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ABSTRACT

Exploratory data science largely happens in computational note-
books with dataframe API, such as pandas, that support flexible
means to transform, clean, and analyze data. Yet, visually exploring
data in dataframes remains tedious, requiring substantial program-
ming effort for visualization and mental effort to determine what
analysis to perform next. We propose Lux, an always-on framework
for accelerating visual insight discovery in data science workflows.
When users print a dataframe in their notebooks, Lux recommends
visualizations to provide a quick overview of the patterns and trends
and suggests promising analysis directions. Lux features a high-
level language for generating visualizations on-demand to encour-
age rapid visual experimentation with data. We demonstrate that
through the use of a careful design and three system optimizations,
Lux adds no more than two seconds of overhead on top of pandas
for over 98% of datasets in the UCI repository. We evaluate Lux in
terms of usability via a controlled first-use study and interviews
with early adopters, finding that Lux helps fulfill the needs of data
scientists for visualization support within their dataframe work-
flows. Lux has already been embraced by data science practitioners,
with over 1.9k stars on Github within its first 15 months.

1 INTRODUCTION

Data science is an iterative, trial-and-error process, involving many
interleaved stages of data cleaning, transformation, analysis, and vi-
sualization. Data scientists typically use a dataframe library [30, 48],
such as pandas [45], which offers a flexible and rich set of operators
to transform, analyze, and clean tabular datasets. They manipu-
late dataframes within a computational notebook such as Jupyter,
which offers a flexible medium to write and execute snippets of
code; nearly 75% of data scientists use them everyday [13]. In be-
tween these dataframe transformation operations, users visually
inspect intermediate results, either by printing the dataframe, or
by using a visualization library to generate visual summaries. This
visual inspection is essential to validate whether the prior opera-
tions had their desired effect and determine what needs to be done
next. However, visualizing dataframes is a cumbersome and
error-prone process, adding substantial friction to the fluid,
iterative process of data science, for two reasons: cumbersome
boilerplate code and challenges in determining the next steps.
Cumbersome Boilerplate Code. Substantial boilerplate code is
necessary to simply generate a visualization from dataframes. In
a formative study, we analyzed a sample of 587 publicly-available
notebooks from Rule et al. [49] to understand current visualiza-
tion practices. A surprising number of notebooks apply a series of
data processing operations to wrangle the dataframe into a form
amenable to visualization, followed by a set of highly-templatized

visualization specification code snippets copy-and-pasted across
the notebook. Our findings echo a recent study of 6386 Github
notebooks [36], where visualization code was the most dominant
category of duplicated code (21%). On top of the high cognitive
cost when writing “glue code” to go from dataframes to visual-
izations [17, 62], users have to context-switch between thinking
about data operations and visual elements. These barriers hinder
exploratory visualizations and, as a result, users often only visualize
during the “late stages of [their] workflow” [18, 33], rather than for
experimenting with possible analyses—which is precisely when
visualization is likely to be most useful.
Challenges in Determining Next Steps. Beyond writing code
to generate a given visualization, there are challenges in determin-
ing which visualizations to generate in the first place. Dataframe
APIs support datasets with millions of records and hundreds of
attributes, leading to many combinations of visualizations that can
be generated. The many choices make it hard for the data scientist
to determine what visualization to generate to advance analysis.
They receive no automated guidance on what may be valuable vi-
sualizations to examine next. While there has been some work on
automated visualization recommendation in the context of interac-
tive visual analytics tools [39, 56, 67, 68], targeting identification of
“interesting” patterns, trends, or insights, none of this work has im-
pacted typical data science workflows in computational notebooks.
The former is easier since datasets are static; in a computational
notebook, the dataframes are continuously evolving as data scien-
tists perform data cleaning and transformation operations.
Always-On Visualization Recommendations with . To
address the above challenges, we introduce Lux, a seamless exten-
sion to pandas that retains its convenient and powerful API, but
enhances the tabular outputs with automatically-generated visu-
alizations highlighting interesting patterns and suggesting next-
steps for analysis (https://github.com/lux-org/lux). Lux has
already been adopted by data scientists from a diverse set of indus-
tries, and has gained traction in the open-source community, with
the number ofmonthly downloads around 280 (with a total of
7943 downloads), and over 1900 stars on Github, as of March
2021. Multiple industry users have created blog posts or YouTube
videos extolling the virtues of Lux [8–10, 24, 47, 64].
Challenges of Always-On Visualization Recommendations.

