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A B S T R A C T   

In this paper, we present decomposition techniques for solving large-scale instances of the security-constrained 
optimal power flow (SCOPF) problem with primary response. Specifically, under each contingency state, we 
require that the nodal demands are met and that the synchronized units generating below their limits follow a 
linear model for primary response. The resulting formulation is a mixed-integer linear program since the primary 
response model introduces disjunctions to the SCOPF problem. Unfortunately, exact methods relying on tradi
tional Benders decomposition do not scale well. As an alternative, we propose a decomposition scheme based on 
the column-and-constraint-generation algorithm where we iteratively add disjunctions and cuts. We provide 
procedures for preprocessing dedicated cuts and for numerically determining the post-contingency responses 
based on the master problem solutions. We also discuss heuristics to generate high-quality primal solutions and 
upper bounds for the method. Finally, we demonstrate the efficiency of the proposed method on large-scale 
systems.   

1. Introduction 

System reliability under contingencies has been widely discussed in 
the literature. In this context, the goal of the well-known security con
strained optimal power flow (SCOPF) problem [1–7] is to produce a 
pre-contingency (or nominal) schedule for generators at minimal cost, 
such that it allows for feasible steady-state points of operation for a 
predefined set of credible contingencies. A review of the SCOPF problem, 
its challenges and trends is available in [4]. 

The specification of the set of credible contingencies varies in aca
demic works. Generally, a loss of up to one or two elements (generators 
and/or transmission lines) is considered. Interesting discussions about 
credible contingencies and reserve requirements can be found in [2,6] 
and the references therein. Security criteria and regulation for reserves 
also vary across independent system operators. A survey about the re
quirements for reserves across U.S. ancillary services can be found in 
[8]. Without loss of generality, we consider the N − 1 criterion for 
generators in this paper; that is, the system must operate under the loss 
of any individual generator. 

Variants of the SCOPF problem include the corrective case [5] where 

re-scheduling is possible, and the preventive case where no re-dispatch 
occurs [3,6]. In this work, we consider preventive SCOPF with primary 
response [6]. In this framework, the synchronized generators must be 
able to automatically respond to contingencies to restore the balance 
between loads and generation. 

Even though SCOPF is a nonlinear and nonconvex problem [9,10], 
for computational purposes, several authors adopt dc approximations 
[2,3,6,7]. Some authors have dedicated works to address the quality of 
approximations or relaxations to practical situations [11–14] or to 
discuss how to exploit dc SCOPF solutions on more accurate ac SCOPF 
approaches [15]. Notwithstanding these relevant discussions, the focus 
of this work is to improve current industry approaches still based on dc 
SCOPF algorithms. In such models, stability constraints for the system 
are generally expressed as power flow limits. In practical applications, 
the solution provided by the dc model can be checked for ac power flow 
feasibility. Then, iterative and/or heuristic procedures can be applied to 
further restrict the dc power flow constraints until feasibility is reached. 

The primary response of generators is explicitly modeled in [16] for a 
unit commitment application and in [6,7], and [17] for SCOPF prob
lems. In [6,7], and [16] variables that represent the frequency drop in 
each contingency state were used to generate linear approximations of 
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primary response. These variables are multiplied by parameters that 
represent the sensitivity of generators to frequency changes. Such fre
quency regulation parameters are related to droop coefficients. We refer 
the interested reader to the discussions about droop coefficients in [6] 
(and references therein) where, particularly, the authors argue that the 
co-optimization of the droop coefficient and the SCOPF might save on 
costs. In this work, we have also opted for the dc power flow approxi
mation with a linear model for primary response. In summary, for each 
contingency state, we have substituted the single variable representing 
frequency drop adopted in [6] and [7] with a single global signal to 
generators (also a variable). 

The SCOPF problem featuring automatic primary response of gen
erators is a mixed-integer linear program (MILP) even under the dc 
relaxation. This is because the constraints for the automatic response of 
generators may lead to power outputs above generator limits [16]. To 
remedy this, we require binary variables for each generator and for each 

contingency state to determine whether a generator is producing ac
cording to the constraints for automatic response or at its limit. The size 
of the problem is generally large. It is proportional to the number of 
contingencies since we are required to represent the network and the 
power flow variables for each post-contingency state. 

