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Abstract

This paper explores the potential of Lagrangian duality for learning applications that
feature complex constraints. Such constraints arise in many science and engineering
domains, where the task amounts to learning optimization problems which must be
solved repeatedly and include hard physical and operational constraints. The paper
also considers applications where the learning task must enforce constraints on the
predictor itself, either because they are natural properties of the function to learn or
because it is desirable from a societal standpoint to impose them.

This paper demonstrates experimentally that Lagrangian duality brings significant
benefits for these applications. In energy domains, the combination of Lagrangian
duality and deep learning can be used to obtain state of the art results to predict
optimal power flows, in energy systems, and optimal compressor settings, in gas
networks. In transprecision computing, Lagrangian duality can complement deep
learning to impose monotonicity constraints on the predictor without sacrificing ac-
curacy. Finally, Lagrangian duality can be used to enforce fairness constraints on a
predictor and obtain state-of-the-art results when minimizing disparate treatments.

1 Introduction

Deep Neural Networks, in conjunction with progress in GPU technology and the availability of large
data sets, have proven enormously successful at a wide array of tasks, including image classification
[28], speech recognition [3], and natural language processing [13], to name but a few examples. More
generally, deep learning has achieved significant success on a variety of regression and classification
tasks. On the other hand, the application of deep learning to aid computationally challenging
constrained optimization problems has been more sparse, but is receiving increasing attention, such
as the efforts in jointly training prediction and optimization models [38, 25, 27] and incorporating
optimization algorithms into differentiable systems [17, 4, 39].

This research originated in an attempt to apply deep learning to fundamentally different application
areas: The learning of constrained optimization problems and, in particular, optimization problems
with hard physical and engineering constraints. These constrained optimization problems arise
in numerous contexts including in energy systems, mobility, resilience, and disaster management.
Indeed, these applications must capture physical laws such as Ohm’s law and Kirchhoff’s law in
electrical power systems, the Weymouth equation in gas networks, flow constraints in transportation
models, and the Navier-Stoke’s equations for shallow water in flood mitigation. Moreover, they often
feature constraints that represent good engineering and operational practice to protect various devices.
For instance, they may include thermal limits, voltage and pressure bounds, as well as generator and
pump limitations, when the domain is that of energy systems. Direct applications of deep learning to
these applications may result in predictions with severe constraint violations, as shown in Section 5.
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There is thus a need to provide deep learning architectures with capabilities that would allow them
to capture constraints directly. Such models can have a transformative impact in many engineering
applications by providing high-quality solutions in real-time and be a cornerstone for large plan-
ning studies that run multi-year simulations. To this end, this paper proposes a Lagrangian Dual
Framework (LDF) for Deep Learning that addresses the challenge of enforcing constraints during
learning: Its key idea is to exploit Lagrangian duality, which is widely used to obtain tight bounds in
optimization, during the training cycle of a deep learning model.

Interestingly, the proposed LDF can be applied to two distinct context: (1) constrained optimization
problems, which are characterized by constraints modeling relations among features of each data
sample, and (2) problems that require specific properties to hold on the predictor itself, called
constrained predictor problems. For instance, energy optimization problems are example problems
of the first class. These problems impose constraints that are specific to each data sample, such as,
flow conservation constraints or thermal limits bounds. An example problem of the second class
is transprecision computing, a technique that achieves energy savings by adjusting the precision of
power-hungry algorithms. An important challenge in this area is to predict the error resulting from a
loss in accuracy and the error should be monotonically decreasing with increases in accuracy. As a
result, the learning task may impose constraints over different samples with their predictions used
during training. Other applications in dataset-dependent constraint learning may impose fairness
constraints on the predictor, e.g., a constraint ensuring equal opportunity [21] or no disparate impact
[41] in a classifier that enforces a relation among multiple samples of the dataset.

This paper shows that the proposed LDF provides a versatile tool to address these constrained learning
problems, it presents the theoretical foundations of the proposed framework, and demonstrates its
practical potential on both constrained optimization and constrained predictors problems. The LDF
is evaluated extensively on a variety of real benchmarks in power system optimization and gas
compression optimization, that present hard engineering and operational constraints. Additionally,
the proposed method is tested on several datasets that enforce non-discriminatory decisions and
on a realistic transprecision computing application, that requires constraints to be enforced on the
predictors themselves. The results present a dramatic improvement in the number of constraint
violations reduction, and often result in substantial improvements in the prediction accuracy in energy
optimization problems.

2 Preliminaries: Lagrangian Duality

Consider the optimization problem

O = argmin f(y) subjectto g;(y) <0 (Vie [m]). ()
y
In Lagrangian relaxation, some or all the problem constraints are relaxed into the objective function
using Lagrangian multipliers to capture the penalty induced by violating them. When all the
constraints are relaxed, the Lagrangian function becomes

M) = F) + D] igiy) )
i=1
where the terms \; > 0 describe the Lagrangian multipliers, and A = (A1,..., A,;,) denotes the

vector of all multipliers associated to the problem constraints. Note that, in this formulation, g(y) can
be positive or negative. An alternative formulation, used in augmented Lagrangian methods [23] and
constraint programming [20], uses the following Lagrangian function

Aw) = 7+ 3 A max(0, 0:(0)) )

i=1

where the expressions max(0, g;(y)) capture a quantification of the constraint violations. This paper
abstracts the constraints formulations in (2) and (3) by using a function v(-) that returns either the
constraint satisfiability or the violation degree of a constraint.

When using a Lagrangian function, the optimization problem becomes

LRy = argmin f)(y) 4
y



and it satisfies f(LR)) < f(O). That is, the Lagrangian function is a lower bound for the original
function. Finally, to obtain the strongest Lagrangian relaxation of O, the Lagrangian dual can be
used to find the best Lagrangian multipliers, i.e.,

LD = argmax f(LRy). Q)
A=0

For various classes of problems, the Lagrangian dual is a strong approximation of O. Moreover, its
optimal solutions can often be translated into high-quality feasible solutions by a post-processing
step, i.e., using a proximal operator that minimizes the changes to the Lagrangian dual solution while
projecting it into the problem feasible region [35].

3 Learning Constrained Optimization Problems

This section describes how to use the Lagrangian dual framework for approximating constrained
optimization problems in which constraints model relations among features of each data sample.
Importantly, in the associated learning task, each data sample represents a different instantiation of a
constrained optimization problem. The section first reviews two fundamental applications that serve
as motivation.

