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Abstract. Certain neural network architectures, in the infinite-depth limit, lead to systems of nonlinear differ-4
ential equations. Motivated by this idea, we develop a framework for analyzing time signals based on5
non-autonomous dynamical systems. We view the time signal as a forcing function for a dynamical6
system that governs a time-evolving hidden variable. As in equation discovery, the dynamical system7
is represented using a dictionary of functions and the coefficients are learned from data. This frame-8
work is applied to the time signal classification problem. We show how gradients can be efficiently9
computed using the adjoint method, and we apply methods from dynamical systems to establish10
stability of the classifier. Through a variety of experiments, on both synthetic and real datasets, we11
show that the proposed method uses orders of magnitude fewer parameters than competing methods,12
while achieving comparable accuracy. We created the synthetic datasets using dynamical systems13
of increasing complexity; though the ground truth vector fields are often polynomials, we find con-14
sistently that a Fourier dictionary yields the best results. We also demonstrate how the proposed15
method yields graphical interpretability in the form of phase portraits.16
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1. Introduction. Time series classification has been applied in a variety of fields including19

predicting the genre of music based on a sound recording [36], recognizing human activity using20

mobile sensors [37], diagnosing disease based on electrical biosignals (e.g., EEG, ECG, and21

EMG) [35, 33, 34], detecting natural phenomena such as earthquakes or volcanic eruptions22

using geophysical signals [26], and automatically distinguishing between mosquito species23

using wing-beat recordings [8].24

One promising approach to time series classification involves recurrent neural networks25

(RNNs) [29, 9], which are now commonly used to process sequential data. For input data,26

xt ∈ Rn and a hidden state vector ht ∈ Rm (typically initialized with h0 = 0), a traditional27

sequence-to-label RNN architecture can be represented abstractly as a discrete-time map:28

(1.1) ht = f(ht−1, xt; θ) for t ∈ [T ].29

with parameter vector θ—see [13, Eq. (10.5)]. The output layer is then formulated as ŷ =30

σ(AhT + b), where σ is a user-specified activation function, and for classification problems, σ31

is typically the softmax function. To train an RNN, we learn parameters θ, A, and b. RNNs32

are Turing complete; for any function F computable by a Turing machine, there exists a33

finite RNN that can compute F [31, 32]. Note also that (1.1) encapsulates a large class of34
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Figure 1. We illustrate the hidden state model (1.4) together with Φ(h, x; θ) = βΞ(h) + Bx—see (3.2)—
and Ξ set to a polynomial dictionary. In section 4, we refer to this as a Poly (3,2) dictionary; m = 3 is the
dimension of h, while k = 2 means that the dictionary includes terms up to quadratic order. The matrices β
and B have dimensions 3 × 10 and 3 × 2, respectively; the colored bars, labeled βi,: and Bi,:, denote the i-th
rows of these matrices. Note that the right-hand side Φ can be nonlinear in h while remaining linear in the
parameters β and B that we seek to learn. The total set of parameters for the NAED model is Θ = {β,B,A, b}
where A and b are defined in (3.1c).

discrete-time, non-autonomous dynamical systems with state variable ht and forcing xt. Given35

their universality and capacity, it is not surprising that RNNs can serve as accurate models36

for sequential data, including time series [1, Chap. 7]. However, RNNs can be difficult to37

train due to long-term dependencies and suffer from computational issues in backpropagation38

through time, called exploding or vanishing gradients [25]. Gated RNNs, such as the Long39

Short Term Memory (LSTM) network were developed in [16] to overcome the challenge of40

long-term dependencies.41

In this paper, we propose a non-autonomous dynamical systems framework that addresses42

challenges in training RNNs. Note that we distinguish between time signals and time series;43

time signals are continuous in time, while time series are discrete in time. Frequently time44

series are obtained from sampling a time signal at discrete times. The time signal classification45

problem is to learn a mapping that assigns a distribution over labels y ∈ R|Y| to a vector-46

valued, continuous-time signal x : [0, T ]→ Rn. Here Y is a finite set of labels.47

From (1.1), we derive a continuous-time model as follows. We first insert N − 1 hidden48

layers between ht−1 and ht and consider the discrete-time map49

(1.2) ht = f(ht−1/N , xt; θ) for t = i/N with i ∈ [NT ].50

When N = 1, we recover (1.1). For N � 1, the model has a deep hidden-to-hidden transition51

[24]; N layers must be traversed to go from ht−1 to ht. Next,52

(1.3) ht = ht−1/N +N−1Φ(ht−1/N , xt; θ) for t = i/N with ri ∈ [NT ].53

Finally, we take the infinite-depth limit N → ∞ and obtain the central equation in the54

non-autonomous equation discovery (NAED) method :55

(1.4)
d

dt
h(t) = Φ (h(t), x(t); θ) for t ∈ [0, T ].56
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We view the input signal x(t) as a forcing term in a non-autonomous dynamical system57

governing a hidden variable h : [0, T ]→ Rm. We introduce a function π : Rm → R|Y| to assign58

a class label to the hidden variable evaluated at the final time, ŷ = π (h(T )). The objective is59

to learn the right-hand side Φ, parameterized by θ, and the function π, so that given a new60

time signal x(t), t ∈ [0, T ] we can estimate its class label, y.61

In the NAED method, we represent the right-hand side function Φ using a predetermined62

dictionary, a set of candidate functions, which is sufficiently large to capture a wide class of63

dynamics. There are a variety of choices for dictionaries; here we employ polynomial and64

Fourier basis functions. See Figure 1 for an illustration of (1.4) with (3.2)—our model for Φ65

which is linear in the parameters to be learned—in the special case of a quadratic polynomial66

dictionary. In addition to a general NAED method, we also propose a sparse NAED method,67

which drops less relevant dictionary functions from the learned expression of the classifier.68

By iteratively thresholding the dictionary coefficients, we improve generalizability (reduce69

overfitting), robustness to noise and interpretability of learned dynamics.70

In section 3, we describe the NAED method in more detail, including an efficient com-71

putation of the gradient of the loss function using the adjoint method. In practice, we are72

given a time series, which we think of as a discretized time signal and we must also discretize73

the dynamical system to obtain a discrete-time approximation of the hidden variable. In this74

paper, we employ the optimize-then-discretize approach, where the gradient is computed an-75

alytically (see Theorem 3.3) using the continuous-time hidden variable and input time signal,76

and then evaluated using the time series and discretized hidden variable. This in contrast to77

a discretize-then-optimize approach that begins with discrete-time models such as (1.1), and78

then optimizes using gradients computed via backpropagation-through-time.79

In section 3, we prove several theoretical results about the NAED method. We prove a suf-80

ficient condition for existence/uniqueness of the proposed method’s solutions (Theorem 3.2).81

We also quantify the method’s stability, that is, we show that the outputs of the classifier82

are stable with respect to both deterministic and random perturbations (Theorem 3.4, Theo-83

rem 3.5).84

In section 4, we report the results of several computational experiments that demonstrate85

the competitive performance of NAED with respect to RNN-based methods. We carry out86

these experiments both for synthetic data and for real data from the UCR Time Series Clas-87

sification Archive [7]. In these experiments, NAED achieves similar or better accuracy than88

recurrent neural network methods (including LSTM and CFN architectures) and neural con-89

trolled differential equations (NCDE). We also show how the NAED method finds a principled90

and parsimonious dictionary representation of the dynamical system’s vector field by training91

orders of magnitude fewer parameters. NAED seeks to blend the high accuracy of deep RNN92

architectures with the interpretability of continuous-time dynamical system methods. In par-93

ticular, we illustrate that trained NAED models can be interpreted graphically using phase94

portraits.95

We conclude in section 5 with a discussion of the NAED method and ideas for future96

directions.97

2. Related Work. In this section, we discuss two motivations for the NAED method: an98

infinite depth, continuous-time limit of RNNs and the equation discovery method.99
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2.1. Dynamical systems and RNNs. Continuous-time RNNs were proposed by Hopfield100

[17] and studied by many authors—see [11, 2] and references therein. Early continuous-time101

RNNs were proposed as models of associative memory and hence are not directly comparable to102

the classifiers studied here. Still, early continuous-time RNNs share two features with NAED:103

the models are expressed as systems of nonlinear differential equations, and inputs are treated104

as non-autonomous forcing terms. Compared to NAED, early continuous-time RNNs have a105

rigid right-hand side structure that guarantees Lyapunov stability of the unforced system [17].106

In contrast, NAED has a flexible right-hand side Φ that we can often represent as a sparse107

linear combination of dictionary functions.108

More recently, there has been a growing literature that connects deep and recurrent neural109

networks with ordinary differential equations (ODEs). One branch of this literature seeks to110

apply ideas from dynamical systems theory to determine stable feedforward architectures [14],111

