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Abstract

Reinforcement learning (RL) requires access to a reward function that incentivizes
the right behavior, but these are notoriously hard to specify for complex tasks.
Preference-based RL provides an alternative: learning policies using a teacher’s
preferences without pre-defined rewards, thus overcoming concerns associated with
reward engineering. However, it is difficult to quantify the progress in preference-
based RL due to the lack of a commonly adopted benchmark. In this paper, we
introduce B-Pref: a benchmark specially designed for preference-based RL. A
key challenge with such a benchmark is providing the ability to evaluate candi-
date algorithms quickly, which makes relying on real human input for evaluation
prohibitive. At the same time, simulating human input as giving perfect prefer-
ences for the ground truth reward function is unrealistic. B-Pref alleviates this
by simulating teachers with a wide array of irrationalities, and proposes metrics
not solely for performance but also for robustness to these potential irrationali-
ties. We showcase the utility of B-Pref by using it to analyze algorithmic design
choices, such as selecting informative queries, for state-of-the-art preference-
based RL algorithms. We hope that B-Pref can serve as a common starting point
to study preference-based RL more systematically. Source code is available at
https://github.com/rll-research/B-Pref.

1 Introduction

Deep reinforcement learning (RL) has emerged as a powerful method to solve a variety of sequential
decision-making problems, including board games [58, 59], video games [10, 44, 68], autonomous
control [9, 52], and robotic manipulation [5, 32, 35, 36]. However, scaling RL to many applications
is difficult due to the challenges associated with defining a suitable reward function, which often
requires substantial human effort. Specifying the reward function becomes harder as the tasks we
want the agent to achieve become more complex (e.g., cooking or self-driving). In addition, RL agents
are prone to exploit reward functions by discovering ways to achieve high returns in ways the reward
designer did not expect nor intend. It is important to consider this phenomenon of reward exploitation,
or reward hacking, since it may lead to unintended but dangerous consequences [28]. Further, there
is nuance in how we might want agents to behave, such as obeying social norms that are difficult to
account for and communicate effectively through an engineered reward function [4, 57, 67].

Preference-based RL [19, 31, 39] provides an alternative: a (human) teacher provides preferences
between the two agent behaviors, and the agent then uses this feedback to learn desired behaviors
(see Figure 1). This framework enables us to optimize the agent using RL without hand-engineered
rewards by learning a reward function, which is consistent with the observed preferences [11, 12, 50].
Because a teacher can interactively guide agents according to their progress, preference-based RL
has shown promising results (e.g., solving a range of RL benchmarks [19, 31], teaching novel
behaviors [61, 71], and mitigating the effects of reward exploitation [39]).
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Figure 1: Illustration of preference-based RL. Instead of assuming that the environment provides
a (hand-engineered) reward, a teacher provides preferences between the agent’s behaviors, and the
agent uses this feedback in order to learn the desired behavior.

Despite significant progress on RL benchmarks designed for various purposes (e.g., offline RL [24,
26], generalization [20, 21], meta RL [76], and safe RL [48]), existing benchmarks are not tailored
towards preference-based RL. The lack of a standard evaluation benchmark makes it hard to quantify
scientific progress. Indeed, without consistent evaluation, it is not easy to understand the effects of
algorithmic and design decisions or compare them across papers.

In this paper, we introduce B-Pref: a benchmark for preference-based RL consisting of various loco-
motion and robotic manipulation tasks from DeepMind Control Suite [65, 66] and Meta-world [76].
While utilizing real human input is ideal, this is prohibitive because it is hard to evaluate candidate
algorithms quickly using real human input. Prior works [19, 31, 39] address this issue by simulating
human input as giving perfect preferences with respect to an underlying ground truth reward function.
However, evaluation on such ideal teachers is unrealistic because actual humans can exhibit various
irrationalities [18] in decision making. So, in our benchmark, we design simulated human teachers
with a wide array of irrationalities and propose evaluation metrics not solely for performance but also
for robustness to these potential irrationalities.

To serve as a reference, we benchmark state-of-the-art preference-based RL algorithms [19, 39]
in B-Pref and showcase the utility of B-Pref by using it to analyze algorithmic design choices for
preference-based RL. Although existing methods provide fairly efficient performance on perfectly
rational teachers, the poor performance on more realistic, irrational teachers calls for new algorithms
to be developed.

The benchmark and reference implementations are available at https://github.com/
rll-research/B-Pref. We believe that systematic evaluation and comparison will not only
further our understanding of the strengths of existing algorithms, but also reveal their limitations and
suggest directions for future research.

2 Preliminaries

We consider an agent interacting with an environment in discrete time [63]. At each timestep t, the
agent receives a state st from the environment and chooses an action at based on its policy π.

In traditional reinforcement learning, the environment also returns a reward r(st,at) and the goal
of agent is to maximize the discounted sum of rewards. However, for many complex domains and
tasks, it is difficult to construct a suitable reward function. We consider the preference-based RL
framework, where a (human) teacher provides preferences between the agent’s behaviors and the
agent uses this feedback to perform the task [19, 31, 39, 41].