3.1 Motivating Applications

Several energy systems require solving challenging (non-convex, non-linear) optimization problems
in order to derive the best system operational controls to serve the energy demands of the customers.
Power grid and gas pipeline systems are two examples of such applications. While these problems
can be solved using effective optimization solvers, their resolution relies on accurate predictions
of the energy demands. The increasing penetration of renewable energy sources, including those
behind the meter (e.g., solar panels on roofs), has rendered accurate predictions more challenging.
In turn, predictions need to be performed at minute time scales to ensure sufficient accuracy. Thus,
finding optimal solutions for these underlying optimization problems in these reduced time scales
becomes computationally challenging, opening opportunities for machine-learning approaches. The
next paragraphs review two energy applications that motivate the proposed framework. An extended
description of these models is provided in the supplemental material.

Optimal Power Flow The Optimal Power Flow (OPF) problem determines the best generator
dispatch (y = S9) of minimal cost (O = mings cost(SY)) that meets the demands (d = S%)
while satisfying the physical and engineering constraints (g(y)) of the power system [11], where
S9 and S? denote the vectors (in the complex domain) of generator dispatches and power demands.
Typical constraints include the non-linear non-convex AC power flow equations, Kirchhoff’s current
laws, voltage bounds, and thermal limits. The OPF problem is a fundamental building bock of
many applications, including security-constrained OPFs [31]), optimal transmission switching [19],
capacitor placement [6], and expansion planning [33] which are of fundamental importance for
ensuring a reliable and efficient behavior of the energy system.

Optimal Gas Compressor Optimization The Optimal Gas Compressor Optimization (OGC)
problem aims at determining the best compression controls (y = R) with minimum compression costs
(O = ming cost(R)) to meet gas demands (d = ¢%) while satisfying the physical and operational
limits (g(y)) of the natural gas pipeline systems [22]. Therein, R and ¢¢ are compressors control
values and gas demands. Typical constraints include: the non-linear gas flow equations describing
pressure losses, the flow balance equations, the non-linear non-convex compressor objective O, and
the pressure bounds. Similar to the OPF problem, the OGC is a non-linear non-convex optimization
problem with physical and engineering constraints and a fundamental building block for many gas
systems.

The next section describes how to approximate OPFs and OGCs, by viewing them as parametric
optimization problems, using the proposed Lagrangian dual framework.



3.2 The Learning Task
The learning task estimates a parametric version of problem (1), defined as

O(d) = argmin f(y,d) subjectto g¢;(y,d) <0 (Vi€ [m]) (6)
Y

with a set of samples D = {(d;, y; = O(d;))};._,. More precisely, given a parametric model M [w]
with weights w and a loss function £, the learning task must solve the following optimization problem

w* = argmin Z L(M[w](dy), y1) (7a)
woo=1
subject to g;(M[w](d;),d;) <0 (Vie[m],l € [n]) (7b)

to obtain the approximation O = M{[w*] of O.

The main difficulty lies in the constraints g;(y, d) < 0, which can represent physical and operational
limits, as mentioned in the motivating applications. Observe that the model weights must be chosen so
that the constraints are satisfied for all samples, which makes the learning particularly challenging. A
naive approach to the learning task is thus likely to result in predictors that significantly violate these
constraints, as demonstrated in Section 5, producing a model that would not be useful in practice.

3.3 Lagrangian Dual Framework for Constrained Optimization Problems

To learn constrained optimization problems, the paper proposes a Lagrangian dual framework (LDF)
to the learning task. The framework relies on the notion of Augmented Lagrangian [23] used for
solving constrained optimization problems [20].

In more details, LDF exploits a Lagrangian dual approach in the learning task to approximate the
minimizer O. Given multipliers A = (A1, .., \;;), consider the Lagrangian loss function

LGy di) = L@ w) + ) X v (gi(fn,di)

i=1

where ¢; = M[w](d;) represents the model prediction. For multipliers A, solving the optimization
problem

w* () = axgmin 3 £ (M[w](d), i, ) @

woo=1

produces an approximation O » = M[w*(A\)] of O. The Lagrangian dual computes the optimal
multipliers, i.e.,

A= argmax min Z Lr(M[w](dr),yi,dr) ©)
=1

to obtain O% = M[w*(A*)], i.e., the strongest Lagrangian relaxation of O.

Learning O* relies on an iterative scheme that interleaves the learning of a number of Lagrangian
relaxations (for various multipliers) with a subgradient method to learn the best multipliers. The LDF,
described in Equations (8) and (9), is summarized in Algorithm 1. Given the input dataset D, the
optimizer step size o > 0, and a Lagrangian step size sy, the Lagrangian multipliers are initialized
in line 1. The training is performed for a fixed number of epochs, and each epoch k optimizes the
model weights w of the optimizer M[w, \*] using the Lagrangian multipliers \* associated with
current epoch (lines 3-5). Finally, after each epoch, the Lagrangian multipliers are updated according
to a dual ascent rule [9] (line 6).

4 Learning Constrained Predictors

This section describes how to use the Lagrangian dual framework for problems in which constraints
are not sample-independent, but enforcing global properties between different samples in the dataset
and the predictor outputs. It starts with two motivating applications.
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Algorithm 1: LDF for Constrained Optimization Problems

input: D = (d;,y;)]-, : Training data;
a, s = (so, $1,--.) : Optimizer and Lagrangian step sizes.
A 0 Vie[m]
for epoch k = 0,1, ... do
foreach (y;,d;) € D do
g < Mw, X (dy)
w—w — aVy Ly (G, Y, d)

ML N s S v (i, i) Vi e [m]

4.1 Motivating Applications

Several applications require to enforce constraints on the learning process itself to attain desirable
properties of the predictor. These constraints impose conditions on subsets of the samples that must
be satisfied. For instance, assume that there is a partial order < on the optimization inputs and the
following property holds:

dy < dy = f(O(d1),d1) < f(O(d2), d2).

The predictor should ideally satisfy these constraints as well:

A~

dy < dy = f(O(dy),d1) < f(O(dy), ds).

Transprecision computing Transprecision computing is the idea of reducing energy consumption
by reducing the precision (a.k.a. number of bits) of the variables involved in a computation [30]. It
is especially important in low-power embedded platforms, which arise in many contexts such as
smart wearable and autonomous vechicles. Increasing precision typically reduces the error of the
target algorithm. However, it also increases the energy consumption, which is a function of the
maximal number of used bits. The objective is to design a configuration d;, i.e., a mapping from input
computation to the precision for the variables involved in the computation. The sought configuration
should balance precision and energy consumption, given a bound to the error produced by the loss in
precision when the highest precision configuration is adopted.