The Benders’ decomposition approach, which has often been applied 
to solve energy planning problems [3,5,18,19], is a natural candidate to 
tackle the preventive SCOPF problem. Generally, in Benders’ ap
proaches, the extensive formulation is recast into a master problem and 
subproblems. The master problem for power systems applications usu
ally solves the nominal dispatch, and the subproblems represent the 
redispatch or corrective actions under contingencies and/or uncertain 
scenarios. An iterative procedure that involves solving the master 
problem and subproblems is performed. During this process, Benders’ 
cuts for the violated subproblems are added into the master problem. 
The process continues until all subproblems are feasible. A valuable 

Nomenclature 

This section introduces our notation. We use bold symbols for 
matrices (uppercase) and vectors (lowercase). Additional 
symbols can be interpreted by the following general rules: 
Symbols with superscript “(j)” denote new variables, 
parameters or sets corresponding to the j-th iteration of the 
solution method. The symbols with superscript “(*)” 
denote the optimal value of the associated (iterating) 
variable.  

Sets 
ℰ, ℰs Feasibility sets for the nominal power flow constraints and 

for the power flow constraints under contingency state s, 
respectively. 

ℱ s Feasibility set for primary response constraints under 
contingency state s. 

𝒢, ℒ, 𝒩 Sets of generators, transmission lines and buses, 
respectively. 

ℋ Subset of 𝒢 for devising primal solutions. 
𝒮 Set of contingencies. 
S Subset of 𝒮 with disjunctive constraints, used in the 

column-and-constraint-generation algorithm. 
𝒳 , 𝒳 s Sets of power flow-related decision variables for nominal 

state and for contingency state s. 
𝒴s Set of decision variables associated with primary response 

under contingency state s. 

Parameters 
α, αs,l Largest transmission line capacity violation and violation 

for transmission line l, under contingency state s. 
β, β1, β2 Parameters for selecting preprocessed cuts. 
γ Vector of parameters for primary response. 
γi Parameter for primary response of generator i. 
ϵ Tolerance for transmission line violation. 
ε Tolerance for the binary search procedure. 
A, B Line-bus and Generator-bus incidence matrices. 
c Vector of generation costs. 
ci Generation cost of generator i. 
d Vector of nodal net loads. 
e Vector of ones with appropriate dimension. 

es Total load imbalance for contingency state s. 
f Vector of line capacities. 
g , g Vectors of lower and upper limits for generators. 
ĝ Vector of capacities for generators. 
gi Upper limit for generator i. 
ĝ i Capacity of generator i. 
K0 Matrix of power transfer distribution factors. 
K1, k2 Preprocessed structures for positive flow limits. 
K3, k4 Preprocessed structures for negative flow limits. 
M Big-M. 
lb, ub Lower/upper bound for the decomposition method. 
p Parameter for primal solution approach. 
r Vector of primary response limits of generators. 
ri Primary response limit of generator i, given by γi ĝ i. 
S Angle-to-flow matrix. 
z Objective value of the master problem for the column-and- 

constraint-generation algorithm. 
zp Objective value z when using the parameter p. 

Nominal-state-related decision variables and vectors 
θ, f, g Phase angles, line flows, and nominal generation. 
gi Generation of generator i in nominal state. 

Contingency-state-related decision variables and vectors 
θs Vector of phase angles under contingency state s. 
μs Vector of dual variables associated with nodal load balance 

constraint under contingency state s. 
fs Vector for line flows under contingency state s. 
gs Vector for generation under contingency state s. 
g′

s Provisional vector for gs. 
gs,i Generation of generator i under contingency state s. 
g′

s,i Provisional variable for gs,i. 
ns Global signal under contingency state s. 
u+

s , u−
s Vectors of slack variables for line capacities. 

v+
s , v−

s Vectors of slack variables for nodal demand balance. 
xs Binary vector indicating whether generators reached g 

under contingency state s. 
xs,i Binary variable indicating whether generator i reached gi 

under contingency state s.  
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review on the Benders’ decomposition method can be found in [20]. 
Unfortunately, preventive SCOPF imposes challenges for the appli

cation of traditional Benders’ decomposition since the subproblems are 
nonconvex. The constraints that enforce the primary response of syn
chronized generators contain binary variables. Despite such challenges, 
a solution method inspired by [19] considering nonconvex subproblems 
was provided in [6]. However, the optimality for this method is not 
guaranteed. An alternative that ensures optimality is to recast the master 
problem to include the constraints for the primary response. This 
modification, however, does not scale well since the number of binary 
variables increases quadratically with the number of synchronized 
generators (assuming the N − 1 security criteria for generators). 

