
DPGen: Automated Program Synthesis for Differential Privacy

Yuxin Wang
Pennsylvania State University
University Park, PA, USA

yxwang@psu.edu

Zeyu Ding
Pennsylvania State University
University Park, PA, USA

zyding@psu.edu

Yingtai Xiao
Pennsylvania State University
University Park, PA, USA

yxx5224@psu.edu

Daniel Kifer
Pennsylvania State University
University Park, PA, USA

dkifer@cse.psu.edu

Danfeng Zhang
Pennsylvania State University
University Park, PA, USA

zhang@cse.psu.edu

ABSTRACT

Differential privacy has become a de facto standard for releasing
data in a privacy-preserving way. Creating a differentially private
algorithm is a process that often starts with a noise-free (non-
private) algorithm. The designer then decides where to add noise,
and how much of it to add. This can be a non-trivial process ś if
not done carefully, the algorithm might either violate differential
privacy or have low utility.

In this paper, we present DPGen, a program synthesizer that
takes in non-private code (without any noise) and automatically
synthesizes its differentially private version (with carefully cali-
brated noise). Under the hood, DPGen uses novel algorithms to
automatically generate a sketch program with candidate locations
for noise, and then optimize privacy proof and noise scales simulta-
neously on the sketch program. Moreover, DPGen can synthesize
sophisticated mechanisms that adaptively process queries until a
specified privacy budget is exhausted. When evaluated on standard
benchmarks, DPGen is able to generate differentially private mecha-
nisms that optimize simple utility functions within 120 seconds. It is
also powerful enough to synthesize adaptive privacy mechanisms.

CCS CONCEPTS

• Security and privacy→ Logic and verification; • Theory of

computation→ Program analysis.

KEYWORDS

Differential privacy; program synthesis

ACM Reference Format:

Yuxin Wang, Zeyu Ding, Yingtai Xiao, Daniel Kifer, and Danfeng Zhang.
2021. DPGen: Automated Program Synthesis for Differential Privacy. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS ’21), November 15ś19, 2021, Virtual Event, Republic of

Korea. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3460120.
3484781

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15ś19, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484781

1 INTRODUCTION

Differential privacy [23] has become a de facto standard for re-
leasing data in a privacy-preserving way. It has been increasingly
adopted in industry [14, 19, 25, 34, 45] and the public sector [1, 15,
32, 37]. Crucial to any differentially private system is a set of privacy
mechanisms, the building blocks of larger privacy-preserving algo-
rithms. Privacy mechanisms inject randomness into non-private
computations in order to ensure privacy protections. However,
developing such mechanisms is a daunting task for several reasons.

• From the privacy perspective, one must carefully choose exactly
where the noise must be injected and how much noise to use.
Such decisions are notoriously tricky. For example, the Sparse
Vector Technique (SVT) [24] is designed to return the identities
of 𝑁 queries whose answers are likely to be larger than a pub-
lic threshold 𝑇 . Lyu et al. [36] catalog several peer-reviewed
yet incorrect variants of SVT. At the source code level, these
incorrect variants are very similar to the correct ones, but the
tiny differences broke their privacy properties.

• From the utility perspective, there are many ways of converting
a non-private program into a differentially private one ś each
such option could have wildly different utility properties. For
instance, in the aforementioned SVT, injecting noise in one spe-
cific place (the threshold) allows the mechanism to use much
less noise everywhere else (while processing more queries).
Aside from different valid choices in noise locations, the mecha-
nism must also allocate its privacy budget among different code
fragments. This results in a trade-off where fragments with a
larger share of the privacy budget use smaller amounts of noise.
Picking the optimal (in terms of utility) way of adding random-
ness and allocating the privacy budget is also a non-trivial task
(this is especially true for SVT [36]).

Most current tools focus on checking the privacy properties of
algorithms. For example, verification tools have been developed to
mechanically (and sometimes, automatically) prove that a (correct)
privacy mechanism satisfies differential privacy [3, 5ś9, 48, 49].
Counterexample detectors for differential privacy [12, 13, 20, 29] can
find evidence that an (incorrect) privacy mechanism fails to satisfy
its claimed privacy levels. Moreover, a few tools can combine both
functionalities: either proving a mechanism is correct or finding
a counterexample [4, 26, 47]. While these tools are invaluable for
ensuring correctness of privacy mechanisms, they all require a
putative differentially private algorithm as a starting point.

Recently, Roy et al. [41] took a step further: they proposed a
tool called KOLAHAL for automatically learning an accurate and
differentially private mechanism given a mechanism sketch provided

by a domain expert. In other words, their approach synthesizes how
much noise should be added in pre-specified locations. Note that it
does not determine where the noise should be added. It also cannot
synthesize mechanisms that use their privacy budget adaptively.
An example of such a mechanism is a recently proposed variant of
SVT, called Adaptive Sparse Vector with Gap [21]. This mechanism
has extra flexibility for saving privacy budget on some queries,
allowing it to keep iterating until its privacy budget is exhausted.

In this paper, we present DPGen, the first fully automated ap-
proach that can synthesize an accurate and differentially private pro-
gram from a given non-private (noiseless) program. Significantly,
DPGen employs a novel inference algorithm to automatically gener-
ate a mechanism sketch from a non-private program. We formalize
the synthesis problem as a constrained optimization problem: max-
imizing utility while simultaneously satisfying privacy constraints
in a transformed version of the mechanism sketch. DPGen then
uses a counterexample-guided synthesis (CEGIS) loop [44] and an
optimizer like Particle Swarm Optimization (PSO) [35] to synthe-
size and optimize the mechanism. Compared with KOLAHAL [41],
the new optimization approach is shown to be more efficient. In
some cases, KOLAHAL can take 900 to 5460 seconds to synthesize a
mechanism, while DPGen can successfully synthesize an equivalent
or more accurate version in 10 to 120 seconds.

Moreover, DPGen is equipped with a novel feature called a while-
private loop, written as while-priv 𝑒 do 𝑐 . Semantically, the while-
private loop (after synthesis) executes 𝑐 whenever 𝑒 evaluates to
true and as long as the dynamically tracked privacy budget has not

been depleted. Notably, this feature allows DPGen to synthesize
sophisticated mechanisms such as Adaptive Sparse Vector with
Gap [21] that try to minimize the amount of privacy budget spent
in each loop iteration, and hence keep iterating until the privacy
budget has been depleted. To the best of our knowledge, DPGen is
the first program synthesizer that can automatically generate such
sophisticated mechanisms.1

We evaluated DPGen on standard benchmarks that consist of
various privacy mechanisms. For each privacy mechanism, we re-
moved the randomness in it and asked DPGen to automatically
synthesize a differentially private version. In all cases, DPGen was
able to synthesize an equivalent or even more accurate version
compared with the baseline. For adaptive mechanism that uses
while-private loop, program synthesis is more complicated. But DP-
Gen was still able to synthesize private and accurate mechanisms.

In summary, this paper makes the following contributions:

(1) DPGen, the first fully automated tool that can synthesize an
accurate and differentially private mechanism from a noiseless
non-private program.

(2) A novel inference algorithm that automatically generates a
mechanism sketch (i.e., code with noise of unknown scales
added to automatically selected program locations) from a non-
private program (Section 4).

1Note that while-private is a programmer hint that the while loop should be executed
in a best-effort way (a hallmark of the sparse vector family of privacy mechanisms)
rather than exactly as many times as the non-private version would execute.

(3) A customized CEGIS loop that incrementally optimizes the
tentative mechanism while generating its privacy proof (Sec-
tion 5.2).

(4) A novel while-private feature that allows DPGen to synthesize
adaptive privacy mechanisms (Section 5.3).

(5) Case studies and experimental comparisons between DPGen
and KOLAHAL [41]. In addition to being able to synthesize
more programs, DPGen also shows improvements on mechan-
ims that both approaches can synthesize. In the benchamrks,
DPGen generated identical ormore accuratemechanismswithin
a considerably shorter amount of time (Section 6).

2 BACKGROUND

2.1 Differential Privacy

In this paper, we focus on pure differential privacy [23]. Intuitively,
a data analysis 𝐴 satisfies differential privacy if and only if for
any dataset 𝐷 , adding, removing, or changing a record in 𝐷 has
little impact on the analysis result. Therefore, a differentially pri-
vate analysis reveals little about any data record being analyzed.
Each analysis is built out of atomic components called differen-
tially private mechanisms (privacy mechanisms for short). These
components themselves satisfy differential privacy.2

More formally, we say that two datasets 𝐷, 𝐷 ′ ∈ D are adja-

cent, written 𝐷 ∼ 𝐷 ′, when they only differ on one record. To
offer privacy, a differentially private mechanism (or analysis), say
𝑀 : D → O, injects carefully calibrated random noise during
its computation. We call the execution of 𝑀 on 𝐷 , written 𝑀 (𝐷),
the original execution and its execution on (neighboring) dataset
𝐷 ′, written𝑀 (𝐷 ′), the related execution. Intuitively,𝑀 (or 𝐴) is 𝜖-
differentially private for some constant 𝜖 if for any possible output
𝑜 ∈ O, the ratio between the probabilities of producing 𝑜 on 𝐷 and
𝐷 ′ is bounded by 𝑒𝜖 :

Definition 2.1 (Pure Differential Privacy [22]). Let 𝜖 ≥ 0. A prob-
abilistic computation 𝑀 : D → O is 𝜖-differentially private if
∀𝐷 ∼ 𝐷 ′ (where 𝐷,𝐷 ′ ∈ D) and ∀𝑜 ∈ O, we have

P[𝑀 (𝐷) = 𝑜] ≤ 𝑒𝜖 P[𝑀 (𝐷 ′) = 𝑜]

Adifferentially private analysis𝐴 interacts with a dataset through
one or multiple privacy mechanisms that take a list of queries and
their exact answers as input, and produce a differentially private
(noisy) aggregation of them. An important factor to determine the
amount of noise needed for privacy is the sensitivity of queries,
which intuitively quantifies the maximum difference of the query
results on adjacent databases. We use a vector (𝑞1, 𝑞2, . . .) to denote
the exact query answers from running a sequence of queries on a
dataset and say that each query answer 𝑞𝑖 has a sensitivity of Δ𝑖 if
its corresponding query has a global sensitivity of Δ𝑖 :

Definition 2.2 (Global Sensitivity [24]). The global sensitivity Δ𝑓

of a query 𝑓 is sup𝐷∼𝐷′
��𝑓 (𝐷) − 𝑓 (𝐷 ′)

��.

Similar to dataset adjacency, we say two vectors of query answers
are adjacent, written (𝑞1, 𝑞2, . . .) ∼ (𝑞′1, 𝑞

′
2, . . .), when ∀𝑖 . |𝑞𝑖 −𝑞

′
𝑖 | ≤

Δ𝑖 . Moreover, a privacymechanism𝑀 satisfies 𝜖-differential privacy

2In general, the privacy parameter of the analysis is upper bounded by the sum of the
individual privacy parameters of the mechanisms [38].

if for all pairs of adjacent query answers (𝑞1, 𝑞2, . . .) ∼ (𝑞′1, 𝑞
′
2, . . .)

and all outputs 𝑜 ∈ O, we have P[𝑀 (𝑞1, 𝑞2, . . . , params) = 𝑜] ≤

𝑒𝜖 P[𝑀 (𝑞′1, 𝑞
′
2, . . . , params) = 𝑜], where params represent data-

independent parameters (e.g., the value of 𝜖) to 𝑀 . As the goal
of this paper is to synthesize privacy mechanisms, we assume that
the sensitivity of inputs are either manually specified or computed
by sensitivity analysis tools (e.g., [28, 40]).

One popular privacy mechanism is the Laplace Mechanism [23],
which adds Laplace noise to query answers.

Theorem 2.3 (Laplace Mechanism [23]). Let Lap (𝑛) be a sam-

ple from the Laplace distribution with mean 0 and scale𝑛. The Laplace

Mechanism takes as input a query answer 𝑞 with sensitivity Δ𝑞 , and

a privacy parameter 𝜖 . It outputs 𝑞 + Lap (Δ𝑞/𝜖) and it satisfies

𝜖-differential privacy.

In this paper, we will use Laplace noise to also synthesize more
sophisticated privacy mechanisms.

2.2 Randomness Alignment

To synthesize a privacy mechanism, we need to reason about its
correctness (i.e., it must satisfy pure differential privacy with a
given privacy parameter 𝜖). To mechanize the correctness reason-
ing, we adopt the Randomness Alignment technique, a simple yet
powerful proof technique that enables various verification tools
and counterexample detectors [47ś49].

Consider a privacy mechanism 𝑀 and an arbitrary pair of ad-
jacent vectors of query answers (𝑞1, 𝑞2, . . .) ∼ (𝑞′1, 𝑞

′
2, . . .). A ran-

domness alignment is a function 𝜙 : R∞ → R
∞ that maps random

samples used by an execution of𝑀 on (𝑞1, 𝑞2, . . .) to random sam-
ples used by the adjacent execution of𝑀 on (𝑞′1, 𝑞

′
2, . . .) such that

both executions produce the same output.
For example, consider the mechanism𝑀 (𝑥) = 𝑥 + Lap (𝜖) that

adds Laplace noise to a query answer 𝑥 of sensitivity 1. Then, given
any pair of adjacent query answers 𝑞 ∼ 𝑞′, the function 𝜙 (𝑟) =

𝑟 + 𝑞 − 𝑞′ is an alignment. The reason is that for any possible
Laplace random sample 𝜂 generated by 𝑀 (𝑞), we have 𝑞 + 𝜂 =

𝑞′ + (𝜂 + 𝑞 − 𝑞′) = 𝑞′ + 𝜙 (𝜂) (i.e., 𝑀 (𝑞′) produces the same result
when its Laplace sample is 𝜙 (𝜂)).

