

(-0.7)

73.7%

(-0.9)

74.5%

(-0.1)

72.7%

(-1.9)

67.3%

(-7.3)

Alg.1 100% 85% 54.5% 100% 98% 96.5% 91% 67% 50% 34%

Alg.2 100% 100% 97.5% 100% 100% 100% 100% 100% 89% 80%

Table 4: Intrinsic Score of Implemented Models by Different Model Compression Methods on VGG-

16 with ImageNet Dataset.

9 Conclusion
To verify the DNN functionality, we design three algorithms to generate intrinsic examples

as DNN fingerprinting, with high robustness to benign model transformations and high sensi-

tivity for the detection of adversarial third-party attacks. Extensive experiments demonstrate

that the proposed methods have superior performance in reliably verifying the functionality

of DNNs than current watermarking/fingerprinting methods.
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Appendices

A Weight pruning
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Figure A1: Various DNN sparsity schemes by weight pruning.

Figure A1 illustrates weight pruning methods using a CONV layer with M filters, each

consisting of 3 channels with the kernel size of 3×3. "Kernels" and "channels" can be used

interchangeably. The most common kernel size is 3× 3, while the number of channels can

go much beyond 3.

Figure A1 (a) shows the unstructured sparsity scheme by the irregular pruning method

[19, 42, 72], where the upper part is directly in the weight tensor format and the lower part is

in the General Matrix Multiplication (GEMM) matrix format. The GEMM routine is widely

used for CONV layer operations on some computing platforms such as embedded systems

and mobile devices [10]. Irregular pruning method prunes weights at arbitrary locations. It

can achieve very high pruning rate, but the unstructured weight sparsity is not compatible

with data parallel executions on the computing platforms.

Figure A1 (b) is a structured sparsity scheme by the filter pruning method [20, 41, 64],

and Figure A1 (c) is a structured sparsity scheme by the column pruning method [37, 73].

Filter pruning, as suggested by the name, prunes whole filters from a layer.1 Column pruning

prunes weights for all filters in a layer, at the same locations. In the GEMM matrix format,

filter pruning prunes whole rows of weights, and column pruning prunes whole columns of

weights. The structured sparsity maintains the full matrix format with reduced dimensions,

thus accelerating on-device inference for the resource-constrained computing platforms.

Figure A1 (d) shows a fine-grained structured sparsity scheme by the pattern-based prun-

ing method [43, 49, 67], which is a combination of kernel pattern pruning and connectivity

pruning. In kernel pattern pruning, for each kernel in a filter, a fixed number of weights

are pruned, and the remaining weights form specific kernel patterns. The example in Figure

A1 (d) is defined as 4-entry kernel pattern pruning, since every kernel reserves 4 non-zero

weights out of the original 3×3 kernels. The connectivity pruning cuts the connections

between some input and output channels, which is equivalent to removing corresponding

kernels. Note that the pattern-based pruning is not based on the GEMM matrix format.

B Comparison with Adversarial Examples
Although our proposed intrinsic examples leverage similar algorithms (e.g., PGD) as those

for generating adversarial examples, in Table A1 we demonstrate the stronger transferability

1Note that some references mention channel pruning [20], which by the name prunes some channels completely

from the filters. Channel pruning is essentially equivalent to filter pruning, since pruning some filters in a layer

invalidates the corresponding channels of the next layer.
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of intrinsic examples than adversarial examples, from the pretrained model Fθ to the imple-

mented model Fθ ′ , which is derived by the unstructured pruning method on Fθ .

We use the (dense) CNN as the pretrained model and perform weight pruning with dif-

ferent pruning ratios. Intrinsic score (i.e., accuracy) by the intrinsic examples and attack

success rate (i.e., accuracy) by the adversarial examples are shown in the table.