However, given a configuration, computing the corresponding error can be very time-consuming and
the task considered in this paper seeks to learn a mapping between configurations and error. This
learning task is non-trivial, since the solution space precision-error is non-smooth and non-linear [30].
The samples (d;, y;) in the dataset represent, respectively, a configuration d; and its associated error
y; obtained by running the configuration d; for a given computation. The problem O(d;) specifies
the error obtained when using configuration d;.

Importantly, transcomputing expects a monotonic behavior: Higher precision configurations should
generate more accurate results (i.e., a smaller error). Therefore, the structure of the problem imposes
the learning task to require a dominance relation < between instances of the dataset. More precisely,
dg < dg holds if

Vie[N]: z1, < xo,
where N is the number of variables involved in the computation and 1, 2, are the precision values
for the variables in d; and ds respectively.

Fair Classifier The second motivating application considers the task of building a classifier that
satisfies disparate impact [41] with respect to a protected attribute d° and outcome y. A binary
classifier does not suffer from disparate impact if

Pr(j = 1|d* = 0) = Pr(g = 1|d* = 1). (10)

For outcome y = 1, the constraint above requires the predictor ¢ to have equal predicted positive
rates across the different sensitive classes: d° = 0 and d° = 1, in the binary task example above.
For y = 0, the constraint enforces equal predicted negative rates. Disparate impact constraints the
predicted positive (or negative) rates to be similar across all sensitive attributes. To construct an
estimator that minimizes the disparate impact, the paper considers |Dy| = 2 estimators M and M,



each associated with a dataset partition D\, = {(d,y1)|d] = s;} that marginalizes for a particular
(combination of) value(s) of the protected feature(s), in addition to the classical estimator M that is
trained over the entire dataset D. Thus, the learning process is defined by the following objective:

min £ (M )+ Zﬁ i([wi](Dys,)) (11a)

w,wo, w1

ZmiEDSO I(g: = 1)’ ’ZzieDsl I(y; = 1)‘

51l

such that

) (11b)

sol

where I is the indicator function. It enforces a constraint on the output of the classifiers M, trained
on data Dg, to be equivalent to that of the output of the classifier M, trained on the dataset Dy,
when their predicted outcome is positive.

The next section will specify how to encode such type of constraints as well as how to express and
enforce dominance relations in the proposed constrained learning framework.

4.2 The Learning Task

Consider aset S = {S1,...,.5,} where S; is a subset of the inputs that must satisfy the associated

constraint
hi({O(d1) }ies; » ds, ),
where dg, = {di}ies,, and denote ys, = {yi}ies;-

In this context, the learning task is defined by the following optimization problem

argmin i LM[w](dr), yi) (12a)

wo=1
subject to g; (M[w](d;),d;) <0 (Vie[m],l € [n]) (12b)
hi ((M[w](di)}ies,, ds,) (Vi€ [q]). (120

4.3 Lagrangian Dual Framework for Constrained Predictors

To approximate Problem (12), the learning task considers Lagrangian loss functions, for subset of the
inputs S; € S, of the form

Lua(s, ys, ds,) = > La(,y,di) + Z pi v (hi(gs,, di)) , (13)
leS;

where §; = M[w](d;) and gs, = {M[w](d})es,}. It learns approximations of the Lagrangian
relaxations O} ,, of the form

w* (i A) = argmin Z Loa(IM[w](d) }ies, s, ds,), (14)

i=1
as well as the Lagrangian duals of Equation (14) of the form
N () = argmaxanin 3 £, ((OMEw) s, s, ), 1s)
i=1
and, finally, the Lagrangian dual of the Lagrangian duals (Equation (15)) as
= angmamgcnin Y £y (ML )15 s, ) 16
8 i=1

to obtain the best estimator O* = M[w*], where

q
w* = argmin 2 'Cp,*,k* (u*)({M[w] (dl)}lesiv Ysi» dSz)

W=
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Algorithm 2: LDF for Constrained Predictor Problems
input:D = (d;,yi1)7,,S = {51, ..., Sy} Training data and data partitions;
a, s = (so, $1,.-.),t = (to, t1,...) : Optimizer and Lagrangian step sizes.

A0 Vie[m
pi <0 Vie[q]
for epoch k = 0,1, ... do

foreach S; € S do

L gs, — {M[w, X\, u¥](d)) }ies,

W <—w— avwﬁkk,uk (2}51 »YS:» d&)

A= N s 20 vi (93 (G0, di)) Vi e [m]
:uerl - :ui'c + v (h('gsudsz)) Vie [Q]

The Lagrangian dual framework for constrained predictors, described in Equations (14)—(16), is
summarized in Algorithm 2. The learning algorithm interleaves the learning of the Lagrangian duals
with the subgradient optimization of the multipliers ;. Given the input dataset D, a set S of subsets of
inputs, the optimizer step size « > 0, and Lagrangian step sizes s, and ¢, the Lagrangian multipliers
are initialized in lines 1 and 2. The training is performed for a fixed number of epochs, and each
epoch k optimizes the model weights w of the optimizer M using the Lagrangian multipliers A\* and
u* associated with current epoch k, denoted M[w, A\*, 1*] in the algorithm (lines 4-6). Similarly to
Algorithm 1, the Lagrangian multipliers \; for the dual variables are updated after each epoch, on
line 7). Finally, the algorithm updates the multipliers y; associated to the Lagrangian duals of the
Lagrangian duals (line 8).

S Experiments

This section evaluates the proposed LDF on constrained optimization problems for energy and
gas networks and on constrained learning problems—that enforce constraints on the predictors—for
applications in transprecision computing and fairness.

5.1 Constrained Optimization Problems

Data set Generation The experiments examine the proposed models on a variety of power networks
from the NESTA library [12] and natural gas benchmarks from [29] and GasLib [36]. The ground
truth data are constructed as follows: For each power and gas network, different benchmarks are
generated by altering the amount of nominal demands d = S? (for power networks) and d = ¢%
(for gas networks) within a +20% range. The resulting 4000 demand vectors are used to generate
solutions to the OPF and OGC problems. Increasing loads causes heavily congestions to the system,
rendering the computation of optimal solutions challenging. A network value, that constitutes a
dataset entry (d;, y; = O(d)), is a feasible solution obtained by solving the AC-OPF problem [11],
for electricity networks, or the OGC problem, for gas networks [22]. The experiments use a 80/20
train-test split and results are reported on the test set.

