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In this paper, we present decomposition techniques for solving large-scale instances of the security-constrained
optimal power flow (SCOPF) problem with primary response. Specifically, under each contingency state, we
require that the nodal demands are met and that the synchronized units generating below their limits follow a
linear model for primary response. The resulting formulation is a mixed-integer linear program since the primary
response model introduces disjunctions to the SCOPF problem. Unfortunately, exact methods relying on tradi-
tional Benders decomposition do not scale well. As an alternative, we propose a decomposition scheme based on
the column-and-constraint-generation algorithm where we iteratively add disjunctions and cuts. We provide
procedures for preprocessing dedicated cuts and for numerically determining the post-contingency responses
based on the master problem solutions. We also discuss heuristics to generate high-quality primal solutions and
upper bounds for the method. Finally, we demonstrate the efficiency of the proposed method on large-scale

systems.

1. Introduction

System reliability under contingencies has been widely discussed in
the literature. In this context, the goal of the well-known security con-
strained optimal power flow (SCOPF) problem [1-7] is to produce a
pre-contingency (or nominal) schedule for generators at minimal cost,
such that it allows for feasible steady-state points of operation for a
predefined set of credible contingencies. A review of the SCOPF problem,
its challenges and trends is available in [4].

The specification of the set of credible contingencies varies in aca-
demic works. Generally, a loss of up to one or two elements (generators
and/or transmission lines) is considered. Interesting discussions about
credible contingencies and reserve requirements can be found in [2,6]
and the references therein. Security criteria and regulation for reserves
also vary across independent system operators. A survey about the re-
quirements for reserves across U.S. ancillary services can be found in
[8]. Without loss of generality, we consider the N —1 criterion for
generators in this paper; that is, the system must operate under the loss
of any individual generator.

Variants of the SCOPF problem include the corrective case [5] where

re-scheduling is possible, and the preventive case where no re-dispatch
occurs [3,6]. In this work, we consider preventive SCOPF with primary
response [6]. In this framework, the synchronized generators must be
able to automatically respond to contingencies to restore the balance
between loads and generation.

Even though SCOPF is a nonlinear and nonconvex problem [9,10],
for computational purposes, several authors adopt dc approximations
[2,3,6,7]. Some authors have dedicated works to address the quality of
approximations or relaxations to practical situations [11-14] or to
discuss how to exploit dc SCOPF solutions on more accurate ac SCOPF
approaches [15]. Notwithstanding these relevant discussions, the focus
of this work is to improve current industry approaches still based on dc
SCOPF algorithms. In such models, stability constraints for the system
are generally expressed as power flow limits. In practical applications,
the solution provided by the dc model can be checked for ac power flow
feasibility. Then, iterative and/or heuristic procedures can be applied to
further restrict the dc power flow constraints until feasibility is reached.

The primary response of generators is explicitly modeled in [16] for a
unit commitment application and in [6,7], and [17] for SCOPF prob-
lems. In [6,7], and [16] variables that represent the frequency drop in
each contingency state were used to generate linear approximations of
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Nomenclature

This section introduces our notation. We use bold symbols for
matrices (uppercase) and vectors (lowercase). Additional
symbols can be interpreted by the following general rules:
Symbols with superscript “(j)” denote new variables,
parameters or sets corresponding to the j-th iteration of the
solution method. The symbols with superscript “(*)”
denote the optimal value of the associated (iterating)

variable.

Sets

&, & Feasibility sets for the nominal power flow constraints and
for the power flow constraints under contingency state s,
respectively.

Fs Feasibility set for primary response constraints under
contingency state s.

G,L,N  Sets of generators, transmission lines and buses,
respectively.

H Subset of G for devising primal solutions.

S Set of contingencies.

S Subset of S with disjunctive constraints, used in the
column-and-constraint-generation algorithm.

X, Xs Sets of power flow-related decision variables for nominal
state and for contingency state s.

Vs Set of decision variables associated with primary response
under contingency state s.

Parameters

a, as; Largest transmission line capacity violation and violation

for transmission line [, under contingency state s.
B, p1, p= Parameters for selecting preprocessed cuts.

y Vector of parameters for primary response.

Vi Parameter for primary response of generator i.
€ Tolerance for transmission line violation.

€ Tolerance for the binary search procedure.

A B Line-bus and Generator-bus incidence matrices.
[ Vector of generation costs.

[ Generation cost of generator i.

d Vector of nodal net loads.

e Vector of ones with appropriate dimension.

e Total load imbalance for contingency state s.

f Vector of line capacities.

g.g Vectors of lower and upper limits for generators.

g Vector of capacities for generators.

g Upper limit for generator i.

g Capacity of generator i.

Ko Matrix of power transfer distribution factors.

K1, ko Preprocessed structures for positive flow limits.

K3, ks  Preprocessed structures for negative flow limits.

M Big-M.

