
Work-in-Progress: The Cyber-Physical Immune System
Bo Pang∗, Ashank Verma∗, Jingchao Zhou∗, Inigo Incer, Alberto Sangiovanni-Vincentelli

{pangb,ashankv,jingchao_zhou,inigo,alberto}@berkeley.edu
University of California, Berkeley

∗ Equal contribution.

ABSTRACT
Cyber-Physical Systems (CPS) are important components of criti-
cal infrastructure and must operate with high levels of reliability
and security. We propose a conceptual approach to securing CPSs:
the Cyber-Physical Immune System (CPIS), a collection of hard-
ware and software elements deployed on top of a conventional
CPS. Inspired by its biological counterpart, the CPIS comprises an
independent network of distributed computing units that collects
data from the conventional CPS, utilizes data-driven techniques
to identify threats, adapts to the changing environment, alerts the
user of any threats or anomalies, and deploys threat-mitigation
strategies.

1 INTRODUCTION
A Cyber-Physical System (CPS) comprises distributed and intercon-
nected computing units that interact with the physical environment.
CPSs thus offer a vast surface area for attackers to exploit [2]. At-
tackers could execute memory corruption attacks in the control
software or spoof the perception data gathered by the system, such
as data from the speed sensors of a vehicle or from the voltage
sensors in a power station [5].

CPSs with fixed physical boundaries and constituents, such as
vehicles or airplanes, are akin to biological organisms, which are
often composed of a fixed set of constituents. We derive inspiration
from biology in order to provide our CPSs with an immune system
in the same way in which biological organisms have one. We know
that the immune system of mammals is composed of elements that
constantly monitor the body for unusual behavior and alert the
central immune system of suspicious activity, and of elements that
respond to threats. Some of the body’s responses are innate, and
some are learned from the experience of fighting a threat [6].

Similarly, the CPIS comprises an independent network of dis-
tributed computing units that attach onto the existing CPS. CPIS
Monitors collect execution traces from the computing units present
in the conventional CPS and potentially respond to threats upon de-
tection, as shown in Figure 1. The immune system also contains the
CPIS Main Computing Unit, which collects data from all monitors
and detects anomalies with its system-wide point of view.

The CPIS has both innate and adaptive immunity, similar to the
biological immune system. Specifically, the CPIS displays innate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8712-5/21/10.
https://doi.org/10.1145/3477244.3477621

Figure 1: CPIS Architecture

immunity by quickly finding known issues or threats. It estab-
lishes adaptive immunity by monitoring the CPS and identifying
anomalies using data-driven techniques, for which the CPIS is not
pre-programmed.

Since the CPIS is a conceptual approach to securing a CPS, its
deployment could use specific techniques for attack detection and
mitigation that have been considered in the literature. Giraldo et
al. [4] survey threat detection techniques for CPSs that make use
of knowledge of the physics of the system and its environment.
An appeal to “physical coherence” is, in fact, a security tool that is
available in CPSs, but absent from the traditional security toolbox.
Combita et al. [3] survey some responses that a CPS could conceiv-
ably deploy when an attack is detected. The notion of developing a
security system based on inspiration from biology has precedents.
The closest in spirit to our approach is an architecture by Roman
et al. [7], which uses virtual machines that traverse an IoT system
to monitor and defend it. Our approach is complementary in the
sense that we propose to leave the original CPS intact, and ensure
security using additional hardware and software whose exclusive
purpose is the implementation of the CPIS. Scadman, a recently-
proposed architecture by Adepu et al. [1], secures a SCADA system
by using a central node which has access to sensor and actuator
values as reported by PLCs used in the system. The CPIS differs
from this notion because it monitors the execution traces of every
computing node in the system, allowing it to detect cyber attacks
to any processing element.

2 AN IMPLEMENTATION OF THE CPIS
To validate the CPIS concept, we implemented an illustrative ve-
hicular cruise control CPS using Mininet1. The CPS consists of
an engine controller, a cruise controller, and a simulated physical
environment (shown in the LHS of Figure 2). The cruise controller
runs a PID algorithm to determine desired vehicle acceleration, and
sends it to the engine controller via TCP; the engine controller deter-
mines the gear and throttle accordingly. The physical environment
is driven by a simulator that calculates vehicle acceleration and
1http://mininet.org/

https://doi.org/10.1145/3477244.3477621


EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA Bo, Verma, Zhou, Incer, and Sangiovanni-Vincentelli

Figure 2: CPIS prototype attached to a cruise control CPS

speed, taking into account the vehicle mass, road incline, engine
torque curve, rolling friction, and air resistance. In this CPS, the
controllers represent the two computing units that jointly provide
throttle and gear inputs to the simulated physical environment, and
receive sensor data (speed and engine RPM) from the environment.

We then implemented a CPIS that attaches to the vehicular CPS.
The CPIS consists of two monitors that peer with the two CPS com-
puting units, and a CPIS main computing unit that connects to both
monitors (shown in the RHS of Figure 2). Each monitor performs
two major tasks. The first of these tasks is to obtain debug traces
from its peer CPS computing unit and abstract these traces. The
incoming debug traces consist of execution traces indicating the
line of code being executed by the CPS computing unit, and data
traces showing the change of the stack variables. The execution
traces are merged into a line-counting vector (each element in the
vector represents the amount of times the corresponding line has
been executed). The data traces are filtered by regular expressions
and used to update a local copy in the monitor. The second task
of the monitor is to pre-process the abstracted trace information
using a pre-programmed set of rules. For example, the data copy
representing vehicle speed and engine RPM should never exceed
physical limits; the counters for lines of repetitive executable code
should keep incrementing. The pre-processing of information al-
lows each monitor to quickly identify and report obvious issues,
mimicking innate immunity.