Learning Models The experiments use a baseline ReLU network M, with 5 layers which minimizes
the Mean Squared Error (MSE) loss L to predict to active power p, voltage magnitude v, and voltage

angle 6, for energy networks, and compression ratios R, pressure p, and gas flows ¢, for gas networks.

This baseline model is compared with a model M that exploits the problem constraints and
minimizes the loss: £ + Av(-), with multiplier values ) fixed to 1. Finally, /\/18 extends model M
by learning the Lagrangian multipliers using the LDF introduced in Section 3.3. The constrained
learning model for power systems also exploits the hot-start techniques used in [18], with states
differing by at most 1%. Experiments using larger percentages (up to 3%) showed similar trends. The
training uses the Adam optimizer with learning rate (o« = 10~?) and was performed for 80 epochs
using batch sizes b = 64. Finally, the Lagrangian step size p is set to 10~*. Extensive additional
information about the network structure, the optimization model (OPF and OGC), the learning loss
functions and constraints, as well as additional experimental analysis is provided in the appendix.



Test Case Type‘ M Mec Me
| err (%) err (%) gain err (%) gain

33465 03052 (10.96) 0.0055 (608.4)
14.699 0.3130 (46.96) 0.0070 (2099)
43130 0.0580 (74.36) 0.0041 (1052)
27213 02030 (134.1) 0.0620 (438.9)
0.2150 0.0380 (5.658) 0.0340 (6.323)
71520 0.1170 (61.12) 0.0290 (246.6)
42600 1.2750 (3.341) 0.2070 (20.58)
38.863 0.6640 (58.53) 0.4550 (85.41)
0.0838 0.0174 (4.816) 0.0126 (6.651)
28.025 3.1130 (9.002) 0.0610 (459.4)
12.137 7.2330 (1.678) 2.5670 (4.728)
12547 26905 (4.663) 1.1360 (110.4)

Table 1: table
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Mean Prediction Errors (%) and accuracy gain (%) on OPF Benchmarks.

D
Test Case Type‘ M Mc Mc
\ err (%) err (%) gain err (%) gain

0.0052 0.0079 (0.658) 0.0025 (2.080)
0.0057 0.0068 (0.838) 0.0057 (1.000)
0.0029 0.0592 (0.049) 0.0007 (4.142)
0.0009 0.0103 (0.087) 0.0006 (1.833)
0.0011 0.0025 (0.240) 0.0006 (1.500)
0.0006  0.0329 (0.033) 0.0004 (1.500)
0.0206 0.0317 (0.650) 0.0199 (1.307)
0.0260 0.0209 (1.067) 0.0225 (0.916)
0.0223 0.0572 (0.455) 0.0222 (1.005)

Table 2: table

24-pipe

40-pipe

135-pipe

DS T S T S

Mean Prediction Errors (%) and accuracy gain (%) on OGC Benchmarks.

Prediction Errors Table 1 and 2 report the average L, -distance and the prediction errors between
a subset of predicted variables y (marked with ¢) on both the power and gas benchmarks and their
original ground-truth quantities. The error for y is reported in percentage as 100 Hﬁ\;ﬁﬁ”l and the gain
(in parenthesis) reports the ratio between the error obtained by the baseline model accuracy and the

constrained models.

For the power networks, the models focus on predicting the active generation dispatches p9 = Re(S9),
voltage magnitudes v, voltage angles 6, and the active transmission line (including transformers)
flows p/. Power flows j/ are not directly predicted but computed from the predicted quantities
through the Ohm’s laws (See section B.2). For the gas networks, the models focus on predicting
compression ratios R, pressure values p, and gas flows §. The best results are highlighted in bold.

A clear trend appears: The prediction errors decrease with the increase in model complexity. In
particular, model M, which exploits the problem constraints, predicts voltage quantities and power
flows that are up to two order of magnitude more precise than those predicted by M, for OPF
problems. The prediction errors on OGC benchmarks, instead remain of the same order of magnitude
as those obtained by the baseline model M, albeit the accuracy of the prediction increases consistently
when adopting the constrained models. This can be explained by the fact that the gas networks
behave largely monotonically in compressor costs for varying loads. Finally, the LDF that finds the
best multipliers (M2.) consistently improves the baseline model on OGC benchmarks, and further
improves M predictions by an additional order of magnitude, for OPF problems.'

'The accuracy gains appear more pronounced on OPF problems since the baseline model M produces
already extremely accurate results for OGC benchmarks.



Measuring The Constraint Violations This section simulates the prediction results in an operational
environment, by measuring the minimum required adjustments in order to satisfy the operational
limits and the physical constraints in the energy domains studied. Given the predictions ¢ returned
by a model, the experiments compute a projection y of g into the feasible region and reports the
minimal distance |§ — §|2 of the predictions from the satisfiable solution. This step is executed on
all the predicted control variables: generator dispatch and voltage set points, for power systems, and
compression ratios, for gas systems. Table 3 reports the minimum distance (normalized in percentage)
required to satisfy the operational limits and physical constraints, and the best results are highlighted
in bold. These results provide a proxy to evaluate the degree of constraint violations of a model.
Notice that the adjustment required decrease with the increase in model complexity. The results
show that the LDF can drastically reduce the effort required by a post-processing step to satisfy the
problem constraints.

D
Test Case Type‘ M Mc Mc
\ violation (%) violation (%) gain violation (%) gain
30 iece p9 2.0793 0.1815 (11.45) 0.0007 (2970.0)
- v 83.138 0.0944 (880.7) 0.0037 (22469)
118 ieee o 0.1071 0.0043 (24.91) 0.0038 (28.184)
- v 3.4391 0.0956 (35.97) 0.0866 (39.712)
300 icee o 0.0447 0.0091 (4.912) 0.0084 (5.3214)
- v 31.698 0.2383 (133.0) 0.1994 (158.97)
24-pipe R 0.1012 0.1033 (0.978) 0.0897 (1.1282)
40-pipe R 0.0303 0.0277 (1.094) 0.0207 (1.4638)
135-pipe R 0.0322 0.0264 (1.219) 0.0005 (64.4)

Table 3: Average distances (in percentage) for the active power pY, voltage magnitude v, and
compressor ratios R of the simulated solutions w.r.t. the corresponding predictions.