Ib, ub Lower/upper bound for the decomposition method.

P Parameter for primal solution approach.

r Vector of primary response limits of generators.

T Primary response limit of generator i, given by y,g;.

S Angle-to-flow matrix.

z Objective value of the master problem for the column-and-
constraint-generation algorithm.

2 Objective value z when using the parameter p.

Nominal-state-related decision variables and vectors
0,f, g Phase angles, line flows, and nominal generation.
gi Generation of generator i in nominal state.

Contingency-state-related decision variables and vectors

0 Vector of phase angles under contingency state s.

Hs Vector of dual variables associated with nodal load balance
constraint under contingency state s.

f; Vector for line flows under contingency state s.

8s Vector for generation under contingency state s.

g Provisional vector for g;.

&si Generation of generator i under contingency state s.

g Provisional variable for g ;.

ng Global signal under contingency state s.

u,u;  Vectors of slack variables for line capacities.

Vi, Vs Vectors of slack variables for nodal demand balance.

X Binary vector indicating whether generators reached g
under contingency state s.

Xsi Binary variable indicating whether generator i reached g;

under contingency state s.

primary response. These variables are multiplied by parameters that
represent the sensitivity of generators to frequency changes. Such fre-
quency regulation parameters are related to droop coefficients. We refer
the interested reader to the discussions about droop coefficients in [6]
(and references therein) where, particularly, the authors argue that the
co-optimization of the droop coefficient and the SCOPF might save on
costs. In this work, we have also opted for the dc power flow approxi-
mation with a linear model for primary response. In summary, for each
contingency state, we have substituted the single variable representing
frequency drop adopted in [6] and [7] with a single global signal to
generators (also a variable).

The SCOPF problem featuring automatic primary response of gen-
erators is a mixed-integer linear program (MILP) even under the dc
relaxation. This is because the constraints for the automatic response of
generators may lead to power outputs above generator limits [16]. To
remedy this, we require binary variables for each generator and for each

contingency state to determine whether a generator is producing ac-
cording to the constraints for automatic response or at its limit. The size
of the problem is generally large. It is proportional to the number of
contingencies since we are required to represent the network and the
power flow variables for each post-contingency state.

The Benders’ decomposition approach, which has often been applied
to solve energy planning problems [3,5,18,19], is a natural candidate to
tackle the preventive SCOPF problem. Generally, in Benders’ ap-
proaches, the extensive formulation is recast into a master problem and
subproblems. The master problem for power systems applications usu-
ally solves the nominal dispatch, and the subproblems represent the
redispatch or corrective actions under contingencies and/or uncertain
scenarios. An iterative procedure that involves solving the master
problem and subproblems is performed. During this process, Benders’
cuts for the violated subproblems are added into the master problem.
The process continues until all subproblems are feasible. A valuable
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review on the Benders’ decomposition method can be found in [20].

Unfortunately, preventive SCOPF imposes challenges for the appli-
cation of traditional Benders’ decomposition since the subproblems are
nonconvex. The constraints that enforce the primary response of syn-
chronized generators contain binary variables. Despite such challenges,
a solution method inspired by [19] considering nonconvex subproblems
was provided in [6]. However, the optimality for this method is not
guaranteed. An alternative that ensures optimality is to recast the master
problem to include the constraints for the primary response. This
modification, however, does not scale well since the number of binary
variables increases quadratically with the number of synchronized
generators (assuming the N — 1 security criteria for generators).

In order to remedy the aforementioned limitations, we have devised
an exact and scalable algorithm to tackle the preventive SCOPF problem
with primary response. The focus of this work is on the computational
and practical aspects of the solution methodology. The proposed
decomposition scheme differs significantly from previously proposed
solution methods. The outline of the method is as follows.

In the master problem we consider a nominal optimal power flow
problem that accounts for valid constraints for each contingency state.
We initially disregard the network for contingency states and the dis-
junctions (binary variables) in the master problem. This approach alle-
viates the computational burden required for solving the master
problem. During the iterative process only a small subset of the dis-
junctions and network constraints are introduced to the master problem
by a column-and-constraint generation algorithm (CCGA) [21]. In the
proposed decomposition approach, the only optimization problem that
is solved is the master problem. This is possible since we use: i) pre-
processed structures based on the power transfer distribution factors
(PTDF) that are useful both as feasibility checkers and as dedicated cuts
in the post-contingency states, and ii) a numerical procedure that de-
termines the post-contingency variables based solely on the nominal
generation. The aforementioned preprocessed structures allow us to
monitor the critical congested areas of the system. As it is necessary,
these structures are transformed into constraints (that differ from
Benders’ cuts) that are added to the master problem. These cuts repre-
sent the network for the post-contingency states. Likewise, as it is
necessary, we introduce the disjunctions (binary variables) representing
the primary response model for a few contingency states into the master
problem. We also propose a method to find high-quality primal solutions
and a procedure that monitors the upper and lower bounds for the
method.