In order to remedy the aforementioned limitations, we have devised 
an exact and scalable algorithm to tackle the preventive SCOPF problem 
with primary response. The focus of this work is on the computational 
and practical aspects of the solution methodology. The proposed 
decomposition scheme differs significantly from previously proposed 
solution methods. The outline of the method is as follows. 

In the master problem we consider a nominal optimal power flow 
problem that accounts for valid constraints for each contingency state. 
We initially disregard the network for contingency states and the dis
junctions (binary variables) in the master problem. This approach alle
viates the computational burden required for solving the master 
problem. During the iterative process only a small subset of the dis
junctions and network constraints are introduced to the master problem 
by a column-and-constraint generation algorithm (CCGA) [21]. In the 
proposed decomposition approach, the only optimization problem that 
is solved is the master problem. This is possible since we use: i) pre
processed structures based on the power transfer distribution factors 
(PTDF) that are useful both as feasibility checkers and as dedicated cuts 
in the post-contingency states, and ii) a numerical procedure that de
termines the post-contingency variables based solely on the nominal 
generation. The aforementioned preprocessed structures allow us to 
monitor the critical congested areas of the system. As it is necessary, 
these structures are transformed into constraints (that differ from 
Benders’ cuts) that are added to the master problem. These cuts repre
sent the network for the post-contingency states. Likewise, as it is 
necessary, we introduce the disjunctions (binary variables) representing 
the primary response model for a few contingency states into the master 
problem. We also propose a method to find high-quality primal solutions 
and a procedure that monitors the upper and lower bounds for the 
method. 

In summary, the main contribution of this work is a decomposition 
approach that combines a column-and-constraint-generation algorithm 
with numerical methods to determine exact solutions to the SCOPF 
problem in such a way that the nonconvex subproblems do not need to 
be solved directly. We demonstrate that this approach is possible due to 
the presence of valid post-contingency constraints in the master problem 
and due to the preprocessed structures derived from a PTDF-based 
formulation. 

The rest of this paper is organized as follows: In Section II, the SCOPF 
model is introduced. The solution methodology is presented in Section 
III. Numerical experiments are reported in Section IV. Finally, this paper 
is concluded in Section V. 

2. SCOPF with primary response formulation 

We assume a generic framework where a bid-based market for en
ergy and reserve and/or unit commitment (UC) procedures have taken 
place hours before (or in the day before). We assume that, at the time the 
SCOPF is solved, the operator has precise forecasts for the few-hours- 
ahead non-dispatchable generation, and nodal net loads. For nota
tional conciseness we assume that all generators are synchronized. 

2.1. Power flow constraints 

We use the following dc power flow constraints: 

Af + Bg = d (1)  

f = Sθ (2)  

−f ≤ f ≤ f (3)  

g ≤ g ≤ g (4)  

Afs + Bgs = d, ∀s ∈ S (5)  

fs = Sθs, ∀s ∈ S (6)  

−f ≤ fs ≤ f, ∀s ∈ S (7)  

gs ≤ g, ∀s ∈ S . (8)  

Constraints (1)–(4) model the power flow in the nominal state. Expres
sion (1) represents nodal power balance under a dc power flow model, 
while Kirchhoff’s second law is accounted for in (2). Transmission line 
limits and generator limits are enforced by (3) and (4), respectively. In 
(4), we allow generation bounds g and g to be different from the mini
mum and maximum (ĝ) set points for the generators due to commitment 
and/or operational constraints. Analogously to block (1)–(4), the set of 
constraints (5)–(8) model the power flow under each contingency state s. 