Prior work has examined supporting automatic recommendations
of interesting summaries in an OLAP setting, e.g., [31, 37, 52, 56, 60,
61, 68, 70], and automatically picking the right visualization modal-
ity, given attributes of interest [41, 42, 59, 67]. However, providing
always-on visualization recommendations while data scientists per-
form ad-hoc exploration of dataframes is non-trivial and presents
its own unique research challenges:

1

ar
X

iv
:2

10
5.

00
12

1v
1 

 [
cs

.D
B

] 
 3

0 
A

pr
 2

02
1



What and how do we recommend? Data scientists using dataframes
are unlikely to use a visualization tool that causes any disruption
to their workflow. How do we make visualization recommenda-
tions as easy to peruse as the tabular view provided on printing
the dataframe within a computational notebook? What types of
useful visualization recommendations do we show? There are lots
of visualizations that could be generated on a given dataset.
How do we support dataframe evolution? Unlike traditional visual an-
alytics, dataframes are continually evolving over the course of data
science. Operations involving pivots or grouping can drastically
change the shape of the dataframe. How do we provide visualiza-
tion recommendations as the dataframe metadata (cardinalities and
data types for columns) is changing rapidly? The cost of updating
the metadata and recommendations at every point in a dataframe
workflow to keep the recommendations “always-on” is often high.
How can we be informed by the dataframe operations users are per-

forming?How dowe ensure that the visualization recommendations
are relevant and useful, based on the operations that the users have
performed? For example, if a user has just performed a grouping,
that is an indication that the group-by column is of interest.
How do we allow users to steer the visualizations they want to see?

Simply providing users the ability to passively receive visualization
recommendations without any power to indicate their interests to
Lux is not useful. How do we allow users to provide their “fuzzy
intent” in a lightweight manner quickly and without having to
write a lot of code—with the system filling in the gaps as needed?
How do we keep it interactive? Visualization recommendation in-
volves traversing through a large search space of candidate visual-
izations to select ones that would be most interesting to the user.
It is critical to provide interactive feedback—even seconds of la-
tency substantially discourages users from visually inspecting their
dataframes altogether. How do we ensure that the overhead of
visualization recommendations are not substantial?
How do we allow users to export and edit?Often users want to be able
to take the visualizations and further customize it to their needs.
How do we enable users to export visualizations and edit it in their
favorite visualization specification language?
How do we continue to support the rich pandas API? How do we
provide this experience when continuing to support pandas’ 200+
operators—without compromising the ease and flexibility of pro-
grammatic data transformation and preparation as is done presently?
The Lux Approach. We address the aforementioned challenges
in developing Lux. Lux preserves all the functionalities of present-
day dataframes, while augmenting the default tabular dataframe
view with a toggle button to switch to visualization recommenda-
tions. Lux is a lightweight wrapper around pandas that intelligently
caches and lazily evaluates the metadata and recommendations
associated with a dataframe. At any point during the dataframe
workflow, Lux offers an intuitive way of visualizing the dataframe.
These include metadata and intent-based visualizations common
in past visualization recommendation systems, as well as novel
dataframe visualizations based on structural (Series, Index) and his-
tory information. Lux additionally offers a powerful, intuitive and
succinct intent language powered by a formal, expressive algebra
that allows users to specify their fuzzy intent at a high-level. Lux
implements an intent processing stack that compiles the declara-
tive specification into appropriate visualization mappings. Overall,
users can use Lux to quickly compose one or more visualizations,

and get visualization recommendations for the next steps in their
analysis. A naive implementation of recommendation on top of
dataframes can be extremely costly incurring up to 575× slowdown
relative to pandas. Lux ensures interactive visual feedback through
a series of optimization strategies that minimize the overhead in-
curred on top of a dataframe workflow. Lux adds no more than two
seconds of overhead on top of medium-to-large real-world datasets
with characteristics covering around 98% of datasets in the UCI
repository. Finally, Lux has intuitive ways to export one or more
visualizations, as well as edit the underlying code for customization.
Our contributions are as follows:
• We show how Lux supports visual interactions with dataframes,
and introduce a dataframe interaction framework (§2).