Formally, a segment σ is a sequence of observations and actions {(s1,a1), ..., (sH ,aH)}. Given a
pair of segments (σ0, σ1), a teacher indicates which segment is preferred, i.e., y = (0, 1) or (1, 0),
that the two segments are equally preferred y = (0.5, 0.5), or that two segments are incomparable,
i.e., discarding the query. The goal of preference-based RL is to train an agent to perform behaviors
desirable to a human teacher using as few queries as possible.
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Algorithm 1 SimTeacher: Simulated human teachers
Require: Discount factor γ, rationality constant β, probability of making a mistake ε
Require: Skip threshold δskip, equal threshold δequal
Require: Pair of segments σ0, σ1

1: if maxi∈{0,1}
∑
t r
(
sit,a

i
t

)
< δskip then // SKIPPING QUERY

2: y ← ∅
3: else if

∣∣∑
t r
(
s1t ,a

1
t

)
−
∑
t r
(
s0t ,a

0
t

) ∣∣ < δequal then // EQUALLY PREFERABLE
4: y ← (0.5, 0.5)
5: else if σ0 � σ1 ∼ P [σ0 � σ1;β, γ] then // SAMPLING PREFERENCES FROM (1)
6: y ← (1, 0) with probability of 1− ε
7: y ← (0, 1) otherwise // MAKING A MISTAKE
8: else
9: y ← (0, 1) with probability of 1− ε

10: y ← (1, 0) otherwise // MAKING A MISTAKE
11: end if
12: return y

3 B-Pref: Benchmarks environments for preference-based RL

3.1 Design factors

While ideally we would evaluate algorithms’ real-world efficacy using real human feedback, designing
a standardized and broadly available benchmark becomes challenging because we do not have ground
truth access to the human’s reward function. Instead, we focus on solving a range of existing RL
tasks (see Section 3.4) using a simulated human, whose preferences are based on a ground truth
reward function. Because simulated human preferences are immediately generated by the ground
truth reward, we are able to evaluate the agent quantitatively by measuring the true average return
and do more rapid experiments. A major challenge with simulating human input is that real humans
are not perfectly rational and will not provide perfect preferences. To alleviate this challenge, we
propose to simulate human input using a wide array of irrationalities (see Section 3.2), and measure
an algorithm’s robustness in handling such input (see Section 3.3).

3.2 Simulated human teachers

We start from a (perfectly rational) deterministic teacher, which generates preferences as follows:

y =

{
(1, 0) If

∑H
t=1 r(s

0
t ,a

0
t ) >

∑H
t=1 r(s

1
t ,a

1
t )

(0, 1) otherwise,

where H > 0 is a length of segment σ and r is the ground truth reward. We remark that prior
works [19, 31, 39] evaluated their methods using this ideal teacher. However, evaluating the perfor-
mance of preference-based RL only using the ideal teacher is unrealistic because there are many
possible irrationalities [17, 18] affecting a teacher’s preferences (and expression of preferences) in
different ways.

To design more realistic models of human teachers, we consider a common stochastic model [11, 19,
50] and systematically manipulate its terms and operators (see Algorithm 1):

Stochastic preference model. Because preferences from the human can be noisy, we generate
preferences using a stochastic model defined as follows (Line 5):

P [σi � σj ;β, γ] =
exp

(
β
∑H
t=1 γ

H−tr(sit,a
i
t)
)

exp
(
β
∑H
t=1 γ

H−tr(sit,a
i
t)
)

+ exp
(
β
∑H
t=1 γ

H−tr(sjt ,a
j
t )
) , (1)

where γ ∈ (0, 1] is a discount factor to model myopic behavior, β is a rationality constant, and
σi � σj denotes the event that segment i is preferable to segment j. This follows the Bradley-Terry
model [13], which can be interpreted as assuming the probability of preferring a segment depends
exponentially on the sum over the segment of an underlying reward. Note that this teacher becomes a
perfectly rational and deterministic as β →∞, whereas β = 0 produces uniformly random choices.
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Myopic behavior. Humans are sometimes myopic (short-sighted), so a human teacher may remember
and focus more on the behavior at the end of the clip they watched, for example. We model
myopic behavior by introducing a weighted sum of rewards with a discount factor γ in (1), i.e.,∑H
t=1 γ

H−tr(sit,a
i
t), so that our simulated teacher places more weight on recent timesteps.

Skipping queries. If both segments do not contain a desired behavior, a teacher would like to
mark them as incomparable and discard the query. We model this behavior by skipping a query
if the sum over the segment of an underlying reward is smaller than skip threshold δskip, i.e.,
maxi∈{0,1}

∑
t r
(
sit,a

i
t

)
< δskip (Line 1).

Equally preferable. If the two segments are equally good, instead of selecting one segment as
preferable, a teacher would like to mark the segments as equally preferable. Motivated by this, we
provide an uniform distribution (0.5, 0.5) as a response (Line 3) if both segments have similar sum
of rewards, i.e.,

∣∣∑
t r
(
s1
t ,a

1
t

)
−
∑
t r
(
s0
t ,a

0
t

) ∣∣ < δequal.

Making a mistake. Humans can make accidental errors when they respond. To reflect this, we flip
the preference with probability of ε (Line 7 and Line 10).