RNNs that do not exhibit chaotic dynamics [21], and RNNs that are constrained to be linearly112

stable [5]. The RNNs considered in these works [21, 5] do not involve ODEs.113

Another branch stems from Neural ODEs or ODE-Nets [6]. We view both NAED and114

Neural ODEs as infinite-depth limits of deep networks that are trained via the adjoint method115

rather than backpropagation. In Neural ODEs, the vector field is typically modeled using a116

(static) feedforward neural network (rather than with a dictionary), and the input is used117

as an initial condition (rather than a forcing term) to the ODE system. Recent efforts have118

sought to make Neural ODE techniques more practical for large-scale problems [10, 12, 27]119

and also to better understand the learning of genuinely continuous-time dynamics [23]; we120

may be able to apply similar ideas to NAED in future work.121

Recently, there has been some effort to generalize Neural ODE models to the RNN context.122

Instead of relying purely on ODEs as in NAED, [28] combines ODE-Net and RNN layers.123

We also find continuous-time versions of GRU and LSTM models [3, 18, 15]. Compared124

with NAED, these architectures have more constraints on the right-hand side vector field Φ.125

Finally, the NAED dynamical system (1.4) can be viewed as a special case of the recently126

proposed neural controlled differential equation (NCDE) model [20]. Compared with NAED,127

the controlled differential equation allows for more general dependency of the hidden state128

h(t) on the input x(t). While NCDE uses a neural network model of the vector field, NAED129

uses a dictionary.130

2.2. Equation Discovery. The dictionary representation of the vector field Φ is motivated131

by the literature on equation discovery [4]. The problem formulation and goal in equation132

discovery differs from ours; there one assumes that the data consists of observations of the133

state vector h(t) of a continuous-time dynamical system. Using this data, the goal is to learn134

the vector field Φ. This is a nonparametric regression problem, equivalent to finding a system135

of ordinary differential equations that fit the observations h(t). The Sparse Identification of136

Nonlinear Dynamics (SINDy) method assumes that Φ can be represented as a sparse linear137

combination of elements from a dictionary Ξ [4]. In SINDy, training proceeds via an iteratively138

thresholded least squares method whose convergence has been established [38].139

In both the general NAED method (Algorithm 3.1) and the sparse NAED method (Al-140

gorithm 3.2), we generalize SINDy in the following way: we do not assume access to h(t) at141

all, but rather the forcing function x(t). Learning Φ is a byproduct of our method, but the142
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goal is to train a model whose predictions ŷ match the true labels y. In Algorithm 3.2, we143

retain the iterative thresholding step from SINDy. However, in Algorithm 3.1—the algorithm144

that we use in all of the examples in subsection 4.2—we do not promote sparsity of any of the145

coefficient matrices. As we show, even with dense coefficient matrices, representing Φ with a146

dictionary requires fewer parameters than with a neural network.147

3. Non-autonomous equation discovery (NAED) method. In this section, we describe148

our proposed non-autonomous equation discovery (NAED) method for time series classifica-149

tion, a gradient-based method for training it, our choice of dictionary in the NAED method,150

stability of the classifier, and a sparse version of the method.151

3.1. NAED model for time signal classification. We assume that we are given data of152

the form {xi, Ti, yi}i∈[N ], where xi : [0, Ti]→ Rn is a time signal and yi ∈ R|Y| is a probability153

mass function over the classes. In practice, yi will be a unit vector and arg maxi yi will be154

the class or label. Note that we allow for the possibility that the time signals have different155

lengths. We consider the following non-autonomous dynamical system:156

d

dt
hi(t) = Φ (hi(t), xi(t); θ) , t ∈ [0, T ](3.1a)157

hi(0) = h0.(3.1b)158159

For each time signal xi(t), we interpret the solution to (3.1), hi(t) ∈ Rm ∀t ∈ [0, Ti] as a160

time-dependent hidden variable that is being forced by the function xi(t). The solution at161

time Ti is used to make a class prediction ŷi via162

(3.1c) ŷi = σ (Ahi(Ti) + b) ,163

where A ∈ R|Y|×m, b ∈ R|Y|, and σ : R|Y| → R|Y| is the softmax function, defined by [σ(x)]i =164
exi∑
j e

xj .165

We parameterize the vector field Φ: Rm × Rn → Rm using a dictionary D = {ξj}j∈[d],166

with ξj : Rm → R. We discuss specific choices for the dictionary, D, in subsection 3.3, but we167

have in mind, e.g., multivariate polynomials. Let θ = (β,B). Concatenating the dictionary168

elements in a dictionary, Ξ(h) = (ξ1(h), ξ2(h), · · · , ξd(h)) ∈ Rd, we write169

(3.2) Φ(h, x; θ) = βΞ(h) +Bx,170

where β ∈ Rm×d and B ∈ Rm×n are unknown coefficients.171

To train the classifier, we must learn θ = (β,B), determining Φ via (3.2), together with172

the parameters A and b in (3.1c). We frame this learning problem as one of minimizing the173

following cross-entropy loss between labels yi and predictions ŷi. For a regularization term174

R(Θ), the objective function is then175

J(Θ) = − 1

N

∑

i∈[N ]

∑

j∈Y
[yi]j log[ŷi]j +R(Θ)(3.3a)176

= − 1

N

∑

i∈[N ]

∑

j∈Y
[yi]j log[σ (Ahi(Ti) + b)]j +R(Θ),(3.3b)177

178

This manuscript is for review purposes only.



6 R. YOON, H. S. BHAT, AND B. OSTING

where Θ = {β,B,A, b} represents all parameters to be learned. It is understood that hi179

satisfies (3.1) for the forcing xi(t), t ∈ [0, Ti].180

Remark 3.1. The regularization term, R(Θ), in (3.3) could be Tikhonov (`2) or sparsity181

promoting (e.g., `1). In our numerical experiments, we use a relatively small dictionary182

and, for simplicity, take R = 0. In subsection 3.5, we will discuss a different approach to183

regularization.184

An important consideration is whether there exists a solution of the dynamical system in185

(3.1) with right-hand side given by (3.2). The following theorem gives a sufficient condition186

for the existence and uniqueness of a solution.187

Theorem 3.2. Assume x : [0, t]→ Rn is a continuous function. Let K ⊂ Rm be a compact188

set containing the initial point h0 such that ξi : Rm → R is a locally Lipschitz continuous189

function on K with Lipschitz constant L for every i ∈ [d], i.e., ∀h1, h2 ∈ K, |ξi(h1)−ξi(h2)| ≤190

L‖h1 − h2‖. Then there is an ε > 0 such that the initial value problem in (3.1) has a unique191

solution defined on the interval [−ε, ε].192

Proof. Let Φ(h, x(t)) be rewritten as Γ(h, t) = Φ(h, x(t)). For some r > 0 and a > 0,
define Br = {‖h− h0‖ ≤ r} ⊂ K, Ia = {|t| ≤ a}. Since x is continuous in time, there exists a
constant M > 0 such that

M = max
(h,t)∈Br×Ia

‖Γ(h, t)‖.

Also for every t ∈ Ia, h 7→ Γ(h, t) satisfies the local Lipschitz condition on K: for every193

h1, h2 ∈ Br,194

195

‖Γ(h1, t)− Γ(h2, t)‖ = ‖β(Ξ(h1)− Ξ(h2))‖196

≤ ‖β‖ ‖(Ξ(h1)− Ξ(h2))‖ ≤ dL‖β‖ ‖h1 − h2‖.197198

From the existence/uniqueness theorem in ordinary differential equations (see, e.g., [30, The-199

orem 3.2]), there exists a unique solution to (3.1) on the interval [−ε, ε], where ε is chosen as200

ε = min{a, rM ,
1

2d‖β‖L}.201

3.2. Gradient computation and the adjoint method. For the NAED time signal classi-202

fier, training can be formulated as the ODE-constrained optimization problem,203

(3.4) min
Θ={β,B,A,b}

J(Θ),204

subject to (3.1) where the objective function J(Θ) is defined in (3.3). To employ a gradient-205

based optimization method, we need to compute ∇ΘJ . However, directly computing the206

gradient of J with respect to Θ is complicated and computationally expensive because J207

involves hi(T ; Θ), the solution to (3.1) at time t = T . An alternative method to compute208

∇ΘJ is to use the adjoint method, as we do in the following theorem.209

Theorem 3.3. The gradients of the objective function in (3.3) with respect to the unknown210
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parameters: β ∈ Rm×d, B ∈ Rm×n, A ∈ R|Y|×m, and b ∈ R|Y| are given by211

∇βJ = −
∑

i∈[N ]

∫ Ti

0
λi(t)Ξ(hi(t))

t dt+∇βR(3.5a)212

∇BJ = −
∑

i∈[N ]

∫ Ti

0
λi(t)xi(t)

t dt+∇BR(3.5b)213

∇AJ = − 1

N

∑

i∈[N ]

(yi − σ(Ahi(Ti) + b))hi(Ti)
t +∇AR(3.5c)214

∇bJ = − 1

N

∑

i∈[N ]

