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Abstract

Most online multi-object trackers perform object detec-
tion stand-alone in a neural net without any input from
tracking. In this paper, we present a new online joint
detection and tracking model, TraDeS (TRAck to DEtect
and Segment), exploiting tracking clues to assist detection
end-to-end. TraDeS infers object tracking offset by a cost
volume, which is used to propagate previous object fea-
tures for improving current object detection and segmen-
tation. Effectiveness and superiority of TraDeS are shown
on 4 datasets, including MOT (2D tracking), nuScenes (3D
tracking), MOTS and Youtube-VIS (instance segmentation
tracking). Project page: https://jialianwu.com/
projects/TraDeS.html.

1. Introduction

Advanced online multi-object tracking methods follow
two major paradigms: tracking-by-detection [5, 38, 27, 52,
, 49] and joint detection and tracking [26, 63, 1, 29, 45,25,

, 44]. The tracking-by-detection (TBD) paradigm treats
detection and tracking as two independent tasks (Fig. 1 (a)).
It usually applies an off-the-shelf object detector to produce
detections and employs another separate network for data
association. The TBD system is inefficient and not optimized
end-to-end due to the two-stage processing. To address this
problem, recent solutions favor a joint detection and tracking
(JDT) paradigm that simultaneously performs detection and
tracking in a single forward-pass (Fig. 1 (b)).

The JDT methods, however, are confronted with two is-
sues: (i) Although in most JDT works [29, 45, 25, 50] the
backbone network is shared, detection is usually performed
standalone without exploring tracking cues. We argue that
detection is the cornerstone for a stable and consistent track-
let, and in turn tracking cues shall help detection, especially
in tough scenarios like partial occlusion and motion blur. (ii)
As studied by [9] and our experiment (Tab. 1b), common re-
ID tracking loss [45, 25, 32, 51] is not that compatible with
detection loss in jointly training a single backbone network,
which could even hurt detection performance to some extent.
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Figure 1. Comparison of different online MOT pipelines. Our
method follows the joint detection and tracking (/JDT) paradigm.
Different from most JDT methods, the proposed TraDeS tracker
deeply couples tracking and detection within an end-to-end and uni-
fied framework, where the motion clue from tracking is exploited
to enhance detection or segmentation (omitted in the figure).

The reason is that re-ID focuses on intra-class variance, but
detection aims to enlarge inter-class difference and minimize
intra-class variance.

In this paper, we propose a new online joint detection and
tracking model, coined as TraDeS (TRAck to DEtect and
Segment). In TraDeS, each point on the feature map repre-
sents either an object center or a background region, similar
as in CenterNet [64]. TraDeS addresses the above two is-
sues by tightly incorporating tracking into detection as well
as a dedicatedly designed re-ID learning scheme. Specifi-
cally, we propose a cost volume based association (CVA)
module and a motion-guided feature warper (MFW) module,
respectively. The CVA extracts point-wise re-ID embedding
features by the backbone to construct a cost volume that
stores matching similarities between the embedding pairs in
two frames. Then, we infer the tracking offsets from the cost
volume, which are the spatio-temporal displacements of all
the points, i.e., potential object centers, in two frames. The
tracking offsets together with the embeddings are utilized to
conduct a simple two-round long-term data association. Af-
terwards, the MFW takes the tracking offsets as motion cues
to propagate object features from the previous frames to the
current one. Finally, the propagated feature and the current
feature are aggregated to derive detection and segmentation.

In the CVA module, the cost volume is employed to su-



pervise the re-ID embedding, where different object classes
and background regions are implicitly taken into account.
This is being said, our re-ID objective involves the inter-class
variance. This way not only learns an effective embedding
as common re-ID loss [45, 25, 32, 51], but also is well com-
patible with the detection loss and does not hurt detection
performance as shown in Tab. 1b. Moreover, because the
tracking offset is predicted based on appearance embedding
similarities, it can match an object with very large motion
or in low frame rate as shown in Fig. 3, or even accurately
track objects in different datasets with unseen large motion
as shown in Fig. 4. Thus, the predicted tracking offset of an
object can serve as a robust motion clue to guide our feature
propagation in the MFW module. The occluded and blurred
objects in the current frame may be legible in early frames,
so the propagated features from previous frames may support
the current feature to recover potentially missed objects by
our MFW module.

In summary, we propose a novel online multi-object
tracker, TraDeS, that deeply integrates tracking cues to assist
detection in an end-to-end framework and in return benefits
tracking as shown in Fig. 1 (c). TraDeS is a general tracker,
which is readily extended to instance segmentation tracking
by adding a simple instance segmentation branch. Exten-
sive experiments are conducted on 4 datasets, i.e., MOT,
nuScenes, MOTS, and Youtube-VIS datasets, across 3 tasks
including 2D object tracking, 3D object tracking, and in-
stance segmentation tracking. TraDeS achieves state-of-the-
art performance with an efficient inference time as shown
in § 5.3. Additionally, thorough ablation studies are per-
formed to demonstrate the effectiveness of our approach as
shown in § 5.2.