• We introduce intent as a high-level mechanism to convey aspects
of interest to Lux, with a grammar and query language (§3).

• We introduce four classes of recommendations based on themeta-
data, intent, structure, and history. The latter two are dataframe-
specific ones that have not been explored in prior work (§4).

• We develop a modular system, Lux, that interprets intent and
generates recommendations (§5) with an efficient execution en-
gine for metadata and visualization computation (§6).

• Finally, we evaluate the interactive performance of Lux (§7) and
conduct usability studies with data scientists and early adopters
(§8).

2 VISUAL DATAFRAMEWORKFLOWS

We first demonstrate how always-on visualization support for
dataframes accelerates exploration and discovery.

2.1 Lux Example Workfow

We present a workflow of Alice, a public policy analyst, exploring
the relationship between world developmental indicators (such as
life expectancy, inequality, and wellbeing) and the country’s early
effort in COVID-19 response. A live demo of the example notebook
can be found here1.
Always-on dataframe visualization. Alice opens up a Jupyter
notebook and imports pandas and Lux. Using pandas’s read_csv
command, Alice loads the Happy Planet Index (HPI) [2] dataset
of country-level data on sustainability and well-being. To get an
overview, Alice prints2 the dataframe df and Lux displays the de-
fault pandas tabular view, as shown in Figure 1 (top, orange box).
By clicking on the toggle button, Alice switches to the Lux view that
displays a set of univariate and bivariate visualizations (bottom),
including scatterplots, bar charts, and maps, showing an overview
of the trends. Visualizations are organized into sets called actions,
displayed as tabs. The one displayed currently is the Geographic
action. By inspecting the Correlation tab in Figure 1 (not dis-
played here), she learns that there is a negative correlation between
AvrgLifeExpectancy and Inequality (same chart as Figure 2 left);
in other words, countries with higher levels of inequality also have
a lower average life expectancy. She also examines the other tabs,
which show the Distribution of quantitative attributes and the
Occurrence of categorical attributes.

1https://mybinder.org/v2/gh/lux-org/lux-binder/master?urlpath=tree/demo/hpi_
covid_demo.ipynb
2We refer to any operations that result in a dataframe in the output cell of a notebook
as printing the dataframe, not the literal ‘print (df)’.
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df = pd.read_csv("hpi.csv")
df

import pandas as pd
import lux 
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Figure 1: By printing out the dataframe, the default pandas tabu-

lar view is displayed (orange box) and users can toggle to browse

through visualizations recommended by Lux.

Steering analysis with intent. Next, Alice wants to investigate
whether any country-level characteristics explain the observed
negative correlation between inequality and life expectancy. As
in Figure 2, she specifies her analysis intent to Lux as: df.intent =
["AvrgLifeExpectancy", "Inequality"]. On printing the dataframe
again, Lux employs the specified analysis intent to steer the recom-
mendations towards what Alice might be interested in. On the left,
Alice sees the visualization based on her specified intent. On the
right, Alice sees two sets of recommendations that add an additional
attribute (Enhance) or add an additional filter (Filter) to her intent.
By looking at the colored scatterplots in the Enhance action, she
learns that most G10 industrialized countries (Figure 2 center) are
on the upper left quadrant on the scatterplot (low inequality, high
life expectancy). In the breakdown by Region (Figure 2 right), she
finds countries in Sub-Saharan Africa (yellow points) tend to be on
the bottom right, with lower life expectancy and higher inequality.
df.intent = ["Inequality","AvrgLifeExpectancy"]
df

Toggle Pandas/Lux
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Figure 2: Alice sets the intent based on the attribute

AvrgLifeExpectancy and Inequality, and Lux displays visual-

izations that are related to the intent.