To finish the privacy proof, we note that for Laplace distribution
Lap (𝜖), the ratio of the probabilities of sampling 𝜂 and 𝜙 (𝜂) is
bounded by 𝑒𝜖 max𝑟∈R |𝜙 (𝑟)−𝑟 | = 𝑒𝜖 max𝑟∈R |𝑞−𝑞

′ | ≤ 𝑒𝜖 . Hence, the
privacy cost, the natural log of this ratio, is bounded by 𝜖 .

In general, it is useful to treat the privacy cost as a function of the
alignment needed for each sampling instruction. For each sampling
instruction 𝜂 = Lap (𝑟), we define the distance of 𝜂, written as 𝜂̂, as
𝜙 (𝜂)−𝜂3. Then, the privacy cost of aligning the sample𝜂 is bounded

by
|𝜂̂ |
𝑟 . To find the overall privacy cost (i.e., the 𝜖 in pure differential

privacy), we then take the summation of privacy cost of each sample
generated in program execution, due to the Composition Theorem
of pure differential privacy [24]. We note that since we can align
each sample individually, randomness alignment is also applicable
to sophisticated mechanisms where the composition theorem falls
short [48, 49]. This is a key to automated synthesis of a variety of
mechanisms studied in this paper.

3Here we abuse notation slightly by applying𝜙 point-wise, letting𝜙 (𝜂) be the random
sample𝑀 should use in place of 𝜂 in the adjacent execution.

2.3 Particle Swarm Optimization (PSO)

Prior tools using the Randomness Alignment technique (e.g., [47ś
49]) focus on privacy only; they model privacy proof as a constraint-
solving problem which is solved by an external SMT solver. How-
ever, synthesizing DPmechanism is better described as a constrained
optimization problem: maximizing utility among various candidates
that have the same overall differential privacy parameter 𝜖 .

In this paper, we use Particle Swarm Optimization (PSO) [35] to
help with the synthesis. PSO is a meta-heuristic optimization algo-
rithm that is inspired by swarm behaviors such as birds in nature.
It deploys a large population of candidate solutions (łparticlesž)
in the search space and the particles move around iteratively to
find the best location. For each iteration, each particle updates its
position and velocity according to a mathematical formula consist-
ing of its own local best position, the swarms’ best position and
its previous velocity. By adopting this strategy, the entire swarm is
guided towards the best solutions. PSO makes no assumption about
the problem being optimized and is suitable for very large search
spaces. This is well suited for our complex, non-differentiable opti-
mization problem, which makes other gradient-based optimization
methods inapplicable. Specifically for the synthesis task, each can-
didate mechanism in the search space corresponds to a particle in
PSO, and the instantiations of the sketch mechanism serves as its
position. For each iteration, every candidate explores the search
space by changing itself slightly according to the current global
best candidate (with the best utility), its own local best in history
and the amount of changes from previous iterations. The global
best solution is returned after a number of iterations.

2.4 Sparse Vector Technique (SVT)

In this paper, we use Sparse Vector Technique (SVT) [24] and its
variants as running examples. Given a sequence of queries, SVT
tries to find the first 𝑁 queries whose query answers are likely4

to be above a publicly known threshold 𝑇 . When privacy is not
a concern, the pseudo code of SVT’s basic functionality is shown
in Figure 1 (we call it SVTBase). For now, we can safely ignore
the function signature. SVTBase checks each exact query answer:
it outputs true (resp. false) if the query answer is above (resp.
below) the threshold until 𝑁 true outputs are produced.

To enforce differential privacy, SVT adds carefully calibrated in-
dependent Laplace noise both to the threshold (𝑇) and each query
answer (𝑞 [𝑖]). The pseudo code is shown in Figure 1 (we call it
SVT), where the changes are highlighted. The sampling instruction
Lap (𝑟) draws one sample from the Laplace distribution with mean
0 and scale factor of 𝑟 ∈ R. For each query, the mechanism out-
puts true if the noisy query answer is above the noisy threshold;
otherwise it outputs false. It is well-known that SVT satisfies 𝜖
differential privacy [24].

3 OVERVIEW

3.1 Challenges

The goal of this paper is to automatically synthesize a differentially
private program (e.g., function SVT) from a base program that is
not necessarily differentially private (e.g., function SVTBase). Like

4The uncertainty is introduced by privacy requirements.

function SVTBase (T,N,size: num, q: list num•)
returns (out: list num), bound(𝜖)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1∧ N < size / 5

1 i := 0; count := 0;

2 while (i < size ∧ count < N)

3 if (q[i] ≥ 𝑇) then

4 out := true::out;

5 count := count + 1;

6 else

7 out := false::out;

8 i := i + 1;

function SVT (T,N,size: num, q: list num)
returns (out: list num)

1 i := 0; count := 0;

2 𝜂1 := Lap (3/𝜖)

3 𝑇★ := 𝑇 + 𝜂1;

4 while (i < size ∧ count < N)

5 𝜂2 := Lap (3𝑁 /𝜖) ;

6 if (q[i] +𝜂2 ≥ 𝑇★) then

7 out := true::out;

8 count := count + 1;

9 else

10 out := false::out;

11 i := i + 1;

Figure 1: Sparse Vector Technique.

other program synthesis techniques [31, 44], the synthesized pro-
gram must implement similar functionality to the original program
/ specification. Since a privacy mechanism injects noise to offer
privacy, this can be more precisely stated as: any output of the
original program is still possible for the synthesized program.

What makes DPGen distinguished from other program synthesiz-
ers is its capability of synthesizing a private and useful counterpart
of the original program:

• Privacy: the synthesized program needs to inject sufficient noise
in the right places to satisfy pure differential privacy, as formally
defined in Definition 2.1.

• Utility: the synthesized program needs to carefully calibrate the
injected noise to make the randomized outputs useful (i.e., to
make the outputs łclosež to the ones from the original program).
This involves choosing the correct noise scales (including using
no noise wherever it is safe to do so).

Next, we highlight the main challenges in both aspects.

Privacy. Developing differentially private mechanisms is a non-
trivial task: injecting sufficient amount of noise in the right places
and then proving correctness is notoriously tricky. For instance,
Lyu et al. [36] catalog several incorrect variants of SVT, where each
variant slightly modifies the functionality and/or injected noise of
function SVT in Figure 1 (for now, safely ignore the annotations

function SVT-ALT (T,N,size: num, q: list num)
returns (out: list num)

1 i := 0; count := 0;

2 while (i < size ∧ count < N)

3 𝜂2 := Lap (𝑠𝑖𝑧𝑒/𝜖) ;

4 if (q[i] +𝜂2 ≥ 𝑇) then

5 out := true::out;

6 count := count + 1;

7 else

8 out := false::out;

9 i := i + 1;

Figure 2: An alternative way of making SVTBase 𝜖-private.

in the function signature). While the changes are minimal, the
incorrect variants fail to meet their claimed differential privacy
guarantees. For example, one variant tweaks the mechanism to
output the noisy query answer when it is above the threshold. That
is, it changes Line 7 of SVT by replacing true with 𝑞 [𝑖] + 𝜂2. As a
result, it fails to satisfy 𝜖-differential privacy for any value of 𝜖 [36].

Utility. What makes synthesizing differentially private mecha-
nisms even more challenging is that we also need to add as little
noise as possible while maintaining the desired privacy levels (oth-
erwise the noisy outputs may not be useful). For example, in the
simplest case, if we increase the scale of noise injected at Lines 2
and 5 in SVT (Figure 1), the mechanism is still 𝜖-differentially pri-
vate. However, the extra randomness reduces the accuracy of SVT.
Furthermore, utility is also affected by where the noise is added.
For example, an alternative way of making function SVTBase 𝜖-
private is shown in Figure 2. Compared with SVT, SVT-ALT does
not add any noise to the threshold𝑇 ; instead, it injects Laplace noise
Lap (𝑠𝑖𝑧𝑒/𝜖) (rather than Lap (3𝑁 /𝜖)) to each query answer. This
provides the same privacy guarantees (SVT and SVT-ALT both sat-
isfy 𝜖-differential privacy for the same value of 𝜖). However, since
𝑁 is typically much smaller than size (the total number of queries),
SVT-ALT injects significantly more noise into its computation.

Handling these kinds of decisions during the synthesis process
is a highly non-trivial task and requires deep understanding of the
privacy cost introduced by each sampling instruction. For example,
SVT and its correct variants [17, 21, 24, 36] have the interesting
property that outputting false does not incur any privacy cost (i.e.,
the costs5 are only incurred for making the threshold noisy and
for outputting true). On the other hand SVT-ALT is too naive and
incurs a privacy cost of 𝜖/size for each iteration of the while loop
(for a total cost of 𝜖).

Finally, in many mechanisms (including SVT) and its variants,
one needs to decide how to divide up a total privacy budget 𝜖 among
different parts of the mechanism (i.e., what should the privacy cost
of each part of the mechanism be). In the case of SVT, a synthesizer
would decide how much of the budget should be consumed by
adding noise to threshold 𝑇 and how much should be consumed

5The privacy cost of the threshold is 𝜖/3 and each of the 𝑁 true outputs incurs a
privacy cost of 2𝜖/(3𝑁) .

Mechanism

w/o noise

𝑴(𝒊𝒏𝒑) Sketch

Generation

Synthesis Loop
Mechanism

Generation

Cex. Generation

𝑴
𝑰𝒏𝒑𝟏,
… ,
𝑰𝒏𝒑𝒌

Synthesized

Mechanism

𝑴𝒄(𝒊𝒏𝒑)Proof

Generation

Mechanism w/

noise template

𝑴′(𝒊𝒏𝒑, 𝝀)

Mechanism w/

noise and proof

template

𝑴′′(𝒊𝒏𝒑, . . , 𝜽, 𝝀)

Figure 3: Overview of DPGen.

by the while loop. This is equivalent to deciding how much noise
should be used for the threshold and how much should be used
for the noisy query answers. In Figure 1, the noise scale for the
threshold is 𝜎1 = 3/𝜖 while the noise scale for each query answer
is 𝜎2 = 3𝑁 /𝜖 . However, any choice of 𝜎1, 𝜎2 that satisfies 1/𝜎1 +
2𝑁 /𝜎2 = 𝜖 will result in 𝜖-differential privacy [36]. As shown by Lyu
et al. [36], an approximately optimal ratio of 𝜎1 : 𝜎2 is 1 : (2𝑁)2/3.

3.2 Approach Overview

To synthesize a privacy mechanism, DPGen adds proper amount of
noise to the original program. This naturally involves two tasks: (1)
finding program locations to add random noise to, and (2) finding
the amount (scale) of each noise. Accordingly, DPGen synthesizes
a privacy mechanism as shown in Figure 3.

Phase 1: Sketch Generation (Section 4). In Phase 1, DPGen gen-
erates a sketch mechanism with candidate locations for noise. The
sketch mechanism might contain more locations for noise than
needed, as the unnecessary ones will eventually be optimized away
in Phase 2. Moreover, each noise location 𝜂𝑖 is paired with a scale
template S𝑖 which consists of a set of unknown scale holes 𝜆 to be
synthesized in Phase 2. We use𝑀 ′(𝑖𝑛𝑝, 𝜆) to denote such a sketch
mechanism with unknown scale holes.

Phase 2: Synthesis Loop (Section 5). Due to the tension between
privacy and utility, mechanism synthesis cannot proceed without
privacy in mind. Hence, DPGen next generates a transformed rela-
tional program with both scale templates S containing holes 𝜆, and
proof templates (in the form of alignments) A containing holes 𝜃
to be synthesized. Next, DPGen employs a customized CEGIS loop
that iteratively refines a candidate mechanism (i.e., an instantiation
of 𝜃 and 𝜆) by generating more and more counterexamples (i.e.,
inputs that violates privacy constraints).

The CEGIS loop consists of two components. The counterexam-
ple generation component starts with a null mechanism (with 𝜃 = ®0

and 𝜆 = ®1) and first searches for a counterexample (i.e., inputs) that
maximizes the total number of privacy violations. The reason be-
hind the optimization goal is the following: CEGIS benefits greatly
from a good set of counterexamples; intuitively, a counterexample
that violates maximum number of privacy constraints serves as
better guides than others.

With a set of counterexamples, the mechanism generation com-
ponent searches for a mechanism (i.e., an instantiation of the mecha-
nism template) thatmaximizes utility while still being private. More
specifically, the utility is defined both for privacy and accuracy:

• Privacy. A mechanism must be private for all previously seen
counterexamples. Hence, any mechanism that is deemed as
non-private on counterexamples has a negative utility score.