2. Related Work

Tracking-by-Detection. MOT was dominated by the
tracking-by-detection (7BD) paradigm over the past
years [58, 0, 66, 52, 33, 5, 38, 48, 54]. Within this frame-
work, an off-the-shelf object detector [31, 16] is first applied
to generate detection boxes for each frame. Then, a separate
re-ID model [ 1, 49] is used to extract appearance features for
those detected boxes. To build tracklets, one simple solution
is to directly compute appearance and motion affinities with a
motion model, e.g., Kalman filter, and then solve data associ-
ation by a matching algorithm. Some other efforts [0, 46, 19]
formulate data association as a graph optimization problem
by treating each detection as a graph node. However, TBD
methods conduct detection and tracking separately, hence are
usually computationally expensive. Instead, our approach in-
tegrates tracking cues into detection and efficiently performs
detection and tracking in an end-to-end fashion.

Joint Detection and Tracking. Recently joint detection
and tracking (JDT) paradigm has raised increasing attention
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due to its efficient and unified framework. One common
way [63, 45, 25, 1, 62, 61] is to build a tracking-related
branch upon an object detector to predict either object track-
ing offsets or re-ID embeddings for data association. Alter-
natively, transformer is exploited to match tracklets [36, 26].
CTracker [29] constructs tracklets by chaining paired boxes
in every two frames. TubeTK [28] directly predicts a box
tube as a tracklet in an offline manner. Most JDT methods,
however, are confronted with two issues: First, detection
is still separately predicted without the help from tracking.
Second, the re-ID loss has a different objective from that
of detection loss in joint training. In contrast, our TraDeS
tracker addresses these two problems by tightly incorporat-
ing tracking cues into detection and designing a novel re-ID
embedding learning scheme.

Tracking-guided Video Object Detection. In video object
detection, a few attempts [15, 62] exploit tracking results to
reweight the detection scores generated by an initial detector.
Although these works strive to help detection by tracking,
they have two drawbacks: First, tracking is leveraged to help
detection only at the post-processing stage. Detections are
still predicted by a standalone object detector, so detection
and tracking are separately optimized. Thus, the final detec-
tion scores may heavily rely on the tracking quality. Second,
a hand-crafted reweighting scheme requires manual tune-up
for a specific detector and tracker. Our approach differs
from these post-processing methods because our detection is
learned conditioned on tracking results, without a complex
reweighting scheme. Therefore, detection tends to be robust
w.r.t. tracking quality.

Cost Volume. The cost volume technique has been success-
fully applied in depth estimation [ 1, 55, 18] and optical
flow estimation [35, 10, 53] for associating pixels between
two frames. This motivates us to extend cost volume to a
multi-object tracker, which will be demonstrated to be ef-
fective in learning re-ID embeddings and inferring tracking
offsets in this paper. Our approach may inspire future works
using cost volume in tracking or re-identification.

3. Preliminaries

The proposed TraDeS is built upon the point-based ob-
ject detector CenterNet [64]. CenterNet takes an image I €
RZXWx3 ag input and produces the base feature f = ¢(I)
via the backbone network ¢(-), where f € RHr*Wrx64)
Hp = %, and Wg - A set of head convolutional
branches are then constructed on f to yield a class-wise
center heatmap P € RH#*WrxNeis and task-specific pre-
diction maps, such as 2D object size map and 3D object size
map, etc. N, is the number of classes. CenterNet detects
objects by their center points (peaks on P) and the corre-
sponding task-specific predictions from the peak positions.

Similar to [63], we build a baseline tracker by adding
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Figure 2. Overview of TraDeS. TraDeS may propagate features from multiple previous frames for object feature enhancement (i.e., 7' > 1),

which is not shown in the above figure for simplicity.

an extra head branch on CenterNet that predicts a tracking
offset map OF € RHF*Wrx2 for data association. OF
computes spatio-temporal displacements from all points at
time ¢ to the corresponding points at a previous time ¢ — 7.

4. TraDeS Tracker

Our Idea: Most previous joint detection and tracking meth-
ods perform a standalone detection without explicit input
from tracking. In contrast, our aim is to integrate tracking
cues into detection end-to-end, so as to improve detection for
tough scenarios, which in return benefit tracking. To this end,
we propose a Cost Volume based Association (CVA: § 4.1)
module for learning re-ID embeddings and deriving object
motions, and a Motion-guided Feature Warper (MFW: § 4.2)
module for leveraging tracking cues from the CVA to propa-
gate and enhance object features.