Seamless integration with cleaning and transformation. Al-
ice is interested in how a country’s development indicators relate
to their early COVID-19 response as of March 11, 2020. To investi-
gate this, she imports a new dataset that characterizes how strict a
country’s response is, via stringency [27], a number from 0-100,
with 100 being the highest level of responses. As shown in Fig-
ure 3, (I) Alice loads and joins the newly-cleaned dataframe with
the earlier HPI dataset. (II) When she sets the intent on stringency,
she finds that China and Italy have the strictest measures (dark
blue on map Figure 3 center). She also learns that the histogram of
stringency is heavily right-skewed (Figure 3 left), revealing how
many countries had low levels of early pandemic response. (III) To

better discern country-level differences, Alice bins stringency val-
ues into a binary indicator, stringency_level, showing whether
a country had Low or High levels of early response. With the modi-
fied dataframe, Alice revisits the negative correlation she observed
previously by setting the intent as average life expectancy and
inequality again. The resulting recommendations are similar to Fig-
ure 2, with one additional visualization showing the breakdown by
stringency_level (Figure 4 right). Alice finds a strong separation
showing how stricter countries (blue) corresponded to countries
with higher life expectancy and lower levels of inequality. This visu-
alization indicates that these countries have a more well-developed
public health infrastructure that promoted the early pandemic re-
sponse. However, we observe three outliers (red arrow on Figure 4
right) that seem to defy this trend. When she filters the dataframe
to learn more about these countries (Figure 4 left), she finds that
these correspond to Afghanistan, Pakistan, and Rwanda—countries
that were praised for their early pandemic response despite limited
resources [5, 7, 19]. She clicks on the visualization in the Lux widget
and the button to export the visualization from the widget to a
Vis object. Alice can access the exported Vis via the df.exported
property and print it as code, following which she can tweak the
plotting style before sharing Figure 4 (right) with her colleagues.
covid = pd.read_csv('covid-stringency.csv')
result = covid.merge(df,left_on=["Entity","Code"],right_on=["Country","iso3"]) (I) Load + Join
result.intent = ["stringency"]
result

result["stringency_level"]=pd.qcut(result["stringency"],2,labels=["Low","High"])  
result = result.drop(columns=["stringency"])

(II) Visualize

(III) Clean

Figure 3: Tabular operations (orange, steps I & III) to load, clean, and

transform the data, while visualizing with Lux (purple, step II).

result[(result["Inequality"]>0.35)&(result["stringency_level"]=="High")]
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Figure 4: The scatterplot shows a separation between countries with

high and low stringency in their COVID response. By filtering the

dataframe (left), we see that Afghanistan, Pakistan, and Rwanda

correspond to the three outliers (red boxed) that defies the trend.

Overall, this example demonstrates the value of always-on visu-
alization support within a dataframeworkflow: the tight integration
between Lux and dataframes enabled Alice to seamlessly perform
ETL with her familiar pandas API and notebook environment.
2.2 Dataframe Interaction Framework

The demo illustrates the many flexible ways that users can interact
with a dataframe to achieve their analytical goal. We outline this
different interaction3 modalities in Figure 5.

3We use the term “interaction” loosely in describing this framework. The interaction
with a dataframe not only refers to operations specified programmatically by user,
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Dataframe API 1 : Users can operate on the dataframe directly
to perform any desired transformation or analysis. For example,
Alice loaded the CSV, performed a join with another dataframe, and
filtered to a data subset all via the familiar pandas dataframe API.
Intent 2 : Users can “attach” an intent to a dataframe to indicate
aspects of the dataframe that they are interested in. The intent
drives the actions and views that are generated in the levels above.
In the demo, Alice indicated that she wants to learn more about
AvrgLifeExpectancy and Inequality; Lux displayed visualiza-
tions related to the variable of interest. This intent is virtual in that
as the dataframe changes, the intent can still be used to recompute
visualizations on the updated dataframe; in some cases, this may re-
sult in a different visualization being computed, e.g., if the data type
for a given intent column is modified. In Section 3.1, we describe a
flexible intent language for specifying user interest.
Actions 3 : Lux displays a default set of system-recommended ac-
tions that the users can interact with, e.g., Enhance or Correlation.
Users can also register UDF-based actions for domain-specific needs4.
In either case, these actions are written in terms of the intent lan-
guage but also leverage metadata and history. They instantiate a
set of views displayed to users (described next).
Views 4 : A view is an operationalization of intent when cou-
pled with a specific dataframe instance. Users can directly create
view(s) via Vis/VisList by specifying the intent applied to a given
dataframe, resulting in one (or more) visualization(s). Actions in-
stantiate one or more views—e.g., for a collection of visualizations
(VisList) formed by plotting correlations across various attributes,
each individual visualization (Vis) is an intent operating on a spe-
cific dataframe instance.