Syntax of Source Language

Reals 𝑟 ∈ R

Booleans 𝑏 ∈ {true, false}
Vars 𝑥 ∈ V
Linear Ops ⊕ ::= + | −
Other Ops ⊗ ::= × | /
Comparators ⊙ ::= < |> |=|≤|≥
Bool Exprs b ::= true | false | 𝑥 | ¬b | n1 ⊙ n2

Num Exprs n ::= 𝑟 | 𝑥 | n1 ⊕ n2 | n1 ⊗ n2 | b ? n1 : n2
Expressions 𝑒 ::= n | b | 𝑒1 :: 𝑒2 | 𝑒1 [𝑒2]
Commands 𝑐 ::= skip | 𝑥 := 𝑒 | 𝑐1; 𝑐2 | return 𝑒 |

if 𝑒 then (𝑐1) else (𝑐2) |
while 𝑒 do (𝑐) | while-priv 𝑒 do (𝑐)

Syntax of Target Language

Rand Vars 𝜂 ∈ H
Num Exprs n ::= · · · | 𝜂
Commands 𝑐• ::= skip | 𝑥 := 𝑒 | 𝑐•1 ; 𝑐

•
2 | return 𝑒 |

if 𝑒 then (𝑐•1) else (𝑐
•
2) |

while 𝑒 do (𝑐•) | 𝜂 := Lap (n)

Figure 4: DPGen: source and target language syntax.

• Accuracy. DPGen is parameterized by either a default utility
function (sum of variances), or a user-provided one. The utility
function is used as the quality metric of each private candidate.

Once DPGen finds a mechanism where no counterexamples can
be found, the CEGIS loop terminates and DPGen sends the mecha-
nism to a verifier (we use CPAChecker [11]). Note that although
we did not encounter any incorrect synthesized mechanism in our
experiments, verification is needed in general as an optimizer might
miss a solution when one exists.

4 SKETCH GENERATION

As discussed in Section 3, DPGen synthesizes a DP mechanism in
two phases. In this section, we first show the syntax of its source
and target languages. Then, we propose novel algorithms to identify
potential violations of privacy in the source code, and then, to inject
noise at proper locations to form a program sketch to be further
analyzed in Phase 2 (Section 5).

4.1 Syntax of Source and Target Program

Source Language. The syntax of DPGen source code is listed in
Figure 4. The source language models an expressive imperative
language with the following standard features:

• Values of real numbers, Booleans and operations on them;

• Ternary expressions b ? n1 : n2, which returns n1 (resp. n2)
when b evaluates to true (resp. false);

• List of values as well as append (::) and projection ([]) operations
on lists. Note that all lists are initialized to be empty.

• No-op commands (skip), assignments, sequential commands
(𝑐1; 𝑐2), return commands, if branches and while loops.

One novel feature of the source language is a while-private
loop written as while-priv 𝑒 do 𝑐; it requests the synthesizer to
synthesize an adaptive privacy mechanism (e.g., Adaptive Sparse
Vectorwith Gap [21]) that runs while 𝑒 do 𝑐 until the privacy budget
is exhausted. This powerful feature allows the synthesized privacy
mechanism to adaptively control the number of outputs based on
the remaining privacy budget, in order to increase the amount
of queries that they can process. We show how to synthesize the
Adaptive Sparse Vector with Gap mechanism in Section 5.3.

Finally, the source language requires a few user-provided privacy
specifications that the synthesizer should obey, including private
inputs and their sensitivity6, the desired privacy bound (i.e., 𝜖 in
𝜖-differential privacy), as well as assumptions on the query answers.
While we do not formalize the syntax of such specification, we use
type• to denote private input of some type, bound(𝜖) to denote
the privacy budget, and specify sensitivity on private inputs (̂𝑥
represents the sensitivity of 𝑥) and other assumptions on inputs as
program precondition. For example, the source program SVTBase

in Figure 1 specifies that query answers 𝑞 are the only private
inputs and their sensitivity is 1. Moreover, the mechanism assumes
that 𝑁 is much smaller than 𝑠𝑖𝑧𝑒 , and the goal is to synthesize an
𝜖-differentially private mechanism.

Target Language. The goal of DPGen is to synthesize a random-
izedmechanism that both preserves the source program’s semantics
and offers 𝜖-differential privacy (where 𝜖 is annotated in the source
program). Hence, the target language (shown in Figure 4) is similar
to the source language, with a few important changes:

• The target language is probabilistic: it extends the (determin-
istic) source language with random variables 𝜂 and sampling
commands, written as 𝜂 := Lap (n).

• The target language excludes the (non-executable) while-private
loops; such loops in the source code are replaced by fully syn-
thesized standard loops that terminate the loop whenever the
privacy budget is exhausted.

Consider Figure 1. Function SVT is the target program synthe-
sized from the source program SVT-Base. Note that they are very
similar, but function SVT properly injects noise at various locations
to satisfy 𝜖-differential privacy.

4.2 Adding Noise Locations to Source Code

The first step of DPGen is to find a set of program locations in
the source program where extra noise is needed. In this step, the
primary concern is privacy; in other words, the lack of randomness
in the source program violates differential privacy. Hence, we use

6Determining the sensitivity of queries is crucial to produce an appropriate noise scale.
Here, we assume that this information is provided by the user, as the sensitivities
of simple queries, such as sum, mean and median, are fairly easy to compute as
demonstrated in [24]. For more complex queries, users can either derive manually or
use sensitivity analysis tools (e.g., [25, 37]) to calculate sensitivity.

static program analysis to (1) identify where privacy is violated
in the source code, (2) infer a set of variables that might require
randomness, and (3) instrument the source code to inject noise to
the identified variables.

4.2.1 Identify Violations of Differential Privacy. Recall that DPGen
is built on the Randomness Alignment technique (Section 2.2) to
reason about privacy. Hence, instead of analyzing properties on dis-
tributions directly, as stated in Definition 2.1, we over-approximate
łViolations of Differential Privacyž as łViolations of Alignment Re-
quirementsž. Recall that randomness alignment requires that when
running on a pair of adjacent private inputs, a programwill produce
identical outputs. Since the source code has no randomness, this
requirement can be formalized as the standard non-interference
property [30]. Hence, we use a static taint analysis (e.g., [33, 42, 46])
to identify violations in the source code:

• Initially, only the private inputs are tainted.

• The analysis tracks all explicit flows in the program.

• The analysis does not track, but reports all implicit flows, where
a tainted value is used in a branch condition.

• The analysis reports all outputs with a tainted value.

For example, since query answers 𝑞 are the only tainted inputs in
SVTBase (Figure 1), the taint analysis finds one violation of privacy
at Line 3, where the branch condition uses a tainted value 𝑞 [𝑖].
Since the taint analysis is standard, we omit the details here.

4.2.2 Identify Offending Variables. The static taint analysis returns
a set of offending assignments 𝑥 := 𝑒 and offending branches
if 𝑒 then 𝑐1 else 𝑐2, where 𝑒 is tainted. We use E to represent
the set of expressions that are either on the RHS of offending as-
signments, or in the branch condition of offending branches. Next,
we need to infer a set of variables, that when randomized, will allow
randomness alignment to exist on the randomized code. We call
such a set of variables offending variables.

Consider the offending branch in our running example:

if q[i] ≥ T then ... else ...

where 𝑞 [𝑖] is tainted while T is not. To make the branch outcome
identical on two adjacent inputs 𝑞 [𝑖] ∼ 𝑞′[𝑖], we can either inject
noise to 𝑞 [𝑖], or to 𝑇 , or to both. While all options can allow the
offending branch to be aligned, the difference will show up when
we analyze their corresponding utility. For example, adding noise
to 𝑇 is crucial to make SVT useful; intuitively, it allows the noisy 𝑇
to be reused across different loop iterations, which results in a less
noisy program. We defer the discussion on utility to Section 5.2.2.

Based on the insight above, we define all variables used in any
𝑒 ∈ E as offending variables. Note that by definition, the set of
tainted variables is always a subset of offending variables.

4.2.3 Instrument Source Code with Extra Noise. Finally, DPGen
injects noise with unknown scales (to be synthesized in later stages)
to the source code. In particular, it injects Laplacian noise both
at the definition of an offending variable, as well as right before
its corresponding uses in an offending command. While adding
noise to both locations might seem unnecessary at this point, DP-
Gen eventually uses a utility optimizer (Section 5.2.2) to remove
unnecessary noise in the code sketch.

function SVT-Sketch (𝜖,T,N,size:num,q:list num, 𝜆 : list num)
returns (out: list num)

1 𝜂1 := Lap ((𝜆0 + 𝜆1 × 𝑁 + 𝜆2 ×𝑇 + 𝜆3 × 𝑠𝑖𝑧𝑒)/𝜖)

2 𝑇♦ := 𝑇 + 𝜂1;

3 i := 0; count := 0;

4 while (i < size ∧ count < N)

5 𝜂3 := Lap ((𝜆4 + 𝜆5 × 𝑁 + 𝜆6 ×𝑇 + 𝜆7 × 𝑠𝑖𝑧𝑒)/𝜖) ;

6 𝑇♦ := 𝑇♦ + 𝜂3;

7 𝜂2 := Lap ((𝜆8 + 𝜆9 × 𝑁 + 𝜆10 ×𝑇 + 𝜆11 × 𝑠𝑖𝑧𝑒)/𝜖) ;

8 𝑞♦ := 𝑞 [𝑖] + 𝜂2;

9 if (𝑞♦ ≥ 𝑇♦) then

10 out := true::out;

11 count := count + 1;

12 else

13 out := false::out;

14 i := i + 1;

Figure 5: Sketch of SVT-Base with extra noise.

Moreover, as the scale of each Laplacian noise is unknown at
this point, we replace them with scale templates as follows:

(𝜆0 +
∑

𝑣𝑖 ∈V

𝜆𝑖 × 𝑣𝑖)/𝜖 with fresh 𝜆𝑖

where V contains all non-private function parameters (as making
scale private could violate privacy directly by revealing distribu-
tion statistics). Return to our running example of SVT, the code
sketch with extra noise is shown in Figure 5 where all changes are
highlighted. Notably, the sketched function explicitly adds scale
parameters 𝜆 (we use 𝜆𝑖 instead of 𝜆[𝑖] for better readability) as
extra inputs to be optimized later. No noise is injected at Line 2 for
𝑞 [𝑖], essentially an iterator of 𝑞, as it is not in scope at that point.

Hereafter, we use𝑀 (𝑖𝑛𝑝) and𝑀 ′(𝑖𝑛𝑝, 𝜆) to represent the orig-
inal program with inputs 𝑖𝑛𝑝 and mechanism sketch with scale
parameters 𝜆 respectively.

5 SYNTHESIS AND OPTIMIZATION

In Phase 2, DPGen completes program synthesis with two sub-goals:

• It synthesizes and optimizes the randomness alignment of each
sampling instruction; a sampling instruction with alignment 0
implies that the instruction can be removed without violating
differential privacy.

• It synthesizes and optimizes the scales 𝜆 in the sketch code
from Phase 1 to offer good utility.

The main challenge is that instead of synthesizing some privacy
proof (as done in prior workwith proof synthesis [3, 47]) or optimize

scales with given randomness locations (as done in [41]), our goal is
to synthesize and optimize both the proof (with fewest randomness
locations) and scales.

We first introduce the optimization problem without any while-
private loop in source code and assume a default utility function
that minimizes sum of variances. Then, we propose a synthesis

loop to optimize alignments and scales simultaneously. Finally, we
generalize the approach to optimize sketch code with while-private
loops and customized utility functions.

5.1 Mechanism Synthesis Problem

Reasoning about Privacy. To reason about privacy, DPGen uses a
syntax-directed transformation from the sketch program to non-
probabilistic relational code with explicit alignments and proof
obligations (i.e., assertions to ensure privacy). For commands, each
transformation rule has the following format:

⊢ Γ {𝑐 ⇀ 𝑐 ′} Γ′

where a typing environment Γ tracks for each program variable
𝑥 its data type with its distance written as 𝑥̂ . Recall that in the
Randomness Alignment technique, the distance of a variable is
defined as its value difference across two executions on adjacent
query answers (Section 2.2). Moreover, 𝑐 and 𝑐 ′ are the sketch code
and relational code respectively, and the flow-sensitive type system
also updates typing environment to Γ

′ after command 𝑐 .
Most importantly, the transformation inserts assertions to ensure

the following (informal) soundness property:

if𝑀 ′(𝑖𝑛𝑝, 𝜆) is transformed to𝑀 ′′(𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝜃, 𝜆), then

∃𝜃, 𝜆. ∀𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒. all assertions in𝑀 ′′ pass

=⇒ 𝑀 ′(𝑖𝑛𝑝, 𝜆) is differentially private

Themost interesting transformation rule is for the sampling com-
mands in the sketch code, which is shown in Figure 6. It performs
the following important tasks:

(1) Each sampling command is replaced by a non-probabilistic
counterpart (𝜂 := 𝑠𝑎𝑚𝑝𝑙𝑒 [𝑖𝑑𝑥]; 𝑖𝑑𝑥 := 𝑖𝑑𝑥 + 1;) that reads a
sample from the instrumented function input 𝑠𝑎𝑚𝑝𝑙𝑒 .

(2) An alignment template (i.e., A) is generated for each sam-
pling command; each template contains a few holes, i.e., 𝜃 ,
which is also instrumented as function input. Here, we reuse
the GenerateTemplate function proposed by CheckDP [47].
Intuitively, the alignments serve as a way to satisfy all inserted
assertions in the transformed program. To do so, each align-
ment template A𝑖 for random variable 𝜂𝑖 contains distance
variables of program variables that (1) appear in assertions, and
(2) depend on 𝜂𝑖 . Hence, GenerateTemplate takes the typing
environment at the sampling command and all assertions as
input, and properly calculates an alignment template, a lin-
ear function on a set of relevant distance variables as stated
above. Since the GenerateTemplate function is identical to the
one used in CheckDP [47], we only provide its pseudo-code in
the Appendix. We refer interested readers to [47] for a more
detailed discussion.