(yi − σ(Ahi(Ti) + b)) +∇bR(3.5d)215

216

where λi(t) for t ∈ [0, Ti] is a solution to the adjoint equation,217

d

dt
λi(t) = −[βDhΞ(h)]tλi(t)(3.6a)218

λi(Ti) = − 1

N
At(yi − σ(Ahi(Ti) + b)).(3.6b)219

220

Proof. We introduce the Lagrange multipliers, λi : [0, Ti] → Rm, for i ∈ [N ], and the221

Lagrangian,222

L(Θ, hi, λi) = J(Θ) +
∑

i∈[N ]

∫ Ti

0
λti(t)

(
ḣi(t)− Φ(hi(t), xi(t))

)
dt223

= J(Θ) +
∑

i∈[N ]

λti(Ti)hi(Ti)−
∫ Ti

0
λ̇ti(t)hi(t) + λti(t)Φ(hi(t), xi(t)) dt.224

225

Here, we have used integration by parts to rewrite the Lagrangian. Taking the variation of
the Lagrangian with respect to hk(t) gives

δL = ∂hk(T )Jδhk(T ) + λtk(Tk)δhk(Tk)−
∫ Tk

0

(
λ̇tk(t) + λtkDhΦ

)
δhk(t) dt,

where DhΦ = βDhΞ(h) is the Jacobian of Φ with respect to the h. Setting the variation to226

zero, we find that λk(t) satisfies the adjoint equation given in (3.6).227

The gradients of the objective in (3.5) are then obtained by taking the partial derivatives228

of the Lagrangian with respect to the unknown parameters, Θ = {β,B,A, b}. The gradient229

with respect to β and B are given by230

∇βJ = ∇βL = −
∑

i∈[N ]

∫ Ti

0
λi(t)Ξ(hi(t))

t dt+∇βR231

∇BJ = ∇BL = −
∑

i∈[N ]

∫ Ti

0
λi(t)xi(t)

t dt+∇BR.232

233
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For the cross-entropy loss function in (3.3), a short computation shows that234

∇AJ = − 1

N

∑

i∈[N ]

(yi − σ(Ahi(Ti) + b))hi(Ti)
t +∇AR235

∇bJ = − 1

N

∑

i∈[N ]

(yi − σ(Ahi(Ti) + b)) +∇bR.236

237

Combining these results concludes the proof.238

The gradients from Theorem 3.3 are used with an optimization method to minimize the cross-239

entropy loss function (3.1c) and thereby train the model.240

3.3. Dictionary choice. In the NAED model, the right-hand side of the dynamical system241

is given by Φ(h, x; θ) = βΞ(h) + Bx; see (3.2). The first term is a linear combination of242

dictionary functions, Ξ(h) = (ξ1(h), ξ2(h), · · · , ξd(h)) ∈ Rd. There is tremendous freedom in243

selecting the dictionary functions and this choice is paramount to the model. We tested NAED244

using two different dictionaries, a polynomial dictionary and a Fourier dictionary, described245

now in turn.246

The polynomial dictionary consists of all possible polynomials of h ∈ Rm up to k-th247

order. For h ∈ Rm, the dictionary is Ξ(h) = [1, P1(h), P2(h), . . . Pk(h)], where Pk(h) is a248

basis for homogeneous polynomials of degree k. In this section, we use subscripts to denote249

scalar components of a vector, e.g., h = [h1, h2, . . . , hm]. We choose the basis Pk(h) to250

consist of the
(
k+m−1
m−1

)
basis elements of the form 1

α1!···αm!h
α1
1 · · ·hαm

m , where
∑m

i=1 αi = k,251

as appearing in Taylor’s theorem. For instance, if m = 2, P2(h) refers to the quadratic252

polynomials P2(h) =
[
h2

1/2, h1h2, h
2
2/2
]
. In Figure 1, we illustrate the hidden state model253

for the polynomial dictionary of order k = 2, in the case where m = 3 (i.e., with h ∈ R3).254

Alternatively, we can consider a Fourier dictionary. Using separation of variables for255

the function Φ: Rm → R, we write Φ(h) = f1(h1)f2(h2) · · · fm(hm), where fi : R → R for256

i = 1, . . . ,m. We approximate fi(x) by a finite linear combination of Fourier basis functions,257

fi(x) = ai0 +
∑K

k=1 a
i
k cos (2πkx/L) + bik sin (2πkx/L) , where L is the period of fi(x). Each258

row of the vector βΞ(h) appearing in the RHS of the dynamical system (3.1) can be written259

as
∏m
i=1 fi(hi), where the coefficients ai0, aik, and bik correspond to entries of β. In other words,260

our dictionary D consists of functions given by the outer product of harmonic functions,261

Ξ(h) =


sin

(
2πk1h1/L

)

cos
(

2πk1h1/L
)

⊗


sin

(
2πk2h2/L

)

cos
(

2πk2h2/L
)

⊗ · · · ⊗


sin

(
2πkmhm/L

)

cos
(

2πkmhm/L
)

 ,262

where ki ∈ [K]. For instance, for m = 2, and K = 1, the dictionary consists of the following263

9 functions:264

Ξ(h) =
[
1, cos (2πh1/L) , sin (2πh1/L) , cos (2πh2/L) , sin (2πh2/L) , cos (2πh1/L) cos (2πh2/L) ,265

sin (2πh1/L) cos (2πh2/L) , cos (2πh1/L) sin (2πh2/L) , sin (2πh1/L) sin (2πh2/L)
]
.266

267

268

By the Stone-Weierstrass theorem, the polynomial dictionary and Fourier dictionary are269

dense in the space of continuous functions and L2, in the limiting case where k → ∞ and270

This manuscript is for review purposes only.



NAED METHOD FOR TIME SIGNAL CLASSIFICATION 9

Algorithm 3.1 General NAED method for time signal classification

Input: initial parameters, Θ = {β,B,A, b}.
for epoch = 1, . . . , Nepoch: do

Shuffle data and create batches of size Nbatch

for each batch: do
(Solve the forward ODE for hi) For the current parameters β and B, solve
the forward ODE in (3.1), i.e., for each example i ∈ [Nbatch] and discrete times tk,
k ∈ [K], find hi(tk).

(Make predictions) Assign predictions via (3.1c), i.e., ŷi = σ(Ahi(T ) + b).

(Solve the adjoint equation for λi) Use the hidden state at the final time hi(T ),
to compute the terminal condition and solve the backward ODE in (3.6) i.e. for
each example i ∈ [Nbatch] and discrete times tk, k ∈ [K], find λi(tk).

(Compute gradients) Using hi(tk) and λi(tk), evaluate the gradient of the ob-
jective function with respect to the parameters ∇ΘJ , as in (3.5).

(Update parameters) Use a gradient-based optimization method, e.g., ADAM
method or gradient descent, to update the parameters, Θ.

K → ∞, respectively. By choosing these parameters sufficiently large, all smooth dynamical271

systems can be represented as accurately as is needed.272

We would like to apply Theorem 3.2 to guarantee the existence of a unique solution to273

(3.1). Assuming that the time signal x is continuous, it is enough to choose a dictionary274

that satisfies the Lipschitz continuity assumption. If we use the Fourier dictionary, then the275

Lipschitz constant is approximately L ≈ 2πK
L . In this case, our model (3.1) has a unique276

solution until time T , provided we initialize β with sufficiently small values. On the other277

hand, if we use the Polynomial dictionary, there are two cases. If only linear terms are used in278

the dictionary, then the right-hand side is Lipschitz continuous and a unique solution exists279

on the time interval [0, T ]. However, if we use higher-order polynomials in the dictionary, the280

right-hand side is only locally Lipschitz and Theorem 3.2 can only guarantee a solution on281

a short time interval; the solution may blow up in finite time. In the numerical results in282

section 4, we will observe that models with the Fourier dictionary are generally more accurate283

and less sensitive to initialization than models with a nonlinear Polynomial dictionary. In284

algorithm Algorithm 3.1, we present the process of training the general NAED method.285

3.4. Stability of the NAED method. Dynamical systems theory can be used to prove286

that a given NAED classifier x
C7−→ y is stable to noise; below we do this for both deterministic287

and stochastic perturbations. For p ∈ [1,∞), let Lp ([0, T ];Rn) denote the Bochner space of288

continuous Rn-valued functions with norm ‖x‖Lp([0,T ];Rn) :=
(∫ T

0 |x(t)|pdt
) 1

p
.289

Theorem 3.4. Consider a NAED classifier C : L1 ([0, T ];Rn) → R|Y|, equipped with a dic-290

tionary Ξ: Rm → Rd that is Lipschitz continuous with constant L. The classifier C is Lipschitz291

continuous with constant L > 0 defined in the proof. That is, if we have a time signal x(t)292
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and a noise corrupted version, x̃(t) = x(t) + η(t), then |C (x̃)− C (x)| ≤ L‖η‖L1([0,T ];Rn).293