Intent

Action

ViewsVi
su

al
Ta
bl
ua

r

Dataframe

4 3 2 1

Figure 5: Visual dataframe

interaction framework.

1 - 4 denotes four

different modalities.

In this multi-tiered framework,
changes in the bottom levels prop-
agate to those above. Moreover,
the settings at each level are re-
tained across the session, so users
can interact with the dataframe
in a consistent and controllable
manner. For example, when a user
modifies the dataframe at the bot-
tommost level, the same intent
and actions are kept fixed and are used to update the views.

In addition to outlining different ways of interacting with a
dataframe, the framework in Figure 5 from top to bottom spans a
spectrum of interactions from visual-oriented to tabular-oriented
ways of thinking, as exemplified by the orange and purple cells in
Figure 2. During visual data exploration, some analytical tasks are
better expressed as tabular operations (e.g., convert the temperatures

column to Fahrenheit), while others are better expressed visually
(e.g., inspect correlation between sales and order volume as a Vis).
Many tasks are somewhere in between. Yet existing data querying
languages and visualization grammars often create an artificial
separation between the two, necessitating expensive “glue” code
described earlier. By jointly considering and operating over visual
and tabular aspects of dataframes, Lux supports a flexible and
intuitive experience for interacting with data.

but also ones that are synthesized by the system. For example, Lux can automatically
recommend appropriate actions that generate views to display to users.
4https://lux-api.readthedocs.io/en/latest/source/advanced/custom.html

3 INTENT LANGUAGE FORMALIZATION

As shown in the framework in Figure 5, above the dataframe layer,
users can specify their analysis intent, create custom actions, and
generate desired views. This is all made possible through the in-
tent language. The intent language is a lightweight, succinct means
for users to programmatically and declaratively specify their high-
level analysis interests and goals. Its capabilities are inspired by
work on visualization query languages, such as ZQL [57] and Com-
passQL [66]. Unlike those languages, which are largely meant to be
used internally within the corresponding interactive visual analyt-
ics systems (Zenvisage and Voyager) operating on static datasets,
our intent language is tailored for programmatic specification cou-
pled with a dynamically-evolving dataframe. To lower the barrier
for composing an intent, our intent language is applicable even
for sloppy, underspecified queries, such as when the channels or
aggregation properties are missing from the user specification. The
intent processing layer (described in Section 5) automatically infers
the necessary details to transform user-specified intent into com-
plete specifications that can be operationalized. In this section, we
introduce the syntax of this intent language, and the underlying
formal grammar. The grammar is decoupled from our specific im-
plementation, which uses syntactic sugar for expressing the intent
in a convenient Python-based API.

3.1 Intent Grammar

The intent grammar describes what the user is interested in within
a dataframe. The intent is composed of one or more clauses, each
of which is either an axis or a filter of interest.

⟨𝐼𝑛𝑡𝑒𝑛𝑡 ⟩ → ⟨𝐶𝑙𝑎𝑢𝑠𝑒 ⟩+

⟨𝐶𝑙𝑎𝑢𝑠𝑒 ⟩ → ⟨𝐴𝑥𝑖𝑠 ⟩ | ⟨𝐹𝑖𝑙𝑡𝑒𝑟 ⟩
(1)

An axis defines one or more attribute(s), mapped appropriately to
a specific encoding or channel of the corresponding visualizations.

⟨𝐴𝑥𝑖𝑠 ⟩ → ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ⟩ ⟨𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ⟩? ⟨𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛⟩? ⟨𝑏𝑖𝑛_𝑠𝑖𝑧𝑒 ⟩? (2)

For the axis, apart from the mandatory attribute(s), specified under
⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⟩, the remaining properties are optional—and can be au-
tomatically inferred. The axis construct is inspired by the grammar
of graphics (GoG) [65] underlying visualization packages such as
Vega-Lite [53] and ggplot [63]. Unlike GoG, our intent grammar
doesn’t require users to specify mark and channel properties. In
GoG, users explicitly specify which encoding channel (e.g., x or y)
each attribute is plotted—this is not necessary in our case.

Filters define a subset of data that the user is interested in. To
specify a filter, the attribute being filtered, the operation, and the
value, are required.