(3) The transformed code uses a distinguished variable v𝜖 to track
the overall privacy cost. Moreover, v𝜖 is updated to v𝜖 + |A|/S,
where S is the scale template instrumented in Phase 1. As
discussed in Section 2.2, the update soundly accounts for the
privacy cost of aligning the Laplace noise with alignment A
and scale S.

(4) Assertions are inserted in the transformed code to ensure the (in-
formal) soundness property stated above. In particular, it inserts
an assertion 𝑐𝑎 that checks if the alignment function 𝜙 (𝑟) =

A = GenerateTemplate(Γ,All Assertions) 𝑐𝑎 = assert (((𝜂 + A){𝜂1/𝜂} = (𝜂 + A){𝜂2/𝜂} ⇒ 𝜂1 = 𝜂2))

⊢ Γ {𝜂 := Lap S ⇀ 𝑐𝑎 ;𝜂 := 𝑠𝑎𝑚𝑝𝑙𝑒 [𝑖𝑑𝑥]; 𝑖𝑑𝑥 := 𝑖𝑑𝑥 + 1; v𝜖 := v𝜖 + |A|/S; 𝜂̂ := A; } Γ [𝜂 ↦→ num∗]
(T-Laplace)

Figure 6: A snippet of program transformation rules. S represents the scale template instrumented in Phase 1. Distinguished

variable v𝜖 and assertions are added to ensure differential privacy when all assertions are satisfied. The complete transforma-

tion rules are available in the Appendix.

𝑟 + A is injective (i.e., ∀𝑟1, 𝑟2 .𝜙 (𝑟1) = 𝜙 (𝑟2) =⇒ 𝑟1 = 𝑟2). This
a fundamental requirement of alignment-based proof [49].

For example, the transformed program of the sketch mecha-
nism in Figure 5 is shown in Figure 7 with the instrumented code
highlighted. Here, each random variable 𝜂𝑖 is paired with a corre-
sponding alignment templateA𝑖 computed by GenerateTemplate:

A1 :𝜃0

A2 :(Ω ? 𝜃1 + 𝜃2 ×𝑇♦ + 𝜃3 × 𝑞̂ [𝑖] : 𝜃4 + 𝜃5 ×𝑇♦ + 𝜃6 × 𝑞̂ [𝑖])

A3 :(Ω ? 𝜃7 + 𝜃8 ×𝑇♦ + 𝜃9 × 𝑞̂ [𝑖] : 𝜃10 + 𝜃11 ×𝑇♦ + 𝜃12 × 𝑞̂ [𝑖])

where Ω represents the branch condition at Line 13. Note that the
privacy cost of each alignment is soundly tracked at Lines 3, 8
and 10. Moreover, the distances of variables (e.g., 𝑇♦ and 𝑞♦) are
properly updated after each assignment. Finally, the transformed
code contains assertions to ensure that (1) two related execution of
the sketch mechanism will follow the same control flow (e.g., Lines
14 and 18); (2) The distances of output expressions must be zero (not
present in Figure 7 since the output values are already zero-distance
literals; and (3) the overall privacy cost of the program does not
exceed the privacy budget (e.g., Line 21) .

Since the other transformation rules are mostly identical to those
introduced in CheckDP [47] and the soundness property is a direct
implication of Theorem 3 in [47], we include the full transforma-
tion rules in the Appendix for completeness, and omit the formal
statement of the soundness property and its proof in this paper.

Reasoning about Utility. Note that utility is a property of an in-
stantiation of the mechanism sketch (i.e., fully synthesized program
with concrete scales). Hence, reasoning about utility is relatively
easy on the mechanism sketch 𝑀 ′(𝑖𝑛𝑝, 𝜆). The only interesting
part is that utility computation should also take into account the
alignments 𝜃 , as a random variable with 𝜃𝑖 = 0 implies that the
variable is unnecessary from the privacy perspective; hence, it will
be removed in the final synthesized code.

In general, the particular metrics of utility might be application-
and data-specific. DPGen is designed to be modular: users can plug
in their customized utility metrics, and even sample data to optimize
the utility of the synthesized privacy mechanism. Hence, in general,
DPGen is parameterized by a utility function Utility(𝑀 ′, 𝜃, 𝜆),
where𝑀 ′ is mechanism sketch and 𝜃 , 𝜆 are the synthesized align-
ments and scales respectively. By default, DPGen uses the sum of
variances of all random variables as the utility function (note that
DPGen currently only supports Laplace noise):7

Utility(𝑀 ′, 𝜃, 𝜆) = −(
∑

{S𝑖 : A𝑖≠0}

2S2𝑖) (1)

7This is inspired by Lyu et al. [36] who derived the approximately optimal budget
allocation of SVT by minimizing the variance of the branch (Line 3 in Figure 1).

function Transformed SVT (T,N,size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

1 v𝜖 := 0; idx = 0;

2 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

3 v𝜖 := |A1 |/S1;

4 𝑇♦ := 𝑇 + 𝜂1; 𝑇♦ := 𝜂1;

5 count := 0; i := 0;

6 while (count < N ∧ i < size)

7 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂3 := A3;

8 v𝜖 := v𝜖 + |A3 |/S3;

9 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂2 := A2;

10 v𝜖 := v𝜖 + |A2 |/S2;

11 𝑇♦ := 𝑇 + 𝜂3; 𝑇♦ := 𝑇♦ + 𝜂3;

12 𝑞♦ := 𝑞 [𝑖] + 𝜂2; 𝑞♦ := 𝑞̂[i] + 𝜂2;

13 if (𝑞♦ ≥ 𝑇♦) then

14 assert (𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦);

15 out := true::out;

16 count := count + 1;

17 else

18 assert (¬(𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦));

19 out := false::out;

20 i := i + 1;

21 assert (v𝜖 ≤ 𝜖);

Figure 7: Transformed mechanism of SVT-Sketch by

CheckDP. The instrumented codes are underlined. For bet-

ter readability, the proof and scale templates are represented

by A𝑖 and S𝑖 , respectively.

where A𝑖 and S𝑖 denote the synthesized scale and alignment for
random variable 𝜂𝑖 . As discussed earlier, we explicitly exclude the
ones with 0 alignments, since they are unnecessary.

Note that to compute utility based on the default utility function,
there is no need to execute𝑀 ′. Hence, synthesizing privacy mech-
anisms with the default utility function is very efficient. Moreover,
despite its simplicity, it allows us to synthesize many privacy mech-
anisms (Section 6). For now, we assume the default utility function
is in use; how to synthesize with more complicated utility function
is deferred to Section 5.3.

5.2 Mechanism Optimization Problem

Recall that the goal of DPGen is to generate an accurate and pri-

vate mechanism. That is, for a search space of alignment holes Θ
and scale holes Λ, the constrained optimization problem is defined

Counterexample

Generation
Privacy Check

𝑖𝑛𝑝 ,⋯ , 𝑖𝑛𝑝

𝜃 , 𝜆

𝜃 , 𝜆

Utility Optimization

Mechanism Generation

Figure 8: Overview of the search loop.

follows:

max
(𝜃,𝜆) ∈Θ×Λ

Utility(𝑀 ′, 𝜃, 𝜆)

s.t. ∀𝑖𝑛𝑝.all assertions in𝑀 ′′ pass

To find alignment holes (𝜃) and scale holes (𝜆) according to the op-
timization problem above, DPGen uses a customized Counterexample-
Guided Inductive Synthesis (CEGIS) [44] loop, as illustrated in Fig-
ure 8. Each synthesis iteration contains two steps:

• With a candidate mechanism (initialized with null mechanism
of 𝜃0 = ®0, 𝜆0 = ®1), the łcounterexample generationž component
tries to find inputs 𝑖𝑛𝑝 that łbreakž the privacy requirements
(i.e., assertion violations in𝑀 ′′).

• With a set of counterexamples seen so far, the łmechanism
generationž component synthesizes a privacy mechanism by
optimizing the utility objective function (we use PSO as a black-
box optimization technique in this paper) while satisfying all
previously-generated counterexamples.

The CEGIS loop terminates when no counterexamples can be gen-
erated; then, the final privacy mechanism is returned.

Compared with the łbi-directionalž search loop of CheckDP [47]
that improves both privacy proof and counterexamples simultane-
ously, the CEGIS loop in Figure 8 is more standard, as there is no
need to improve counterexamples for DPGen. Hence, the use of
łbi-directionalž CEGIS loop is not necessary.

Discussion on Soundness. Note that since most optimizers (in-
cluding PSO [35] that DPGen uses) are unsound (i.e., they might
miss a solution when one exists), the synthesized privacy program
might be (in rare cases) non-private. To ensure soundness, the syn-
thesized mechanism can be further verified by sound tools like
CheckDP [47]. If verification fails, the counterexamples generated
from CheckDP can be passed back to the CEGIS loop to continue
the search. In practice, we did not experience any such unsound
cases by running separate verification passes in CheckDP; we leave
the integration of DPGen and CheckDP as future work.

5.2.1 Counterexample Generation. Given a candidate mechanism
instantiated with some 𝜃, 𝜆, as well as a transformed mechanism
with explicit alignments𝑀 ′′(𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝜃, 𝜆), a counterexam-
ple 𝐶 is defined as a solution of the following term:

∃𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒. some assertions in𝑀 ′′(𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝜃, 𝜆) fail.

We note that this naive definition treats all counterexamples
equally: two distinct counterexamples which violate 1 and 100
assertions respectively are both acceptable. To quantify and opti-
mize the qualities of counterexamples (for better performance), we

slightly modify the mechanism𝑀 ′′ to return the total number of
assertion violations and use an optimizer to find a counterexample
according to the following metric:

max
𝑖𝑛𝑝,𝑖𝑛𝑝,𝑠𝑎𝑚𝑝𝑙𝑒

𝑀 ′′(𝑖𝑛𝑝, 𝑖𝑛𝑝, 𝑠𝑎𝑚𝑝𝑙𝑒, 𝜃, 𝜆)

Consider the transformed program of our running example in
Figure 7 with a null mechanism (𝜃 = ®0, 𝜆 = ®1) for bootstrapping the
process. The optimizer tries to find a counterexample that fails as
many assertions as possible. Since no alignments are set to offset
q̂[𝑖] (the differences introduced by the query variable 𝑞 [𝑖]) in the
assertions, a counterexample is found by making all queries fall in
the true branch (i.e., query answers 𝑞 [𝑖] are all above the threshold
𝑇). Suppose later, an improved alignment, which properly aligns the
branch by −q̂[𝑖], is fed in, which makes the false branch also incur
a privacy loss. Therefore a counterexample will then be generated
with query answers below the threshold, to make privacy cost
exceed the total privacy budget (the last assertion in code).

5.2.2 Mechanism Generation. In general, mechanism generation
runs on both the transformed program𝑀 ′′ and the sketch mecha-
nism𝑀 ′ as follows:

• For any candidate solution (of 𝜃, 𝜆) that fails to satisfy any
privacy constraint in𝑀 ′′ given any previously-generated coun-
terexample, we assign a negative utility score to the solution.

• Otherwise, we use the utility function Utility(𝑀 ′, 𝜃, 𝜆) as its
utility score.

Based on the utility scores defined above, DPGen uses an optimizer
to find a privacy mechanism that optimizes the utility function
while remaining differentially private.

Returning to our running example. The initial few discovered
counterexamples likely include ones that go to different branches
to cover all code paths. They can serve as good guides to lead the
optimizer towards finding a more general solution, by aligning true
and false branch differently, using a conditional alignment in the
form of Ω ? • : •, as other solutions will result in a negative utility
score since they violate privacy.

Among the solutions that do satisfy all privacy constraints, the
mechanism generation component ranks them based on their utility
scores. Here, a solution that assigns a large noise (e.g., 𝑠𝑖𝑧𝑒/𝜖) to the
queries, although private, will have smaller utility scores than one
which assigns 3𝑁 /𝜖 (since 𝑁 < size/5 in precondition). Moreover,
a solution that assigns three random variables (two for the threshold,
and one for the queries) will be less favorable due to larger sum of
variances. This shows the power of our utility metric function in
selecting good candidate solutions.

5.3 Handling While-Private Loop and
User-Provided Utility Function

Next, we explore the full-fledged version of DPGen, with ad-
vanced features of while-private loop and user-provided utility
function. We use a recently proposed variant of SVT that we call
AdaptiveSVT (i.e., Adaptive Sparse Vector with Gap in [21]) as
an example; its pseudo-code without noise is shown in Figure 9.
Compared with SVT, there are three major changes:

• The mechanism uses while-private loop (Line 2) to request the
synthesizer to adaptively answer as many quires as possible

function AdaptiveSVT-Base (T,N,size,𝜎 : num, q: list num•)
returns (out: list num), bound(𝜖)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1

1 i := 0;

2 while-priv (i < size)

3 if (q[i] −𝑇 ≥ 𝜎) then

4 out := (q[i] - T)::out;

5 else

6 if (q[i] −𝑇 ≥ 0) then

7 out := (q[i] - T)::out;

8 else

9 out := 0::out;

10 i := i + 1;

Figure 9: AdaptiveSVT-Base, while-private feature is used to

enable the synthesis of adaptive mechanisms.