3.3 Evaluation metrics

We evaluate two key properties of preference-based RL: performance of the RL agent under a fixed
budget of feedback and robustness to potential irrationalities. Because the simulated human teacher’s
preferences are generated by a ground truth reward, we measure the true average return of trained
agents as evaluation metric. To facilitate comparison across different RL algorithms, we normalize
returns with respect to the baseline of RL training using the ground truth reward:

Normalized returns =
Average returns of preference-based RL

Average returns of RL with ground truth reward
.

To evaluate the feedback-efficiency of preference-based RL algorithms, we compare normalized
returns by varying the maximum budget of queries.

To evaluate the robustness, we evaluate against the following simulated human teachers with different
properties:

• Oracle: SimTeacher
(
β →∞ , γ = 1, ε = 0, δskip = 0, δequal = 0

)
• Stoc: SimTeacher

(
β = 1 , γ = 1, ε = 0, δskip = 0, δequal = 0

)
• Mistake: SimTeacher

(
β →∞ , γ = 1, ε = 0.1 , δskip = 0, δequal = 0

)
• Skip: SimTeacher

(
β →∞ , γ = 1, ε = 0, δskip > 0 , δequal = 0

)
• Equal: SimTeacher

(
β →∞ , γ = 1, ε = 0, δskip = 0, δequal > 0

)
• Myopic: SimTeacher

(
β →∞ , γ = 0.9 , ε = 0, δskip = 0, δequal = 0

)
In our evaluations, we consider one modification (i.e., irrationality) to the oracle teacher at a time,
which allows us to isolate the individual effects. While each individually may not exactly model real
human behavior, it would be straightforward to use our benchmark to create more complex teachers
that combine multiple irrationalities.

3.4 Tasks

We consider two locomotion tasks (Walker-walk and Quadruped-walk) from DeepMind Control
Suite (DMControl) [65, 66] and two robotic manipulation tasks (Button Press and Sweep Into)
from Meta-world [76]. We focus on learning from the proprioceptive inputs and dense rewards
because learning from visual observations and sparse rewards can cause additional issues, such as
representation learning [37, 55, 60, 62, 74] and exploration [56]. However, we think it is an interesting
and important direction for future work to consider visual observations and sparse rewards.
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4 B-Pref: Algorithmic baselines for preference-based RL

Throughout this paper, we mainly focus on two of the most prominent preference-based RL algo-
rithms [19, 39], which involve reward learning from preferences. Formally, a policy πφ and reward
function r̂ψ are updated as follows (see Algorithm 3 in the supplementary material):

• Step 1 (agent learning): The policy πφ interacts with environment to collect experiences and
we update it using existing RL algorithms to maximize the sum of the learned rewards r̂ψ .

• Step 2 (reward learning): We optimize the reward function r̂ψ via supervised learning based on
the feedback received from a teacher.

• Repeat Step 1 and Step 2.

4.1 Deep reinforcement learning from human preferences

In order to incorporate human preferences into deep RL, Christiano et al. [19] proposed a framework
that learns a reward function r̂ψ from preferences [50, 70]. Specifically, we first model a preference
predictor using the reward function r̂ψ as follows:

Pψ[σ1 � σ0] =
exp

∑
t r̂ψ(s1

t ,a
1
t )∑

i∈{0,1} exp
∑
t r̂ψ(sit,a

i
t)
, (2)

where σi � σj denotes the event that segment i is preferable to segment j. We remark that this
corresponds to assume a stochastic teacher following the Bradley-Terry model [13] but we do not
assume that the type and degree of irrationality or systematic bias is available in our experiments.
Because this could lead to a poor preference inference [17], future work may be able to further
improve the efficiency of learning by approximating the teacher’s irrationality.

To align our preference predictor with the teacher’s preferences, we consider a binary classification
problem using the cross-entropy loss. Specifically, given a dataset of preferences D, the reward
function, modeled as a neural network with parameters ψ, is updated by minimizing the following
loss:

LReward = − E
(σ0,σ1,y)∼D

[
y(0) logPψ[σ0 � σ1] + y(1) logPψ[σ1 � σ0]

]
. (3)

Once we learn a reward function r̂ψ , we can update the policy πφ using any RL algorithm. A caveat is
that the reward function may be non-stationary because we update it during training. To mitigate the
effects of a non-stationary reward function, Christiano et al. [19] used on-policy RL algorithms, such
as TRPO [52] and A2C [45]. We re-implemented this method using the state-of-the-art on-policy RL
algorithm: PPO [54]. We refer to this baseline as PrefPPO.

4.2 PEBBLE

PEBBLE [39] is a state-of-the-art preference-based RL algorithm that improved the framework of
Christiano et al. [19] using the following ideas:

Unsupervised pre-training. In the beginning of training, a naive agent executing a random policy
does not provide good state coverage nor coherent behaviors. Therefore, the agent’s queries are
not diverse and a teacher can not convey much meaningful information. As a result, it requires
many samples (and thus queries) for these methods to show initial progress. Ibarz et al. [31] has
addressed this issue by assuming that demonstrations are available at the beginning of the experiment.
However, this is not ideal since suitable demonstrations are often prohibitively expensive to obtain
in practice. Instead, PEBBLE pre-trains the policy only using intrinsic motivation [46, 51] to learn
how to generate diverse behaviors. Specifically, by updating the agent to maximize the state entropy
H(s) = −Es∼p(s) [log p(s)], it encourages the agent to efficiently explore an environment and collect
diverse experiences (see the supplementary material for more details).