⟨𝐹𝑖𝑙𝑡𝑒𝑟 ⟩ → ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ⟩ [=><≤≥≠] ⟨𝑣𝑎𝑙𝑢𝑒 ⟩ (3)

Consider the simple case when ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⟩ refers to a single at-
tribute and ⟨𝑣𝑎𝑙𝑢𝑒⟩ refers to a single value in Equations 2 and 3;
then, an intent with multiple clauses (axis or filter) represents a
user preference to see each of the axis attributes visualized, for the
subset of data corresponding to the conjunction of the filters.

In the more general case, ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⟩ can correspond to a union
of attributes, or a special wildcard value ? (with an optional con-
straint to define the subset of attributes), while the ⟨𝑣𝑎𝑙𝑢𝑒⟩ can refer
to a union of values, or a special wildcard value ? .

⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ⟩ → attribute ∪ ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ⟩∗ | ? ⟨𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ⟩? (4)

⟨𝑣𝑎𝑙𝑢𝑒 ⟩ → value ∪ ⟨𝑣𝑎𝑙𝑢𝑒 ⟩∗ | ? (5)

4
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The use of unions in either case (as well as ? which implicitly is a
union of all alternatives) admits a disjunction of options for the axis
or filter clause. If there are 𝑛𝑖 ≥ 1 alternatives for the 𝑖𝑡ℎ clause,
we can construct a collection of 𝑛1 ×𝑛2 × . . . ×𝑛𝑘 visualizations by
taking the cross-product of alternatives per clause. Constructing a
collection of visualizations via partial specification of this sort has
been explored in ZQL [56] and CompassQL [66].

3.2 Specifying Intent

As described in Section 2.2, users can specify an intent indicating
their analysis interests 2 . Users can also create desired views by
applying the intent to a specific dataframe 4 . For the creation of
actions 3 , Lux makes use of the same view constructs as in 4 to
enumerate one or more visualizations; however, the intent for these
actions is often specified by Lux internally, instead of explicitly
specified by the user.

3.2.1 Attaching an Intent to a Dataframe 2 . Building on the gram-
mar described above, within Lux, a Clause can specify one or more
columns (i.e., Axis) or rows (i.e., Filter) of interest.
Query 1. To set Age and Education as columns of interest for a
given dataframe df, one can state:

axis1 = lux.Clause(attribute="Age")
axis2 = lux.Clause(attribute="Education")
df.intent = [axis1,axis2]

Or one can also use the equivalent shortcut:
df.intent = ["Age", "Education"]

Once the intent is set, whenever df is printed, the Lux widget
will use the intent to determine what visualizations to show to the
user. Here, Lux would display visualizations related to attributes
Age and Education from df. In the following, we will showcase
the Lux intent syntax as part of Vis and VisList, but the syntax
can also be used to simply set intent as in df.intent above.

3.2.2 Constructing a Single Intent-driven View 4 . As mentioned
in Section 2.2, a view operationalizes an intent on a dataframe.
The intent serves as a blueprint that describes while the source
dataframe provides the underlying data to drive the visualization.
A view is specified using the Vis keyword within Lux, and results
in Vis object that is rendered as a single visualization. Users can
either edit the intent or refresh the source dataframe to modify the
visualization.
Query 2. Compare average Age across different Education levels.

axis1 = lux.Clause(attribute="Age")
axis2 = lux.Clause(attribute="Education")
Vis([axis1,axis2],df)

Query 2 is similar to Query 1, except that the intent is applied
to the dataframe df to create a visualization via Vis, rather than
changing the intent associated with the dataframe (to be used when
the dataframe is eventually printed). Given that the intent involves
onemeasure (Age) and one dimension (Education), Luxwill display
a bar chart. By default, average is the function used for aggregation.