(the input 𝑁 specifies theminimum number of above-threshold
queries that the algorithm should output).

• The mechanism partitions query answers into three ranges:
(−∞,𝑇), [𝑇,𝑇 + 𝜎) and [𝑇 + 𝜎, +∞) and requests DPGen to
automatically allocate the total privacy budget among quires
in each range.

• When 𝑞 [𝑖] ≥ 𝑇 , the mechanism releases the gap between 𝑞 [𝑖]
and 𝑇 , instead of a constant.

Overall, the mechanism improves over SVT since it can use less
privacy budget (i.e., add more noise) for queries that are much
larger than the threshold 𝑇 (i.e., in range [𝑇 + 𝜎, +∞)), in order to
increase the amount of queries that it can process. Moreover, it is
shown that the gap information can be released for free [21].

From program synthesis perspective, it poses two challenges for
DPGen: (1) to synthesize executable code for while-private loop,
and (2) to adopt a user-specified utility function.

Synthesizing while-private Loop. Recall that in the transformed
program𝑀 ′′, there is an distinguished variable v𝜖 that tracks the
consumed privacy cost at each program point. The transformation
of while-private loop (Figure 11) uses v𝜖 to ensure that the loop
terminates if v𝜖 might exceed 𝜖 after one more iteration: it inserts
an unknown bound on the privacy cost of running one iteration
(⃝) and ensures that the actual cost of each iteration never ex-
ceeds the bound with the assertion inserted at the end. We note
that while-private (while-priv) is a new feature of DPGen; it en-
ables DPGen to automatically infer and even optimize the loop
termination conditions that are previous manually annotated in
CheckDP [47].

Discussion on the Soundness of while-priv. Although while-priv
is a new feature of DPGen, we note that this feature is transformed
to a normal while loop by the transformation rule in Figure 11. By
construction, the unknown bound on the privacy cost of each loop
iteration (⃝) is sound. Moreover, as a synthesized mechanism only
contains normal while loops, a synthesized mechanism can further
be verified by tools like CheckDP.

function AdaptiveSVT (T,N,size,𝜎 : num,q: list num∗)
returns (out:list num)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1

1 i := 0;

2 𝜂1 := Lap (4/𝜖);

3 v𝜖 := v𝜖 + 4/𝜖;

4 𝑇♦1 := 𝑇 + 𝜂1;

5 while (i < size ∧ v𝜖 ≤ 𝜖 − 2𝜖/(2𝑁 + 3))

6 𝜂2 := Lap ((4𝑁 + 6)/𝜖);

7 v𝜖 := v𝜖 + (Ω𝑇𝑜𝑝 ? 2 : 0) × 𝜖/(4𝑁 + 6);

8 𝑞♦1 := q[i] + 𝜂2;

9 if (𝑞♦1 - 𝑇♦1 ≥ 𝜎) then

10 out := (𝑞♦1 - 𝑇♦1)::out;

11 else

12 𝜂3 := Lap ((2𝑁 + 3)/𝜖);

13 v𝜖 := v𝜖 + (Ω𝑀𝑖𝑑𝑑𝑙𝑒 ? 2 : 0) × 𝜖/(2𝑁 + 3);

14 𝑞♦2 := q[i] + 𝜂3;

15 if (𝑞♦2 −𝑇♦1 ≥ 0) then

16 out := (𝑞♦2 −𝑇♦1)::out;

17 else

18 out := 0::out;

19 i := i + 1;

Figure 10: Synthesized AdaptiveSVT based on AdaptiveSVT-

Base. Ω𝑇𝑜𝑝 and Ω𝑀𝑖𝑑𝑑𝑙𝑒 stands for the branch condition at

Line 9 and Line 15, respectively.

User-Specified Utility Function. Consider the default utility func-
tion that minimizes the sum of variances of all random variables
(Equation 1). A solution that outputs no queries at all always beats
other solutions since it injects no noise (Utility = ∞). However,
the solution fails the requirement of outputting at least 𝑁 queries
in total, where 𝑁 is a parameter of the mechanism. Therefore, a
more informative utility function is required for Adaptive SVT.

Recall that the family of SVTs are designed to report whether a
query answer is above a certain threshold or not. Hence, a natural
utility measurement is the number of true positives and false posi-
tives of the above-threshold queries. Moreover, the design of Adap-
tive SVT assumes that many queries are well-above the threshold;
this allows mechanism to add relatively large noise to the outliers
without impacting number of false positives. Finally, by definition,
the synthesized privacymechanism should output at least𝑁 queries
in total, where 𝑁 is a parameter of the mechanism.

Hence, we use a sample input 𝑖𝑛𝑝𝑒𝑥 where many queries are
well-above the threshold, create a modified sketch mechanism𝑀 ′

𝜃
that removes 𝜂𝑖 from 𝑀 ′ whose alignment is 0, and returns the
number of true positives (#𝑡𝑝) and false positives (#𝑓 𝑝). Hence, the
user-specified utility function is defined as follows:

Utility(𝑀 ′, 𝜃, 𝜆) = (#𝑡𝑝−#𝑓 𝑝) −𝑝×max(𝑁 − (#𝑡𝑝+#𝑓 𝑝), 0) (2)

where 𝑝 is the penalty of outputting less than 𝑁 outputs, which we
set as 1 to guide the search to favor a solution that answers at least
𝑁 above-threshold queries.

· · ·

⊢ Γ {while-priv 𝑒 do 𝑐 ⇀ · · · ; (while (𝑒 ∧ v𝜖 ≤ 𝜖 − ⃝) do (v𝑡 = v𝜖 ; · · · ; assert (v𝜖 − v𝑡 ≤ ⃝))) } Γ ⊔ Γ𝑓
(T-While-Priv)

Figure 11: The transformation rule of while-private loop; the parts identical to a standard while-loop are omitted for readabil-

ity. The complete rule is available in the Appendix.

Choice of Utility Functions. The quality of the synthesized mecha-
nism is dependent on the quality of the utility function, as the latter
defines łutilityž in the search. In general, a proper utility function of
a privacy mechanism might be both data- and application-specific,
such as the data- and application-specific utility function that we
derived for Adaptive SVT. Nevertheless, for a variety of mecha-
nisms, as showcased in our evaluation, the default utility function
(i.e., the sum of variances of all random variables) already allows
DPGen to synthesize high quality privacy mechanisms.

6 IMPLEMENTATION AND EVALUATION

We implemented a prototype8 of DPGen in Python. The prototype
uses the pyswarms package [39] for PSO optimization. For each
component in the CEGIS loop (Figure 8), we run the optimization
for 500 iterations. To speedup searching, DPGen stops early if the
best value stays within tolerance 𝑡 = 1 for 50 iterations. By default,
the search space for each hole in the alignments and scales is set
to [−10, 10] and [0, 10] respectively. This is chosen based on the
typical values of those parameters in correct privacy mechanisms.
Moreover, the number of query answers is set to 100. DPGen auto-
matically expands the search space for the holes and the number
of query answers until a mechanism is successfully generated.

We note that the use of the optimizer is to discover a solution;
the generated mechanism is eventually verified by an off-the-shelf
sound verifier CPAChecker [11] with arbitrary array lengths. More-
over, to speed up the synthesis of adaptive mechanisms, we split
the mechanism sketch into multiple sketches each with a unique
combinations of different random variable locations, and run all
sketches in parallel. To make the generated mechanism easier to
read and more friendly for off-the-shelf verifier, we round up the
scales of generated mechanism to nearest integer. However, this
can be switched off if the user wants a more refined mechanism.

We evaluate DPGen on a Intel® Xeon® E5-2620 v4 CPU machine
with 64 GB memory. Table 1 lists the synthesized scales, alignments
and synthesis time for each mechanism that we introduce next.

6.1 Case Studies

To illustrate the expressiveness of DPGen and its capability of syn-
thesizing privacy mechanisms of different characteristics, we used
a standard benchmark as seen in prior works [3, 12, 20, 47, 48], in-
cluding SVT under different conditions, other variants of SVT such
as NumSVT and GapSVT, the Report Noisy Max mechanism [24],
Partial Sum and Smart Sum [16]. The psudo-code and transformed
program of each case study can be found in the Appendix. All of
the mechanisms we synthesize are proved to satisfy 𝜖-differential
privacy. Here we focus on the most interesting mechanisms; the
rest can be found in the Appendix.

8Publicly available at https://github.com/cmla-psu/dpgen.

SVT under Different Conditions. As discussed earlier (Section 3.1),
the SVT-Base program can be made private in multiple ways, and
its utility might depend on the characteristics of the data being
analyzed as well.

For example, the standard SVT mechanism makes the use of
the fact that the number of above-threshold queries to answer
(𝑁) is relatively small (hence the name łsparse vectorž). This is
specified by the precondition 𝑁 < 𝑠𝑖𝑧𝑒/5 in the function signature.
Given this assumption on data, DPGen successfully synthesizes the
privacy mechanism shown in Figure 1, which is the standard SVT
mechanism.

In the SVT-All case, we change the assumption to be most queries
answers are above the threshold. Under this assumption, the stan-
dard SVT is no longer preferred, as intuitively, the privacy cost paid
for the threshold can no longer be offset by its gain from paying no
cost for the below-threshold queries. As expected, DPGen synthe-
sizes a privacy mechanism that only injects noise to query answers
but not to the threshold, which is the same as the mechanism shown
in Figure 2.

In the SVT-Inverse case, we flip SVT to answer at most 𝑁 below-

threshold queries, rather than to answer at most 𝑁 above-threshold
queries. Accordingly, the same precondition 𝑁 < 𝑠𝑖𝑧𝑒/5 in the func-
tion signature now specifies that the number of below-threshold
queries to answer is relatively small. Not surprisingly, DPGen suc-
cessfully synthesizes the dual of standard SVT, with flipped align-
ments on the true and false branches but the same scales and
random variables.

Finding Approximately Optimal Budget Allocation For SVT. As
shown in [36], the approximately optimal budget allocation be-

tween the threshold and queries for SVT is 1 : (1+(2𝑁)
2
3). Although

DPGen currently lacks the ability to solve the optimization problem
with a symbolic 𝑁 , we analyze a case where input 𝑁 of SVT is
fixed to 1. Also, we disabled integer rounding for synthesizing the
approximately optimal allocation for this particular instance of SVT.
DPGen is able to synthesize a solution with scale 2.587430/𝜖 on 𝜂1,
the noise added to the threshold, and scale 3.259844/𝜖 on 𝜂2, the
noise added to each query answer; while the approximately optimal
ones are 2.587401/𝜖 and 3.259960/𝜖 respectively when 𝑁 = 1.

Variants of SVT Using while-private Loop. To showcase the power
of while-private loop and user-provided utility function, we evalu-
ate on two mechanisms that use these features. The first is Adaptive
SVT, which is already introduced in Section 5.3. The second, called
SVT-WhilePriv, is a modified version of SVT where the user simply
uses a while-private loop and asks the synthesizer to adaptively ad-
just the privacy cost paid to the above and below threshold answers
respectively:

1 i := 0;

2 while-priv (i < size)

3 if (q[i] ≥ 𝑇) then

Table 1: Synthesized random variables with corresponding alignment proof. Ω∗ stands for the branch condition in each mech-

anism, where Ω𝑁𝑀 = 𝑞♦ > 𝑏𝑞 ∨ 𝑖 = 0, Ω𝑆𝑉𝑇 = 𝑞♦ ≥ 𝑇♦, Ω𝑇𝑜𝑝 = 𝑞♦1 − 𝑇♦1 ≥ 𝜎 , Ω𝑀𝑖𝑑𝑑𝑙𝑒 = 𝑞♦2 − 𝑇♦1 ≥ 0. Unnecessary random

variables that are removed in the optimization are omitted.

Mechanism

Random Variables

Time (s) KOLAHAL [41]𝜂1 𝜂2 𝜂3
Scale Alignment Scale Alignment Scale Alignment

ReportNoisyMax 2/𝜖 Ω𝑁𝑀 ? 1 − 𝑞̂ [𝑖] : 0 N/A N/A N/A N/A 120 1920
PartialSum 1/𝜖 −ŝum N/A N/A N/A N/A 10 900
SmartSum 2/𝜖 −𝑠𝑢𝑚 − 𝑞̂ [𝑖] 2/𝜖 −𝑞̂ [𝑖] N/A N/A 25 5460∗

SVT 3/𝜖 1 3𝑁 /𝜖 Ω𝑆𝑉𝑇 ? 1 − q̂[𝑖] : 0 N/A N/A 29 2640
SVT-Inverse 3/𝜖 -1 3𝑁 /𝜖 Ω𝑆𝑉𝑇 ? 0 : −2 N/A N/A 28 N/A
SVT-All N/A N/A size/𝜖 Ω𝑆𝑉𝑇 ? 1 : −1 N/A N/A 38 N/A

SVT (N = 1) 2.587430/𝜖 1 3.259844/𝜖 Ω𝑆𝑉𝑇 ? 1 − q̂[𝑖] : 0 N/A N/A 16 N/A
GapSVT 3/𝜖 1 3𝑁 /𝜖 Ω𝑆𝑉𝑇 ? 1 − q̂[𝑖] : 0 N/A N/A 25 N/A
NumSVT 4/𝜖 1 4𝑁 /𝜖 Ω𝑆𝑉𝑇 ? 2 : 0 4𝑁 /𝜖 −𝑞̂ [𝑖] 35 N/A

SVT-WhilePriv 3/𝜖 1 3𝑁 /𝜖 Ω𝑆𝑉𝑇 ? 2 : 0 N/A N/A 617 N/A
AdaptiveSVT 4/𝜖 1 (4𝑁 + 6)/𝜖 Ω𝑇𝑜𝑝 ? 1 − 𝑞̂ [𝑖] : 0 (2𝑁 + 3)/𝜖 Ω𝑀𝑖𝑑𝑑𝑙𝑒 ? 1 − 𝑞̂ [𝑖] : 0 3026 N/A

∗ The ideal solution was ranked 4th among the candidates generated by KOLAHAL.