Proof. In the NAED method with dictionary Ξ, the unperturbed and perturbed hidden294

variables, h and h̃ satisfy295

d

dt
h = βΞ(h) +Bx296

d

dt
h̃ = βΞ(h̃) +Bx̃,297

298

with h(0) = h̃(0) = h0. Let L denote the Lipschitz constant for the dictionary Ξ. Subtracting299

these equations, we estimate300

|h(t)− h̃(t)| ≤
∫ t

0
L‖β‖ |h(τ)− h̃(τ)| dτ +

∫ t

0
‖B‖ |η(τ)| dτ.301

Since
∫ t

0 ‖B‖ |η(τ)| dτ is a non decreasing function, Gronwall’s inequality yields302

|h(T )− h̃(T )| ≤ ‖B‖
(∫ T

0
|η(τ)| dτ

)
eLT‖β‖ = C

∫ T

0
|η(τ)| dτ,303

where C = ‖B‖eLT‖β‖. The softmax prediction function in (3.1c) is Lipschitz continuous with304

constant that we denote by Lσ. We have305

(3.7) |C (x̃)− C (x)| ≤ Lσ|h̃(T )− h(T )| ≤ L‖η‖L1([0,T ];Rn),306

where L = LσC, as desired.307

Theorem 3.5. Consider a NAED classifier C : L1 ([0, T ];Rn) → R|Y|, equipped with a dic-308

tionary Ξ: Rm → Rd that is Lipschitz continuous with constant L. Let Wt denote the309

Wiener process in Rd. Consider a time signal x(t) and a version corrupted by Gaussian310

white noise, x̃(t) = x(t) + η(t), where η(t)dt = dWt. Then |C (x̃) − C (x)| ≤ L sup0≤s≤T |Ws|311

and P (|C (x̃)− C (x)| ≥ r) ≤ 2de−r
2/2dTL2

, with constant L > 0 defined in the proof.312

Proof. In the NAED method with dictionary Ξ, the unperturbed and perturbed hidden313

variables, h and h̃ satisfy314

h(t) = h0 +

∫ t

0
βΞ(h(τ)) dτ +B

∫ t

0
x(τ) dτ315

h̃(t) = h0 +

∫ t

0
βΞ(h̃(τ)) dτ +B

∫ t

0
x(τ) dτ +B

∫ t

0
dWτ316

317

with h(0) = h̃(0) = h0. Subtracting these equations, we first obtain318

|h̃(t)− h(t)| =
∣∣∣∣
∫ t

0
β
[
Ξ(h(τ))− Ξ(h̃(τ))

]
dτ +BWt

∣∣∣∣ .319
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Let L denote the Lipschitz constant for the dictionary Ξ. We estimate320

|h̃(t)− h(t)| ≤
∫ t

0
L‖β‖ |h(τ)− h̃(τ)| dτ + ‖B‖|Wt|321

≤
∫ t

0
L‖β‖ |h(τ)− h̃(τ)| dτ + ‖B‖ sup

0≤s≤t
|Ws|322

323

The continuity of Wt implies the continuity of sup0≤s≤t |Ws|. Note that sup0≤s≤t |Ws| is324

non-decreasing. Hence Gronwall’s inequality yields325

|h̃(T )− h(T )| ≤ ‖B‖ sup
0≤s≤T

|Ws|eLT‖β‖ = C sup
0≤s≤T

|Ws|,326

where C = ‖B‖eLT‖β‖. We combine this with the Lipschitz bound on softmax:327

(3.8) |C (x̃)− C (x)| ≤ Lσ|h̃(T )− h(T )| ≤ L sup
0≤s≤T

|Ws|,328

where L = LσC as before.329

The remaining estimates can be derived from the density computed in [19, §2.8A]; for330

clarity, we provide a self-contained treatment. Let Bt denote the Wiener process in R, and331

let τz = min{t : Bt = z}, a first passage time. Then332

P (Bt ≥ z) = P (Bt ≥ z | τz ≤ t)︸ ︷︷ ︸
I

P (τz ≤ t) + P (Bt ≥ z | τz > t)︸ ︷︷ ︸
II

P (τz > t)333

By symmetry of Bt, term I is 1/2; by continuity of Bt, term II is 0. Hence P (τz ≤ t) =334

2P (Bt ≥ z) = erfc(z(2t)−1/2) where erfc is the complementary error function. Now using the335

reflection principle, we have336

P

(
sup

0≤s≤T
|Bs| ≥ z

)
≤ 2P

(
sup

0≤s≤T
Bs ≥ z

)
337

≤ 2P (τz ≤ T )338

≤ 2 erfc(z(2T )−1/2)339

≤ 2e−z
2/(2T ).340341

Let Wt,j denote the j-th coordinate of Wt; each Wt,j is an independent one-dimensional Wiener342

process. With |w|p denoting the p-norm of the vector w ∈ Rd, we have |w| = |w|2 ≤ d1/2|w|∞.343

Putting these facts together, we estimate344

P

(
sup

0≤s≤T
|Ws| ≥ z

)
≤ P

(
sup

0≤s≤T
|Ws|∞ ≥ zd−1/2

)
345

≤ P
(

sup
1≤j≤d

sup
0≤s≤T

|Ws,j | ≥ zd−1/2

)
346

≤ dP
(

sup
0≤s≤T

|Bs| ≥ zd−1/2

)
347

≤ 2de−z
2/(2dT ).348349

Combining this with (3.7) yields the conclusion of the theorem.350
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12 R. YOON, H. S. BHAT, AND B. OSTING

Theorem 3.4 and Theorem 3.5 can be further interpreted in terms of classification stability351

as follows. Suppose that for a given time series, x, the NAED classifier gives the estimate352

ŷ = C (x) (a probability vector). Further, suppose that maxi C (x)i is uniquely attained so353

that the distance between C (x) and the decision boundary is positive. Then there exists a354

positive constant, ε > 0, such that for any corrupted time signal x̃(t) = x(t) + η(t) with355

‖η‖ ≤ ε the two estimates C (x) and C (x̃) have the same maximum component, and so the356

assigned class does not change for the corrupted time signal. Here, the corruption can be357

either deterministic (Theorem 3.4) or stochastic (Theorem 3.5).358

3.5. Sparse NAED method. The main task in our proposed learning method is to find359

the right-hand side (rhs) of the underlying non-autonomous dynamical system in (3.2), where360

the rhs is assumed to be a linear combination of dictionary terms. Here we explore the idea of361

imposing sparsity on the dictionary coefficients, with the goal of finding a simple representation362

of the underlying dynamics. As in equation discovery methods, we are motivated by the363

observation that most equations describing physical phenomena involve only a few relevant364

terms so that the rhs is sparse in the set of all possible functions. Imposing this assumption,365

we learn a model that balances accuracy and parsimony. Additionally, the sparsity assumption366

on the dictionary coefficients helps to prevent overfitting on the training dataset, leading to367

a method that is more robust to noise. Moreover, by assuming sparsity, we also obtain more368

interpretable dynamical models.369

To develop a practical method to promote sparsity in the dictionary coefficients, we adopt370

the idea of iterative thresholding from [4, 38]. The resulting algorithm is given in Algo-371

rithm 3.2. In Algorithm 3.2, entries of β with magnitude less than ν > 0 are thresholded372

to zero. This procedure is repeated until β has converged. In general, increasing ν trades373

accuracy for sparsity. The optimal value of ν will thus depend on the problem and data at374

hand. In practice, we use cross-validation to tune the value of ν; we find that the convergence375

of the algorithm depends on the value of ν. We examine the effectiveness of Algorithm 3.2376

using the perturbed dataset in subsection 4.3 and real dataset in subsection 4.4.377

4. Computational experiments. In this section, we demonstrate our proposed NAED378

method on a variety of datasets: synthetic datasets derived from dynamical systems and par-379

tial differential equations (subsection 4.2), a noisy synthetic dataset derived from a dynamical380

system (subsection 4.3), and UCR Archive Datasets (subsection 4.4). We demonstrate that381

our method is interpretable and attains results with accuracy comparable to or better than382

the RNN, LSTM, CFN and NCDE methods, using substantially fewer parameters. Next we383

describe details of our implementation; our source code is available online1.384

4.1. Implementation details. We implemented the NAED and sparse NAED methods,385

described in section 3, using TensorFlow; pseudocode for these two algorithms is given in386

Algorithms 3.1 and 3.2.387

To solve the optimization problem, we used the mini-batched ADAM optimizer with gra-388

dient computed as in Theorem 3.3. For each epoch, we shuffled the data using the Tensorflow389

function tf.random.shuffle and split the training data into small batches that were used390

to compute the gradients and update the parameters. For the synthetic datasets, we used391

1https://github.com/rkyoon12/NAED
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Algorithm 3.2 Sparse NAED method for time signal classification. The modification to the
NAED method Algorithm 3.1 is the threshold step.