In summary, the main contribution of this work is a decomposition
approach that combines a column-and-constraint-generation algorithm
with numerical methods to determine exact solutions to the SCOPF
problem in such a way that the nonconvex subproblems do not need to
be solved directly. We demonstrate that this approach is possible due to
the presence of valid post-contingency constraints in the master problem
and due to the preprocessed structures derived from a PTDF-based
formulation.

The rest of this paper is organized as follows: In Section II, the SCOPF
model is introduced. The solution methodology is presented in Section
III. Numerical experiments are reported in Section IV. Finally, this paper
is concluded in Section V.

2. SCOPF with primary response formulation

We assume a generic framework where a bid-based market for en-
ergy and reserve and/or unit commitment (UC) procedures have taken
place hours before (or in the day before). We assume that, at the time the
SCOPF is solved, the operator has precise forecasts for the few-hours-
ahead non-dispatchable generation, and nodal net loads. For nota-
tional conciseness we assume that all generators are synchronized.
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2.1. Power flow constraints

We use the following dc power flow constraints:

Af+Bg=d (€))
f=S6 (2)
f<f<f 3
g<g<g 4
Af, +Bg, =d, Vs €. (5)
f, = S6,, Vs e .S (6)
—f<f, <f, Vs €. @
g <g Vse.s. (8)

Constraints (1)-(4) model the power flow in the nominal state. Expres-
sion (1) represents nodal power balance under a dc power flow model,
while Kirchhoff’s second law is accounted for in (2). Transmission line
limits and generator limits are enforced by (3) and (4), respectively. In
(4), we allow generation bounds g and g to be different from the mini-
mum and maximum (g) set points for the generators due to commitment
and/or operational constraints. Analogously to block (1)-(4), the set of
constraints (5)—(8) model the power flow under each contingency state s.

2.2. Primary response model

The primary response under contingency state s is modeled by a
global signal' ng sent to all synchronized generators. This approach
differs from those of [6] and [7], where variables representing frequency
drops under contingency states are considered. We assume that the
response of generator i is proportional to its capacity g; and also to a
predefined coefficient y; that is associated with the droop coefficient.
Hence, under s, the automatic response of synchronized generator i is
given by g;; — & = nsy; g;, with the additional constraints that g;; < g;.
Mathematically, we have

8si = min{g[ + 157 8 g[}, Vie O Vse. S its 9

8ss =0, Vs € .7 (10)

By using traditional MILP modeling techniques to rewrite (9)—(10), we
obtain

8si — & —n.\.yig,-‘ <g(l-x,), VieZNseZ,its 1)
g+ 8 > 8(1-x), Vie CNse Sits 12)
8i>8(1—x),Vie 7, Vs€.Si#s 13)
n, € [0,1], Vs €. a4
X, €{0,1}, Vie Z\Nse.S (15)
8.5 =0, Vs e.”/. (16)

1 An alternative interpretation is that n, mimics the systems response which is
required for adjusting the power (or frequency) imbalance. The physical
interpretation for the limitation of 1 to ny is that y; multiplied by capacity is the
maximum deliverable reserve or maximum ramp for a given time frame.
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2.3. Extensive formulation for the SCOPF problem

The SCOPF problem is modeled as a MILP, where we minimize the
cost of nominal generation in the objective function subject to con-
straints (1)-(8) and (11)—(16). For conciseness, we define X = [g,f, 0], X
= [g,.fs,05], and Vs = [g, g, Xs, 1. Let Vs € F, denote the disjunctions
related to (11)-(16) while X € £ and X; € & denote the power flow
constraints in nominal (1)—(4) and contingency states (5)—(8) respec-
tively. The extensive formulation for the SCOPF problem, labeled as EF
method, is as follows

in, <l an
st: Xeé& (18)

X, €&, VseS 19)

Y, € Fy, Vs € S. (20)

3. Solution methodology

In this work we focus on methods that guarantee optimality for the
SCOPF problem. A Benders’ decomposition with valid post-contingency
constraints in the master problem is presented in Section 3.1. Pre-
processed structures for feasibility checking and cut generation are
presented in Section 3.2, while a useful binary search is introduced in
Section 3.3. The CCGA is described in Section 3.4. A method for finding
high-quality primal solutions is presented in Section 3.5.

3.1. Modified Benders’ decomposition

The intuitive Benders’ decomposition approach for (17)-(20) is to
define the master problem as the nominal schedule, associated with
(17)-(18), and the subproblems as the separable feasibility recourse
problems enforcing (19)-(20) for each s € S. Unfortunately, this
approach introduces nonconvexities to the subproblems [6], and thus,
does not guarantee optimality.