Off-policy RL with relabeling. To overcome the poor sample-efficiency of on-policy RL algorithms,
PEBBLE used the state-of-the-art off-policy RL algorithm: SAC [27]. However, the learning process
can be unstable because previous experiences in the replay buffer are labeled with previous learned
rewards. PEBBLE stabilizes the learning process by relabeling all of the agent’s past experience
every time it updates the reward model.
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Figure 2: IQM normalized returns with 95% confidence intervals across ten runs. Learning curves
and other metrics (median, mean, optimality gap) are in the supplementary material.

5 Using B-Pref to analyze algorithmic design decisions

We design our experiments to investigate the following:

• How do existing preference-based RL methods compare against each other across environments
with different complexity?

• How to use B-Pref to analyze algorithmic design decisions for preference-based RL?

5.1 Training details

We implement PEBBLE and PrefPPO using publicly released implementations of SAC1 and PPO.2
All hyperparameters of all algorithms are optimized independently for each environment. All of the
experiments were processed using a single GPU (NVIDIA GTX 1080 Ti) and 8 CPU cores (Intel
Xeon Gold 6126). For reliable evaluation Agarwal et al. [1], we measure the normalized returns3

and report the interquartile mean (IQM) across ten runs using an open-source library rliable.4 More
experimental details (e.g., model architectures and the final hyperparameters) and all learning curves
with standard deviation are in the supplementary material.

5.2 Benchmarking prior methods

Figure 2 shows the IQM normalized returns of PEBBLE and PrefPPO at convergence on various
simulated teachers listed in Section 3.2 (see the supplementary material for experimental details).
For a fair comparison, we apply unsupervised pre-training and disagreement-based sampling to all
methods (including SAC and PPO). PEBBLE outperforms PrefPPO in most of the environments
(especially achieving large gains on robotic manipulation tasks). Interestingly, providing uniform
labels to equally preferable segments (Equal) or skipping the queries with similar behaviors (Skip)
is more useful than relying only on perfect labels (Oracle) on hard environments like Quadruped
(Figure 2(b)). While both PEBBLE and PrefPPO achieve fairly efficient performance on correct

1https://github.com/denisyarats/pytorch_sac
2https://github.com/DLR-RM/stable-baselines3
3On robotic manipulation tasks, we measure the task success rate as defined by the Meta-world authors [76].
4https://github.com/google-research/rliable
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Figure 3: IQM normalized returns of PEBBLE with various sampling schemes across ten runs on
Quadruped. Learning curves and other metrics (median, mean, optimality gap) are in the supplemen-
tary material.

labels (Oracle, Equal and Skip), they often suffer from poor performance when teachers can provide
the wrong labels (Mistake and Stoc). This suggests opportunities for further investigations and
development of techniques that can improve the robustness to corrupted labels.5

5.3 Impact of design decisions in reward learning

Reward learning from preferences involves several design decisions, which can affect the performance
of the overall framework. We showcase the utility of B-Pref by using it to analyze the following
algorithmic design choices in depth:

Selecting informative queries. During training, all experiences are stored in an annotation buffer
B and we generate Nquery pairs of segments6 to ask teacher’s preferences from this buffer at each
feedback session. To reduce the burden on the human, we should solicit preferences so as to maximize
the information received. While finding optimal queries is computationally intractable [2], several
sampling schemes [11, 12, 50] have been explored to find queries that are likely to change the reward
model. Specifically, we consider the following sampling schemes, where more details are in the
supplementary material:

• Uniform sampling: We pick Nquery pairs of segments uniformly at random from the buffer B.
• Uncertainty-based sampling: We first generate the initial batch ofNinit pairs of segments Ginit

uniformly at random, measure the uncertainty (e.g., variance across ensemble of preference
predictors [19] or entropy of a single preference predictor [39]), and then select the Nquery

pairs of segments with high uncertainty.
• Coverage-based sampling: From the initial batch Ginit, we choose Nquery center points such

that the largest distance between a data point and its nearest center is minimized using a greedy
selection strategy.

• Hybrid sampling: Similar to Yu et al. [75], we also consider hybrid sampling, which combines
uncertainty-based sampling and coverage-based sampling. First, we select the Ninter pairs
of segments Gun, using uncertainty-based sampling, where Ninit > Ninter, and then choose
Nquery center points from Gun.

Figure 3 shows the IQM normalized returns of PEBBLE with various sampling schemes on
Quadruped. We find that the uncertainty-based sampling schemes (i.e., ensemble disagreement
and entropy) are superior to other sampling schemes, while coverage-based sampling schemes do
not improve on uniform sampling and slow down the sampling procedures. To analyze the effects
of sampling schemes, we measure the fraction of equally preferable queries (i.e., y = (0.5, 0.5)) on

5We find that label smoothing [64] is not effective in handling corrupted labels in our experiments (see the
supplementary material for supporting results). However, other regularization techniques, like label flipping, L2
regularization and weight decay, would be interesting for further study in future work.