4.1. Cost Volume based Association

Cost Volume: Given two base features f* and f1~7 from I'*
and I''~7, we extract their re-ID embedding features by the
embedding network o (-), i.e., et = o(ft) € RHEFxWrx128
where o (+) consists of three convolution layers. We utilize
the extracted embeddings to construct a cost volume which
stores dense matching similarities between one point and its
corresponding point in two frames. To efficiently compute
the cost volume, we first downsample the embeddings by a
factor of 2 and obtain e/ € RHcxWex128 yhere Hpy = %
and W¢ = £ Let us denote by C € RffexWexHexWe
the 4-dimensional cost volume for I* and I'~", which is
computed by a single matrix multiplication of e’* and e

Specifically, each element of C' is calculated as:

it t—7T
Cijkt = € iCr1 > (1

It—r

where C} ; 1.1 represents the embedding similarity between
point (4, ) at time ¢ and point (k, 1) at time ¢t — 7. Here, a
point refers to an entry on the feature map f or e’.

Tracking Offset: Based on the cost volume C', we calculate
a tracking offset matrix O € RHcxWex2 which stores the
spatio-temporal displacements for all points at time ¢ to their
corresponding points at time ¢ — 7. For illustration, we show
the estimation procedure for O; ; € R? below.

As shown in Fig. 2, for an object z centered at point
(4, 7) at time ¢, we can fetch from C its corresponding two-
dimensional cost volume map C; ; € RHcxWe C; ; stores
the matching similarities among object = and all points at
time ¢t — 7. Using C;;, O;; € R? is estimated by two
steps: Step (i) C; ; is first max pooled by Ho x 1 and
1 x We kernels, respectively, and then normalized by a
softmax function', which results in CF; € [0,1]**We and
Cll e [0,1)fex!. ¥ and CF consists of the likelihoods
that object x appears on specified horizontal and vertical po-
sitions at time ¢ — T, respectively. For example, CZV‘; ; is the
likelihood that object 2 appears at the position (x, 1) at time
t — 7. Step (ii) Since Czwj/ and Cf; have provided the likeli-
hoods that object x appears on specified positions at ¢t — 7.
To obtain the final offsets, we predefine two offset templates
for horizontal and vertical directions, respectively, indicating
the actual offset values when x appears on those positions.
Let M; ; € RV>We and V; ; € RHe*! denote the horizon-
tal and vertical offset templates for object x, respectively,
which are computed by:

Mi,j,l = (l —j) X 8
Vi =(k—1) xs

1<I<W¢e

2
l<k<H.' 2

I'We add a temperature of 5 into the softmax, such that the softmax
output values are more discriminative.
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where s is the feature stride of €’ w.r.t. the input image,
which is 8 in our case. M; ;; refers to the horizontal offset
when object x appears at the position (x, 1) at time ¢ — 7.
The final tracking offset can be inferred by the dot product
between the likelihoods and actual offset values as:

O, =[ClTVv,;,Ccl M, (3)
Because O is of Ho x W, we upsample it with a factor of

2 and obtain O¢ € RHF*Wr X2 that serves as motion cues
for the MFW and is used for our data association.

Training: Since o(-) is the only learnable part in the CVA
module, the training objective of CVA is to learn an effective
re-ID embedding e. To supervise e, we enforce the supervi-
sion on the cost volume rather than directly on e like other
common re-ID losses. Let us first denote Y;;,; = 1 when an
object at location (7, j) at current time ¢ appears at location
(k,1) at previous time ¢ — 7; otherwise Y;;5; = 0. Then, the
training loss for CVA is calculated by the logistic regression
in the form of the focal loss [22] as:

1 a1 IOg(sz;l) lfY;kZ =1
Leva= ﬁ Z +az log(CH s k) ’ J
igkl “PIRE il 0 otherwise
4)

where oy = (1 - C}"

)% and oy = (1 C’fik) . B1is the
focal loss hyper-parameter. Since C V‘; ; and C .| are com-
puted by softmax, they involve the embeddlng s1m11ar1tles
not only between points (, j) and (k, [) but also among point
(7, 4) and all other points in the previous frame. This is being
said, while C}V, ;. and CH ;% being optimized to approach 1, it
enforces an object to not only approach itself in the previous

frame, but also repel other objects and background regions.