In order to ensure the convexity of the subproblems, and thus opti-
mality for the method, we define the subproblems as feasibility-like
problems for the constraints in (19). As part of the modification, we
also add the following valid post-contingency constraints to the master
problem:

e'g =e'd,VscS. 21

The purpose of (21) is to strengthen the master problem with the
necessary post-contingency condition that the total generation and the
total load are equal. By also enforcing (8) we guarantee that post-
contingency generation is within bounds. We define the master prob-

lem? as

min c'g (22)

X, g, x5, n,\]\es
st: (18) 23)

(8),(20),(21), Vs€.7. (24)

The subproblem for each s € S, where g!” is the solution determined
in (22)—(24), is then defined as

min e (vi+v)) (25)

Vi vy ofg 0

2 There are two main differences with respect to the EF: Line constraints (6)—
(7) are not included, and constraint (5) is substituted by (21).
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s.t.: (6),(7) (26)
g =g H 27)
Af, +Bg, =d+v] —v,. (28)

A feasibility Benders’ cut is then added to the master problem at each
iteration, for each s that is not feasible; that is, Vs € S such that
e (vi) +v7")) > ¢, where ¢ is a tolerance level for the net load imbal-
ance. The Benders’ cut for s is as follows: e (vi(") + v: )+ p" (g, —
g") < 0. We label this approach as the BD method.

3.2. Precomputation of dedicated cuts

In this subsection, an alternative method named BDDC is introduced.
Unlike the BD method that involves subproblems that generate Benders’
cuts, the BDDC method uses preprocessed structures as feasibility
checkers and to generate cuts. These structures, that are also applied in
the CCGA of Section 3.4, are based on the PTDF formulation for dc
power flow.

In the BDCC method, we have the same master problem (22)-(24) as

the BD method. Thus, gf) is determined in (22)-(24), where the primary
response constraints (20) and the post-contingency generation con-
straints (8) and (21) are enforced.

The aforementioned preprocessed structures are constructed directly
from the PTDF-based formulation for the dc power flow. This formula-
tion, for contingency state s, is as follows:

miq 0 (29)
st: —f+u; :Ko(degE*)) =f—u (30)
u ,u’ >0. (31)

In (30), g!” is a solution determined by (22)-(24) and Ky is the PTDF
matrix. A similar description for (30) is presented in [22]. We highlight
that (8) and (21) are enforced in the master problem and therefore are
not necessary in (29)-(31). As opposed to the subproblems of the BD
method we do not allow nodal imbalance in (29)-(31). Thus, a given
master problem solution g”) is feasible under contingency state s if there
is a feasible solution u; , u} for (29)—(31).

In this work we assume that we have more lines |£| than buses |V
and that there are no isolated buses. Under these assumptions and
because we enforce (8) and (21) in the master problem, we do not need
to solve (29)-(31) to check for feasibility in post-contingency states or to
obtain cuts. Manipulating (30), we derive the preprocessed structures:

(u): Kig,+k, >0 (32)
(u)) : Ksg, +ks>0. (33)

Interestingly, the matrices Kj, K3 and the vectors ks, k4 can be efficiently
precomputed3 and are the same for all s € S. Another feature is that (32)
and (33) are directly associated with the transmission lines of the sys-
tem, relating either to the positive (32) or negative (33) limits. By
inspecting solutions gs on (32)-(33) it is possible to verify the existence
of violated lines and the intensity of violations (in MW) under each
contingency state.

The algorithm for the BDDC method involves adding rows of (32)

3 The incorporation of line outages as part of the set of credible contingencies
would require the precomputation of different structures for K;, K3, ko, and ks.
This would lead to a linear increase in the size of the precomputed data for the
problem (as many as the line contingencies). This would not present a signifi-
cant computational obstacle.
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and (33) as lazy constraints to problem (22)-(24). We do not require that
an optimal solution g; is found. Whenever a feasible (suboptimal)
integer solution is determined by the solver, as a subroutine, we check
the feasibility of g; using (32) and (33). We define ay; as the violation of
line 1, for contingency state s and a as the largest violation among all
transmission lines for all s. We then add to (22)—(24) as lazy constraints
the rows of both (32) and (33) corresponding to violated lines such that
as; > a/p1, where p; is a parameter. We stop the algorithm when « is
smaller than a defined tolerance e. This procedure converges in finite
steps since adding all rows of (32) and (33), for every s € S, to (22)-(24)
results in a problem which is equivalent to (17)-(20).

Unfortunately, the application of the BDDC method alone is not
scalable since its master problem contains all the binary variables.
Before proceeding to the proposed CCGA (Section 3.4), we introduce
next a useful binary search procedure.

3.3. Numerical procedure for calculating ng and g

Under the primary response model, the post-contingency generation
for s; that is, g;, is defined by the combination of the nominal schedule

g% and the global signal nd). Namely, given g and nl) it is

straightforward to compute g by applying the relations in (11)-(16).