Input: initial parameters, Θ = {β,B,A, b} and cut-off value, ν > 0.
for epoch = 1, . . . , Nepoch: do

Shuffle data and create batches of size Nbatch

for each batch: do
(Solve the forward ODE for hi) For the current parameters β and B, solve
the forward ODE in (3.1), i.e., for each example i ∈ [Nbatch] and discrete times tk,
k ∈ [K], find hi(tk).

(Make predictions) Assign predictions via (3.1c), i.e., ŷi = σ(Ahi(T ) + b).

(Solve the adjoint equation for λi) Use the hidden state at the final time hi(T ),
to compute the terminal condition and solve the backward ODE in (3.6) i.e. for
each example i ∈ [Nbatch] and discrete times tk, k ∈ [K], find λi(tk).

(Compute gradients) Using hi(tk) and λi(tk), evaluate the gradient of the ob-
jective function with respect to the parameters ∇ΘJ , as in (3.5).

(Update parameters) Use a gradient-based optimization method, e.g., ADAM
method or gradient descent, to update the parameters, Θ.

(Threshold step) We threshold the β parameter values by setting

βij ←

{
βij , if |βij | ≥ ν
0, if |βij | < ν

.

batch size 800 and for the UCR datasets, we used batch size 200, 20, 50 and 50 respectively.392

We used a learning rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and the report the results of the393

best performance.394

The gradient computation requires us to solve both the forward ODE (3.1) for h : [0, T ]→
Rm and the adjoint ODE (3.6) for λ : [0, T ]→ Rm. To approximate the solution of the forward
and adjoint ODEs, we used the fourth-order Runge–Kutta (RK4) method, implemented via
tfs.integrate.odeint_fixed in the tensorflow_scientific library. To approximate x(t)
at times t not in the sampled time series data, we use linear interpolation

x(t) ≈ (tn+1 − t)xn + (t− tn)xn+1

tn+1 − tn
, tn ≤ t ≤ tn+1.

In all numerical examples we fixed the initial condition for the hidden state in (3.1b) to be395

h0 = 0.396

For each dataset, we train the NAED model several times for different dimensions, m, of397

the hidden state, largest degree of polynomials k, or the maximum multiplier of Fourier basis398

terms K. We report the results for several such models.399

Initialization. As described at the end of subsection 3.3, the choice of dictionary functions400

and coefficients has a significant effect on the convergence of the method. In particular, large401
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14 R. YOON, H. S. BHAT, AND B. OSTING

values of β can cause the solution of the forward ODE (3.1) to blow up in finite time. The time402

duration ε, as guaranteed by Theorem 3.2 for a bounded solution, is inversely proportional403

to the norm of β and B. Hence we initialize parameters to be small to guarantee a bounded404

solution to (3.1) until the final time T . Let U [r, s] denote the uniform distribution on the405

interval [r, s]. For either the linear polynomial dictionary or the Fourier basis dictionary, the406

Lipschitz constant for each dictionary function is approximately L ≈ 1, so we initialize the407

parameters β,B,A
iid∼ U [−1, 1] and b

iid∼ U [0, 1]. When the dictionary involves higher-degree408

polynomials, we initialize β,B
iid∼ U [−0.1, 0.1] and A, b

iid∼ U [−1, 1].409

Competing Methods and Hyperparameters. We implemented the RNN and LSTM methods410

in TensorFlow, using tf.keras.sequential, keras.layers.rnn and keras.layers.LSTM.411

Using the description in [21], we developed our own implementation of the CFN method in412

TensorFlow. We trained the NCDE method using the published code [20]; we implemented413

this in PyTorch using the torchcde library. We trained these competing methods using the414

cross-entropy loss function, the ADAM optimization method, and the default initialization.415

The models were trained until convergence of the loss function. For the RNN, LSTM, CFN,416

and NCDE methods, we conducted extensive parameter sweeps to select hyperparameters417

such as network depth (number of layers) and width (number of units per layer). For each418

data set, and for each of these four methods, we report the best result that we found.419

4.2. Synthetic datasets.420

4.2.1. Forced harmonic oscillator. We consider a forced oscillator with position u(t)421

satisfying422

ü+ γu̇+ ω2u = x(t)(4.1a)423

u(0) = u̇(0) = 0,(4.1b)424425

where γ is the damping coefficient, ω2 is the undamped angular frequency, and x(t) is a426

specified forcing. To form the ground-truth labels, we record whether the position of u(T ) at427

the final time t = T is positive or negative,428

(4.2) y =

{
(1, 0) u(T ) > 0

(0, 1) u(T ) < 0
.429

With the above framework, we generate a synthetic dataset as follows. Fix K ∈ N, γ > 0,430

ω > 0, and T > 0. For a forcing of the form x(t) =
∑K

k=1Ak sin(αkt), t ∈ [0, T ], where Ak are431

randomly chosen amplitudes and αk are randomly chosen forcing frequencies, we numerically432

solve (4.1) for u(t), t ∈ (0, T ] and compute y via (4.2). We choose K = 2, γ = 0.2, ω = 1,433

T = 10, Ak
iid∼ N (0, 1), and αk

iid∼ N (0, 1). In this paper, we use N (µ, σ2) to denote the434

normal distribution with mean µ and variance σ2. The process is repeated N = 10000 times435

to create a dataset with 8000 training examples and 2000 test examples.436

In Table 1, we tabulate the accuracy and number of trained parameters for various methods
on this dataset. The total number of parameters for the NAED method is given by

#params = dim(β) + dim(B) + dim(A) + dim(b) = d×m+ n×m+m× |Y|+ |Y|.
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Methods Train Test # params

NAED Poly (2,1) 0.9994 0.9905 14
NAED Poly (3,1) 0.9831 0.9585 23
NAED Poly (4,1) 0.9800 0.9040 34
NAED Poly (2,2) 0.9817 0.9700 20

NAED Fourier (2,1) 0.9614 0.9670 26
NAED Fourier (2,2) 0.9365 0.9345 58

RNN (1,5) 0.9741 0.9715 41
LSTM (1,5) 0.9791 0.9750 146
CFN (7,5) 0.9113 0.9180 891

NCDE (32,32-1) 0.9919 0.9854 1221
Table 1

A comparison of the accuracy (training and test datasets) and number of parameters for various methods on
the synthetic dataset based on the forced harmonic oscillator. In this and in subsequent tables, we use boldface
to indicate methods with the highest accuracy. NAED refers to Algorithm 3.1 with no sparsity promotion. See
subsection 4.2.1.

In the first column of Table 1, additional information about each method is summarized.437

For the NAED Method with Polynomial dictionary, the parenthetical numbers are (# of438

units in hidden layer, maximum degree of polynomial in dictionary). The first row block of439

Table 1 is for the NAED method while varying either the dimension of the hidden units or440

the maximum degree of the polynomial entries. We observe that the Polynomial dictionary441

with a two-dimensional hidden state and polynomials up to degree one produces the best442

accuracy. This model also has the smallest number of parameters of all methods tested. This443

result might be expected as it agrees with the ground-truth model (harmonic oscillator) up444

to conjugation by an orthogonal matrix. For the NAED method with the Fourier dictionary,445

the parenthetical numbers refer to (# of units in hidden layer, largest multiplier K) where446

the dictionary consists of Fourier terms with frequency ω = L
K , . . . , L. It is natural to choose447

L = 10 because we handle the hidden state h on the time interval [0, 10]. For the RNN, LSTM,448

and CFN methods, the parenthetical numbers represent (# of hidden layers, # of units). For449

the NCDE method, the parenthetical numbers represent (# of units, width-depth of neural450

network for vector field). As described in subsection 4.1, for the RNN, LSTM, CFN, and451

NCDE methods, we carried out repeated runs with different values of these hyperparameters,452

but we report only the hyperparameters that yield the best test accuracy. We observe that453

all methods performed remarkably well for this simple dataset.454

We can visualize our model using phase portraits; examples are given in Figure 2. Here,455

the black arrows represent the autonomous part of the learned vector field, h 7→ βΞ(h).456

Also plotted in color are solution trajectories, all of which begin at the origin. The final457

positions at T = 10 are indicated by a square. The class associated with each sample is458

indicated in the legend. The classification decision is made using the final state of a trajectory459

via the probability vector, ŷ = σ (Ah(T ) + b). Writing Ah(T ) + b = A
(
h(T ) +A−1b

)
=460

A (h(T )− h0) where h0 = −A−1b, we see that the softmax function is being applied to the461
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16 R. YOON, H. S. BHAT, AND B. OSTING

(a) (b)

(c) (d)