5.2 Constrained Predictor Problems

This section examines the LDF for constrained predictor problems discussed in Section 4 on transpre-
cision computing and fairness application domains.

Transprecision computing The benchmark considers training a neural network to predict the error
of transprecision configurations. The monotonicity property is expressed as a constraint exploiting
the relation of dominance among configurations of the train set, i.e. v; = max(0, M(x1) — M(x2))
if 1 < o for every pair (x1, z2) in the dataset. This approach is particularly suited for instances of
training with scarce data points with a high rate of violated constraints, since it guides the learning
process towards a more general approximation of the target function. In order to explore different
scenarios the experiments use 5 different train sets of increasing size, i.e. 200, 400, 600, 800,
and 1000. The test set size is fixed to 1000 samples. The data sets are constructed by generating
random configuration (d;) and computing errors (y) by measuring the performance loss obtained
when running the configuration d; on the target algorithm. Ten disjoint training sets are constructed
so that the violation constraint ratio is 0.5, while the test set was fixed.

Table 4 illustrates the average results comparing a model (M) that minimizes the Mean Absolute
Error (MAE) prediction error, one (M) that include the Lagrangian loss functions £ associated
to each constraint and where all weights A are fixed to value 1.0, and the proposed model (MZ)
that uses the LDF to find the optimal Lagrangian weights. All prediction model are implemented as
classical feed-forward neural network with 3 hidden layers and 10 units and minimize the MAE as
loss function. The training uses 150 epochs, Lagrangian step sizes t;, = 10~3 and learning rate 10~3.
The table also show the average number of constraint violations (VC) and the sum of the magnitudes
of the violated constraints (SMVC), i.e., X, cp.pi <o n M(zi)> M(z,) M (i) = M(z;5)].

The table clearly illustrates the positive effect of adding the constraints within the LDF on reducing
the number of constraint violations. Notice that model M ¢, that weights all the constraints violations
equally, produces a degradation of both the MAE score and the number and magnitude of the
constraint violations, when compared to the baseline model (M). The benefit of using the LDF
is substantial in both reducing the number of constraint violations and in retaining a high model



Nir ‘ M MC M&D
‘ MAE VC SMVC MAE VC SMVC MAE VC SMVC

200 | 0.1902 9.6 0.2229 0.1919 358 04748 0.1883 7.4 0.1872
400 | 0.1765 4.5 0.0804 0.1999 194 02149 0.1763 2.6 0.0369
600 | 0.1687 2.5 0.0397 0.2022 9.1 0.0683 0.1723 1.7 0.0224
800 | 0.1672 3.0 0.0600 0.2007 85 0.0746 0.1704 0.6 0.0131
1000 | 0.1640 0.4 0.0048 0.2012 5.7 0.0511 0.1642 0.5 0.0043

Table 4: Mean Absolute Error (MAE), number of constraints violations (VC), and sum of absolute
magnitude of violated constraints (SMVC). Best results are highlighted in bold.

precision (i.e., a low MAE score). The most significant contribution was obtained on training sets
with fewer data points, confirming that exploiting the Lagrangian Duals of the Constraint Violations
can be an important tool for constrained learning.

Fairness Constraints The benchmark considers building a classifier that minimizes disparate treat-
ment [41]. The paper considers the disparate DT index, introduced by Aghaei et al. [2], to quantify
the disparate impact in a dataset. Given a dataset of samples D = (;, ¥;)ie[n]» this index is defined
as:

DT(D) = |, ep,, 16 = D]/ 1Dss] =[S, 16 = D[/ 1Dss 1.

where [ is the characteristic function and ¢; is the predicted outcome for sample ;. The idea is to
use a locally weighted average to estimate the conditional expectation. The higher is the DT score for
a dataset, the more it suffer from disparate treatment, with DT = 0 meaning that the dataset does not
suffer from disparate treatment.

Since the DT constraint introduced in Equation (11b) is not differentiable with the respect to the
model parameters, the paper uses an expectation matching constraints between the predictors for the
protected classes, defined as:

Eyep,, [Mo(2)|2(z) = 0] = Epup, [Mi(2)|2(z) = 1]] = 0 17)

The effect of the Lagrangian Dual framework on reducing disparate treatment was evaluated on three
datasets: The Adult dataset [26], containing 30,000 samples and 23 features, in which the prediction
task is that of assessing whether an individual earns more than 50K per year and the protected
attribute is race. The Default of Taiwanese credit card users [40], containing 45,000 samples and 13
features, in which the task is to predict whether an individual will default and the protected attribute
is gender. Finally, the Bank dataset [41], containing 41,188 samples, each with 20 attributes, where
the task is to predict whether an individual has subscribed or not and the protected attribute is age.
The experiments use a 80/20 train/test split and executes a 5-fold cross-validation to evaluate the
accuracy and the fairness score (DT) of the predictors.

Table 5 illustrates the results comparing model M that minimizes the Binary Cross Entropy (BCE)
loss, model M that includes the Lagrangian loss functions £ associated with each constraint and
where all \ are fixed to value 1.0, and the proposed model MZ that uses the LDF to find the optimal
Lagrangian weights. All prediction models use a classical feed-forward neural network with 3 layers
and 10 hidden units. The training uses 100 epochs, Lagrangian step size s, = 10~* and learning
rate 1073, The models are also compared against a state-of-the-art fair classifier which enforces
fairness by limiting the covariance between the loss function and the sensitive variable [41]. While
[41] focuses on logistic regression, the model is implemented as a neural network with the same
hyper parameters of model M. The table clearly shows the effect of the Lagrangian constraints on
reducing the DT score. Not only such reduction attains state-of-the-art results on the DT score, but it
also comes at a much more contained cost of accuracy degradation.

6 Related Work

The application of Deep Learning to constrained optimization problems is receiving increasing
attention. Approaches which embed optimization components in neural networks include [38, 25, 27].