2.2. Primary response model 

The primary response under contingency state s is modeled by a 
global signal1 ns sent to all synchronized generators. This approach 
differs from those of [6] and [7], where variables representing frequency 
drops under contingency states are considered. We assume that the 
response of generator i is proportional to its capacity ĝ i and also to a 
predefined coefficient γi that is associated with the droop coefficient. 
Hence, under s, the automatic response of synchronized generator i is 
given by gs,i − gi = nsγi ĝ i, with the additional constraints that gs,i ≤ gi. 
Mathematically, we have 

gs,i = min
{

gi + nsγi ĝi, gi

}

, ∀i ∈ G , ∀s ∈ S , i ∕= s (9)  

gs,s = 0, ∀s ∈ S . (10)  

By using traditional MILP modeling techniques to rewrite (9)–(10), we 
obtain 
⃒
⃒
⃒
⃒gs,i − gi − nsγi ĝi

⃒
⃒
⃒
⃒ ≤ gi

(
1 − xs,i

)
, ∀i ∈ G , ∀s ∈ S , i ∕= s (11)  

gi + nsγi ĝi ≥ gi
(
1 − xs,i

)
, ∀i ∈ G , ∀s ∈ S , i ∕= s (12)  

gs,i ≥ gi
(
1 − xs,i

)
, ∀i ∈ G , ∀s ∈ S , i ∕= s (13)  

ns ∈ [0, 1], ∀s ∈ S (14)  

xs,i ∈ {0, 1}, ∀i ∈ G , ∀s ∈ S (15)  

gs,s = 0, ∀s ∈ S . (16) 

1 An alternative interpretation is that ns mimics the systems response which is 
required for adjusting the power (or frequency) imbalance. The physical 
interpretation for the limitation of 1 to ns is that γi multiplied by capacity is the 
maximum deliverable reserve or maximum ramp for a given time frame. 
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2.3. Extensive formulation for the SCOPF problem 

The SCOPF problem is modeled as a MILP, where we minimize the 
cost of nominal generation in the objective function subject to con
straints (1)–(8) and (11)–(16). For conciseness, we define 𝒳 = [g, f, θ], 𝒳 s 
= [gs, fs, θs], and 𝒴s = [g, gs, xs, ns]. Let 𝒴s ∈ ℱ s denote the disjunctions 
related to (11)–(16) while 𝒳 ∈ ℰ and 𝒳 s ∈ ℰs denote the power flow 
constraints in nominal (1)–(4) and contingency states (5)–(8) respec
tively. The extensive formulation for the SCOPF problem, labeled as EF 
method, is as follows 

min
𝒳 ,[𝒳 s ,xs ,ns ]s∈𝒮

c⊤g (17)  

s.t.: 𝒳 ∈ ℰ (18)  

𝒳 s ∈ ℰs, ∀s ∈ 𝒮 (19)  

𝒴s ∈ ℱ s, ∀s ∈ 𝒮. (20)  

3. Solution methodology 

In this work we focus on methods that guarantee optimality for the 
SCOPF problem. A Benders’ decomposition with valid post-contingency 
constraints in the master problem is presented in Section 3.1. Pre
processed structures for feasibility checking and cut generation are 
presented in Section 3.2, while a useful binary search is introduced in 
Section 3.3. The CCGA is described in Section 3.4. A method for finding 
high-quality primal solutions is presented in Section 3.5. 

3.1. Modified Benders’ decomposition 

The intuitive Benders’ decomposition approach for (17)–(20) is to 
define the master problem as the nominal schedule, associated with 
(17)–(18), and the subproblems as the separable feasibility recourse 
problems enforcing (19)–(20) for each s ∈ 𝒮. Unfortunately, this 
approach introduces nonconvexities to the subproblems [6], and thus, 
does not guarantee optimality. 

In order to ensure the convexity of the subproblems, and thus opti
mality for the method, we define the subproblems as feasibility-like 
problems for the constraints in (19). As part of the modification, we 
also add the following valid post-contingency constraints to the master 
problem: 

e⊤gs = e⊤d, ∀s ∈ 𝒮. (21)  

The purpose of (21) is to strengthen the master problem with the 
necessary post-contingency condition that the total generation and the 
total load are equal. By also enforcing (8) we guarantee that post- 
contingency generation is within bounds. We define the master prob
lem2 as 

min
𝒳 , [gs , xs , ns ]s∈𝒮

c⊤g (22)  

s.t.: (18) (23)  

(8), (20), (21), ∀s ∈ S . (24) 

The subproblem for each s ∈ 𝒮, where g(*)
s is the solution determined 

in (22)–(24), is then defined as 

min
v+

s ,v−
s ,fs ,gs ,θ

e⊤
(
v+

s + v−
s

)
(25)  

s.t.: (6), (7) (26)  

gs = g(*)
s : μs (27)  

Afs + Bgs = d + v+
s − v−

s . (28) 

A feasibility Benders’ cut is then added to the master problem at each 
iteration, for each s that is not feasible; that is, ∀s ∈ 𝒮 such that 
e⊤(v+(*)

s +v−(*)
s ) > ϵ, where ϵ is a tolerance level for the net load imbal

ance. The Benders’ cut for s is as follows: e⊤(v+(*)
s + v−(*)

s ) + μ⊤(gs −

g(*)
s ) ≤ 0. We label this approach as the BD method. 