The CVA Characteristics: (i) Common re-ID loss only
emphasizes intra-class variance, which may degrade detec-
tion performance. In contrast, our Loy 4 in Eq. 4 not only
emphasizes intra-class variance but also forces inter-class
difference when learning embedding. We find such a treat-
ment is more compatible with detection loss and learns ef-
fective embedding without hurting detection as evidenced in
Tab. 1b. (ii) Because the tracking offset is predicted based
on appearance embedding similarities, it can track objects
under a wide range of motion and low frame rate as shown in
Fig. 3 and Fig. 6, or even accurately track objects in different
datasets with unseen large motion in training set as shown
in Fig. 4. The predicted tracking offset can therefore serve
as a robust motion cue to guide our feature propagation as
in Tab. Ic. (iii) Compared to [45, 25] and CenterTrack [63]
that only predict either embedding or tracking offset for data
association, the CVA produces both embedding and tracking
offset that are used for long-term data association (§ 4.3) and
serve as motion cues for the MFW (§ 4.2).

4.2. Motion-guided Feature Warper

The MFW aims to take the predicted tracking offset O
as motion clues to warp and propagate f'~7 to the current
time so as to compensate and enhance f*. To achieve this
goal, we perform an efficient temporal propagation via a
single deformable convolution [12], which has been used
for temporally aligning features in previous works [4, 3, 13].
Then, we enhance f' by aggregating the propagated feature.

Temporal Propagation: To propagate feature maps, the
deformable convolution (DCN) takes a spatio-temporal off-
set map and a previous feature as input and outputs a
propagated feature, in which we estimate the input offset
based on the O from the CVA module. Let us denote
OP € RErxWrx2K? g5 the input two-directional offset for
DCN, where K = 3 is the kernel width or height of DCN. To
generate O, we pass O through a 3 x 3 convolution 7(-).
We optionally incorporate the residual feature of f* — f=7
as the input of y(-) to provide more motion clues. Since
our detection and segmentation are mainly based on object
center features, instead of directly warping f!~7, we prop-
agate a center attentive feature f'=7 € Rr X Wi x64 from
previous time. f*~7 is computed as:

f;—‘r:f; TOPt T

agn >’

q=1,2,..,64, (5)

where ¢ is the channel index, o is the Hadamard product, and
Pl.7 € RFr*Wrxl s the class agnostic center heatmap
fetched from the P*~7 (as defined in § 3). Then, given O
and f'~7, the propagated feature is computed via a DCN as

j?t—q— — DCN(OD, ft—-r) c RHFxWrpx64

Feature Enhancement: When occlusion or motion blur
occurs, objects could be missed by the detector. We propose
to enhance f! by aggregating the propagated feature ft*T,
on which the occluded and blurred objects may be visually
legible. We denote the enhanced feature as ft~7, which is
calculated by weighted summation as:

T
fl=wlofl+> w'~ .,64, (6)

T=1

TofiT, =12

where w' € RH FxWrx1 is the adaptive weight at time ¢
and ZT o Wi -7 = 1. T is the number of previous features
used for aggreganon. Similar to [24], w is predicted by
two convolution layers followed by softmax function. We
find that in experiment the weighted summation is slightly
better than average summation. The enhanced feature f?* is
then fed into the head networks to produce detection boxes
and masks in the current frame. This can potentially recover
missed objects and reduce false negatives, enabling complete
tracklets and higher MOTA and IDF1 as in Tab. la.

4.3. Tracklet Generation

The overall architecture of TraDeS is shown in Fig. 2.
Based on the enhanced feature f*, TraDeS produces 2D



and 3D boxes and instance masks by three different head
networks. Afterwards, the generated detection and masks
are connected to previous tracklets by our data association.

Head Networks: Each head network consists of several
light-weight convolutions for yielding task-specific predic-
tions. For 2D and 3D detection, we utilize the same head
networks as in CenterNet [64]. For instance segmentation,
we refer to the head network in CondInst [39], which is an
instance segmentation method also based on center points.

Data Association: Given an enhanced detection or mask
d centered at location (4, j), we perform a two-round data
association as: DA-Round (i) We first associate it with the
closest unmatched tracklet at time ¢ — 1 within the area cen-
tered at (4,7)+ ij with radius r, where 7 is the geometrical
average of width and height of the detected box. Here, ij
only indicates the object tracking offsets between I and
I'~'. DA-Round (ii) If d does not match any targets in the
first round, we compute cosine similarities of its embedding
eﬁ_’ ; with all unmatched or history tracklet embeddings. d
will be assigned to a tracklet if their similarity is the highest
and larger than a threshold, e.g., 0.3. DA-Round (ii) is capa-
ble of long-term associating. In case d fails to associate with
any tacklets in the above two rounds, d starts a new tracklet.

TraDeS Loss: The overall loss function of TraDeS is defined
as L = Lova + Lget + Lask, where Lge; is the 2D and
3D detection losses as in [64] and L,,4s5 1S the instance
segmentation loss as in [39].