Figure 2. In four subplots, labeled (a)–(d), we plot the vector field h 7→ βΞ(h) in (3.1) for different choices
of dictionary Ξ. In each plot, two example solution trajectories are given (one for each class), vectors used
for the decision are drawn, and the class regions are shaded in red and blue. (a) Polynomial dictionary with
ground truth initialization. (b) Polynomial dictionary with random initialization. (c) Fourier dictionary with
K = 1. (d) Fourier dictionary with K = 2. See subsection 4.2.1 for details.

vector

(
at1(h(T )− h0)
at2(h(T )− h0)

)
, where ai is the i-th row of A. We can visualize this decision in462

Figure 2 as follows. We draw the two rows of A as green vectors. These vectors partition R2463

into two regions; (each representing a class); we shade the region representing class 0 in red464

and class 1 in blue. In Figure 2, we observe that the the final states of the chosen trajectories465

belong to the correctly identified partition component.466

We now remark on the identifiability of our model. Recall that a statistical model is467

said to be identifiable if the parameter values uniquely determine the probability distribution468

of the data. For an identifiable model, it is in principle possible to learn the ground-truth469

parameters used to construct the data. Also recall that the goal of our algorithm is not to470

learn the mapping h 7→ βΞ(h), but rather the mapping x 7→ y. Since only the solution of471

the forward ODE at the final time is used to make this prediction, the learned vector field472

can differ from the ground truth vector field; our model is not identifiable. If we consider473

Figure 2(b), the learned vector field closely agrees with the ground truth vector field (a), up474

to conjugation by an orthogonal matrix; the eigenvalues of βΞ(h) for in (a) are −0.1± i0.995475

which are close to the eigenvalues of βΞ(h) for (b), given by −0.1015 ± i1.001. However,476
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the vector fields in (c) and (d) are seen to differ from (a) considerably. Nevertheless, for477

the example trajectories shown in each subplot, the class is correctly predicted (e.g., red478

trajectory terminates in the red region). So, despite these differences in the vector fields, the479

classification accuracy for each of the four models is quite good (see (4.1)).480

By using the adjoint method to train the NAED method, we avoid the exploding/vanishing481

gradient problem that often arises when training RNNs. To demonstrate this and also to show482

that the NAED method captures long-term dependencies in the data, we perform the following483

experiment. We again generate synthetic data using the forced harmonic oscillator (4.1) and484

assign the labels ŷ using the position of u(T ). Here we take a larger final time, T = 100485

(compared to T = 10 previously), while keeping the time step dt = 0.1 the same as before. The486

result is sequential data that is 10 times as long as that considered before. We then train the487

NAED, RNN, and NCDE methods on the data. With the same set of hyperparameters (entries488

of the dictionary for NAED and depth and width of networks for RNN/NCDE), we found489

that the NAED method still achieves similar accuracy as before; 0.9937/0.9890 (train/test),490

whereas the performance of other methods is degraded; the accuracy of RNN is 0.8313/0.8020,491

and the accuracy of NCDE is 0.5699/0.5299. To improve the performance of these methods,492

we can adjust the architecture of the models by increasing the depth and width of layers.493

Nevertheless, the best accuracy we found for the RNN and NCDE methods, respectively, is494

0.8950/0.8888 and 0.6637/0.6399. These results indicate that the NAED method can compute495

gradients stably across long intervals of time and that it can model long-term dependencies.496

4.2.2. Forced Van der Pol oscillator. Consider the forced Van der Pol oscillator with497

position u(t) satisfying498

ü− µ(1− u2)u̇+ u = x(t)(4.3a)499

u(0) = u̇(0) = 0(4.3b)500501

where µ = 0.3 controls the strength of nonlinear damping. We choose the forcing x(t) as in502

subsection 4.2.1 and, at time T = 10, we define the label y as in (4.2).503

As shown in Table 2, the best accuracy for the forced Van der Pol dataset is obtained with504

the Fourier (2,2) dictionary. It is a remarkable result in that NAED only uses 58 parameters.505

On the other hand, the second best result trains roughly 20 times more numbers of parameters.506

Since the true system is nonlinear, it is not surprising to see strong performance from the507

Fourier dictionaries, which contain sums and products of trigonometric functions. Due to the508

presence of nonlinear polynomials in the Van der Pol system, we might expect that the best509

dictionary would be the Polynomial (2,3) dictionary. However, as discussed in subsection 3.3,510

the nonlinear entries in the dictionary cause the right-hand side of (3.1) to be only locally511

Lipschitz continuous, so that Theorem 3.2 can only guarantee a solution on a short time512

interval. Since the class prediction is made using (3.1c), i.e., it depends on the hidden variable513

h(t) at time t = T , premature blowup of solutions spoils the learning process. The first block514

in Table 2 shows that linear Polynomial dictionaries beat nonlinear ones. We obtained the515

best accuracy with a more complex Fourier dictionary; both Fourier dictionaries outperformed516

all polynomial dictionaries on this problem.517
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Method Train Test # params

NAED Poly (2,1) 0.9030 0.854 14
NAED Poly (3,1) 0.9100 0.8675 23
NAED Poly (4,1) 0.8790 0.882 34
NAED Poly (2,2) 0.7458 0.765 20
NAED Poly (2,3) 0.8237 0.8215 28

NAED Fourier (2,1) 0.9045 0.8975 26
NAED Fourier (2,2) 0.9830 0.9860 58

RNN (5,7) 0.9729 0.9600 491
LSTM (1,5) 0.9603 0.9495 146
CFN (7,5) 0.9345 0.9350 1,177

NCDE (32, 32-1) 0.9821 0.9745 1,221
Table 2

A comparison of the accuracy and number of parameters for various methods on the forced Van der Pol
synthetic dataset. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.2.

4.2.3. Forced Lorenz system. Consider the forced nonlinear Lorenz system with positive518

parameters (σ, ρ, β):519

u̇1 = σ(u2 − u3) + x(t)(4.4a)520

u̇2 = u1(ρ− u3)− u2(4.4b)521

u̇3 = u1u2 − βu3(4.4c)522

u1(0) = u2(0) = u3(0) = 1(4.4d)523524

The first coordinate is forced by x(t) = 4
∑K

k=1Ak sin(αkt), t ∈ [0, T ], where Ak
iid∼ N (0, 1)525

and ak
iid∼ N (0, 1). Using the position of u1(t) at the final time T = 10, we define the label y526

as in (4.2). To generate the synthetic data, we choose parameters σ = 5, β = 1.3 and ρ = 10.527

This dataset has a class imbalance: the training data consist of 6348 and 1652 instances in528

classes 0 and 1, respectively, and the test data contains 1566 and 434 instances in classes 0529

and 1, respectively.530

As shown in Table 3, the highest accuracy for different choices of dictionaries and parame-531

ters in the NAED method is obtained by Fourier (3,1). This result demonstrates that complex532

dictionary entries are required to capture the nonlinearity in the underlying dynamics. It is533

remarkable that the NAED methods produced comparable results to the other methods using534

far fewer parameters, although it does not exceeded the classification accuracy of the LSTM535

method.536

4.2.4. Forced Lotka-Volterra equations. Consider the forced Lotka-Volterra system,537

u̇1 = αu1 − βx(t)u1u2(4.5a)538

u̇2 = δx(t)u1u2 − γu2,(4.5b)539540

with initial condition (u1(0), u2(0)) = (5, 4), x(t) =
(∑K

k=1Ak sin(αkt)
)2
≥ 0, and param-541

eters (α, β, δ, γ) = (0.8, 0.1, 0.01, 1.1). We sample Ak, ak
iid∼ N (0, 0.5). After numerically542
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Method Train Test # params

NAED Poly (2,1) 0.8388 0.8365 14
NAED Poly (3,1) 0.8252 0.8160 23
NAED Poly (4,1) 0.8321 0.8215 34
NAED Poly (2,2) 0.8522 0.847 20
NAED Poly (3,2) 0.8546 0.8535 41

NAED Fourier (2,1) 0.8861 0.8945 26
NAED Fourier (3,1) 0.9051 0.9050 92

NAED Fourier (2,2) 0.8517 0.8439 58

RNN (2,10) 0.7937 0.7799 341
LSTM (1,10) 0.9306 0.9359 491
CFN (2,10) 0.8080 0.7965 781

NCDE (16,16-1) 0.9434 0.9369 595
Table 3

A comparison of the accuracy and number of parameters for various methods on the synthetic dataset based
on the forced Lorenz equation. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.3.