6We do not compare segments of different lengths.
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Figure 4: Learning curves of PEBBLE with different feedback schedules on the oracle teacher. The
solid line and shaded regions represent the mean and standard deviation, respectively, across ten runs.
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Figure 5: (a) Fraction of equally preferable queries (red) and average returns (blue) on the Equal
teacher. We use PEBBLE with different sampling schemes on Quadruped given a budget of 2000
queries. Even though a teacher provides more uniform labels, i.e., y = (0.5, 0.5), to uncertainty-
based sampling schemes, they achieve higher returns than other sampling schemes. (b/c) Time series
of learned reward function (green) and the ground truth reward (red) using rollouts from a policy
optimized by PEBBLE. Learned reward functions align with the ground truth rewards in (b) Sweep
Into and (c) Walker.

the Equal teacher. Figure 5(a) shows that uncertainty-based sampling schemes achieve high returns
even though other sampling schemes receive more (non-uniform) perfect labels. We expect that
this is because queries with high uncertainty provide significant information to the reward model.
This also suggests opportunities for further investigations on uncertainty estimates like Bayesian
methods [15, 25].

Feedback schedule. We also investigate the impact of the feedback schedule, which decides the
number of queries at each feedback session. Lee et al. [39] used a uniform schedule, which always
asks the same number of queries, and Christiano et al. [19], Ibarz et al. [31] used a decay schedule,
which decreases the number of queries, roughly proportional to T

t+T , where t is the current timestep
and T is the episode length. We additionally consider an increase schedule, which increases the
number of queries, roughly proportional to T+t

T .

Figure 4 shows the learning curves of PEBBLE with different feedback schedule on the oracle teacher.
Given the same total number of queries, increase and decay schedules change the size of the initial
queries by a factor of 0.5 and 2, respectively. One can note that there is no big gain from rule-based
schedules in most of the environments. Even though rule-based schedules are less effective than
uniform scheduling, using an adaptive schedule like meta-gradient [72, 73] would be interesting for
further study in future work.

Reward analysis. To investigate the quality of the learned reward function, we compare the learned
reward function with the ground truth reward. Figure 5(b) and Figure 5(c) show the learned reward
function optimized by PEBBLE on the oracle teacher in Sweep Into and Walker, where more
evaluation results on other environments are also available in the supplementary material. Because
we bound the output of the reward function using tanh function, the scale is different with the ground
truth reward but the learned reward function is reasonably well-aligned.
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6 Related work

Benchmarks for deep reinforcement learning. There is a large body of work focused on designing
benchmarks for RL [7, 8, 14, 20–22, 24, 26, 30, 48, 65, 66, 76]. The Arcade Learning Environment [8]
has becomes a popular benchmark to measure the progress of RL algorithms for discrete control tasks.
For continuous control tasks, Duan et al. [22] presented a benchmark with baseline implementations of
various RL algorithms, which in turn led to OpenAI Gym [14]. These benchmarks have significantly
accelerated progress and have been strong contributors towards the discovery and evaluation of
today’s most widely used RL algorithms [27, 44, 52–54].

Recently, researchers proposed more targeted RL benchmarks that have been designed for specific
research purposes. Cobbe et al. [21] presented a suite of game-like environments where the train
and test environments differ for evaluating generalization performance of RL agents. Ray et al.
[48] provided a Safety Gym for measuring progress towards RL agents that satisfy the safety
constraints. D4RL [24] and RL Unplugged [26] have been proposed to evaluate and compare offline
RL algorithms. Yu et al. [76] proposed Meta-world to study meta- and multi-task RL. URLB [38]
benchmarks performance of unsupervised RL methods. However, none of the existing RL benchmarks
are tailored towards preference-based RL.

Freire et al. [23] proposed DERAIL, a benchmark suite for preference-based learning, but they
focused on simple diagnostic tasks. In B-Pref, we consider learning a variety of complex locomotion
and robotic manipulation tasks. Additionally, we design teachers with a wide array of irrationalities
and benchmark state-of-the-art preference-based RL algorithms [19, 39] in depth.

Human-in-the-loop reinforcement learning. Several works have successfully utilized feedback
from real humans to train RL agents [6, 19, 31, 34, 39, 43, 69]. MacGlashan et al. [43] proposed
a reward-free method, which utilizes a human feedback as an advantage function and optimizes
the agents via a policy gradient. Knox & Stone [34] trained a reward model via regression using
unbounded real-valued feedback. However, these approaches are difficult to scale to more complex
learning problems that require substantial agent experience.

Another promising direction has focused on utilizing the human preferences [3, 19, 31, 39, 41, 47,
61, 70, 71]. Christiano et al. [19] scaled preference-based learning to utilize modern deep learning
techniques, and Ibarz et al. [31] improved the efficiency of this method by introducing additional
forms of feedback such as demonstrations. Recently, Lee et al. [39] proposed a feedback-efficient
RL algorithm by utilizing off-policy learning and pre-training. Stiennon et al. [61] and Wu et al.
[71] showed that preference-based RL can be utilized to fine-tune GPT-3 [16] for hard tasks like text
and book summarization, respectively. We benchmark these state-of-the-art preference-based RL
algorithms in this paper.