5. Experiments

5.1. Datasets and Implementation Details

MOT: We conduct 2D object tracking experiments on the
MOT16 and MOT17 datasets [27], which have the same 7
training sequences and 7 test sequences but slightly different
annotations. Frames are labeled at 25-30 FPS. For abla-
tion study, we split the MOT17 training sequences into two
halves and use one for training and the other for validation as
in [63]. Metrics: We use common 2D MOT evaluation met-
rics [2]: Multiple-Object Tracking Accuracy (MOTA), ID
F1 Score (IDF1), the number of False Negatives (FN), False
Positives (FP), times a trajectory is Fragmented (Frag), Iden-
tity Switches (IDS), and the percentage of Mostly Tracked
Trajectories (MT) and Mostly Lost Trajectories (ML).

nuScenes: We conduct 3D object tracking experiments on
the newly released nuScenes [7], containing 7 classes, 700
training sequences, 150 validation sequences, and 150 test
sequences. Videos are captured by 6 cameras of a moving
car in a panoramic view and labeled at 2 FPS. Our TraDeS
is a monocular tracker. Metrics: nuScenes designs more
robust metrics, AMOTA and AMOTP, which are computed
by weighted averages of MOTA and MOTP across score

thresholds from O to 1. For fair comparison, we also report
IDS 4 that averages IDS in the same way.

MOTS: MOTS [41], an instance segmentation tracking
dataset, is derived from the MOT dataset. MOTS has 4 train-
ing sequences and 4 test sequences. Metrics: The evaluation
metrics are similar to those on MOT, which however are
based on masks. Moreover, the MOTS adopts a Mask-based
Soft Multi-Object Tracking Accuracy (sSMOTSA).

YouTube-VIS: We also conduct instance segmentation track-
ing on YouTube-VIS [56], which contains 2,883 videos la-
beled at 6 FPS, 131K instance masks, and 40 object classes.
Metrics: The YouTube-VIS adopts a mask tracklets based
average precision (AP) for evaluation.

Compared to MOT and MOTS, nuScenes and YouTube-
VIS are of low frame rate and large motion, because only
key frames are labeled and cameras are moving. In our
experiments, only labeled frames are used as input.

Implementation Details: We adopt the same experimental
settings as CenterTrack [63], such as backbone, image sizes,
pretraining, score thresholds, etc. Specifically, we adopt the
DLA-34 [60] as the backbone network ¢(-). Our method is
optimized with 32 batches and learning rate (Ir) 1.25¢ — 4
dropping by a factor of 10. For MOT and MOTS, TraDeS
is trained for 70 epochs where Ir drops at epoch 60 with
image size of 544 x 960. For nuScenes, TraDeS is trained
for 35 epochs where Ir drops at epoch 30 with image size of
448 x 800. For YouTube-VIS, TraDeS is first pretrained on
COCO instance segmentation [23] following the static image
training scheme in [63] and then finetuned on YouTube-VIS
for 16 epochs where Ir drops at epoch 9. Image size is of
352 x 640. We test the runtime on a 2080Ti GPU. In Eq. 6,
we set ' = 2 by default for MOT and MOTS. We set 1" = 1
for nuScenes and YouTube-VIS due to their low frame rate
characteristic mentioned above. In training, we randomly
select T" frames out of nearby R, frames, where R; is 10
for MOT and MOTS and 5 for nuScenes and YouTube-VIS.
During inference, only previous 7' consecutive frames are
used. Ablation experiments are conducted on the MOT17
dataset. In ablations, all variants without the CVA module
perform the DA-Round (i) by predicting a tracking offset
O?F as in the baseline tracker (§ 3).

5.2. Ablation Studies

Effectiveness of TraDeS: As shown in Tab. 1a, we compare
our proposed CVA (§ 4.1), MFW (§ 4.2), and TraDeS (§ 4)
with our baseline tracker (§ 3) and CenterTrack [63]. CVA:
Compared to the baseline, the CVA achieves better tracking
by reducing 60% IDS and improving 7.2 IDF1, validating
the effect of our tracking offset, re-ID embedding, and the
two-round data association. MFW: For ablation, we directly
add the MFW to the baseline tracker. Since the tracking off-
set O¢ is unavailable in the baseline, we only use f — ft—~



Scheme MOTA1 IDF1{+ IDS), FNJ FP| Scheme MOTA{ IDF1+ IDS| FEN| FP|

CenterTrack[63] | 66.1 64.2 528  284% 4.5% Baseline 64.8 59.5 1055 31.0% 2.3%

Baseline 648 595 1055 31.0% 23% w/o DA-Round (ii) +CE embedding | 63.7 59.6 1099 32.1% 2.2%

Baseline+CVA 66.5  66.7 415  30.6% 2.2% +CVA 65.5 60.9 936  30.6% 2.2%

Baseline+tMFW | 66.3  65.7 606 29.5% 3.0% ... +CE embedding | 64.5 64.3 671  321% 22%
w/ DA-Round (ii)

TraDeS 68.2 71.7 285 27.8% 3.5% +CVA 66.5 66.7 415 30.6% 2.2%

(a) Effectiveness of each proposed module: we evaluate the
proposed CVA (§ 4.1), MFW (§ 4.2), and overall TraDeS (§ 4).
“Baseline+CVA+MFW” is represented by “TraDeS”.