4 out := true::out;

5 else

6 out := false::out;

7 i := i + 1;

In both cases, we use the user-provided utility function of Equa-
tion 2 (Section 5.3). The utility function requires the user provide
an example input for evaluation. To capture the characteristics of a
typical usage of SVT, where the amount of above-threshold query
answers is small, we designed an input as follows: we use a sample
set of 100 query answers where 75 are well below the threshold
(≤ 𝑇 − 1000), 10 are well above the threshold (≥ 𝑇 + 1000) and
15 close to the threshold (= 𝑇 + 50). In both cases, the input 𝑁
(the minimum number of above-threshold queries to answer) is set
to 20 in order to avoid answering queries that are well-below the
threshold.

Moreover, due to the nature of the utility function, which com-
putes utility based on true positives and false positives, we need
to run the sketch mechanism (with randomness) many iterations
for a good estimation of the utility. In the evaluation, we set the
number of iterations to 2500.

For SVT-WhilePriv, DPGen successfully synthesizes a privacy
mechanism that is identical to standard SVT: the synthesized mech-
anism adds noise with scale 3/𝜖 (resp. 3𝑁 /𝜖) to the threshold
(resp. each query answer). The synthesized while condition is
while (𝑖 < 𝑠𝑖𝑧𝑒 ∧ v𝜖 ≤ 𝜖 − 2𝜖/(3𝑁)). The synthesized program
increments v𝜖 by 𝜖/3 before the branch, increments it by 2𝜖/(3𝑁)

in the true branch and leaves it unchanged in the false branch (as
the alignment in that case is 0). Note that although the synthesized
code is syntactically different from standard SVT, they have exactly
the same semantics.

For AdaptiveSVT, DPGen synthesizes a version (last row in Ta-
ble 1) that is different from the one proposed in [21]. However, we
confirmed that the average utility score for the synthesized mecha-
nism across 2500 iterations is 24.4, meaning that it almost answers
all above-threshold queries in an accurate way, with no false pos-
itives. In this case, DPGen has successfully synthesized a private
solution that offers better utility (as measured by the user-provided
utility function) on the sample data compared with the original

mechanism in [21]. In practice, a user could provide more sample
data to avoid over-fitting, with the cost of a longer synthesis time.

Report Noisy Max. Another well-known privacy mechanism is
Report Noisy Max: it finds the identity of the item with the maxi-
mum score in the database. We present this mechanism in a simpli-
fied manner: given a series of query answers as inputs, the mecha-
nism returns the index of the query with maximum answer.

The synthesis of Report Noisy Max requires an extension of the
alignment-based proof technique called Shadow Execution [48],
which is also supported by DPGen. While the synthesis time for
Report Noisy Max is slightly longer than other mechanisms without
while-private loop, DPGen synthesizes a private mechanism that is
the same as the standard Report Noisy Max.

Partial Sum and Smart Sum. These two mechanisms release ag-
gregate statistics. Partial Sum simply sums up all query answers and
directly release the final sum. A more advanced mechanism [16] is
proposed by Chen et al. to release the prefix sum of a series query
answers: 𝑞 [0], 𝑞[0] +𝑞 [1], · · · ,

∑𝑇
𝑖=0 𝑞 [𝑖]. The details of this mecha-

nism can be found in the Appendix. Notably, these two mechanisms
rely on a slightly different adjanceny definitions: at most one of the
query answers can differ by at most 1:
∀i. −1≤ (̂q[i])≤ 1∧(∀i. (̂q[i])≠ 0⇒ (∀j. q̂[j] = 0))

Despite such difference, DPGen is able to synthesizes both Partial
Sum and Smart Sum.

Comparison with KOLAHAL [41]. As the implementation of KO-
LAHAL is not publicly available, we were unable to make a direct
comparison with KOLAHAL on all benchmarks. The last column of
Table 1 shows data that we collect from [41] when the correspond-
ing mechanism is also evaluated on KOLAHAL (N/A is listed if the
mechanism is not part of the experiments in [41]). We note that
one difference between DPGen and KOLAHAL is that the latter
synthesizes a set of candidate solutions instead of one; sometimes,
the ideal solution might not be a top candidate: for example, the
ideal solution for Smart Sum is ranked as the 4th one. Moreover,
KOLAHAL requires manually-provided mechanism sketches where

noise locations are annotated, while DPGen automatically generates
sketches as discussed in Section 4.

6.2 Performance

We note that the synthesis time with the default utility function
is significantly smaller than the one with a user-provided utility
function (used for SVT-WhilePriv and AdaptiveSVT). The reason is
that the default utility function does not need to execute the sketch
mechanism at all. Moreover, among the ones using the default
utility function, Report Noisy Max takes longer to synthesis, since
it needs to use the Shadow Execution [48] feature of DPGen.

Comparison with KOLAHAL. We note that for the same mecha-
nisms, the synthesis time of DPGen is considerably smaller than
that of KOLAHAL. While this is not an apple-to-apple comparison,
we contribute the efficiency to the reduced search space of our
sketch generation algorithm and the qualities of the counterexam-
ples generated in the search loop.

7 RELATED WORK

Synthesizing Differentially Private Algorithms. Closest to our
work is the synthesizer KOLAHAL recently proposed by Roy et
al. [41]. KOLAHAL takes, as inputs, a sketch mechanism with noise
expressions in known locations as holes and a finite grammar for
noise expressions, and leverages counterexamples generated by
StatDP [20] and continuous optimization approximation to guide
the optimization of noise functions. It supports multiple noise dis-
tributions (Laplace, Exponential) and is the first tool capable of
synthesizing complex differential privacy mechanisms including
NoisyMax, SVT and SmartSum. Compared with KOLAHAL, DPGen
(1) automatically generates the locations of randoms variables, (2)
is more efficient in synthesizing non-adaptive mechanisms due to
reduced search space of the templates, and (3) is able to synthesize
sophisticated mechanisms such as AdaptiveSVT. An earlier synthe-
sizer [43] relies on user supplied examples and uses a sensitivity-
directed program synthesis technique based on DFuzz [28]. How-
ever, it can only synthesize simple mechanisms where the privacy
analysis follows directly from the composition theorem.

Proving and Disproving Differential Privacy. Differential privacy
has been a fruitful target for formal verification due to its composi-
tional property. Fuzz [40] and DFuzz [28] use linear dependent type
systems to analyse program sensitivity and prove (pure) differential
privacy properties. Amorim et al. [18] extend such systems to work
under approximate differential privacy. Barthe et al. [5ś9] devel-
oped several customized relational logics based on probabilistic
couplings for reasoning about differential privacy. Zhang and Kifer
[49] introduced the Randomness Alignment technique as a simpler
but more restricted alternative of probabilistic coupling. Wang et al.
[48] extend the type system in [49] to allow more complicated Ran-
domness Alignment functions to be used for sophisticated mecha-
nisms. Albarghouthi and Hsu [3] synthesize probabilistic couplings
and randomness alignment into coupling strategies, creating the
first fully automated tool capable of generating coupling proofs for
complex mechanisms.

A complementary line of work [12, 13, 20] is concerned with de-
veloping automated techniques to search for counterexamples that

witness violations of differential privacy. StatDP [20] uses statistical
hypothesis testing to demonstrate high probability of privacy vio-
lations. DP-Finder [12] uses symbolic differentiation and gradient
descent to search for counterexamples. More recently, DP-Sniper
[13] trains a classifier ś a parametric family of posterior probability
distributions to predict if an observed output is likely generated
from one of two possible inputs, and use this classifier to select a
set of outputs that can best distinguish these two inputs. All these
methods rely on sampling ś running an algorithm hundreds of thou-
sands of times to estimate the output distribution of mechanisms
and generate counterexample candidates/training data.

Recent work [4, 26, 47] targets both proving and disproving
differential privacy. CheckDP [47] also relies on the Randomness
Alignment technique. It reduces the search space of proofs to tem-
plates with holes. Moreover, it embeds a novel bi-directional CEGIS
loop to improve proof and counterexample simultaneously. Barthe
et al. [4] identify a non-trivial class of programs where checking
(pure and approximate) differential privacy is decidable. However,
these programs only allow a bounded number of samples from
the Laplace distribution, and their inputs and outputs are from a
finite domain. Farina [26] builds a relational symbolic execution
framework, which when combined with probabilistic couplings, is
able to prove differential privacy for SVT or generate failing traces
for its two incorrect variants.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we present DPGen, an automated differential privacy
mechanism synthesizer that is able to synthesize sophisticated
DP mechanisms such as adaptive mechanisms. DPGen employs a
novel approach to automatically generate sketch mechanisms with
potential random variables, and uses an enhanced CEGIS loop to fill
the holes in the sketch according to customizable utility functions.
Compared with recent synthesis work, DPGen is reasonably faster
in synthesizing non-adaptive mechanisms, and is the only tool
that is powerful enough to synthesize sophisticated adaptive ones.
Evaluations show DPGen synthesizes a variety of non-adaptive
mechanisms within minutes and adaptive ones within an hour.

Future work includes exploring more utility metrics for optimiz-
ing mechanism, as well as extending DPGen to support solving the
optimization problem symbolically, which provides more general
forms of budget allocations to different random variables in the
mechanism. Another possibility is to extend the underlying proof
technique (i.e., randomness alignment) to support more complex
mechanisms such as PrivTree, where the intermediate results de-
pend on the data, but the aggregate result does not. Moreover, we
focus on Laplace distribution due to its adoption in a variety of
mechanisms as shown in our benchmark. In general, new random
distributions can be added to alignment-based proofs in a modular
way via extra typing rules, as showcased in [49]. Extending DPGen
for other random distributions is another potential future direction.

ACKNOWLEDGMENTS

We thank the anonymous CCS reviewers for their insightful feed-
backs. This work was supported by NSF Awards CNS-1702760,
CNS-1931686 and a gift from Facebook.

REFERENCES
[1] John M. Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (London, United Kingdom) (KDD ’18). ACM, New
York, NY, USA, 2867ś2867.

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

[3] Aws Albarghouthi and Justin Hsu. 2017. Synthesizing Coupling Proofs of Differ-
ential Privacy. Proceedings of ACM Programming Languages 2, POPL, Article 58
(dec 2017), 30 pages.

[4] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Mahesh
Viswanathan. 2020. Deciding Differential Privacy for Programs with Finite
Inputs and Outputs. In Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science (Saarbrücken, Germany) (LICS ’20). Association for
Computing Machinery, New York, NY, USA, 141ś154. https://doi.org/10.1145/
3373718.3394796

[5] Gilles Barthe, George Danezis, Benjamin Gregoire, Cesar Kunz, and Santiago
Zanella-Beguelin. 2013. Verified Computational Differential Privacy with Appli-
cations to Smart Metering. In Proceedings of the 2013 IEEE 26th Computer Security
Foundations Symposium (CSF ’13). IEEE Computer Society, Washington, DC, USA,
287ś301.

[6] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,
and Pierre-Yves Strub. 2016. Advanced Probabilistic Couplings for Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). ACM, New York, NY, USA,
55ś67.

[7] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. 2016. Proving Differential Privacy via Probabilistic Couplings. In Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (New
York, NY, USA) (LICS ’16). ACM, New York, NY, USA, 749ś758.

[8] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012.
Probabilistic Relational Reasoning for Differential Privacy. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York, NY, USA, 97ś110.

[9] Gilles Barthe and Federico Olmedo. 2013. Beyond Differential Privacy: Compo-
sition Theorems and Relational Logic for f-divergences Between Probabilistic
Programs. In Proceedings of the 40th International Conference on Automata, Lan-
guages, and Programming - Volume Part II (Riga, Latvia) (ICALP’13). Springer-
Verlag, Berlin, Heidelberg, 49ś60.

[10] Jean-Francois Bergeretti and Bernard A. Carré. 1985. Information-flow and Data-
flow Analysis of While-programs. ACM Trans. Program. Lang. Syst. 7, 1 (Jan.
1985), 37ś61. https://doi.org/10.1145/2363.2366

[11] Dirk Beyer and M. Erkan Keremoglu. 2011. CPACHECKER: A Tool for Config-
urable Software Verification. In Proceedings of the 23rd International Conference
on Computer Aided Verification (Snowbird, UT) (CAV’11). Springer-Verlag, Berlin,
Heidelberg, 184ś190.

[12] Benjamin Bichsel, TimonGehr, DanaDrachsler-Cohen, Petar Tsankov, andMartin
Vechev. 2018. DP-Finder: Finding Differential Privacy Violations by Sampling and
Optimization. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY,
USA, 508ś524.