The CPIS main computing unit periodically collects and further
processes information abstracted by both monitors, giving it a
global view of the CPS. It consolidates copies of run-time data
from both monitors, including vehicle speed, gear number and
throttle value. Without built-in knowledge of how these data are
correlated, the main computing unit periodically trains a regression
model to learn the relationships between these heterogeneous data
inputs. For example, after driving the vehicle using a variety of
speed settings, the CPIS prototype is able to successfully capture
the correlation between throttle percentage, the reciprocal of gear
number, the second power of speed, and vehicle acceleration. It then
uses the trained model to validate newly collected data, and report
anomalies if the error exceeds a predetermined margin repeatedly.

The main computing unit also merges line-counting vectors
from both monitors into a single vector, from which it finds lin-
ear invariants within the counter values belonging to both CPS
computing units. For example, the code in the cruise controller
that sends data should always execute in sync with the code in the
engine controller that receives the data, yielding 1 : 1 correlation

on their counter values representing the send & receive code stack.
Such linear invariants are used to validate newly obtained counting
vectors and help determine system anomalies.

To exercise the CPIS prototype, we simulate three run time anom-
alies in the CPS, shown as red pointers in Figure 2. The first is
sensor obfuscation, implemented by randomly overwriting speed
data provided by the simulator. The second is a man-in-the-middle
network attack. We implement an attacker script that hijacks and
randomly modifies the desired acceleration data sent from the cruise
controller to the engine controller. The third is software deadlock,
implemented by starving the software execution in the engine con-
troller and causing it to halt. We repeatedly introduce one of these
anomalies, and the CPIS prototype is able to identify over 85% of
them within seconds, while making zero false-positive judgements.

3 CONCLUSION AND FUTUREWORK
We conclude that the CPIS prototype shows the effectiveness of
combining localized and system-wide anomaly detection via CPIS
monitors and the main computing unit. The CPIS monitors help
detect anomalies quickly using their pre-programmed informa-
tion, especially during sensor obfuscation; whereas the CPIS main
computing unit plays an important role during man-in-the-middle
attacks by cross-validating run-time data that are seemingly valid
to individual monitors.

As part of our immediate goals for the CPIS, we plan to improve
the trace-summarization capabilities of the supervisory nodes. Since
each monitor will be exposed to large amounts of trace data, espe-
cially on a high-speed multi-core computing unit, deciding what to
keep and communicate to the main node is an important problem.
Another area of future work is extending the capabilities of the
CPIS. In our example, the CPIS detects malicious behaviors and
alerts operators. We intend to add threat-mitigation capabilities,
so the CPIS can automatically take countermeasures, just like the
immune system does.

REFERENCES
[1] Sridhar Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi, Ahmad-

Reza Sadeghi, and Saman A. Zonouz. 2018. Control Behavior Integrity for Dis-
tributed Cyber-Physical Systems. CoRR abs/1812.08310 (2018), 15. arXiv:1812.08310
http://arxiv.org/abs/1812.08310

[2] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security (SEC’11).
USENIX Association, USA, 6.

[3] Luis F. Combita, Jairo Giraldo, Alvaro A. Cardenas, and Nicanor Quijano. 2015.
Response and reconfiguration of cyber-physical control systems: A survey. In
2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC). IEEE, 1–6.
https://doi.org/10.1109/ccac.2015.7345181

[4] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal, Justin
Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018. A
Survey of Physics-Based Attack Detection in Cyber-Physical Systems. ACM
Comput. Surv. 51, 4, Article 76 (July 2018), 36 pages. https://doi.org/10.1145/
3203245

[5] Antonio Lima, Francisco Rocha, Marcus Völp, and Paulo Esteves-Veríssimo. 2016.
Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems. In
Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and
Privacy - CPS-SPC '16. ACM Press, 59–70. https://doi.org/10.1145/2994487.2994489

[6] Jean S. Marshall, Richard Warrington, Wade Watson, and Harold L. Kim. 2018. An
introduction to immunology and immunopathology. Allergy, Asthma & Clinical
Immunology 14, S2 (Sept. 2018), 10. https://doi.org/10.1186/s13223-018-0278-1

[7] Rodrigo Roman, Ruben Rios, Jose A. Onieva, and Javier Lopez. 2019. Immune
System for the Internet of Things Using Edge Technologies. IEEE Internet of Things
Journal 6, 3 (2019), 4774–4781. https://doi.org/10.1109/JIOT.2018.2867613

http://arxiv.org/abs/1812.08310
http://arxiv.org/abs/1812.08310
https://doi.org/10.1109/ccac.2015.7345181
https://doi.org/10.1145/3203245
https://doi.org/10.1145/3203245
https://doi.org/10.1145/2994487.2994489
https://doi.org/10.1186/s13223-018-0278-1
https://doi.org/10.1109/JIOT.2018.2867613

	Abstract
	1 Introduction
	2 An implementation of the CPIS
	3 Conclusion and Future Work
	References