Interestingly, n{") can also be calculated from g%, This is achieved by
a binary search for n, for each s € S. The binary search is possible in this
case since, for a fixed g(*), each component of g is monotone with
respect to n;. Thus, despite the presence of the disjunctions we only
need to find the correct n!” that results in a vector gs ) that satisfies the
total net demand. Given the fast convergence of the binary search, the
tolerance € can be set to very small values. This procedure is described in
Algorithm 1.

3.4. Column-and-Constraint-Generation algorithm

We define the master problem for the CCGA as follows

7= min c'g (34)

/
7 [glse s X5 nslies

st: (18) (35)
g —g<F Vs €.s (36)
(8),(16),(21), Vse.” (37)
(20), Vs € S. (38)

Note that, as opposed to the BDDC method, in (38) we define a
different set of contingency states S for the disjunctive constraints
(starting with S = @). We also abuse notation by using g, as a provi-
sional variable for the post-contingency generation replacing g; in (36)

Algorithm 1 Binary Search(s, e, g*))

1: Initialization: j <— O and ngo) <+~ 0.5.

2: for Vi € G,i # s do

30 itg”) 05 > g, then: giﬁ’ “3
4 else: g(a) (*) + n(])

5: end if.

6: end for

7: gsfs — 0; es (e—'—gS - er)

8: if |es| < e then: n{") « n{), g*) « gl) Vi € G and BREAK
9: else if es > 0 then: n(jJrl) — n(])/Q

10: else: YTV «— (1 +n§.7))/2

11: end if.

12: j < 7+ 1; Go to step 2.
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and (37). We performed this substitution to make explicit that g; is not
determined in (34)-(38) for the entire iterative process. The determi-
nation of g in (34)—(38) would only be possible in the presence of the
disjunctive constraints (20) for s. These disjunctive constraints are not
initially present in (34)-(38) for computational purposes. In fact, the
determination of g; is performed by Algorithm 1, which requires only g
as an input. The purpose of g, in (36) and (37) is to guarantee that g is
determined in such a way that Algorithm 1 is capable of enforcing the
primary response compatibility to g, while meeting the global demand.
That is, for each s, |e'g, — e'd| <.

In order to verify the above claim, note that by (36) and (8),
& < min{g;, & +7,8;} for each i and s, where g, ; is the i-th element of g,.
Defining n; = 0 in Algorithm 1 implies g, = g, except for g, = 0. If
instead we set n; = 1 then g; = min{g;, & +7:&;} > g;‘l- for each i and s,

with i # 5. Fori = s, we have that g, =g;; = 0. Thus, since g, meets the
global demand, it is always the case that e"g, > e'g, = e"d by choosing
ng = 1. By the monotonicity and continuity of gs ; with respect to n, for a
given g;, there is a value n{" that results in g that satisfies the global
demand and preserves the primary response model.

At each iteration j of the CCGA, we solve the master problem (34)-
(38) to obtain g% and z%. Then, for each s € S, we perform the binary
search (Algorithm 1) to define g?) according to the primary response
model. Next, for all s, we check feasibility of the solutions gﬁj) using (32)
and (33). We use a

contingency state s and we use a as the largest violation among all
transmission lines for all s. We identify the contingency state s? that

) to define the violation of each line 1, for each

contains the most violated line. If s) € S we skip the rest of this step.

Otherwise we set S = S U {s0)} which means including the disjunctions
(20) for s into (34)-(38).

We also add to (34)—(38) the rows of both (32) and (33) corre-
sponding to violated lines using two criteria: i) For the post-contingency

states s € S we include the lines where ag; > al/p,. ii) For the post-

contingency states s ¢ S we include the lines where as(’; > a¥ /B,. The

objective of this step is to enforce the network constraints for critical
lines in post-contingency states. Typically, 1 > f2. We are stricter with

Algorithm 2 CCGAC(, ¢, 31, B2)

Initialization: j < 0, S « 0.
. Solve: (34)—(38) to obtain g(/)

: for Vs € S do )
Use Algorithm 1 to obtain: 209, gm, _(')
for Vi € £ do
Compute oz(] ) as the maximum violation of (32) and (33)
end for st
: end for

: Compute al9) and identify the state s() of the most violated line
s if sU) ¢ S then set S =S U s() (add (20) for s() to (34)—(38))
: end if
: for Vs € S do

if s €S then 8 <

else 5 < B2

end if

for Vi € L do

if a“) > a9) /8 AND if cuts (32)-(33) for the pair (I,s) are not

yet 1nc1uded then

e
SeuEEbrerenamens

18: Add (32)-(33) for contingency state s, line [
19: end if

20: end for

21: end for

22: if o) < e then z(*) « 29, g(*) « g()); BREAK
23: else j <— j + 1; Go to step 2.
24: end if
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the states s € S since defining tight parameters for contingency states
without corresponding disjunctions may lead to the inclusion of many
constraints at a time. A user defined tolerance e¢ (in MW) for maximum
line violation is used to stop the iterative process. The CCGA is described
in Algorithm 2.