10



Dataset | M Mc ME Zafar’ 19
| Acc. DT Acc. DT  Acc. DT Acc. DT

Adult 0.8423 0.1853 0.8333 0.0627 0.8335 0.0545 0.7328 0.1037
Default | 0.8160 0.0162 0.8182 0.0216 0.8166 0.0101 0.6304 0.0109
Bank 0.8257 0.4465 0.7744 0.4515 0.8135 0.1216 0.7860 0.0363

Table 5: Classification accuracy (Acc.) and fairness score (DT)

These approaches typically rely on problems exhibiting properties like convexity or submodularity.
Another line of work leverages explicit optimization algorithms as a differentiable layer into neural
networks [4, 17, 39]. A further collection of works interpret constrained optimization as a two-
player game, in which one player optimizes the objective function and a second player attempt
at satisfying the problem constraints [24, 32, 1]. For instance Agarwal et al. [1], proposes a best-
response algorithm applied to fair classification for a class of linear fairness constraints. To study
generalization performance of training algorithms that learn to satisfy the problem constraints, Cotter
et al. [14] propose a two-players game approach in which one player optimizes the model parameters
on the training data and the other player optimizes the constraints on a validation set. Arora et al. [5]
proposed the use of a multiplicative rule to iteratively changing the weights of different distributions to
maintaining some properties and discuss the applicability of the approach to a constraint satisfaction
domain.

A different strategy for minimizing empirical risk subject to a set of constraints is that of using
projected stochastic gradient descent (PSGD). Cotter et al. [15] proposed an extension of PSGD that
stay close to the feasible region while applying constraint probabilistically at each iteration of the
learning cycle.

Different from these proposal, this paper proposes a framework that exploits key ideas in Lagrangian
duality to encourage the satisfaction of generic constraints within a neural network learning cycle and
apply to both sample dependent constraints (as in the case of energy problems) and dataset dependent
constraints (as in the case of transprecision computing and fairness problems). This paper builds on
the recent results that were dedicated to learning and optimization in power systems [18].

7 Conclusions

This paper proposed a Lagrangian dual framework to encourage the satisfaction of constraints in deep
learning. It was motivated by a desire to learn parametric constrained optimization problems that
feature complex physical and engineering constraints. The paper showed how to exploit Lagrangian
duality for deep learning to obtain predictors that minimize constraint violations. The proposed
framework can be applied to constrained optimization problems, in which the constraints model
relations among features of each data sample, and to constrain predictors in which the constraints
enforce global properties over multiple dataset samples and the predictor outputs.

The Lagrangian dual framework for deep learning was evaluated on a collection of realistic energy
networks, by enforcing non-discriminatory decisions on a variety of datasets, and on a transprecision
computing application. The results demonstrated the effectiveness of the proposed method that
dramatically decreases constraint violations committed by the predictors and, in some applications, as
in those in energy optimization, increases the prediction accuracy by up to two orders of magnitude.
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A Energy System Case Studies

This section extends the description of the energy applications for evaluating the Lagrangian Dual
Framework: Optimal power flow in electricity networks and the Optimal compressor controls in gas
networks. Both problems are nonlinear and nonconvex.
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Model 1 Oppg: AC Optimal Power Flow
variables: S7,V; Vie N, Sifj V(i,j) e Eu E"

minimize: O(S%) = Z c2i(R(S?))? + c1iR(S?) + cos (18)
iEN
subjectto: £V; =0, ie N (19)
vl < |Vi| <vf Yie N (20)
0i; < Z(ViVj*) < 035 V(i,j) € E @D
591 < 89 < S Vie N (22)
|SLI < sl v(i,5) e Eu E® (23)
Sig - Sz‘d = Z(i,j)eEuER Sifj vie N 24)
Sl = YEVi]* = YAViVF ¥(i,j) e Bu B (25)

A.1 Optimal Power Flow

Optimal Power Flow (OPF) is the problem of finding the best generator dispatch to meet the demands
in a power network, while satisfying challenging transmission constraints such as the nonlinear
nonconvex AC power flow equations and also operational limits such as voltage and generation
bounds. Finding good OPF predictions are important, as a S% reduction in generation costs could
save billions of dollars (USD) per year [10]. In addition, the OPF problem is a fundamental building
bock of many applications, including security-constrained OPFs [31]), optimal transmission switching
[19], capacitor placement [6], and expansion planning [33].

Typically, generation schedules are updated in intervals of 5 minutes [37], possibly using a solution
to the OPF solved in the previous step as a starting point. In recent years, the integration of renewable
energy in sub-transmission and distribution systems has introduced significant stochasticity in front
and behind the meter, making load profiles much harder to predict and introducing significant
variations in load and generation. This uncertainty forces system operators to adjust the generators
setpoints with increasing frequency in order to serve the power demand while ensuring stable network
operations. However, the resolution frequency to solve OPFs is limited by their computational
complexity. To address this issue, system operators typically solve OPF approximations such as the
linear DC model (DC-OPF). While these approximations are more efficient computationally, their
solution may be sub-optimal and induce substantial economical losses, or they may fail to satisfy the
physical and engineering constraints.

Similar issues also arise in expansion planning and other configuration problems, where plans are
evaluated by solving a massive number of multi-year Monte-Carlo simulations at 15-minute intervals
[34, 16]. Additionally, the stochasticity introduced by renewable energy sources further increases
the number of scenarios to consider. Therefore, modern approaches recur to the linear DC-OPF
approximation and focus only on the scenarios considered most pertinent [34] at the expense of the
fidelity of the simulations.

A power network A/ can be represented as a graph (N, E), where the nodes in N represent buses and
the edges in E represent lines. The edges in E are directed and £ is used to denote those arcs in E/
but in reverse direction. The AC power flow equations are based on complex quantities for current I,
voltage V', admittance Y, and power .S, and these equations are a core building block in many power
system applications. Model 1 shows the AC OPF formulation, with variables/quantities shown in the
complex domain. Superscripts u and [ are used to indicate upper and lower bounds for variables. The
objective function O(.S9) captures the cost of the generator dispatch, with S9 denoting the vector
of generator dispatch values (SY | i € V). Constraint (19) sets the reference angle to zero for the
slack bus 7 € N to eliminate numerical symmetries. Constraints (20) and (21) capture the voltage
and phase angle difference bounds. Constraints (22) and (23) enforce the generator output and line
flow limits. Finally, Constraints (24) capture Kirchhoff’s Current Law and Constraints (25) capture
Ohm’s Law.

Table 6 describes the power network benchmarks used in main text, including the number of buses
| V|, transmission lines/transformers |£|, loads [, and generators g.
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Test Case |N| [E] | ¢

30_ieee 30 8 21 2
118_ieee 118 372 99 19
300_ieee | 300 822 201 57

Table 6: The Power Networks DataSet.