solving up to time T = 10, we set the ground truth label y via the indicator function for543

argmax(u1(T ), u2(T )). Here x(t) appears as a coefficient in the nonlinear terms. If we intro-544

duce the additional variable u3(t) = x(t), the forcing occurs linearly,545

u̇1 = αu1 − u1u2u3 u1(0) = 5546

u̇2 = u1u2u3 − γu2 u2(0) = 4547

u̇3 = ẋ(t) u3(0) = x(0) = 0548549

This system suggests that we consider ẋ(t) as the time series input data. Hence we train the550

model using, in turn, either x(t) or ẋ(t) as the input. We generate ẋ(t) using the derivative551

of x(t) computed by hand.552

The first block of Table 4 shows results with x(t) as input, while the second block shows553

results with ẋ(t) as input. Comparing these two blocks in Table 4, we see that across all554

dictionaries and hyperparameters, the NAED method performs better with ẋ(t) as input. We555

find that the NAED method with Fourier dictionary yields similar or better results than other556

methods regardless of whether x(t) or ẋ(t) is used as input.557

4.2.5. Stochastic gated partial diffusion equation. Consider the one-dimensional sto-558

chastic gated partial diffusion equation [22],559

ut(z, t) = κuzz(z, t) z ∈ [0, 1], t ∈ [0, 1]560

uz(0, t) = 0 z = 0561

x(t)u(1, t) + (1− x(t))uz(1, t) = 0 z = 1562

u(z, 0) = u0(z) t = 0.563564

At z = 0, we impose the reflecting (Neumann) boundary condition. At z = 1, we impose565

the switching (time-dependent Robin) boundary condition, where for all t ∈ [0, 1], we have566
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Method Train Test # params

NAED Poly (2,1) 0.8835 0.8860 14
NAED Poly (2,3) 0.8785 0.8835 28

NAED Fourier (2,1) 0.9600 0.9539 26
NAED Fourier (3,1) 0.9805 0.9739 92

RNN (5,32) 0.8192 0.8045 9,441
LSTM (1,47) 0.9614 0.9595 9,260
CFN (5,20) 0.9295 0.9184 9,081

NCDE (32,32-1) 0.9838 0.9789 1,221

Method Train Test # params

NAED Poly (2,1) 0.9109 0.850 14
NAED Poly (3,3) 0.9538 0.9435 71

NAED Fourier (2,1) 0.9737 0.9660 26
NAED Fourier (3,1) 0.9536 0.9505 92
NAED Fourier (2,2) 0.9717 0.9670 58

RNN (5,30) 0.9256 0.9225 8,311
LSTM (2,20) 0.9684 0.9670 5,082
CFN (3,20) 0.9409 0.9275 5,001

NCDE (32,32-1) 0.9786 0.9720 1,221
Table 4

A comparison of the accuracy and number of parameters for various methods on the synthetic dataset
based on the forced Lotka-Volterra equation. Each table presents results trained by input data x(t) and ẋ(t)
respectively. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.4.

x(t) ∈ {0, 1}, a switching function. For the initial condition, we use an approximation to567

the Dirac delta δ(z − 0.5), given by u0(z) = 1√
2πσ2

exp
(
− (z−0.5)2

2σ2

)
, where σ = 0.1. The568

solution has an interpretation in terms of a particle experiencing Brownian motion on the569

interval. The probability of finding the particle at time t and position z is given by u(z, t).570

The initial condition is interpreted as the particles all starting near z = 0.5. The boundary571

condition at z = 1 has the interpretation that when x(t) = 1 a particle leaves the interval572

when it reaches the boundary and when x(t) = 0 the particles are reflected. The proportion573

of particles remaining in the interval at time t, referred to as the survival probability is given574

by S(t) =
∫ 1

0 u(z, t) dz. For a given switching function x(t), we assign a label y based on the575

survival probability at time t = 1;576

(4.6) y =

{
(1, 0) S(1) < 1

2

(0, 1) S(1) ≥ 1
2

.577

The classification problem seeks the mapping from the switching function x(t) to the binary578

class y.579

We generate a synthetic dataset for this problem with 8000 training examples and 2000580

testing examples as follows. To generate each switching function x(t) we choose an integer,581

q, between zero and ten uniformly. We then randomly select q times in the interval [0, 1]582
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Method Train Test # params

NAED Poly (2,1) 0.9203 0.9155 14
NAED Fourier (2,1) 0.9582 0.9570 26

NAED Fourier (2,2) 0.9523 0.9515 58

RNN (3,10) 0.9550 0.9570 146
LSTM (1,5) 0.9805 0.9799 146
CFN (2,3) 0.9440 0.9309 88

NCDE (32,32-1) 0.9785 0.9750 1,221
Table 5

A comparison of the accuracy and number of parameters for various methods on the synthetic dataset
based on the stochastic gated diffusion equation. NAED refers to Algorithm 3.1 with no sparsity promotion.
See subsection 4.2.5.

and starting with x(t) = 0, we set x(t) to alternate between 0 and 1 at these times. For583

each switching function, x(t), we approximately solve the heat equation for u(z, t) as follows.584

We apply a forward difference in time and a second-order central difference scheme for the585

space derivative. We use a spatial discretization size of dx = 0.05 and temporal step size of586

dt = 0.01. To obtain roughly balanced class sizes, we choose the diffusion coefficient to be587

κ = 0.165. For this choice of parameters, the CFL condition κ (dt)
(dx)2

≈ 0.66 < 1 is satisfied, so588

the numerical method is stable. The solution at time t = 1 is used to define the label y as in589

(4.6).590

A comparison of the accuracy of various methods is given in Table 5. As shown in the first591

block of Table 5, the proposed NAED method works well on this dataset generated using a592

partial diffusion equation. Among the several choices of entries for the dictionary, we achieve593

the best accuracy with the Fourier (2-1) dictionary. The NAED method provides comparable594

accuracy to other methods with substantially fewer parameters.595

4.3. Synthetic dataset with noise. In this section, we train the sparse NAED method596

(see subsection 3.5) and show the robustness of this method on a noisy dataset. To gener-597

ate the noisy data, we contaminate the forced harmonic oscillator input/forcing x(t) from598

subsection 4.2.1 with noise:599

x̃(t) = x(t) + η(t), η(t)
iid∼ N (0, 10−4)600

where η(t) is a Gaussian process, mutually independent for different t. Noise is added to the601

original data x(t) ∈ [−5.8, 5.6] for t ∈ [0, T ].602

For the noisy data, we apply the sparse NAED method within a cross-validation loop603

to select ν. For each value of ν ∈ {0.01, 0.03, 0.05, 0.1, 0.5, 1}, and within each fold of 5-fold604

cross-validation, we train with Algorithm 3.2 until convergence. We then choose ν to minimize605

the cross-validation test error. The last column of the Table 6 records the number of non-zero606

entries in the trained β. As shown in each block of Table 6, the performance of the sparse607

NAED method tends to be slightly better than competing methods. In particular, the sparse608

Fourier (2-2) method achieves the best test error with substantially fewer parameters than609

competing RNN methods. In this synthetic example, the underlying dynamical system does610

possess a sparse representation.611
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Methods Train Test # nnz params

NAED Poly (2,1) 0.7580 0.7505 6
Sparse NAED Poly (2,1) 0.7618 0.7605 3

NAED Fourier (2,1) 0.9192 0.9155 18
Sparse NAED Fourier (2,1) 0.9311 0.928 6

NAED Fourier (2,2) 0.9523 0.9515 50
Sparse NAED (2,2) 0.9670 0.9645 16

RNN (2,10) 0.9557 0.9530 341
LSTM (2,10) 0.9615 0.9595 1,342
CFN (2,10) 0.9230 0.9180 781

NCDE (16,16-1) 0.9789 0.9674 595
Table 6

A comparison of the accuracy and number of nonzero (nnz) parameters for various methods on the synthetic
dataset based on the forced harmonic oscillator with noise. NAED refers to Algorithm 3.1 with no sparsity
promotion, while Sparse NAED refers to Algorithm 3.2. See subsection 4.3.

4.4. UCR archive datasets. In this section, we compare NAED with four competing612

methods (RNN, LSTM, CFN, and NCDE) on four univariate time series datasets from the613

UCR archive [7]. Unlike the datasets considered above, these datasets do not arise through614

numerical solutions of differential equations. For all methods, we follow training, initialization,615

and hyperparameter selection procedures described in subsection 4.1. In particular, we have616

trained repeatedly with different choices of hyperparameters. For all methods considered, we617

report only the results corresponding to hyperparameters that maximize test accuracy.618

For the general NAED method (Algorithm 3.1), hyperparameters relate to the dimension619

m of the hidden variable h(t) and the size d of the dictionary Ξ(h). For the sparse NAED620

method (Algorithm 3.2), we also search for an optimal value of ν, the thresholding parameter.621

For the RNN, LSTM, and CFN methods, we varied the depth (number of layers) and width622

(number of units per layer). For NCDE, we trained with either 32 or 64 hidden channels;623

the vector field is represented using a feedforward neural network with one hidden layer with624

either 64 or 128 units.625

For each method, we report the best results obtained, the optimal set of hyperparameters626

and total number of model parameters in Table 7. In Figure 3, we show an example trajectory627

for each class and use colored partitions to denote the classification regions and decision628

boundaries.629

The Two Pattern dataset is synthetically generated and has 1000 training and 4000 test630

samples. There are four balanced classes and the sequence length for all samples is 128.631