3.5. Finding high-Quality primal solutions and monitoring the optimality
gap using the CCGA

Because very large cases might still impose computational chal-
lenges, we propose a procedure for finding feasible primal solutions.
This procedure restricts the disjunctions in (20) to a subset of synchro-
nized generators HCG. The generators in G\'H respond with g; — & =
ngy; §;; that is, we define x;; = 1,Vs € S,Vi € G\H, i #s.

The following criterion is used for defining H. We rank the syn-
chronized generators according to a “cost/limit” index (c; /g;) and define
'H as the p% of generators with lowest ranks, where p is a parameter. The

objective value of the problem using this approach is denoted as zl(,ﬁ).

Note that z{g, = z(").

This approach reduces the number of binary variables and thus the
complexity of the problem. It is then a tool for finding upper bounds for
(17)-(20). If we apply Algorithm 2 using the proposed primal method;
i.e., setting x;; = 1,Vs € S, Vi € G\'H in (34)-(38) we obtain ub = z}(,*) as
a valid upper bound. If the problem is infeasible for p then z;)einf.

Note, however, that a procedure that monitors the optimality gap is
still required. A lower bound for (17)-(20) is not obtained for p < 100.
Conversely, solving for p = 100 generates upper bounds only after a
feasible solution is found. This typically occurs in the later iterations
when the tolerance ¢ for all lines in every contingency state is achieved.

We propose a simple strategy that monitors the bounds. Note that
solving the SCOPF with the CCGA for low values of p tends to be faster
than for high values of p. Thus, we start p = 0 and increase it sequen-
tially. The solution for each p < 100 provides an upper bound for (17)-
(20). As a parallel procedure, we solve for p = 100 to obtain valid lower
bounds. Namely, for each iteration j of Algorithm 2 for p = 100, a valid
lower bound is defined as the best bound provided by the solver. This
procedure monitors the gap efficiently.

4. Computational experiments

We compared the proposed CCGA with two solution methods: EF and
BDDC described in Sections 2.3 and 3.2.

We performed simulations for various values of y, 1, and fs. Our
results indicate that varying the parameters may impact the perfor-
mance of the CCGA. However, the dominance of the CCGA over other
methods (EF and BDDC) was a constant, despite the parameterization.
We have reported results for §; =5, , =1.2,and y; = 0.05 for alli € G.

We used Gurobi 8.1.1 under the modeling package JuMP 0.18.5 for
Julia Language 0.6.4 on a Xeon E5-2680 processor at 2.5 GHz and 128
GB of RAM. We set the optimality gap of Gurobi to 0.5% for the EF
method and BDDC method as well as for the master problem of the
CCGA. The maximum line violation was set to ¢ = 0.05 MW and the
precision of Algorithm 1 to e = 1071 MW.

The data are based on modified versions of the benchmark systems
presented in [23]. The size of the instances for the EF method, after
Gurobi’s presolve, are reported in Table 1.

4.1. Solution method comparison

Table 2 provides the computational times for selected methods and
the number of iterations for the CCGA method in parentheses. The CCGA
dominates the other methods, which were only able to solve the 118
IEEE case within a reasonable time limit. For this instance, the CCGA
required less than one third of the time of the BDDC method and less
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Table 1
Instance size for the EF method after Gurobi’s presolve
System Continuous Binary Linear
Variables Variables Constraints

118 IEEE 10,604 2,862 19,137
1354 PEGASE 323,571 63,455 513,677
1888 RTE 387,979 79,032 624,780
1951 RTE 563,273 149,370 1,010,994
2848 RTE 1,104,192 276,822 1,934,115
2868 RTE 1,284,568 348,036 2,328,081
6468 RTE 5,067,009 1,563,640 9,756,668

Table 2

Comparative CPU times (s) and number of iterations.

System Solution Method
EF BDDC CCGA

118 IEEE 46.2 27.6 8.0 4
1354 PEGASE T T 138.0 (12)
1888 RTE T 2899.0 14.0 (4)
1951 RTE T T 16.2 (4)
2848 RTE T T 26.6 (4)
2868 RTE T T 31.0 (3)
6468 RTE T T 7881.6 (18)

T - Time limit of 4 hours exceeded.

than one fifth of the time of the EF method. The only other instance that
the BDDC method was able to solve in less than 4 hours was the 1888
RTE. The CCGA was more than 200 times faster for this instance.
Interestingly, the number of iterations required by the CCGA is generally
small, implying that the CCGA solved far less complex MILPs than the
other methods. The only instance that posed difficulties for the CCGA
was the 6468 RTE that contains more than 6000 buses, 1200 generators,
and 9000 transmission lines. Nevertheless, a solution for the optimality
gap of 0.5% was achieved in less than 3 hours.