7 Conclusion

In this paper, we present B-Pref, a benchmark specially designed for preference-based RL, covering a
wide array of a teacher’s irrationalities. We empirically investigate state-of-the-art preference-based
RL algorithms in depth and analyze the effects of algorithmic design decisions on our benchmark.
We find that existing methods often suffer from poor performance when teachers provide wrong
labels, and the effects of design decisions are varied depending on the task setups. These observations
call for new algorithms in active learning [11, 12, 50] and meta-learning [72, 73] to be developed. By
providing an open-source release of the benchmark, we encourage other researchers to use B-Pref as
a common starting point to study preference-based RL more systematically.

Limitations. There are several important properties that are not explored in-depth in B-Pref. One
is robustness of learned reward functions to new environments with different dynamics or initial
states [49]. Also, we focus on tasks with proprioceptive inputs and dense rewards, but extensions to
visual observations and sparse rewards are interesting directions to explore.

Potential negative impacts. Preference-based RL has several advantages (e.g., teaching novel
behaviors, and mitigating the effects of reward exploitation); however, it also has potential drawbacks.
Malicious users might teach the bad behaviors/functionality using this framework. Therefore,
researchers should consider the safety issues with particular thought.
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Appendix:
B-Pref: Benchmarking Preference-Based Reinforcement

Learning

A Preliminaries: Reinforcement learning algorithms

Proximal policy optimization. Proximal policy optimization (PPO) [54] is a state-of-the-art on-
policy algorithm for learning a continuous or discrete control policy, πφ(a|s). PPO forms policy
gradients using action-advantages, At = Aπ(at, st) = Qθ(at, st) − V π(st), and minimizes a
clipped-ratio loss over minibatches of recent experience (collected under πφ̄):

LPPOπ = −Eτt∼π [min (ρt(φ)At, clip(ρt(φ), 1− ε, 1 + ε)At)] , ρt(φ) =
πφ(at|st)
πφold(at|st)

, (4)

where φ̄ are the delayed parameters and ε is a clip ratio. Our PPO agents learn a state-value estimator,
Vθ(s), which is regressed against a target of discounted returns and used with Generalized Advantage
Estimation [53]:

LPPOV (θ) = Eτt∼π
[
(Vθ(st)− Vθ̄(st))

2
]
. (5)

PPO is more robust to the non-stationarity in rewards caused by online learning.

Soft actor-critic. Soft actor-critic (SAC) [27] is an off-policy actor-critic method based on the
maximum entropy RL framework [77], which encourages exploration and greater robustness to noise
by maximizing a weighted objective of the reward and the policy entropy. To update the parameters,
SAC alternates between a soft policy evaluation and a soft policy improvement. At the soft policy
evaluation step, a soft Q-function, which is modeled as a neural network with parameters θ, is updated
by minimizing the following soft Bellman residual:

LSACQ = Eτt∼B
[ (
Qθ(st,at)− rt − γ̄V̄ (st+1)

)2 ]
, (6)

with V̄ (st) = Eat∼πφ
[
Qθ̄(st,at)− α log πφ(at|st)

]
,

where τt = (st,at, st+1, rt) is a transition, B is a replay buffer, θ̄ are the delayed parameters, and
α is a temperature parameter. At the soft policy improvement step, the policy πφ is updated by
minimizing the following objective:

LSACπ = Est∼B,at∼πφ

[
α log πφ(at|st)−Qθ(st,at)

]
. (7)

SAC enjoys good sample-efficiency relative to its on-policy counterparts by reusing its past experi-
ences. However, for the same reason, SAC is not robust to a non-stationary reward function.

Algorithm 2 EXPLORE: Unsupervised exploration
1: Initialize parameters of πφ and a buffer B ← ∅
2: for each iteration do
3: for each timestep t do
4: Collect st+1 by taking at ∼ πφ (at|st)
5: Compute intrinsic reward rintt ← rint(st) as in (8)
6: Store transitions B ← B ∪ {(st,at, st+1, r

int
t )}

7: end for
8: for each gradient step do
9: Sample minibatch {

(
sj ,aj , sj+1, r

int
j

)
}Bj=1 ∼ B

10: Optimize RL objective function with respect to φ
11: end for
12: end for
13: return B, πφ
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Algorithm 3 Preference-based RL with reward learning
Require: frequency of teacher feedback K
Require: number of queries Nquery per feedback session

1: Initialize parameters of πφ, r̂ψ , a dataset of preferences D ← ∅, and a buffer B ← ∅
2: // EXPLORATION PHASE
3: B, πφ ← EXPLORE() in Algorithm 2
4: for each iteration do
5: // REWARD LEARNING
6: if iteration % K == 0 then
7: for m in 1 . . . Nquery do
8: (σ0, σ1) ∼ SAMPLE() (see Section C) and query SimTeacher in Algorithm 1 for y
9: Store preference D ← D ∪ {(σ0, σ1, y)}