As recorded in Table 7, NAED achieves its highest accuracy when we use a Fourier (2,1)632

dictionary. Compared with other methods, the NAED method provides slightly lower accuracy633

but is still close to 100% on both train and test data.634

The Plane dataset contains outlines of airplanes measured by a sensor. The classification635

problem is to distinguish the type of airplane where there are seven airplane shape classes:636

Mirage, Eurofighter, F-14 wings closed, F-14 wings opened, Harrier, F-22 and F-15. There637

are 105 instances in both the training and test sets, each having length 144. As presented in638
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Dataset RNN LSTM CFN NCDE NAED
U

C
R

a
rc

h
iv

e

Two Patterns test 0.7630 1.0000 0.9900 0.8420 0.9760
train/test : 1000/4000 train 0.7473 1.0000 1.0000 0.8330 0.9815

4 classes info (5-24-5,428) (1-35-5,324) (3-20-5,064) (64-128-17,030) (2-1-32)
Plane test 0.7048 0.4762 0.4000 0.8571 0.7714

train/test : 105/105 train 0.7429 0.4952 0.5524 0.8095 0.7523
7 classes info (5-10-3,867) (5-10-3,917) (5-20-9,205) (32-64-8,905) (2-1-41)

Kitchen Appliance test 0.5973 0.6027 0.5760 0.5306 0.6133
train/test : 375/375 train 0.6027 0.5813 0.5467 0.5040 0.6053

3 classes info (5-10-993) (5-10-3,873) (2-5-228) (64-64-8,645) (2-1-29)
Computer test 0.5800 0.6640 0.6199 0.6520 0.6599

train/test : 250/250 train 0.5960 0.6280 0.6199 0.6800 0.6200
2 classes info (1-5-47) (1-3-68) (2-2-45) (64-128-16,835) (2-2-58)

Table 7
A comparison of the accuracy and number of parameters for various methods on four UCR archive datasets.

For the Two Patterns and Plane datasets, NAED refers to Algorithm 3.1; for the Kitchen Appliance and
Computer datasets, NAED refers to Algorithm 3.2 with iterative thresholding. See subsection 4.4.

Table 7, the NAED method with Fourier (2,1) dictionary surpasses the test accuracy of the639

RNN, LSTM, and CFN. It does this even with 100-200 times fewer parameters than these640

competing methods. The NCDE method is the best on this dataset; it has over 200 times641

more parameters than NAED. This dataset shows that NAED works well on a multiclass642

classification problem.643

The Kitchen Appliance dataset is behavioral data recorded from 251 households and mea-644

sured by a device in two-minute intervals over a month. Each series has length 720. This645

problems classifies how consumers use electricity within their home, so there are three classes:646

Kettle, Microwave and Toaster. This data contains 375 instances in the training and test sets.647

In Table 7, sparse NAED with a Fourier (2,1) dictionary returns the best accuracy on this648

dataset with only 29 parameters. Here, the cutoff value is set to ν = 0.03 and two entries of649

β are dropped to zero.650

In Figure 3(d), we observe that some of the trajectories appear to jump in the phase651

plot. Since the trajectory is a solution to a forced dynamical system, very strong or highly652

oscillatory forcing can cause this type of behavior.653

The Computer dataset consists of 250 train and test instances for a consumer’s electricity654

usage behavior in a home. Each sample consists of recordings made every two minutes over655

a month so that total length is 720. There are two classes: Desktop and Laptop. According656

to Table 7, the best accuracy is obtained by the LSTM method. Sparse NAED with Fourier657

(2,2) dictionary and cutoff value ν = 0.05 nearly matches the LSTM’s accuracy. The imposed658

sparsity condition replaces 16 entries in β with zero; consequently, the trained vector field is659

relatively simple and interpretable.660

For the Kitchen Appliance dataset, NAED achieves the best test set results; for the re-661

maining three datasets, NAED’s parameter count is on average > 200 times less than that662

of the method with the best test set performance. For the first three datasets considered in663
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(a) (b)

(c) (d)

Figure 3. In four subplots, labeled (a)–(d), we plot the vector field h 7→ βΞ(h) in (3.1) trained on
different UCR archive datasets. In each plot, example solution trajectories for each class are displayed and the
classification partition is colored. (a) Two Patterns dataset using NAED with Fourier dictionary with K = 1.
(b) Two Patterns dataset using NAED with Fourier dictionary with K = 2. (c) Plane dataset using NAED
with Fourier dictionary with K = 1. (d) Kitchen Appliance dataset using sparse NAED with Fourier dictionary
with K = 1 and ν = 0.03.

Table 7, NAED is the only method that achieves competitive test accuracies with a small664

number of parameters. For Computer, the parameter counts for NAED and LSTM are simi-665

lar. Based on the RNN results here, we conjecture that NAED underfits this dataset; a more666

scalable implementation of the NAED method would enable us to explore larger values of the667

dimension of h and the largest Fourier multiplier K.668

As we described in section 3, the NAED method learns a representation of the underlying669

vector field based on a prespecified dictionary. With polynomial or harmonic basis functions,670

these vector fields can be approximated using only a few terms. By promoting sparsity,671

Algorithm 3.2 can further enhance parsimony. As shown in experiments, competing methods672

require at least 2 times and up to 500 times the number of parameters required by NAED.673

5. Discussion. In this paper, we developed a framework for analyzing time signals based674

on non-autonomous dynamical systems. A time signal, x(t), is interpreted as a forcing function675

for a dynamical system (3.1) that governs a time-evolving hidden variable, h(t). As in equation676

discovery, the dynamical system is represented using a dictionary of prespecified candidate677

functions and the coefficients are learned from data. We refer to the resulting model as678

This manuscript is for review purposes only.



NAED METHOD FOR TIME SIGNAL CLASSIFICATION 25

non-autonomous equation discovery (NAED). This framework is applied to the time signal679

classification problem, where the hidden variable, at a final time, h(t = T ), is used to make a680

prediction via the composition of the softmax function and an affine function. Using a cross-681

entropy loss function, we train the NAED model using a gradient based optimization method,682

where the gradients are efficiently computed using the adjoint method; see Theorem 3.3.683

Through a variety of experiments—on both synthetic and real datasets—we demonstrated684

that the NAED method achieves accuracy that is comparable to RNN, LSTM, CFN and NCDE685

methods on binary and multi-class classification problems; see section 4. Note that [20] shows686

that NCDE itself outperforms other RNN architectures, including continuous-time/ODE-like687

GRU models [3, 18] and a method that merges an RNN with a neural ODE [28]. The NAED688

method generally requires far fewer parameters than neural network-based methods and the689

number of parameters can further be reduced by using a sparse version of the algorithm;690

see Algorithm 3.2. We also show in subsection 4.4 that sparsity improves the trainability of691

the method and its robustness to noise in the data. Finally, by construction, our method692

is interpretable using the theory of dynamical systems. For example, using phase plots, we693

can visualize the trajectories of the underlying dynamical system and how they navigate the694

decision boundaries between classes.695

Since our model is built on dynamical systems, we can generate synthetic labelled data696

from a dynamical system and then pose the inverse problem of trying to recover the ground-697

truth labels from the data. For a synthetic dataset based on the forced harmonic oscillator698

(subsection 4.2.1), we showed that the NAED method for classification is not generally iden-699

tifiable, i.e., the method does not always recover the ground-truth parameters. However, in700

the case of a linear dictionary, we recover the ground-truth parameters up to conjugation by701

an orthogonal matrix.702

There are a variety of natural future directions for this work. Since the NAED method703

is built on dynamical systems, we could use dynamical systems theory to further analyze704

a particular trained NAED model. For example, one could use stability theory to further705

sharpen and generalize the misclassification estimates in Theorem 3.4 and Theorem 3.5. To706

enhance the method’s ability to deal with noisy time signals, one could combine the NAED707

method with filtering methods (e.g., the Kalman filter). Since we interpret time signals as708

continuous objects and discretize within the method (the optimize-then-discretize approach),709

multi-scale methods could be used in training. A slight generalization of the model would710

be to let B in (3.2) be a parameterized operator, B =
∑K

k=0Bk∂
k
t , where Bk ∈ Rm×n are711

unknown coefficients. In the forced Lotka-Volterra equations (subsection 4.2.4), we considered712

using as forcing either x or ẋ and this generalization would avoid this. Another generalization713

would be to use the hidden state over the entire interval [0, T ], rather than just the final time;714

that is, rather than (3.1c), we could assign labels using an integral operator715

ŷi = σ

(∫ T

0
A(t)hi(t) + b(t) dt

)
,716

where A : [0, T ] 7→ R|Y|×m, b : [0, T ] 7→ R|Y|, and σ : R|Y| → R|Y| is the softmax function.717

Finally, the NAED framework developed here could be applied to other time signal analysis718

tasks, such as prediction and forecasting, classification, segmentation, and denoising.719
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