[13] B. Bichsel, S. Steffen, I. Bogunovic, and M. Vechev. 2021. DP-Sniper: Black-Box
Discovery of Differential Privacy Violations using Classifiers. In 2021 2021 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, 391ś409. https://doi.org/10.1109/SP40001.2021.00081

[14] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Proceedings
of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). ACM, New York, NY, USA, 441ś459. https://doi.org/10.1145/3132747.3132769

[15] U. S. Census Bureau. 2019. On The Map: Longitudinal Employer-
Household Dynamics. https://lehd.ces.census.gov/applications/help/onthemap.
html#!confidentiality_protection.

[16] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and Continual
Release of Statistics. ACM Trans. Inf. Syst. Secur. 14, 3, Article 26 (Nov. 2011),
24 pages.

[17] Yan Chen and Ashwin Machanavajjhala. 2015. On the Privacy Properties of
Variants on the Sparse Vector Technique. http://arxiv.org/abs/1508.07306.

[18] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata.
2019. Probabilistic Relational Reasoning via Metrics. IEEE Press.

[19] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry
Data Privately. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., USA, 3574ś3583. http://dl.acm.org/citation.cfm?id=3294996.
3295115

[20] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
2018. Detecting Violations of Differential Privacy. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS 1́8). ACM, New York, NY, USA, 475ś489.

[21] Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. 2019. Free Gap Infor-
mation from the Differentially Private Sparse Vector and Noisy Max Mechanisms.
PVLDB 13, 3 (2019), 293ś306. https://doi.org/10.14778/3368289.3368295

[22] Cynthia Dwork. 2006. Differential Privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Volume Part II (Venice,
Italy) (ICALP’06). Springer-Verlag, Berlin, Heidelberg, 1ś12. https://doi.org/10.
1007/11787006_1

[23] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265ś284.

[24] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Theoretical Computer Science 9, 3ś4 (2014), 211ś407.

[25] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). ACM, New York, NY, USA, 1054ś1067.

[26] Gian Pietro Farina, StephenChong, andMarcoGaboardi. 2021. Coupled Relational
Symbolic Execution for Differential Privacy. Programming Languages and Systems
12648 (2021), 207.

[27] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319ś349.

[28] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. 2013. Linear Dependent Types for Differential Privacy. In Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Rome, Italy) (POPL ’13). ACM, New York, NY, USA, 357ś370. https:
//doi.org/10.1145/2429069.2429113

[29] Anna Gilbert and Audra McMillan. 2018. Property Testing for Differential Privacy.
arXiv:1806.06427 [cs.CR]

[30] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982
IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA, USA, 11ś11.
https://doi.org/10.1109/SP.1982.10014

[31] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of loop-free programs. ACM SIGPLAN Notices 46, 6 (2011), 62ś73.

[32] Samuel Haney, Ashwin Machanavajjhala, John M. Abowd, Matthew Graham,
Mark Kutzbach, and Lars Vilhuber. 2017. Utility Cost of Formal Privacy for
Releasing National Employer-Employee Statistics. In Proceedings of the 2017
ACM International Conference on Management of Data (Chicago, Illinois, USA)
(SIGMOD ’17). ACM, New York, NY, USA, 1339ś1354. https://doi.org/10.1145/
3035918.3035940

[33] Sebastian Hunt and David Sands. 2006. On Flow-sensitive Security Types. In
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Charleston, South Carolina, USA) (POPL ’06). ACM,
New York, NY, USA, 79ś90.

[34] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential
privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526ś
539.

[35] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, Vol. 4. IEEE, 1942ś1948
vol.4. https://doi.org/10.1109/ICNN.1995.488968

[36] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the sparse vector
technique for differential privacy. Proceedings of the VLDB Endowment 10, 6
(2017), 637ś648.

[37] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. 2008. Privacy:
Theory meets Practice on the Map. In 2008 IEEE 24th International Conference on
Data Engineering. IEEE, Piscataway, NJ, USA, 277ś286. https://doi.org/10.1109/
ICDE.2008.4497436

[38] Frank D. McSherry. 2009. Privacy Integrated Queries: An Extensible Platform
for Privacy-preserving Data Analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (Providence, Rhode Island, USA)
(SIGMOD ’09). ACM, New York, NY, USA, 19ś30.

[39] Lester James V. Miranda. 2018. PySwarms, a research-toolkit for Particle Swarm
Optimization in Python. Journal of Open Source Software 3 (2018). Issue 21.
https://doi.org/10.21105/joss.00433

[40] Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy. In Proceedings of the 15th ACM SIG-
PLAN International Conference on Functional Programming (Baltimore, Maryland,
USA) (ICFP ’10). ACM, New York, NY, USA, 157ś168. https://doi.org/10.1145/
1863543.1863568

[41] S. Roy, J. Hsu, and A. Albarghouthi. 2021. Learning Differentially Private Mecha-
nisms. In IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
Los Alamitos, CA, USA, 1033ś1046. https://doi.org/10.1109/SP40001.2021.00060

[42] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow
Security. IEEE Journal on Selected Areas in Communications 21, 1 (Jan. 2003),

5ś19.
[43] Calvin Smith and Aws Albarghouthi. 2019. Synthesizing Differentially Private

Programs. Proc. ACM Program. Lang. 3, ICFP, Article 94 (July 2019), 29 pages.
https://doi.org/10.1145/3341698

[44] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS XII). Association for
Computing Machinery, New York, NY, USA, 404ś415. https://doi.org/10.1145/
1168857.1168907

[45] Apple Differential Privacy Team. 2017. Learning with Privacy at Scale. https:
//machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[46] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. 1996. A Sound Type System
for Secure Flow Analysis. Journal of Computer Security 4, 3 (1996), 167ś187.

[47] Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng Zhang. 2020. CheckDP:
An Automated and Integrated Approach for Proving Differential Privacy or
Finding Precise Counterexamples. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA)
(CCS ’20). Association for Computing Machinery, New York, NY, USA, 919ś938.
https://doi.org/10.1145/3372297.3417282

[48] YuxinWang, Zeyu Ding, GuanhongWang, Daniel Kifer, and Danfeng Zhang. 2019.
Proving Differential Privacy with Shadow Execution. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 655ś669. https:
//doi.org/10.1145/3314221.3314619

[49] Danfeng Zhang andDaniel Kifer. 2017. LightDP: Towards AutomatingDifferential
Privacy Proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY,
USA, 888ś901.

A FULL CASE STUDIES

In this section we list the examples we studied in this paper. For
each mechanismwe show the original mechanism (the user’s input),
and the transformed mechanism for the synthesis loop.

function NoisyMax (size: num, q: list num•)
returns max: num

precondition ∀ i. −1 ≤ q̂[i] ≤ 1

1 i := 0; bq := 0; max := 0;

2 while (i < size)

3 if (q[i] > bq ∨ i = 0)

4 max := i;

5 bq := q[i];

6 i := i + 1;

function Transformed NoisyMax (size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

8 v𝜖 := 0; idx := 0;

9 i := 0; bq := 0; max := 0;

10 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂2 := A2;

11 v𝜖 := v𝜖 + |A2 |/S2;

12 𝑏𝑞♦ := bq + 𝜂2;

13 𝑏𝑞♦ := 𝜂2;

14 b̂q
◦
:= 0; b̂q

†
:= 0; m̂ax

◦
:= 0; m̂ax

†
:= 0;

15 while (i < size)

16 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

17 v𝜖 := (L1 ? v𝜖 : 0) + |A1 |/S1;

18 𝑞♦ := q[i] + 𝜂1;

19 𝑞♦ := 𝜂1;

20 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂3 := A3;

21 v𝜖 := (L2 ? v𝜖 : 0) + |A3 |/S3;

22 𝑏𝑞♦ := bq + 𝜂3;

23 𝑏𝑞♦ := 𝑏𝑞♦ + 𝜂3;

24 if (L1) b̂q
◦
:= b̂q

†
; m̂ax

◦
:= m̂ax

†
;

25 if (L2) b̂q
◦
:= b̂q

†
; m̂ax

◦
:= m̂ax

†
;

26 if (𝑞♦ > 𝑏𝑞♦ ∨ i = 0)

27 assert (q[i] + q̂[i] + 𝜂 + 𝜂◦ > bq + bq◦ ∨ i = 0);

28 max := i;

29 max◦ := 0;

30 b̂q
†
:= bq + b̂q

†
- (q[i] + 𝜂);

31 bq := q[i] + 𝜂;

32 b̂q
◦
:= q̂

◦
[i] + 𝜂̂◦;

33 else

34 assert (¬(q[i] + q̂[i] + 𝜂 + 𝜂◦ > bq + bq◦ ∨ i = 0));

35 // shadow execution

36 if (q[i] + q̂†[i] + 𝜂 > bq + b̂q
†
∨ i = 0)

37 b̂q
†
:= q[i] + q̂

†
[i] + 𝜂 − bq;

38 m̂ax
†
:= i - max;

39 i := i + 1;

40 assert (v𝜖 ≤ 𝜖);

Figure 12: Report Noisy Max and its transformed code.L𝑖
stands for shadow execution selectors.

function NumSVT (T,N,size: num, q: list num•)
returns (out: list num), bound(𝜖)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1∧ N < size / 5

1 count := 0; i := 0;

2 while (count < N ∧ i < size)

3 if (q[i] ≥ 𝑇) then

4 out := (q[i]):: out;

5 count := count + 1;

6 else

7 out := false::out;

8 i := i + 1;

function Transformed NumSVT (T,N,size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

1 v𝜖 := 0; idx = 0;

2 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

3 v𝜖 := |A1 |/S1;

4 𝑇♦ := 𝑇 + 𝜂1; 𝑇♦ := 𝜂1;

5 count := 0; i := 0;

6 while (count < N ∧ i < size)

7 𝜂4 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂4 := A4;

8 v𝜖 := v𝜖 + |A4 |/S4;

9 𝑇♦ := 𝑇 + 𝜂4; 𝑇♦ := 𝑇♦ + 𝜂4;

10 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂2 := A2;

11 v𝜖 := v𝜖 + |A2 |/S2;

12 𝑞♦ := 𝑞 [𝑖] + 𝜂2; 𝑞♦ := 𝑞̂[i] + 𝜂2;

13 if (𝑞♦ ≥ 𝑇♦) then

14 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂3 := A3;

15 v𝜖 := v𝜖 + |A3 |/S3;

16 𝑞♦ := 𝑞 [𝑖] + 𝜂3; 𝑞♦ := 𝑞̂[i] + 𝜂3;

17 assert (𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦);

18 out := (𝑞♦)::out;

19 count := count + 1;

20 else

21 assert (¬(𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦));

22 out := false::out;

23 i := i + 1;

24 assert (v𝜖 ≤ 𝜖);

Figure 13: Numerical Sparse Vector Technique and its trans-

formed code.

function GapSVT-Base (T,N,size: num, q: list num•)
returns (out: list num), bound(𝜖)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1∧ N < size / 5

1 i := 0; count := 0;

2 while (i < size ∧ count < N)

3 if (q[i] ≥ 𝑇) then

4 out := (q[i] - T)::out;

5 else

6 out := false::out;

7 count := count + 1;

8 i := i + 1;

function Transformed GapSVT (T,N,size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

1 v𝜖 := 0; idx = 0;

2 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

3 v𝜖 := |A1 |/S1;

4 𝑇♦ := 𝑇 + 𝜂1; 𝑇♦ := 𝜂1;

5 count := 0; i := 0;

6 while (count < N ∧ i < size)

7 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂2 := A2;

8 v𝜖 := v𝜖 + |A2 |/S2;

9 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂3 := A3;

10 v𝜖 := v𝜖 + |A3 |/S3;

11 𝑇♦ := 𝑇 + 𝜂2; 𝑇♦ := 𝑇♦ + 𝜂2;

12 𝑞♦ := 𝑞 [𝑖] + 𝜂3; 𝑞♦ := 𝑞̂[i] + 𝜂3;

13 if (𝑞♦ ≥ 𝑇♦) then

14 assert (𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦);

15 assert (𝑞♦ - 𝑇♦ = 0);

16 out := (𝑞♦ −𝑇♦)::out;

17 else

18 assert (¬(𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦));

19 out := false::out;

20 count := count + 1;

21 i := i + 1;

22 assert (v𝜖 ≤ 𝜖);

Figure 14: GapSVT and its transformed code.

function SVTBase-Inverse (T,N,size: num, q: list num•)
returns (out: list num), bound(𝜖)
precondition ∀ i. −1 ≤ (̂q[i]) ≤ 1∧ N < size / 5

1 i := 0; count := 0;

2 while (i < size ∧ count < N)

3 if (q[i] ≥ 𝑇) then

4 out := true::out;

5 else

6 out := false::out;

7 count := count + 1;

8 i := i + 1;

function Transformed SVT (T,N,size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

1 v𝜖 := 0; idx = 0;

2 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

3 v𝜖 := |A1 |/S1;

4 𝑇♦ := 𝑇 + 𝜂1; 𝑇♦ := 𝜂1;

5 count := 0; i := 0;

6 while (count < N ∧ i < size)

7 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂2 := A2;

8 v𝜖 := v𝜖 + |A2 |/S2;

9 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂3 := A3;

10 v𝜖 := v𝜖 + |A3 |/S3;

11 𝑇♦ := 𝑇 + 𝜂2; 𝑇♦ := 𝑇♦ + 𝜂2;

12 𝑞♦ := 𝑞 [𝑖] + 𝜂3; 𝑞♦ := 𝑞̂[i] + 𝜂3;

13 if (𝑞♦ ≥ 𝑇♦) then

14 assert (𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦);

15 out := q[i]::out;

16 else

17 assert (¬(𝑞♦ + 𝑞♦ ≥ 𝑇♦ +𝑇♦));

18 out := false::out;

19 count := count + 1;

20 i := i + 1;

21 assert (v𝜖 ≤ 𝜖);

Figure 15: SVT-Inverse and its transformed code.

function PartialSum (size: num, q: list num•)
returns (out:num), bound(𝜖)
precondition
∀i. −1≤ (̂q[i])≤ 1∧(∀i. (̂q[i])≠ 0⇒ (∀j. q̂[j] = 0))

1 sum := 0; i := 0;

2 while (i < size)

3 sum := sum + q[i];

4 i := i + 1;

5 out := sum;

function Transformed PartialSum (size,q,̂q, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

7 v𝜖 := 0;

8 𝑠𝑢𝑚♦ := 0; i := 0;

9 �𝑠𝑢𝑚♦ := 0;

10 while (i < size)

11 𝑠𝑢𝑚♦ := 𝑠𝑢𝑚♦ + q[i];

12 �𝑠𝑢𝑚♦ := �𝑠𝑢𝑚♦ + q̂[i];

13 i := i + 1;

14 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1; 𝜂1 := A1;

15 v𝜖 := v𝜖 + |A1 |/S1;

16 𝑠𝑢𝑚♦ := 𝑠𝑢𝑚♦ + 𝜂1; �𝑠𝑢𝑚♦ := �𝑠𝑢𝑚♦ + 𝜂1;

17 assert (�𝑠𝑢𝑚♦ == 0);

18 out := 𝑠𝑢𝑚♦;

19 assert (v𝜖 ≤ 𝜖);

Figure 16: PartialSum and its transformed code.