10: end for
11: for each gradient step do
12: Sample minibatch {(σ0, σ1, y)j}Dj=1 ∼ D and optimize LReward in (3) with respect to ψ
13: end for
14: end if
15: // POLICY LEARNING
16: for each timestep t do
17: Collect st+1 by taking at ∼ π(at|st) and store transitions B ← B ∪ {(st,at, st+1, r̂ψ(st))}
18: end for
19: for each gradient step do
20: Sample random minibatch {(τj)}Bj=1 ∼ B and optimize RL objective function with respect to φ
21: end for
22: Reset B ← ∅ if on-policy RL algorithm is used
23: end for

B Preference-based reinforcement learning

Algorithm 3 summarizes the full procedure of preference-based RL methods that we consider in this
paper. We also utilize unsupervised pre-training which encourages our agent to visit a wider range of
states by using the state entropyH(s) = −Es∼p(s) [log p(s)] as an intrinsic reward [42, 29, 40, 56].
By following Lee et al. [39], we define the intrinsic reward of the current state st as follows:

rint(st) = log(||st − skt ||), (8)

where ski is the k-NN of si within a set {si}Ni=1. The full procedure of unsupervised pre-training is
summarized in Algorithm 2.

C Sampling schemes

We consider the following sampling schemes in this paper:

• Uniform sampling: We pick Nquery pairs of segments uniformly at random from the buffer B.
• Disagreement: We first generate the initial batch of Ninter pairs of segments Ginit uniformly

at random, measure the variance across ensemble of preference predictors {Pψi [σ1 � σ0]}Nen

i=1,
and then select the Nquery pairs of segments with high uncertainty.

• Entropy: We first generate the initial batch of Ninter pairs of segments Ginit uniformly at
random, measure the entropy of a single preference predictorH(Pψ), and then select the Nquery

pairs of segments with high uncertainty.
• Coverage: From the initial batch Ginit, we choose center points, which increase the dissimilarity

between the selected queries. Specifically, we concatenate the states of segments, i.e., sconcat =
Concat(s0

k+1, · · · , s0
k+H , s

1
k+1, · · · , s1

k+H)7 and measure the Euclidean distance. Then, we
choose Nquery center points such that the largest distance between a data point and its nearest
center is minimized using a greedy selection strategy.

7Concatenating states would not be an optimal choice because it is not permutation-invariant, which is also
not handled in the prior work [11]. However, we expect that an issue from permutation-variance is not significant
because a probability to sample two segments in a different order is very low. However, it is an interesting future
direction to explore to address this limitation.
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• Disagreement + Coverage: We first select the Ninter pairs of segments Gun, using the disagree-
ment sampling, where Ninit > Ninter, and then choose Nquery center points from Gun.

• Entropy + Coverage: We first select the Ninter pairs of segments Gun, using the entropy
sampling, and then choose Nquery center points from Gun.

D Experimental Details

Training details. We use PEBBLE and PrefPPO8 with a full list of hyperparameters in Table 1 and
Table 2, respectively. We pre-train an agent for 10K timesteps and 32K timesteps for PEBBLE and
PrefPPO, respectively.

Hyperparameter Value Hyperparameter Value
Initial temperature 0.1 Hidden units per each layer 1024 (DMControl), 256 (Meta-world)
Segment of length 50 (DMControl), 25 (Meta-world) # of layers 2 (DMControl), 3 (Meta-world)
Learning rate 0.0003 (Meta-world) Batch Size 1024 (DMControl), 512 (Meta-world)

0.0001 (Quadruped), 0.0005 (Walker) Optimizer Adam [33]
Critic target update freq 2 Critic EMA τ 0.005
(β1, β2) (.9, .999) Discount γ̄ .99
Frequency of feedback 5000 (Meta-world), 20000 (Walker) Maximum budget / 2000/200, 1000/100, 500/50 (DMControl)

30000 (Quadruped) # of queries per session 20K/100, 10K/50 (Meta-world)

Table 1: Hyperparameters of the PEBBLE algorithm.

Hyperparameter Value Hyperparameter Value
GAE parameter λ 0.9 (Quadruped), 0.92 (otherwise) Hidden units per each layer 256
Segment of length 50 (DMControl), 25 (Meta-world) # of layers 3
Learning rate 0.0003 (Meta-world) Batch Size 64 (Walker), 256 (Sweep Into)

5e−5 (DMControl) 128 (Quadruped, Button)
Discount γ̄ .99 Frequency of feedback 32000 (DMControl)
# of environments per worker 8 (Button), 16 (Quadruped), PPO clip range 0.4

32 (Walker, Sweep Into) Entropy bonus 0.0
# of timesteprs per rollout 500 (DMControl) Maximum budget /

2000/200, 1000/100 (DMControl)
250 (Meta-world) # of queries per session

Table 2: Hyperparameters of the PrefPPO algorithm.

Reward model. For the reward model, we use a three-layer neural network with 256 hidden units
each, using leaky ReLUs. To improve the stability in reward learning, we use an ensemble of three
reward models, and bound the output using tanh function. Each model is trained by optimizing the
cross-entropy loss defined in (3) using ADAM learning rule [33] with the initial learning rate of
0.0003.