3.2. Precomputation of dedicated cuts 

In this subsection, an alternative method named BDDC is introduced. 
Unlike the BD method that involves subproblems that generate Benders’ 
cuts, the BDDC method uses preprocessed structures as feasibility 
checkers and to generate cuts. These structures, that are also applied in 
the CCGA of Section 3.4, are based on the PTDF formulation for dc 
power flow. 

In the BDCC method, we have the same master problem (22)–(24) as 
the BD method. Thus, g(*)

s is determined in (22)–(24), where the primary 
response constraints (20) and the post-contingency generation con
straints (8) and (21) are enforced. 

The aforementioned preprocessed structures are constructed directly 
from the PTDF-based formulation for the dc power flow. This formula
tion, for contingency state s, is as follows: 

min
u−

s ,u+
s

0 (29)  

s.t.: − f + u−
s = K0

(
d − Bg(*)

s

)
= f − u+

s (30)  

u−
s , u+

s ≥ 0. (31) 

In (30), g(*)
s is a solution determined by (22)–(24) and K0 is the PTDF 

matrix. A similar description for (30) is presented in [22]. We highlight 
that (8) and (21) are enforced in the master problem and therefore are 
not necessary in (29)–(31). As opposed to the subproblems of the BD 
method we do not allow nodal imbalance in (29)–(31). Thus, a given 
master problem solution g(*)

s is feasible under contingency state s if there 
is a feasible solution u−

s , u+
s for (29)–(31). 

In this work we assume that we have more lines |ℒ| than buses |𝒩 |

and that there are no isolated buses. Under these assumptions and 
because we enforce (8) and (21) in the master problem, we do not need 
to solve (29)–(31) to check for feasibility in post-contingency states or to 
obtain cuts. Manipulating (30), we derive the preprocessed structures: 
(
u+

s

)
: K1gs + k2 ≥ 0 (32)  

(
u−

s

)
: K3gs + k4 ≥ 0. (33)  

Interestingly, the matrices K1, K3 and the vectors k2, k4 can be efficiently 
precomputed3 and are the same for all s ∈ 𝒮. Another feature is that (32) 
and (33) are directly associated with the transmission lines of the sys
tem, relating either to the positive (32) or negative (33) limits. By 
inspecting solutions gs on (32)–(33) it is possible to verify the existence 
of violated lines and the intensity of violations (in MW) under each 
contingency state. 

The algorithm for the BDDC method involves adding rows of (32) 

2 There are two main differences with respect to the EF: Line constraints (6)– 
(7) are not included, and constraint (5) is substituted by (21). 

3 The incorporation of line outages as part of the set of credible contingencies 
would require the precomputation of different structures for K1, K3, k2, and k4. 
This would lead to a linear increase in the size of the precomputed data for the 
problem (as many as the line contingencies). This would not present a signifi
cant computational obstacle. 
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and (33) as lazy constraints to problem (22)–(24). We do not require that 
an optimal solution gs is found. Whenever a feasible (suboptimal) 
integer solution is determined by the solver, as a subroutine, we check 
the feasibility of gs using (32) and (33). We define αs,i as the violation of 
line l, for contingency state s and α as the largest violation among all 
transmission lines for all s. We then add to (22)–(24) as lazy constraints 
the rows of both (32) and (33) corresponding to violated lines such that 
αs,l > α/β1, where β1 is a parameter. We stop the algorithm when α is 
smaller than a defined tolerance ϵ. This procedure converges in finite 
steps since adding all rows of (32) and (33), for every s ∈ 𝒮, to (22)–(24) 
results in a problem which is equivalent to (17)–(20). 

Unfortunately, the application of the BDDC method alone is not 
scalable since its master problem contains all the binary variables. 
Before proceeding to the proposed CCGA (Section 3.4), we introduce 
next a useful binary search procedure. 