Algorithm
Dense

Model

Models by Unstructured Pruning

[19] with Various

Pruning Ratios

Pruning

Ratio
/ 80% 90% 95% 97%

Model

Acc.
80.5%

80.3%

(-0.2)

80.3%

(-0.2)

79.7%

(-0.8)

78.5%

(-2.0)

Alg.1

(intrinsic score)
100% 98% 88% 64% 36%

Alg.2

(intrinsic score)
100% 100% 100% 100% 73%

Alg.3

(intrinsic score)
100% 100% 100% 83% 54%

Adversarial example

(attack success rate)
100% 83% 76% 52% 33%

The experiment is evaluated on 200 examples generated from CIFAR-10

dataset.

Table A1: Intrinsic Score by Intrinsic Examples and Attack Success Rate of Adversarial Examples

Using CIFAR-10 Dataset with Whole Model Weight Pruning. The second column is for pretrained

model, and the third to sixth columns are for pruned models.

C Training Loss

Figure A2 shows the training loss during the min-max robust optimization process, where

fluctuations due to the inner maximization steps are observed while following an overall

decreasing trend.

Figure A2: Training Loss with respect to total number of steps for Algorithm 3.

D Experiment Settings

In this section, we summarize the details of datasets and models used in our experiments

in Table A2. We also conclude our experiment settings for model compression methods in

Table A3.
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Dataset Task Model # Layers # Conv # FC

CIFAR-10
Image

Classification
CNN 6 4 2

SVHN
Image

Classification
CNN 6 4 2

ImageNet
Image

Classification
VGG-16 16 13 3

Table A2: Details of Datasets and Models Used.

Dataset Model
Test Accuracy

of Pretrained

Model

Generation

Algorithms

Weight Pruning Weight Quantization

Unstructured

Pruning

Irregular

Pruning

Column

Pruning

Pattern

Pruning
Deciminal Float16

Full

Integer

CIFAR-10
CNN 80.5% Algorithm 1, 2, 3

√ √ √ √ √ √ √
VGG16 79.5% Algorithm 1, 2, 3

√ √ √ √ √ √ √
SVHN CNN 92.8% Algorithm 1, 2, 3

√ √ √ √ √ √ √

ImageNet VGG16
Top1: 74.6%

Algorithm 1, 2, 3
√ √ √

Top5: 92.4%

Table A3: Datasets, Models, and Model Compression Methods used for Evaluating Intrinsic Examples.

Here the accuracy of intrinsic examples on the pretrained model is 100%.

E Experimental Results for Model Compression on SVHN
dataset

Table A4 and A5 demonstrate our results using three intrinsic example generation algorithms

to verify the functionality in two pruning modes: pruning the whole model or pruning only

one layer. And Table A6 presents the verification results in three quantization modes: deci-

mal quantization, float16 quantization and fullinteger quantization.

F Functionality Indication
We test and record the intrinsic score using different number of intrinsic examples for un-

structured pruned models with various pruning ratios. Figure A3 demonstrate our results

using Algorithm 1, 2, and 3. For each data point in Figure 4 we generate a number N of in-

trinsic examples and test the intrinsic score, and this process is conducted10 times to obtain

the mean and variance of intrinsic score for each number N, as denoted by the solid line and

shadow area in Figure A3. and obtain the mean and variance of intrinsic score, as denoted

by the solid line and shadow area.

Algorithm
Dense

Model
Unstructured Pruning [19] Irregular Pruning [72] Column Pruning[20] Pattern Pruning[49]

Pruning

Ratio
/ 80% 90% 95% 97% 70% 80% 90% 95% 50% 60% 70% 80% 70% 80% 90% 95%

Model

Acc.
92.8%

92.9%

(+0.1)

92.8%

(0)

92.5%

(-0.3)

92.7%

(-0.1)

92.5%

(-0.3)

92.4%

(-0.4)

91.8%

(-1.0)

89.8%

(-2.0)

92.1%

(-0.7)

91.0%

(-1.8)

91.2%

(-1.6)

82.4%

(-10.4)

92.3%

(-0.5)

92.4%

(-0.4)

92.2%

(-0.6)

92.2%

(-0.6)

Baseline(0.025) 100% 68.5% 52% 21.5% 22.5% 4% 4% 6% 5% 6% 6.5% 8% 7% 5.5% 5% 7% 6%