Simulated human teachers. For all experiments, To evaluate the robustness, we evaluate against
the following simulated human teachers with different hyperparameters:

• Oracle: SimTeacher
(
β →∞ , γ = 1, ε = 0, δskip = 0, δequal = 0

)
• Stoc: SimTeacher

(
β = 1 , γ = 1, ε = 0, δskip = 0, δequal = 0

)
• Mistake: SimTeacher

(
β →∞ , γ = 1, ε = 0.1 , δskip = 0, δequal = 0

)
• Skip: SimTeacher

(
β →∞ , γ = 1, ε = 0, δskip = δadapt(εadapt, t) , δequal = 0

)
• Equal: SimTeacher

(
β →∞ , γ = 1, ε = 0, δskip = 0, δadapt = δskip(εadapt, t)

)
• Myopic: SimTeacher

(
β →∞ , γ = 0.9 , ε = 0, δskip = 0, δequal = 0

)
Because each environment has a different scale of ground truth rewards, it is hard to design stan-
dardized Skip and Equal teachers using hard threshold. To address this issue, we use an adaptive

8For Meta-world, the frequency is chosen from {8K, 16K, 32K, 64K} and # of queries per session is
chosen from {50, 100, 250, 500, 1000}.
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threshold, which is defined as follows:

δadapt(εadapt, t) =
H

T
Ravg(φt)εadapt, (9)

where t is the current timestep, εadapt ∈ [0, 1] is hyperparameters to control the threshold, T is
the episode length, H is a length of segment and Ravg(πt) is the average returns of current policy
with the parameters πt. By adaptively rescaling the threshold based on the performance of agent, a
teacher skips queries or provides uniform labels (i.e., y = (0.5, 0.5). For all experiments, we choose
εadapt = 0.1.

E Additional experimental results

Reward analysis. Figure 6 shows the learned reward function optimized by PEBBLE on the oracle
teacher in all tested environments. Because we bound the output using tanh function, the scale is
different with the ground truth reward but the learned reward function is reasonably well-aligned.

Regularization for handling corrupted labels. To improve the robustness to corrupted labels, we
apply the label smoothing [64]. By following Christiano et al. [19], Ibarz et al. [31], we use a soft
label ŷ = 0.9 ∗ y + 0.05 for the cross-entropy computation. As shown in Figure 7, we find that the
gains from label smoothing are marginal.
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Figure 6: Time series of learned reward function (green) and the ground truth reward (red) using
rollouts from a policy optimized by PEBBLE.

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Uniform

w.o label smoothing
with label smoothing

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Disagreement

w.o label smoothing
with label smoothing

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Entropy

w.o label smoothing
with label smoothing

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Coverage

w.o label smoothing
with label smoothing

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Entropy + Coverage

w.o label smoothing
with label smoothing

0.0 0.25 0.5
Environment Steps (×106)

0

250

500

750

1,000

Ep
iso

de
 R

et
ur

n

Disagreement + Coverage

w.o label smoothing
with label smoothing

Figure 7: Learning curves of PEBBLE with 500 queries on Walker on the Mistake teacher. The solid
line and shaded regions represent the mean and standard deviation, respectively, across five runs.
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F Learning curves
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Figure 8: Learning curves of PEBBLE and PrefPPO on Walker-walk as measured on the ground truth
reward. The solid line and shaded regions represent the mean and standard deviation, respectively,
across ten runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the
corresponding color.
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Figure 9: Learning curves of PEBBLE and PrefPPO on Quadruped-walk as measured on the ground
truth reward. The solid line and shaded regions represent the mean and standard deviation, respectively,
across ten runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the
corresponding color.
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Figure 10: Learning curves of PEBBLE and PrefPPO on Sweep Into as measured on the success rate.
The solid line and shaded regions represent the mean and standard deviation, respectively, across ten
runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the corresponding
color.
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Figure 11: Learning curves of PEBBLE and PrefPPO on Button Press as measured on the success rate.
The solid line and shaded regions represent the mean and standard deviation, respectively, across ten
runs. Asymptotic performance of PPO and PrefPPO is indicated by dotted lines of the corresponding
color.
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Figure 12: Learning curves of PEBBLE with 2000 queries on Quadruped-walk as measured on the
ground truth reward. The solid line and shaded regions represent the mean and standard deviation,
respectively, across ten runs.
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Figure 13: Learning curves of PEBBLE with 1000 queries on Quadruped-walk as measured on the
ground truth reward. The solid line and shaded regions represent the mean and standard deviation,
respectively, across ten runs.
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Figure 14: Aggregate metrics on Walker with 95% confidence intervals (CIs) across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.
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Figure 15: Aggregate metrics on Quadruped with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.
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Figure 16: Aggregate metrics on Button Press with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.
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Figure 17: Aggregate metrics on Sweep Into with 95% confidence intervals (CIs) across ten runs.
Higher mean, median and IQM scores and lower optimality gap are better. The CIs are estimated
using the percentile bootstrap with stratified sampling.
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Figure 18: Aggregate metrics of PEBBLE on Quadruped with 2000 queries across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.
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Figure 19: Aggregate metrics of PEBBLE on Quadruped with 1000 queries across ten runs. Higher
mean, median and IQM scores and lower optimality gap are better. The CIs are estimated using the
percentile bootstrap with stratified sampling.
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