Model 2 Opgg: Optimal Gas Flow
variables: Pi,qi Vi e j, qij V(Z,]) € P, Rij V(Z,]) eC

minimize: O(q) = Z 1 gij|(max{R,;, 1201/ — 1) (26)
(4,5)eC
subject to: 3., o\ p Gij — X(jivep Qi = @iy VIET (27)
pi' <pi<p" VieN, q;' <aq; <" V(i,5)€P (28)
Rijl < Ri]' < Riju V(Z,]) eC 29)
pi=p VieJ% q=0VieJ  qgi=q ieT"” (30)
Aa?
Rp? —p) = Lij 5 qijlais| V(i,5) €C 31)
J J J DzyAg] J J
2 2 ACLQ -
p; —p; = Lij m(hﬂ%ﬂ Y(i,j)eP—-C (32)

A.2  Optimal Compressor Optimization

Optimal Gas Flow (OGF) is the problem of finding the best compression control to maintain pressure
requirements in a natural gas pipeline system. Similar to the OPF problem, the gas flow problem
is a non-convex non-linear optimization problem, with challenging nonconvex function to measure
the costs of compressors. It is also a fundamental building block for many gas pipeline problems,
including: gas pipeline expansion planning [8], dynamic compressor optimization [29], and joint
gas-grid transmission planning problem [7].

Historically, natural gas demands came from utilities or large industrial customers whose demands
are predictable with little variations. These demands are often traded using day-ahead contracts.
Therefore, operators can often assume that injections and withdrawals would be similar to the past
and re-use precomputed control set-points. In the past decade, the increasing penetration of renewable
energies into power systems has driven an increase in installations of gas-powered electric generators.
Gas-powered generators can start up and shut down several times a day, and also capable to rapidly
adjust their production to balance the fluctuation of renewable energy sources. However, the growing
use of gas-powered generators implies substantial intra-day high-volume gas fluctuations, and has
prompted concerns within the industries. Similar to OPF, the resolution frequency to solve OGF
problem is limited by the computational complexity of the system, and system operators typically
solve OGF approximations instead such as reduced-order models [42] or convex relaxations [8].
These approximations are more efficient computationally, but can be sub-optimal and/or fail to capture
the physical and operational limits.

A natural gas network can be represented as a directed graph N' = (J,P), where a node i €
J represents a junction point and an arc represents a pipeline (i,j) € P represent the edges.
Compressors (C < P) are installed in a subset of the pipelines for boosting the gas pressure p in order
to maintain pressure requirements for gas flow ¢. The set 7 of gas demands and the set 77 of
transporting nodes are modeled as junction points, with net gas flow g; set to the gas demand (¢¢) and
zero respectively. For simplicity, the paper assumes no pressure regulation and losses within junction
nodes and gas flow/flux are conserved throughout the system. A subset 72 € J of the nodes are
regulated with constant pressure p? . The length of pipe (i, j) is denoted by L, its diameter by D,
and its cross-sectional area by A;;. Universal quantities include isentropic coefficient -y, compressor
efficiency factor i, sound speed a, and gas friction factor \. Model 2 depicts the OGF formulation.
The objective function O(q) captures the compressor costs using the compressor control values
(Rij | (¢,7) € C). Constraints (27) capture the flow conversation equations. Constraints (28) and (29)
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Test Case |J| |P| |C| |TP|

24-pipe 25 24 5 8
40-pipe 40 45 6 26
135-pipe | 135 170 10 19

Table 7: The Gas Networks DataSet.

capture the pressure, flux flow, and compressor control bounds. Constraints (30) set the boundary
conditions for the demands and the regulated pressures. Finally, Constraints (31) and (32) capture the
steady-state isothermal gas flow equation.

Table 7 describes the gas network benchmarks used in the main text, including the number of junctions
|7 |, pipelines |P|, compressors |C|, and active gas loads |7 P|.

B Learning Model Details

This section describes the modeling details of the proposed LDF related to the energy applications
described in the previous section.

B.1 Lagrangian relaxation

This paper uses a Lagrangian relaxation approach based on constraint violations [20] used in general-
ized augmented Lagrangian relaxation [23]. To fully describe the modeling details for the OPF and
OGF problems, an optimization problem O definition will be slightly expanded as:

minimize: f(y)
subject to: h(y) =0
9(y) <0

where equality constraints h and inequality constraints g are separated. The Lagrangian relaxation of
O is given by

minimize: f(y) + Ah(y) + A\g9(y)

where )\, and \; > 0 are the Lagrangian multipliers for the equality constraints and inequality
constraints. In contrast, the violation-based Lagrangian relaxation is

minimize: f(y) + Anh(y)] + Ay max(0, g(y))

with Ap, Ay = 0. In other words, the traditional Lagrangian relaxation exploits the satisfiability
degrees of constraints, while the violation-based Lagrangian relaxation is expressed in terms of
violation degrees. The satisfiability degree of an inequality constraint measures how well the
constraint is satisfied, with negative values representing the slack and positive values representing
violations, while the violation degree is always non-negative and represents how much the constraint
is violated. More formally, the satisfiability degree of a constraint ¢ : R™ — Bool is a function
o.:R™ — R such that 0.(y) < 0 = ¢(y). The violation degree of a constraint ¢: R™ — Bool is a
function v, : R" — R* such that o.(y) = 0 = c(y). For instance, for a linear constraints c(y) of
type Ay > b, the satisfiability degree is defined as

oc(y)=b— Ay
and the violation degrees for inequality and equality constraints are specified by
vz (y) =max (0,0c(y))  vo(y) =loc(y)l.

Although the resulting term is not differentiable (but admits subgradients), computational experiments
indicated that violation degrees are more appropriate for prediction than satisfiability degrees. Even
though in theory all the constraints can be naively incorporated into the learning model by constructing
the violation degree metric functions, in practice not all the constraints are needed. For example, if a
constraint is guaranteed to be satisfied by the input data (e.g. (13) in Model 2), the constraint can be
omitted as the violation degree is always zero. On the other hand, if the satisfiability of a constraint
depends on the prediction or the constraint is used to compute an indirect prediction (e.g. Ohm’s Law
(8) in Model 1), the violation degree of the constraint can be measured directly against the ground
truth.
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B.2 OPF satisfiability and violation degrees

Given the predicted values: V = 6/0 for voltages, 59 = P9 + igY for generation dispatches, and
ST = p/ 4 ig” for lines/transformers flows, this section extends the main paper by reporting the
complete set of satisfiability o (-) and violation degrees v(-) for the OPF problem.