Baseline(0.05) 100% 77% 63% 51% 39% 8% 8.5% 6.5% 8% 10% 10.5% 6.5% 8% 6.5% 6% 5.5% 5.5%

Baseline(0.1) 100% 70% 61.5% 46.5% 37.5% 5% 5.5% 4.5% 7% 5% 7.5% 7.5% 7.5% 5.5% 5.5% 10% 6.5%

Alg.1 100% 99.5% 98.5% 94% 93.5% 100% 100% 98.5% 86% 99.5% 95% 92% 50.5% 99% 98.5% 98% 99%

Alg.2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 92% 100% 100% 100% 100%
Alg.3 100% 100% 100% 99% 96% 100% 100% 100% 95.5% 100% 99% 98.5% 86.5% 100% 100% 99% 99%

The intrinsic score by each algorithm is evaluated on 200 intrinsic examples generated from the CNN trained with SVHN Dataset.

Table A4: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on the CNN

with SVHN Dataset (whole model pruning): We use the (dense) CNN model as the pretrained model

and perform different weight pruning methods to derive implemented models with various pruning

ratios. Intrinsic score is the accuracy of intrinsic examples on each implemented model.
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Algorithm Dense Model Unstructured Pruning [19] Irregular Pruning [72] Column Pruning [20]

Pruning Ratio / 80% 85% 90% 95% 90% 95% 97% 99% 90% 95% 97% 99%

Model

Acc.
92.8%

92.5%

(-0.3)

92.8%

(0)

92.9%

(+0.1)

92.8%

(0)

92.6%

(-0.2)

92.6%

(-0.2)

92.5%

(-0.3)

86.3%

(-6.5)

92.6%

(-0.2)

92.5%

(-0.3)

92.4%

(-0.4)

85.4%

(-7.4)

Baseline (0.025) 100% 73.5% 69% 61% 62% 45% 40.5% 32% 18% 10.5% 9.5% 8% 6%

Baseline (0.05) 100% 78% 72.5% 70% 70.5% 51% 42% 40.5% 21.5% 16% 13% 12.5% 10%

Baseline (0.1) 77% 73% 72% 72% 68% 60% 53.5% 46% 20% 15% 10.5% 9% 9%

Alg.1 100% 99.5% 100% 99.5% 100% 99.5% 100% 100% 88.5% 100% 99.5% 99.5% 88%

Alg.2 100% 100% 100% 99.5% 100% 100% 100% 100% 91% 100% 100% 100% 90%

Alg.3 100% 100% 100% 100% 100% 100% 100% 100% 92.5% 100% 100% 100% 92.5%

The intrinsic score by each algorithm is evaluated on 200 intrinsic examples generated from the CNN trained with SVHN Dataset.

Table A5: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on the
CNN with SVHN Dataset (single layer weight pruning): We use the (dense) CNN model as the

pretrained model and perform different weight pruning methods to derive implemented models with

various pruning ratios. Intrinsic score is the accuracy of intrinsic examples on each implemented

model.

(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3

Figure A3: Intrinsic score w.r.t the number of examples on the CIFAR-10 dataset. (a) Intrinsic exam-

ples generated using Algorithm 1. (b) Intrinsic examples generated using Algorithm 2. (c) Intrinsic

examples generated using Algorithm 3. Each line in the sub-figure represents an unstructured pruned

neural network.
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Algorithm
Pretrain

Model

Decimal
Float16

Full

Integer3 places 2 places 1 place

Model

Acc.
92.8%

92.8%

(0)

92.7%

(-0.1)

87.5%

(-5.3)

92.8%

(0)

92.2%

(-0.5)

Alg.1 100% 100% 100% 94.5% 100% 100%

Alg.2 100% 100% 100% 100% 100% 100%

Alg.3 100% 100% 100% 98.5% 100% 100%

Table A6: Intrinsic Score of Implemented Models by Different Weight Quantizationn Methods on the

CNN with SVHN Dataset.