(b) CVA vs. Common embedding: Common embedding 10ss L¢ gempeq may down-
grade detection performance, while our CVA learns an effective embedding without
hurting detection. As “Baseline” does not have embedding, it only performs DA-Round(i).

Scheme MOTA? IDFI+ IDS, FENJ FP| Scheme | MOTA1 IDFI1 IDS, FN| FP| Time(ms)]

Baseline+CVA 66.5 667 415 30.6% 2.2% T=1] 6.8 690 350 282% 34% 46
Trabesw § — 4 Comy |61 688 273 299% 25% T=2| 682 7L7 285 218% 3.5% 57

Fi—ft7&0OC| 682 717 285 218% 3.5% T=3| 675 699 283 292% 2.8% 70

(c) Motion cues: In MFW, we evaluate different motion cues as the input of ~(+)
to predict the DCN input offset O . Ablations are based on baseline with CVA.

(d) Number of previous features: We evaluate the MFW when
aggregating different numbers of previous features.

Table 1. Ablation studies on the MOT17 validation set. MOTA and IDF1 reflect the comprehensive tracking performance, while FN and FP
reflect the detection performance. Lower FN means more missed objects are recovered. | denotes lower is better. 1 denotes higher is better.
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Figure 3. CVA workflow visualization: the cost volume map C' and tracking offset O under low frame rate (left) and large motion (right).

as motion cues to predict the DCN offset O”. Compared to
the baseline, the MFW achieves better detection by reducing
1.5% FN, i.e., recovering more missed objects, though FP is
slightly increased. Moreover, we observe that the MFW also
reduces 43% IDS and improves 6.2 IDF1. It validates that
detection is the cornerstone for tracking performance, where
improved detection can yield more stable and consistent
tracklets. TraDeS: With the help of CVA, TraDeS reduces
IDS from 606 to 285. Moreover, in TraDeS, the robust track-
ing offsets O from CVA guides the feature propagation
in MFW, which significantly decreases FN from 29.5% to
27.8%. Better IDS and missed object recovery (JFN) to-
gether improve our comprehensive tracking performance,
achieving 68.2 MOTA and 71.7 IDF1. TraDeS also achieves
better results than the recent JDT method CenterTrack [63].

Effectiveness of the CVA Module: We study the two major
characteristics of the proposed CVA module as mentioned in
§ 4.1. (i): First, we add the re-ID embedding network o (-)
into the baseline tracker, which is supervised by a common
re-ID loss, e.g., the cross-entropy 10ss Lo gembed as in [45,

]. We denote the learned embedding as CE embedding,
which is used to perform our two-round data association.
As shown in Tab. 1b, with DA-Round (ii), CE embedding
helps baseline improve IDF1 and reduce IDS, as long-term
data association is enabled by using the re-ID embedding
to match history tracklets. However, we observe that CE
embedding cannot improve MOTA as detection performance
is degraded (+1.1% FN). Next, we still add o(-) into the
baseline tracker, which however is supervised by our CVA

module. Tab. 1b shows that our CVA module not only learns
an effective re-ID embedding as CE embedding but also
slightly improves detection performance, which clearly leads
to a higher MOTA. We argue that this is because common re-
ID loss only emphasizes intra-class variance, which may not
be compatible with detection loss in joint training as indicted
in [9]. In contrast, our proposed Loy 4 in Eq. 4 supervises
the re-ID embedding via the cost volume and considers both
intra-class and inter-class difference. (if): We visualize the
predicted cost volume map C and tracking offset O in
Fig. 3. The CVA accurately predicts the tracking offset for an
object under low frame rate or large motion. Moreover, O¢
even accurately tracks objects in a new dataset with unseen
large motion in training as shown in Fig. 4. Visualization of
O€ on more samples are shown in Fig. 6. These examples
indicate the CVA is able to predict tracking offsets for objects
with a wide range of motion and provide robust motion cues.