3.3. Numerical procedure for calculating ns and gs 

Under the primary response model, the post-contingency generation 
for s; that is, gs, is defined by the combination of the nominal schedule 
g(*) and the global signal n(*)

s . Namely, given g(*) and n(*)
s , it is 

straightforward to compute g(*)
s by applying the relations in (11)–(16). 

Interestingly, n(*)
s can also be calculated from g(*). This is achieved by 

a binary search for ns for each s ∈ 𝒮. The binary search is possible in this 
case since, for a fixed g(*), each component of gs is monotone with 
respect to ns. Thus, despite the presence of the disjunctions, we only 
need to find the correct n(*)

s that results in a vector g(*)
s that satisfies the 

total net demand. Given the fast convergence of the binary search, the 
tolerance ε can be set to very small values. This procedure is described in 
Algorithm 1. 

3.4. Column-and-Constraint-Generation algorithm 

We define the master problem for the CCGA as follows 

z = min
X ,[g′

s ]s∈S ,[xs ,ns ]s∈S

c⊤g (34)  

s.t.: (18) (35)  

g′

s − g ≤ r, ∀s ∈ S (36)  

(8), (16), (21), ∀s ∈ S (37)  

(20), ∀s ∈ S. (38) 

Note that, as opposed to the BDDC method, in (38) we define a 
different set of contingency states S for the disjunctive constraints 
(starting with S = ∅). We also abuse notation by using g′

s as a provi
sional variable for the post-contingency generation replacing gs in (36) 

and (37). We performed this substitution to make explicit that gs is not 
determined in (34)–(38) for the entire iterative process. The determi
nation of gs in (34)–(38) would only be possible in the presence of the 
disjunctive constraints (20) for s. These disjunctive constraints are not 
initially present in (34)–(38) for computational purposes. In fact, the 
determination of gs is performed by Algorithm 1, which requires only g 
as an input. The purpose of g′

s in (36) and (37) is to guarantee that g is 
determined in such a way that Algorithm 1 is capable of enforcing the 
primary response compatibility to gs, while meeting the global demand. 
That is, for each s, |e⊤gs − e⊤d| ≤ ϵ. 

In order to verify the above claim, note that by (36) and (8), 
g′

s,i ≤ min{gi, gi +γi ĝ i} for each i and s, where g′

s,i is the i-th element of g′

s. 
Defining ns = 0 in Algorithm 1 implies gs = g, except for gs,s = 0. If 
instead we set ns = 1 then gs,i = min{gi, gi +γi ĝ i} ≥ g′

s,i for each i and s, 
with i ∕= s. For i = s, we have that g′

s,s = gs,s = 0. Thus, since g′

s meets the 
global demand, it is always the case that e⊤gs ≥ e⊤g′

s = e⊤d by choosing 
ns = 1. By the monotonicity and continuity of gs,i with respect to ns for a 
given gi, there is a value n(*)

s that results in g(*)
s that satisfies the global 

demand and preserves the primary response model. 
At each iteration j of the CCGA, we solve the master problem (34)– 

(38) to obtain g(j) and z(j). Then, for each s ∈ 𝒮, we perform the binary 
search (Algorithm 1) to define g(j)

s according to the primary response 
model. Next, for all s, we check feasibility of the solutions g(j)

s using (32) 
and (33). We use α(j)

s,i to define the violation of each line l, for each 
contingency state s and we use α(j) as the largest violation among all 
transmission lines for all s. We identify the contingency state s(j) that 
contains the most violated line. If s(j) ∈ S we skip the rest of this step. 
Otherwise we set S = S ∪ {s(j)} which means including the disjunctions 
(20) for s(j) into (34)–(38). 

We also add to (34)–(38) the rows of both (32) and (33) corre
sponding to violated lines using two criteria: i) For the post-contingency 
states s ∈ S we include the lines where α(j)

s,l > α(j)/β1. ii) For the post- 

contingency states s ∕∈ S we include the lines where α(j)
s,l > α(j)/β2. The 

objective of this step is to enforce the network constraints for critical 
lines in post-contingency states. Typically, β1 > β2. We are stricter with 
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the states s ∈ S since defining tight parameters for contingency states 
without corresponding disjunctions may lead to the inclusion of many 
constraints at a time. A user defined tolerance ϵ (in MW) for maximum 
line violation is used to stop the iterative process. The CCGA is described 
in Algorithm 2. 