Interestingly, as reported next, it is possible to determine high-
quality solutions in competitive computational times for large systems
by applying the primal method of Section 3.5.

4.2. Finding primal solutions and determining bounds

The method of Section 3.5 for defining primal solutions was applied
for the 6468 RTE and 1354 PEGASE systems. CCGA was used to solve the
SCOPF problem for different values of p to an optimality gap of 0.5%.
The results are summarized in Tables 3 and 4. Columns 1 and 2 present
the cost and the relative cost gap for each p with respect to the cost

Table 3
Primal Approach for the 6468 RTE System.
P Cost Cost Gap Time Iter.
(10°$) (%) © @
100 1624.8 0.00 7881.6 18
10 1625.8 0.02 813.5 17
0 1628.7 0.25 481.2 16
Table 4
Primal Approach for the 1354 PEGASE System.
P Cost Cost Gap Time Iter.
(10> $) (%) ) #)
100 1190.6 0.00 138.0 12
50 1192.6 0.17 64.7 11
10 1195.4 0.40 21.1 11
0 1208.3 1.49 9.4 10




A. Velloso et al.

1250
2
S 1200 * o o —
% °°°o o o
z 1150
@) °
1100 . . :
0 50 100 150
Time (s)

Fig. 1. Bounds for the 1354 PEGASE system.

achieved by p = 100. Columns 3 and 4 report the required computa-
tional time and number of iterations.

For the 6468 RTE system (Table 3) the result is quasi-optimal even
forp =0. For the 1354 PEGASE system (Table 4) the solution forp = 0 is
already competitive, and required 9.4 seconds only. By increasing the
complexity of the problem to p = 10, the cost gap is reduced by more
than 1% for a reasonable solution time of 21.1 seconds. For p = 50, the
CCGA required 64.7 seconds to converge, achieving a negligible cost gap
of 0.17.

Despite the good results for small values of p, the cost gap is not
observable before solving for p = 100. Thus, we adopted the strategy of
Section 3.5 for obtaining bounds. We used multi-threading to solve
problems in parallel. In the first thread we solved a sequence of problems
for increasing values of p, starting with p = 0. We have stored the costs
and times for the solutions of each p. In the second thread we solved for p
=100 and recorded solving time and the best bound of each iteration
provided by Gurobi. A convergence plot from applying this method to
the 1354 PEGASE system is illustrated in Fig. 1. The proposed strategy
yields the true optimality gap and is a useful decision-making tool for
system operators.

5. Conclusion

We presented an exact and scalable column-and-constraint-
generation algorithm for the SCOPF problem with primary response of
generators. Under the proposed framework, we add the disjunctions as
necessary in an iterative process that does not involve subproblems. This
is possible by a scheme that involves a master problem with valid post-
contingency constraints, preprocessed structures that serve both as
feasibility checkers and delayed cuts, and a numerical procedure that
reduces the complexity of the master problem by exogenously calcu-
lating the nonconvex primary response. We also proposed a procedure
for finding high-quality primal solutions that helps monitor the bounds
for the method. As shown by the computational experiments, this
approach scales to large instances of the SCOPF problem with primary
response.

In future works we will generalize these techniques. As a first step,
convexifications of ac power flow, such as those studied in the recent
works of Coffrin and Van Hentenryck [12,13], will be used to model the
system’s response after contingencies.

Electric Power Systems Research 195 (2021) 106677
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] O. Alsac, B. Stott, Optimal load flow with steady-state security, IEEE Trans. Power
App. Syst. PAS-93 (3) (1974) 745-751.

[2] F. Bouffard, F.D. Galiana, J.M. Arroyo, Umbrella contingencies in security-
constrained optimal power flow, 15th Power syst. Comput. Conf. PSCC 5 (2005).

[3] Y. Li, J.D. McCalley, Decomposed SCOPF for improving efficiency, IEEE Trans.
Power Syst. 24 (1) (2009) 494-495.

[4] F. Capitanescu, J.M. Ramos, P. Panciatici, D. Kirschen, A.M. Marcolini,

L. Platbrood, L. Wehenkel, State-of-the-art, challenges, and future trends in security
constrained optimal power flow, Elect. Power Syst. Res. 81 (8) (2011) 1731-1741.

[5] Q. Wang, J.D. McCalley, T. Zheng, E. Litvinov, Solving corrective risk-based
security-constrained optimal power flow with lagrangian relaxation and benders
decomposition, Int. J. Elec. Power 75 (2016) 255-264.

[6] Y. Dvorkin, P. Henneaux, D.S. Kirschen, H. Pandzi¢, Optimizing primary response
in preventive security-constrained optimal power flow, IEEE Syst. J. 12 (1) (2016)
414-423.