G Results on ImageNet Dataset
Figure A4 visualizes intrinsic examples with the same label "mushroom" generated by Algo-

rithm 1 and Algorithm 2, with different ε values. As we can observe, for images from Algo-

rithm 1, it is difficult to figure out its expression based on the textures and pattern. However,

image patterns of mushrooms from Algorithm 2 can be clearly observed, reflecting a match-

ing between the high-level semantics and the low-level image features. We summarize the

performance of intrinsic examples for functionality verification for different weight pruning

and quantization methods as shown in Table A7. We can observe that intrinsic scores of

Algorithm 2 outperforms Algorithm 1 for all models, showing its superiority of accurately

verifying the acceptable modifications compared with Algorithm 1. Meanwhile, in the case

of heavy compression with significant accuracy drop, a relatively low intrinsic score can be

obtained (such as 34% from Algorithm 1 and 80% from Algorithm 2 in the case of deci-

mal quantization with 1 place), indicating the unsatisfied performance from the compressed

model. The high correlation between the intrinsic score and testing accuracy demonstrates

that intrinsic examples can verify the model functionality for large scale image recognition

task with a much fewer number of examples.

Figure A4: Generated intrinsic examples on ImageNet dataset. First Row: Intrinsic examples gen-

erated using Algorithm 1. Second Row: Intrinsic examples generated using Algorithm 2. Below

we show the input clipping range ε for the two algorithms. For Algorithm 2, we also set the weight

perturbation bound δ = 0.05 during the generation process. The label assigned to all these image is

“mushroom”.
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Alg.
Dense

Model

Unstructured

Pruning

Pattern

Pruning

Decimal

Quantization

30% 60% 55.6% 77.4% 85.7% 87.5% 3 places 2 places 1 place

Acc.
Top1: 74.6%

Top5: 92.4%

74.3%

(-0.3)

74%

(-0.6)

74.6%

(0)

74.3%

(-0.3)

73.9%

(-0.7)

73.7%

(-0.9)

74.5%

(-0.1)

72.7%

(-1.9)

67.3%

(-7.3)

Alg.1 100% 85% 54.5% 100% 98% 96.5% 91% 67% 50% 34%

Alg.2 100% 100% 97.5% 100% 100% 100% 100% 100% 89% 80%

The experiment is evaluated on 200 intrinsic examples for each method generated from ImageNet Dataset.

Table A7: Intrinsic Score of Implemented Models by Different Model Compression Methods on VGG-

16 with ImageNet Dataset.

H Limitation and Discussion
In our threat model, we assume the client (model owner) does not release the training data

of the pretrained model to the system designer or anyone else, because the training data is

the even more important intellectual property than the trained models. Such assumption also

eliminates another threat scenario that some third-party entity performs the backdoor attack

[17] on the pretrained model, because performing the backdoor attack does require access to

the training dataset.

If we lift the constraint to allow the client to release the training dataset, our intrinsic

examples are unable to detect the integrity breach by the backdoor attack, as the backdoored

model has high normal testing accuracy and shows mis-behaviors only in presence of the

specific trigger pattern, which is embedded into the training dataset and model. There is

an existing work [59] focusing on identification and mitigation of DNN backdoor attacks,

which can complement our intrinsic examples allowing for more general threat model.

If we would like to extend the intrinsic examples to incorporate the capability of model

integrity breach detection, we may need to use Grad-CAM [54] for its visual and qualitative

evaluation capability. Instead of generating intrinsic examples for the pretrained model and

testing on the implemented model, we may need to generate intrinsic examples for the im-

plemented model and exam the intrinsic examples with Grad-CAM. Because we only have

black-box access to the implemented model, we may incorporate zero-th order optimization

[38] when generating intrinsic examples for the black-box implemented model.

Furthermore, we may extend our intrinsic examples to other deep learning tasks such as

object detection, speech recognition, and action recognition. We need to deal with large-

scale datasets and models in those tasks, and therefore for our proposed Algorithms 2 and 3,

we should identify the most effective layers to add weight perturbations.