3.5. Finding high-Quality primal solutions and monitoring the optimality 
gap using the CCGA 

Because very large cases might still impose computational chal
lenges, we propose a procedure for finding feasible primal solutions. 
This procedure restricts the disjunctions in (20) to a subset of synchro
nized generators ℋ⊂𝒢. The generators in 𝒢\ℋ respond with gs,i − gi =

nsγi ĝ i; that is, we define xs,i = 1, ∀s ∈ 𝒮, ∀i ∈ 𝒢\ℋ, i ∕= s. 
The following criterion is used for defining ℋ. We rank the syn

chronized generators according to a “cost/limit” index (ci /gi) and define 
ℋ as the p% of generators with lowest ranks, where p is a parameter. The 
objective value of the problem using this approach is denoted as z(*)

p . 
Note that z(*)

100 = z(*). 
This approach reduces the number of binary variables and thus the 

complexity of the problem. It is then a tool for finding upper bounds for 
(17)–(20). If we apply Algorithm 2 using the proposed primal method; 
i.e., setting xs,i = 1, ∀s ∈ 𝒮, ∀i ∈ 𝒢\ℋ in (34)–(38) we obtain ub = z(*)

p as 
a valid upper bound. If the problem is infeasible for p then z(*)

p ←inf. 
Note, however, that a procedure that monitors the optimality gap is 

still required. A lower bound for (17)–(20) is not obtained for p < 100. 
Conversely, solving for p = 100 generates upper bounds only after a 
feasible solution is found. This typically occurs in the later iterations 
when the tolerance ϵ for all lines in every contingency state is achieved. 

We propose a simple strategy that monitors the bounds. Note that 
solving the SCOPF with the CCGA for low values of p tends to be faster 
than for high values of p. Thus, we start p = 0 and increase it sequen
tially. The solution for each p < 100 provides an upper bound for (17)– 
(20). As a parallel procedure, we solve for p = 100 to obtain valid lower 
bounds. Namely, for each iteration j of Algorithm 2 for p = 100, a valid 
lower bound is defined as the best bound provided by the solver. This 
procedure monitors the gap efficiently. 

4. Computational experiments 

We compared the proposed CCGA with two solution methods: EF and 
BDDC described in Sections 2.3 and 3.2. 

We performed simulations for various values of γ, β1, and β2. Our 
results indicate that varying the parameters may impact the perfor
mance of the CCGA. However, the dominance of the CCGA over other 
methods (EF and BDDC) was a constant, despite the parameterization. 
We have reported results for β1 = 5, β2 = 1.2, and γi = 0.05 for all i ∈ 𝒢. 

We used Gurobi 8.1.1 under the modeling package JuMP 0.18.5 for 
Julia Language 0.6.4 on a Xeon E5-2680 processor at 2.5 GHz and 128 
GB of RAM. We set the optimality gap of Gurobi to 0.5% for the EF 
method and BDDC method as well as for the master problem of the 
CCGA. The maximum line violation was set to ϵ = 0.05 MW and the 
precision of Algorithm 1 to ε = 10−10 MW. 

The data are based on modified versions of the benchmark systems 
presented in [23]. The size of the instances for the EF method, after 
Gurobi’s presolve, are reported in Table 1. 

4.1. Solution method comparison 

Table 2 provides the computational times for selected methods and 
the number of iterations for the CCGA method in parentheses. The CCGA 
dominates the other methods, which were only able to solve the 118 
IEEE case within a reasonable time limit. For this instance, the CCGA 
required less than one third of the time of the BDDC method and less 

than one fifth of the time of the EF method. The only other instance that 
the BDDC method was able to solve in less than 4 hours was the 1888 
RTE. The CCGA was more than 200 times faster for this instance. 
Interestingly, the number of iterations required by the CCGA is generally 
small, implying that the CCGA solved far less complex MILPs than the 
other methods. The only instance that posed difficulties for the CCGA 
was the 6468 RTE that contains more than 6000 buses, 1200 generators, 
and 9000 transmission lines. Nevertheless, a solution for the optimality 
gap of 0.5% was achieved in less than 3 hours. 