[7] M. Velay, M. Vinyals, Y. Besanger, N. Retiere, Fully distributed security constrained
optimal power flow with primary frequency control, Int. J. Elec. Power 110 (2019)
536-547.

[8] Z. Zhou, T. Levin, G. Conzelmann, Survey of U.S. ancillary services markets,
argonne national lab.(ANL), argonne, IL (united states), Tech. Rep. (2016).

[9] L. Platbrood, F. Capitanescu, C. Merckx, H. Crisciu, L. Wehenkel, A generic
approach for solving nonlinear-discrete security-constrained optimal power flow
problems in large-scale systems, IEEE Trans. Power Syst. 29 (3) (2013) 1194-1203.

[10] F. Capitanescu, Critical review of recent advances and further developments
needed in ac optimal power flow, Electr. Power Syst. Res. 136 (2016) 57-68.

[11] F. Li, R. Bo, Dcopf-based Imp simulation: algorithm, comparison with acopf, and
sensitivity, IEEE Trans. Power Syst. 22 (4) (2007) 1475-1485.

[12] C. Coffrin, P.V. Hentenryck, A linear-programming approximation of ac power
flows, INFORMS J. Comput. 26 (4) (2014) 718-734.

[13] C. Coffrin, H.L. Hijazi, P.V. Hentenryck, The qc relaxation: a theoretical and
computational study on optimal power flow, IEEE Trans. Power Syst. 31 (4) (2015)
3008-3018.

[14] B. Eldridge, R.P. O’Neill, A. Castillo, Marginal loss calculations for the dcopf,
Federal Energy Regulat. Commission, Tech. Rep (2017).

[15] A. Marano-Marcolini, F. Capitanescu, J.L. Martinez-Ramos, L. Wehenkel,
Exploiting the use of dc scopf approximation to improve iterative ac scopf
algorithms, IEEE Trans. Power Syst. 27 (3) (2012) 1459-1466.

[16] J.F. Restrepo, F.D. Galiana, Unit commitment with primary frequency regulation
constraints, IEEE Trans. Power Syst. 20 (4) (2005) 1836-1842.

[17] K. Karoui, H. Crisciu, L. Platbrood, Modeling the primary reserve allocation in
preventive and curative security constrained OPF, Proc. IEEE PES Trans. Distrb.
Conf. Expo. IEEE (2010) 1-6.

[18] J. Wang, M. Shahidehpour, Z. Li, Contingency-constrained reserve requirements in
joint energy and ancillary services auction, Trans. Power Syst. 24 (3) (2009)
1457-1468.

[19] D. Bertsimas, E. Litvinov, X.A. Sun, J. Zhao, T. Zheng, Adaptive robust optimization
for the security constrained unit commitment problem, Trans. Power Syst. 28 (1)
(2013) 52-63.

[20] R. Rahmaniani, T.G. Crainic, M. Gendreau, W. Rei, The Benders decomposition
algorithm: a literature review, Eur. J. Oper. Res. 259 (3) (2017) 801-817.

[21] B. Zeng, L. Zhao, Solving two-stage robust optimization problems using a column-
and-constraint generation method, Oper. Res. Lett. 41 (5) (2013) 457-461.

[22] A.J. Ardakani, F. Bouffard, Identification of umbrella constraints in dc-based
security-constrained optimal power flow, IEEE Trans. Power Syst. 28 (4) (2013)
3924-3934.

[23] S. Babaeinejadsarookolaee, The power grid library for benchmarking ac optimal
power flow algorithms, (2019). arXiv:1908.02788.


http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0001
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0001
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0002
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0002
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0003
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0003
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0004
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0004
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0004
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0005
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0005
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0005
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0006
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0006
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0006
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0007
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0007
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0007
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0008
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0008
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0009
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0009
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0009
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0010
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0010
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0011
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0011
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0012
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0012
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0013
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0013
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0013
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0014
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0014
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0015
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0015
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0015
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0016
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0016
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0017
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0017
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0017
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0018
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0018
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0018
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0019
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0019
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0019
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0020
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0020
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0021
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0021
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0022
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0022
http://refhub.elsevier.com/S0378-7796(20)30480-6/sbref0022
http://arxiv.org/abs/1908.02788

	An exact and scalable problem decomposition for security-constrained optimal power flow
	1 Introduction
	2 SCOPF with primary response formulation
	2.1 Power flow constraints
	2.2 Primary response model
	2.3 Extensive formulation for the SCOPF problem

	3 Solution methodology
	3.1 Modified Benders’ decomposition
	3.2 Precomputation of dedicated cuts
	3.3 Numerical procedure for calculating ns and gs
	3.4 Column-and-Constraint-Generation algorithm
	3.5 Finding high-Quality primal solutions and monitoring the optimality gap using the CCGA

	4 Computational experiments
	4.1 Solution method comparison
	4.2 Finding primal solutions and determining bounds

	5 Conclusion
	Declaration of Competing Interest
	References