Aggregation is one of three optional properties for Axis (Equa-
tion 2); others are channel and binning. If any of these are explicitly
specified, they override Lux’s defaults, as in the following query.
Query 3. Compare the variance of MonthlyIncome based on em-
ployee Attrition.
axis1 = lux.Clause("MonthlyIncome", aggregation=numpy.var)
axis2 = "Attrition"

Vis([axis1,axis2],df)

Finally, we can compose Axis and Filter together, as follows.
Query 4. Visualize the Ages for employees in the Sales Department.

axis = "MilesPerGal"
filter = "Department=Sales"
Vis([axis, filter],df)

3.2.3 Constructing Many Intent-driven Views 4 . VisList repre-
sents a collection of visualizations, which can either be constructed
indirectly by setting df.intent as in Section 3.2.1, or as an input
intent to a VisList, as in the following query.
Query 5. Show how factors related to the rate of compensation
differ for employees with different EducationFields.

rates = ["HourlyRate","DailyRate","MonthlyRate"]
VisList(["EducationField",rates],df)

Here, there is one Vis corresponding to EducationField com-
binedwith each of HourlyRate, DailyRate, and MonthlyRate. The
wildcard character ? , when used as part of an Axis, can be used
to enumerate over all attributes in a dataframe; constaints may be
used to restrict them to a certain type.
Query 6. Browse through relationships between any two quantita-
tive columns in the dataframe.

any = lux.Clause("?",data_type = "quantitative")
VisList([any, any],df)

This VisList corresponds to the search space for the Correlation
action; the Correlation action additionally ranks and sorts each
Vis in the VisList based on their Pearson’s correlation score.

Filter values can also be specified as a list or via wildcards
across all possible values for a fixed filter attribute.
Query 7. Examine Age distributions across different Countries.

VisList(["Age", "Country=?"],df)

The generated VisList contains histograms of Age, one each for
individuals where Country is USA, Japan, Germany, and so on.

4 VISUAL RECOMMENDATIONS

In the previous section, we have seen how users can either attach
an intent to a dataframe, or this intent can be programmatically
generated as part of Lux’s recommendations. We discuss the latter
in this section. In Lux, an action describes a set of visualization
recommendations based on a predefined search space. These rec-
ommendations are designed to inspired next steps in the user’s
analysis. Lux supports four major classes of actions, as summarized
in Table 1. Metadata- and intent-based ones are akin to those used
in past visualization recommendation systems [29, 69]—see Lee et
al. [39] for details. We then introduce two novel classes based on
the use of Lux within dataframe-based data science workflows,
based on dataframe structure and history.
Metadata-based Recommendations. Lux maintains dataframe
metadata, including attribute-level statistics such as min/max and
cardinality to determine the semantic data type of each column and
to automatically populate visualization settings. For example, based
on data type, Lux can generate univariate and bivariate overviews.
In Figure 1, Distribution, Occurrence, Temporal, and Geographical
actions provide univariate overviews of columns, while the Cor-
relation action provides bivariate overviews of all possible pairs
of quantitative attributes, ranked based on Pearson’s correlation.
Metadata-based recommendations have been used extensively in
past visualization recommendation systems [29, 69].
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Distribution Univariate vis of quantitative attributes (histogram)
Occurence Univariate vis of categorical attributes (bar chart)
Temporal Univariate vis of temporal attributes (line chart)
Geographic Univariate vis of geographical attributes (chlorepleth map)
Correlation Bivariate vis between quantitative attributes (scatterplot)

In
te
nt Enhance Add 1 additional attribute to current vis

Filter Add 1 additional filter to current vis or change its value
Generalize Removing one or more selected attribute/filter

St
ru
ct
ur
e

Series 1D versions of dataframe visualizations

Index Vis based on values grouped by row/column indexes

H
is
to
ry Pre-aggregate Vis based on dataframes that have already been aggregated