Interestingly, as reported next, it is possible to determine high- 
quality solutions in competitive computational times for large systems 
by applying the primal method of Section 3.5. 

4.2. Finding primal solutions and determining bounds 

The method of Section 3.5 for defining primal solutions was applied 
for the 6468 RTE and 1354 PEGASE systems. CCGA was used to solve the 
SCOPF problem for different values of p to an optimality gap of 0.5%. 
The results are summarized in Tables 3 and 4. Columns 1 and 2 present 
the cost and the relative cost gap for each p with respect to the cost 

Table 1 
Instance size for the EF method after Gurobi’s presolve  

System Continuous  
Variables 

Binary  
Variables 

Linear  
Constraints 

118 IEEE 10,604 2,862 19,137 
1354 PEGASE 323,571 63,455 513,677 
1888 RTE 387,979 79,032 624,780 
1951 RTE 563,273 149,370 1,010,994 
2848 RTE 1,104,192 276,822 1,934,115 
2868 RTE 1,284,568 348,036 2,328,081 
6468 RTE 5,067,009 1,563,640 9,756,668  

Table 2 
Comparative CPU times (s) and number of iterations.  

System Solution Method 

EF BDDC CCGA 

118 IEEE 46.2 27.6 8.0   (4) 
1354 PEGASE T T 138.0 (12) 
1888 RTE T 2899.0 14.0   (4) 
1951 RTE T T 16.2   (4) 
2848 RTE T T 26.6   (4) 
2868 RTE T T 31.0   (3) 
6468 RTE T T 7881.6 (18) 

T - Time limit of 4 hours exceeded. 

Table 4 
Primal Approach for the 1354 PEGASE System.  

p Cost Cost Gap Time Iter. 

(103 $) (%) (s) (#) 

100 1190.6 0.00 138.0 12 
50 1192.6 0.17 64.7 11 
10 1195.4 0.40 21.1 11 
0 1208.3 1.49 9.4 10  

Table 3 
Primal Approach for the 6468 RTE System.  

p Cost Cost Gap Time Iter. 

(103 $) (%) (s) (#) 

100 1624.8 0.00 7881.6 18 
10 1625.8 0.02 813.5 17 
0 1628.7 0.25 481.2 16  
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achieved by p = 100. Columns 3 and 4 report the required computa
tional time and number of iterations. 

For the 6468 RTE system (Table 3) the result is quasi-optimal even 
for p = 0. For the 1354 PEGASE system (Table 4) the solution for p = 0 is 
already competitive, and required 9.4 seconds only. By increasing the 
complexity of the problem to p = 10, the cost gap is reduced by more 
than 1% for a reasonable solution time of 21.1 seconds. For p = 50, the 
CCGA required 64.7 seconds to converge, achieving a negligible cost gap 
of 0.17. 

Despite the good results for small values of p, the cost gap is not 
observable before solving for p = 100. Thus, we adopted the strategy of 
Section 3.5 for obtaining bounds. We used multi-threading to solve 
problems in parallel. In the first thread we solved a sequence of problems 
for increasing values of p, starting with p = 0. We have stored the costs 
and times for the solutions of each p. In the second thread we solved for p 
= 100 and recorded solving time and the best bound of each iteration 
provided by Gurobi. A convergence plot from applying this method to 
the 1354 PEGASE system is illustrated in Fig. 1. The proposed strategy 
yields the true optimality gap and is a useful decision-making tool for 
system operators. 

5. Conclusion 

We presented an exact and scalable column-and-constraint- 
generation algorithm for the SCOPF problem with primary response of 
generators. Under the proposed framework, we add the disjunctions as 
necessary in an iterative process that does not involve subproblems. This 
is possible by a scheme that involves a master problem with valid post- 
contingency constraints, preprocessed structures that serve both as 
feasibility checkers and delayed cuts, and a numerical procedure that 
reduces the complexity of the master problem by exogenously calcu
lating the nonconvex primary response. We also proposed a procedure 
for finding high-quality primal solutions that helps monitor the bounds 
for the method. As shown by the computational experiments, this 
approach scales to large instances of the SCOPF problem with primary 
response. 

In future works we will generalize these techniques. As a first step, 
convexifications of ac power flow, such as those studied in the recent 
works of Coffrin and Van Hentenryck [12,13], will be used to model the 
system’s response after contingencies. 
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