Effectiveness of the MFW Module: DCN: In Tab. 1c, we
use different motion clues to predict the DCN input offset
OP . We find that the tracking offset O is the key to reduce
FN and recover more missed objects. It validates that the
proposed O€ is a robust tracking cue for guiding feature
propagation and assisting detection. Moreover, we visualize
the predicted OP in Fig. 5. The DCN successfully samples
the center features at the previous frames even if the car in
the middle image has dramatic displacements. Number of
Previous Features: As in Eq. 6, the MFW aggregates the
current feature with 1" previous features. We evaluate the
MFW with different 7" as shown in Tab. 1d, and find that we



MOTI16 Test Set

Method | Publication Year | Joint [ MOTAT IDFIf MTt ML| FP| FN| Fragl IDS| Time(ms)|
SORT[ 510" ICIP 2016 598 538 254% 227% 8,698 63245 1,835 1423 174D
MCMOT-HDM][2 11" | ECCV 2016 624  51.6 31.5% 242% 90855 57,257 1,318 1394 274D
POI[59]9"ine ECCVW 2016 66.1 651 340% 20.8% 5,061 55914 3,093 805  101+D
DeepSORT[49]0"ine ICIP 2017 614 622 328% 182% 12,852 56,668 2,008 781 25+D
VMaxx[42]0nine ICIP 2018 62.6 492 327% 21.1% 10,604 56,182 1,534 1389  154+D
RAN[ 1 4]0mine WACV 2018 63.0 638 399% 221% 13,663 53248 1251 482  625+D
TAP[65]9"ine ICPR 2018 648 735 385% 21.6% 12,980 50,635 1,048 571 55+D
TubeTK[28]90ne CVPR 2020| v/ | 640 594 335% 194 % 10962 53,626 1,366 1,117 1000
JDE[45]0ine ECCV  2020| v/ 644 558 354% 20.0% - - - 1,544 45
CTracker?"me ECCV  2020| v/ | 67.6 572 329% 23.1% 8934 48305 3,112 1,897 29
TraDeS (Ours)?" CVPR 2021| v/ | 701 647 373% 200% 8,091 45210 1,575 1,144 57
MOTI17 Test Set
CenterTrack*[63]9""e ECCV  2020| v/ | 678 647 346% 24.6% 18498 160332 6,102 3,039 57
TraDeS* (Ours)?"n CVPR 2021| v/ | 689 672 350% 227% 19,701 152,622 6,033 3,147 57
DAN[37]0"ne TPAMI 2019 524 495 214% 30.7% 25423 234,592 14,797 8431 159+D
Tracktor+CTdet[ 117" ICCV 2019 544 561 257% 29.8% 44,109 210,774 - 2,574 -
TubeTK[28]9Mine CVPR 2020| v 63.0 586 312% 19.9% 27,060 177,483 5,727 4,137 333
CTracker[29]9im ECCV  2020| v/ | 666 574 322% 242% 22,284 160491 9,114 5,529 29
CenterTrack[63]"ne ECCV  2020| v/ | 673 599 349% 24.8% 23,031 158,676 - 2,898 57
TraDeS (Ours)?" CVPR 2021| v/ | 691 639 364% 21.5% 20,892 150,060 4,833 3,555 57

Table 2. Results of 2D object tracking on the MOT test set under the private detection protocol. “Joint” indicates joint detection and
tracking in a single model, i.e., no external detections. “x” indicates that Track Re-birth [63] is used. The top two results in the “Joint”
manner without Track Re-birth are highlighted in red and blue, respectively. +D indicates the additional detection time [31].

t — 1. P P SVLER ¢ — 1K) t N YAl ¢ N Yds

motions than MOT. TraDeS successfully tracks objects with unseen large motion in training dataset, but baseline and CenterTrack fail.

1r S r B It

and MOT17 test sets. Our TraDeS tracker outperforms the
second best tracker by 2.5 MOTA and /.8 MOTA on MOT16
and MOT17, respectively, running at /5 FPS. Compared to
joint detection and tracking algorithms, we achieve the best
results on most metrics, e.g., MOTA, IDF1, MT, FN, etc.

nuScenes: As shown in Tab. 3, we compare TraDeS with the
state-of-the-art monocular 3D trackers on nuScenes. There
exists extreme class imbalance in nuScenes dataset, e.g., car
DCN Sampling Location and pedestrian has over 82% data. Since class imbalance is
not our focus, we mainly evaluate on major classes: car and
pedestrian. Tab. 3 shows that the TraDeS tracker outperforms
other monocular trackers by a large margin on all metrics.

Figure 5. Visualization of DCN input offset O”. The DCN kernel
at is translated by ==> and samples the previous feature at

For clear visualization, we only show the sampling center of the
DCN kernel as depicted by ¢ in I*~7. The previous image is

MOTS: As shown in Tab. 4, we compare TraDeS with the
highlighted by the previous class agnostic heatmap Pjg_nT . P

recent instance segmentation tracker TrackR-CNN on the
MOTS test set. TrackR-CNN is based on Mask R-CNN [17]

achieve the best speed-accuracy trade-off when 7' = 2.