B PSEUDO-CODE FOR GENERATETEMPLATE

Here for completeness, we include the pseudo-code of the helper
function GenerateTemplate proposed by [47]. Note that Depends
is a variable dependence checking oracle which returns true if
the expression 𝑒 depends on the variable 𝜂. This oracle can be
implemented as standard program dependency analysis [2, 27] or
information flow analysis [10].

Algorithm 1: Template generation for 𝜂 := Lap 𝑟

input :Γ𝑠 : typing environment at sampling command
𝐴: set of the generated assertions in the program

1 function GenerateTemplate(Γ𝑠 , 𝐴):
2 E← ∅, V← ∅
3 foreach assert (𝑒) ∈ 𝐴 do
4 if Depends(𝑒, 𝜂) then
5 if assert (𝑒) is generated by (T-If) then
6 𝑒 ′ ← the branch condition of if
7 E← E ∪ {𝑒 ′}

8 foreach 𝑣 ∈ 𝑉𝑎𝑟𝑠 ∪ {𝑒1 [𝑒2] |𝑒1 [𝑒2] ∈ 𝑒} do
9 if Γ𝑠 ̸⊢ 𝑣 : B0 ∧ Depends(𝑒, 𝑣) then
10 V← V ∪ {𝑣}

11 foreach 𝑒 ∈ E ∪ V do
12 remove 𝑒 from E and V if not in scope

13 return E,V;

function SmartSum (M,T,size: num, q: list num•)
returns (out:list num), bound(𝜖)
precondition

∀i. −1 ≤ (̂q[i])≤ 1∧(∀i. (̂q[i])≠ 0⇒ (∀j. q̂[j] = 0))

1 i := 0; next := 0; sum := 0;

2 while (i < size ∧ i ≤ T)

3 if ((i + 1) mod M = 0) then

4 next := sum + q[i];

5 sum := 0;

6 out := next::out;

7 else

8 next:= next + q[i];

9 sum := sum + q[i];

10 out := next::out;

11 i := i + 1;

function Transformed SmartSum (M,T,size,q, q̂, 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝜃 , 𝜆)

returns (out)

14 v𝜖 := 0; idx := 0;

15 i := 0; 𝑛𝑒𝑥𝑡♦ := 0; 𝑠𝑢𝑚♦ := 0;

16 �𝑠𝑢𝑚♦ := 0; �𝑛𝑒𝑥𝑡♦ := 0;

17 while (i < size ∧ i ≤ T)

18 if ((i + 1) mod M = 0) then

19 𝜂1 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1;

20 v𝜖 := v𝜖 + |A1| / S1; 𝜂1 := A1;

21 𝑛𝑒𝑥𝑡♦ := 𝑠𝑢𝑚♦ + q[i] + 𝜂1;

22 �𝑛𝑒𝑥𝑡♦ := �𝑠𝑢𝑚♦ + q̂[i] + 𝜂1;

23 𝑠𝑢𝑚♦ := 0; �𝑠𝑢𝑚♦ := 0;

24 assert (�𝑛𝑒𝑥𝑡♦ = 0);

25 out := next::out;

26 else

27 𝜂2 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1;

28 v𝜖 := v𝜖 + |A2| / S2; 𝜂2 := A2;

29 𝑛𝑒𝑥𝑡♦ := 𝑛𝑒𝑥𝑡♦ + q[i] + 𝜂2;

30 �𝑛𝑒𝑥𝑡♦ := �𝑛𝑒𝑥𝑡♦ + q̂[i] + 𝜂2;

31 𝜂3 := 𝑠𝑎𝑚𝑝𝑙𝑒[idx]; idx := idx + 1;

32 v𝜖 := v𝜖 + |A3| / S3; 𝜂3 := A3;

33 𝑠𝑢𝑚♦ := 𝑠𝑢𝑚♦ + q[i] + 𝜂3;

34 �𝑠𝑢𝑚♦ := �𝑠𝑢𝑚♦ + q̂[i] + 𝜂3;

35 assert (�𝑛𝑒𝑥𝑡♦ = 0);

36 out := next::out;

37 i := i + 1;

38 assert (v𝜖 ≤ 𝜖);

Figure 17: SmartSum and its transformed code.

C COMPLETE TRANSFORMATION RULES

In this section we list the transformation rules in Figure 18 for
completeness. Note that most rules are identical to the ones in
CheckDP [47], with the differences highlighted in gray.

Transformation rules for expressions with form Γ ⊢ 𝑒 : Bn

Γ ⊢ 𝑟 : num0 | true
(T-Num)

Γ ⊢ 𝑏 : bool | true
(T-Boolean)

Γ, 𝑥 : B0 ⊢ 𝑥 : B0 | true
(T-VarZero)

Γ, 𝑥 : B∗ ⊢ 𝑥 : B𝑥 | true
(T-VarStar)

Γ ⊢ 𝑒 : bool | C

Γ ⊢ ¬𝑒 : bool | C
(T-Neg)

Γ ⊢ 𝑒1 : Bn1 | C1 Γ ⊢ 𝑒2 : Bn2 | C2

Γ ⊢ 𝑒1 ⊕ 𝑒2 : Bn1⊕n2 | C1 ∧ C2
(T-OPlus)

Γ ⊢ 𝑒1 : numn1 | C1 Γ ⊢ 𝑒2 : numn2 | C2

Γ ⊢ 𝑒1 ⊗ 𝑒2 : num0 | C1 ∧ C2 ∧ (n1 = n2 = 0)
(T-OTimes)

Γ ⊢ 𝑒1 : numn1 | C1 Γ ⊢ 𝑒1 : numn2 | C2

Γ ⊢ 𝑒1 ⊙ 𝑒2 : bool | C1 ∧ C2 ∧
(𝑒1 ⊙ 𝑒2) ⇔

(𝑒1 + n1) ⊙ (𝑒2 + n2)

(T-ODot)

Γ ⊢ 𝑒1 : Bn1 | C1 Γ ⊢ 𝑒2 : list Bn2 | C2

Γ ⊢ 𝑒1 :: 𝑒2 : list Bn | C1 ∧ C2 ∧ (n1 = n2 = 0)
(T-Cons)

Γ ⊢ 𝑒1 : list 𝜏 | C1 Γ ⊢ 𝑒2 : numn | C2

Γ ⊢ 𝑒1 [𝑒2] : 𝜏 | C1 ∧ C2 ∧ (n = 0)
(T-Index)

Γ ⊢ 𝑒1 : bool | C1 Γ ⊢ 𝑒2 : Bn1 | C2 Γ ⊢ 𝑒3 : Bn2 | C3

Γ ⊢ 𝑒1 ? 𝑒2 : 𝑒3 : Bn1 | C1 ∧ C2 ∧ C3 ∧ (n1 = n2)
(T-Select)

Transformation rules for commands with form ⊢ Γ {𝑐 ⇀ 𝑐′ } Γ′

Γ ⊢ 𝑒 : Bn | C ⟨d, 𝑐 ⟩ =

{
⟨0, skip⟩, if n == 0,

⟨∗, 𝑥̂ := n⟩, otherwise

⊢ Γ {𝑥 := 𝑒 ;⇀ assert (C) ;𝑥 := 𝑒 ;𝑐 } Γ [𝑥 ↦→ Bd]
(T-Asgn)

⊢ Γ {𝑐1 ⇀ 𝑐′1 } Γ1 ⊢ Γ1 {𝑐2 ⇀ 𝑐′2 } Γ2

⊢ Γ {𝑐1;𝑐2 ⇀ 𝑐′1;𝑐
′
2 } Γ2

(T-Seq)

Γ ⊢ 𝑒 : Bn | C

⊢ Γ {return 𝑒 ⇀ assert (C ∧ n = 0) ; return 𝑒 } Γ
(T-Return)

⊢ Γ {skip ⇀ skip} Γ
(T-Skip)

⊢ Γ ⊔ Γ𝑓 {𝑐 ⇀ 𝑐′ } Γ𝑓 Γ, Γ ⊔ Γ𝑓 ⇛ 𝑐𝑠 Γ𝑓 , Γ ⊔ Γ𝑓 ⇛ 𝑐′′

⊢ Γ {while 𝑒 do 𝑐 ⇀ 𝑐𝑠 ; (while 𝑒 do (assert (L𝑒, ΓM◦) ;𝑐′;𝑐′′)) } Γ ⊔ Γ𝑓

(T-While)

⊢ Γ ⊔ Γ𝑓 {𝑐 ⇀ 𝑐′ } Γ𝑓 Γ, Γ ⊔ Γ𝑓 ⇛ 𝑐𝑠 Γ𝑓 , Γ ⊔ Γ𝑓 ⇛ 𝑐′′

⊢ Γ {while-priv 𝑒 do 𝑐 ⇀ 𝑐𝑠 ; (while (𝑒 ∧ v𝜖 ≤ 𝜖 − ⃝) do (assert (L𝑒, ΓM◦) ; v𝑡 = v𝜖 ;𝑐
′;𝑐′′; assert (v𝜖 − v𝑡 ≤ ⃝))) } Γ ⊔ Γ𝑓

(T-While-Priv)

⊢ Γ {𝑐𝑖 ⇀ 𝑐′𝑖 } Γ𝑖 Γ𝑖 , Γ1 ⊔ Γ2 ⇛ 𝑐′′𝑖 𝑖 ∈ {1, 2}

⊢ Γ {if 𝑒 then 𝑐1 else 𝑐2 ⇀ if 𝑒 then (assert (L𝑒, ΓM◦) ;𝑐′1;𝑐
′′
1) else (assert (¬L𝑒, ΓM

◦) ;𝑐′2;𝑐
′′
2) } Γ1 ⊔ Γ2

(T-If)

A = GenerateTemplate(Γ,All Assertions) 𝑐𝑎 = assert (((𝜂 + A) {𝜂1/𝜂 } = (𝜂 + A) {𝜂2/𝜂 } ⇒ 𝜂1 = 𝜂2))

⊢ Γ {𝜂 := Lap S ⇀ 𝑐𝑎 ;𝜂 := 𝑠𝑎𝑚𝑝𝑙𝑒 [𝑖𝑑𝑥]; 𝑖𝑑𝑥 := 𝑖𝑑𝑥 + 1; v𝜖 := v𝜖 + |A | /S ; 𝜂̂ := A; } Γ [𝜂 ↦→ num∗]
(T-Laplace)

Transformation rules for merging environments

Γ1 ⊑ Γ2 𝑐 = {𝑥̂ := 0 | Γ1 (𝑥) = num0 ∧ Γ2 (𝑥) = num∗ }

Γ1, Γ2 ⇛ 𝑐

Figure 18: Program transformation rules. S represents the scale template instrumented in Phase 1. Distinguished variable v𝜖
and assertions are added to ensure differential privacy.

	Abstract
	1 Introduction
	2 Background
	2.1 Differential Privacy
	2.2 Randomness Alignment
	2.3 Particle Swarm Optimization (PSO)
	2.4 Sparse Vector Technique (SVT)

	3 Overview
	3.1 Challenges
	3.2 Approach Overview

	4 Sketch Generation
	4.1 Syntax of Source and Target Program
	4.2 Adding Noise Locations to Source Code

	5 Synthesis and Optimization
	5.1 Mechanism Synthesis Problem
	5.2 Mechanism Optimization Problem
	5.3 Handling While-Private Loop and User-Provided Utility Function

	6 Implementation and Evaluation
	6.1 Case Studies
	6.2 Performance

	7 Related Work
	8 Conclusions and Future Work
	References
	A Full Case Studies
	B Pseudo-code for GenerateTemplate
	C Complete Transformation Rules