034 (0;) = v} — 0; Vie N o3p(0;) = 0; — V¥ Vie N
01a(0i5) = (0; — 0:) — 05 V(ij)e B ow(0i) = (0 —0;) —05V(ij) e B
o5a(9:%) = pf' — ¢ VieN  os(pf) = —pf" Vie N
0'56(42"(]) :q?u_(jlg Vie N USd( 19) = Vie N

o6(pl,al;) = (B1)? + (@))? — siy¥(ij) e E L EF
U?a(pz ,P; 7pf> = Z ﬁ{] - (ﬁg_p;j) Vie N
(ij)eE
on(@,ql,a") = >, dl (@ —af) Vie N
(ij)eE
osa(Bl;.0];) = Bl — V(ij) e B ose(dl; al;) = df; — df; V(ij) e E

Functions o3, and o3}, correspond to Constraints (3) and capture the distance of the voltage predictions
0; and its bounds. Similarly, o4, and o4, correspond to (4) and measure the difference between
voltage phase angle differences and its bound. Functions o5, to 054 correspond to (5) and describe
the distance of the generator active and reactive dispatch predictions from their upper and lower
bounds. og corresponds to (6) and measures distance between the squared apparent power and its
bound. Functions o7, and 73 relate to the Kirchhoff Current Law (7) and measure the power flow
violations at every bus (i.e. bus injection violations). Finally, functions og, and og, measure the

deViation of the indirect predicted flows f)f; and (jf to their ground truth values pi; and qf Note

that p pl and ¢ qZ are not direct predictions from the output of the DNN. These quantities are indirect
pred1ct10ns computed using the voltage predictions.

The violation degrees associated to the satisfiability degree above are defined below.

3(0) = \Nl (03a(9:)) + vZ (o36(9:)))
va(0) = ﬁ (i; (Vf (04a(035)) +vZ (U4b(ém‘)))
vaa®) = 157 3 (7 (o5a ) + 07 (o)) vs0(d@®) = 137 3 (7 (05e(a) + 7 (osa(a?))

A A 1 > f A
VG(Pf, qf) = E Z ve (%(P{p%))
(ij)eE

vra (P’ p") =

R ) 1 e
B ve (ora(0f,p!87)  vm(d®aal) = = X ve(on(dl.al ")
(ij)eE

|El (ij)eE

R 1 _ R . 1 - R
vald'p) = g X v (osa0];o]) v(@'a") = (g D, ve (owldl al).
(ij)eE (ij)€E

These functions capture the average deviation by which the prediction violates the associated
constraint. The violations degrees define penalties that will be used to enrich the DNN loss function
to encourage their satisfaction.

B.3 OGTF satisfiability and violation degrees

Given the predicted values: R for compression controls, p for pressure values, ¢ for natural gas
supply, and ¢/ for pipelines flows, this section extends the main paper by reporting the complete set
of satisfiability o(-) and violation degrees v/(-) for the OGF problem.

a10(4”,4;) = 2 (I,J Z qﬂ di VieJ

(i,5)€P (4,0)eP
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o11a(Bi) = Pt — pi VieJ o1s(Pi) = i — v’ VieJ

on1e(dl;) = diy — iy V(i,j)eP  onald) =dy—qfy Vi) eP

o124(Rij) = R, — Ryj ¥(i,j)eC  o1w(Rij) = Ry — R Y(i,j)eC
ow(dl,afy) = af; — df; V(i,j) e P

Function o1 corresponds to Constraints (10) and measure the gas flow violations at every junction.
Functions 011, — 0114 relate to Constraints (11) and capture the distance of the pressure and gas flow
predictions p; and ¢;; to their bounds. Similarly, 0124 and o195 correspond to Constraints (12) and
capture the distance of the compression control I2;; to its bounds. Finally, functions o4 measure

the deviation of the indirect predicted flows qAZf . to its ground truth value qlf .. Similar to OPF, (jifj are
not direct predictions from the output of the DNN and computed using the pressure and compressor

control predictions. Note that Constraints (13) are skipped since

The violation degrees associated to the satisfiability degree above are defined below.

IR 1 — Af A
VIO(qfa q) = m Z Ve (010(qf,fh))
i€J

vita(P) = = Z (v (o110(Pi)) + V2 (0116(5i)))
“7| i€eJ
1 > ~ > Py
vi1s(q’) WZEZP (Vc (Ullc(qlfj)) + v (Ulld(szj))>
N ]_ ~ > -
vi2(R) C ; (l/c (0120 (Rij)) + ve (Ulzb(Rij)))

. 1 = .
1/14(qf7 qf) = ‘ | Z Ve (0'14((]'{;7(]1@))
(4,5)€P

C Additional Experiments: Classification under Fairness Constraints

This section reports additional results on LDF for constrained predictor problems on a fairness
application domain.

Figure 1 illustrates the evolution of the accuracy and DT metrics for all the models evaluated at the
increasing of the number of epochs. The results are reported on the validation sets and the figure
illustrates the results for the Adult (top) Default (middle) and Bank (bottom) datasets. A clear trend
appears: The Lagrangian Dual method M2, reports a lower DT scores, and this happens early in the
training stages. Surprising, on the Bank dataset, the DT score could be reduced quite significantly
without much loss on accuracy terms.

C.1 Relaxed fairness constraints

Next, this section reports an extended evaluation on a relaxed notion of the fairness constraints. To
do so, the experiments allow the constraint a slack 0 < Ay < € (¢ = 0). The idea is to exploit such
relaxation to allow the model to achieve even better accuracy.

The experiments report the DT and accuracy scores attained by the MZ model on the Adult, Default,
and Bank datasets using several levels of constraint relaxation, which act on the slack €. For each
dataset, the experiments compute the DI-score obtained in the original data, i.e DIy, = |Pr(y(z) =
1]z(z) = 1) — Pr(y(z) = 1|z(x) = 0) and choose € to be 5%, 20% and 50% of this quantity.

Table 8 reports the results. It can be observed that the DI-score increases with the increasing of the
constraint relaxation e. At the same time, the accuracy decreases with the increasing of value e.
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Figure 1: Average (Avg.) of Accuracies/DT-scores on the validation sets during optimization.

Dataset | € = 5%Dloy € =20%Dlo; € = 50%Dly
| Acc. DT Acc. DT Acc. DT

Adult 0.8336 0.0567 0.8339 0.0586 0.8358 0.0812
Default | 0.8164 0.0073 0.8162 0.0087 0.8159 0.0092
Bank 0.8161 0.1556 0.8215 0.2437 0.8251 0.3372

Table 8: Accuracy/DT-score of MZ under different relaxed fairness parameters e
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