5.3. Benchmark Evaluations

MOT: As shown in Tab. 2, we compare the proposed TraDeS
tracker with the state-of-the-art 2D trackers on the MOT16

and also temporally enhances object features. The TraDeS
tracker outperforms TrackR-CNN by a large margin in terms
of both accuracy and speed.

YouTube-VIS: As shown in Tab. 5, TraDeS notably im-
proves AP by 6.2 over the baseline. TraDeS achieves compet-
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Classes Car (57% ss31761s) Pedestrian (25% 2542361 All (100% 101,8976Ts )
nuScenes Val set AMOTAT AMOTP] IDS4 | | AMOTAT AMOTP] IDS4 || AMOTAT AMOTP| IDS4 | Time
Our Baseline 11.1 1.39 6,985 0.0 1.73 4,336 4.3 1.65 1,792  37ms
CenterTrack[63] 26.1 1.11 3,217 59 1.50 1,970 6.8 1.54 813  45ms
TraDeS (Ours) 29.6 0.98 3,035 10.6 1.42 1,434 11.8 1.48 699  39ms
Classes Car (57% es51s6Ts ) Pedestrian (28 % 34,01067s ) All (100% 119565675 )
nuScenes Test set AMOTAT AMOTP| IDSa || AMOTAT AMOTP| IDS4 | | AMOTAT AMOTP| IDS4 | Time
Our Baseline 6.2 1.47 9,450 0.0 1.70 5,191 1.0 1.66 2,252 37ms
Mapillary[34]+AB3D[47] 12.5 1.61 - 0.0 1.87 - 1.8 1.80 - -
PointPillars[20]+AB3D[47] 9.4 1.40 - 39 1.68 - 2.9 1.70 - -
CenterTrack[63] 20.2 1.19 - 3.0 1.50 - 4.6 1.54 - 45ms
TraDeS (Ours) 23.2 1.07 4,293 9.9 1.38 1,979 5.9 1.49 964  39ms

Table 3. Results of 3D object tracking on the nuScenes dataset. We compare with the state-of-the-art monocular 3D tracking methods.
‘We mainly assess the major classes: car and pedestrian. We also list “All” for reference, which is the average among all the 7 classes.

Method \Publication Year \sMOTSA 1 IDF1 + MOTSA 1 MOTSP + MODSA + MTt ML| FP| FNJ| IDS| Time
TrackR-CNN [41]| CVPR 2019| 40.6 424 55.2 76.1 56.9  38.7% 21.6% 1,261 12,641 567 500ms
TraDeS (Ours) CVPR 2021 50.8 58.7 65.5 79.5 67.0 49.4% 18.3% 1,474 9,169 492 87ms
] Table 4. Results of instance segmentation tracking on the MOTS test set.
VI Tme P A g L _ . ; ne wlordnutts one ty
:
=

3D Tracking 2D Tracking Task

Mask Tracking

Figure 6. Visualization that TraDeS tracks objects on three tasks. Red arrow is the tracking offset O w.r.1. the previous frame I**.

Method | Publication | AP AP5y APr5 6. Conclusion
OSMN(mask propagation)[57] | CVPR’18 |23.4 36.5 25.7 . L .
FEELVOS[40] CVPR’19 269 420 297 This work presents a novel online joint detection and
OSMN(track-by-detect)[57] | CVPR'18 |27.5 45.1 29.1 tracking model, TraDeS, focusing on exploiting tracking
MaskTrack R-CNN[356] ICCV’19 303 51.1 32.6 cues to help detection and in return benefit tracking. TraDeS
SipMask[8] ECCV’20 |32.5 53.0 333 is equipped with two proposed modules, CVA and MFW.
Our Baseline 264 432 268 The CVA learns a dedicatedly designed re-ID embedding
TraDeS (Ours) CVPR’21 [32.6 52.6 32.8 and models object motions via a 4d cost volume. While the
Table 5. Results of instance segmentation tracking on the MFW takes the motions from CVA as the cues to propagate
YouTube-VIS validation set. previous object features to enhance the current detection or

segmentation. Exhaustive experiments and ablations on 2D

tracking, 3D tracking and instance segmentation tracking
itive performance compared to other state-of-the-art instance validate both effectiveness and superiority of our approach.
segmentation trackers. We observe that TraDeS outperforms
the baseline tracker by a large margin on both nuScenes and
YouTube-VIS. We argue that this is because the baseline can-
not well predict the tracking offset O with a single image
in case these datasets are of low frame rate and large motion.
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