Pre-filter Vis based on dataframes that have already been filtered

Table 1: Different types of default recommendations in Lux

Intent-basedRecommendations. Lux displays recommendations
based on the user-specified intent. On printing the dataframe, Lux
displays a visualization based on the user-specified intent as in
Figure 2, as the Current Visualization. In addition, Lux provides
recommendations based on valuable next analysis steps starting
from that visualization. For example, the Enhance action recom-
mends visualizations formed by adding an additional attribute to
the current visualization.
Structure-based recommendations. During the process of data
science, data scientists often reshape their dataframes in ways that
are more amenable to downstream analysis, discovery, and machine
learning. Our formative study of existing notebooks indicates that
the dataframe “structure” reveals strong signals for what the users
subsequently visualize; Lux can use the same information to provide
recommendations automatically:
Index-based visualizations: Dataframe indexes provide a natural
way to order and label dataframe rows and columns. Indexes are
typically created as a result of grouping and aggregation through op-
erations such as groupby, pivot, crosstab. For any pre-aggregated
dataframe (i.e., dataframes resulting from an aggregation opera-
tion), Lux creates visualizations by grouping the values either row
or column-wise. For example, Figure 6 displays the result of a pivot
operation, where each row is visualized as a time series line chart.
Lux currently only supports single-level indexes, visualization of
multi-level indexes is a potential direction for future work.
Series visualizations: Series are dataframes with a single column.
Lux leverages the same dataframe visualization mechanism for
Series, displaying univariate, metadata-based visualization, such as
a bar chart for categorical and histogram for quantitative Series. By
visualizing dataframe structure, Lux provides a natural and intuitive
representation of dataframes and their derivative products. These
visual representations can be extended to other dataframe-derived
structures (e.g., GroupBy, Offset, or Interval) to help novices
learn, debug, and validate complex dataframe operations.
History-based recommendations. Our formative study of note-
books also revealed that there is a strong connection between the
operations performed by users and subsequent visualizations gen-
erated. For example, if the user cleaned up a particular column
and renames it, it is likely that they would want to visualize the
same column soon thereafter. Lux displays history-based recom-
mendations based on whether the dataframe has been filtered or
aggregated in its recent history. For example, when a filtering-based
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Figure 6: Row-wise index visualization displaying the normalized

percentage of COVID-19 cases across different States.

operation leads to a small dataframe (such as when a head or tail
is performed), Lux visualizes the previous unfiltered dataframe
since there are too few tuples for generating recommendations in
the filtered dataframe. Lux also uses history to determine if an ag-
gregation has been performed, helping identify the structure-based
recommendations described earlier.

To collect this history, since Lux acts as awrapper around pandas
(described in the next section), we instrument each dataframe func-
tion and track each one with minimal overhead and store it as
part of the dataframe, instead of requiring program analysis, which
is prone to false positives [72]. Given that new dataframes or in-
termediate objects (e.g., GroupBy, Series) are often created when
the user performs an operation, Lux propagates the history over
to derived objects so that the history is not lost. A key challenge
for leveraging dataframe history to infer better recommendations
would be around surfacing the inferred implicit intent in a way that
is interpretable and explains resulting recommendations choices.

5 LUX SYSTEM DESCRIPTION

Lux implements the visual dataframe framework described in Sec-
tion 2.2, and is currently used by data scientists in real-world ex-
ploratory workloads.
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Figure 7: System architecture for Lux

5.1 Architecture

Lux employs a client-server model, leveraging computational note-
books as a frontend client. Lux currently supports Jupyter Note-
books, Jupyter Lab, Jupyter Hub, Microsoft Visual Studio Code, and
Google Colab. Once users import Lux, they can interact with a
LuxDataFrame instead of a regular pandas dataframe. LuxDataFrame
acts as a wrapper around pandas, and supports all existing pandas
operations, while storing additional information, such as the intent,
metadata, structure, and history, for generating visual recommenda-
tions. As shown in Figure 7, the server side logic is largely separated
into two distinct layers: 1) the intent processing layer is responsi-
ble for processing intent into executable instructions (Section 5.2)
and 2) the recommendation layer is responsible for generating the
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displayed visualizations (Section 5.3). To generate the visualiza-
tion recommendations, as well as compute metadata that is used in
various stages, the execution engine performs the required data pro-
cessing and optimization, either as a series of dataframe operations
in pandas or equivalently in SQL queries executed in relational
databases (Section 6).

The overall workflow is as follows:
parse §5.2.1 → compute metadata §6 → validate §5.2.1 →
compile §5.2.2→ select recs. §5.3 → compute recs. §6

Metadata is memoized and only computed when needed. Finally,
the system design is intended to be modular and extensible so that
alternatives can be swapped in at different layers, e.g., Altair and
Matplotlib visualization rendering libraries.

5.2 Intent Processing

Here, we discuss how Lux processes user intent to automatically
infer missing details and determine appropriate visualization map-
pings. The intent processing layer parses, validates, and compiles
the user’s underspecified intent into complete specifications.

5.2.1 Parser and Validator. In Section 3, we saw how Axis and
Filter can be be used to compose Clauses; the parser parses the
user-inputted strings into an internal Clause representation. Sub-
sequently, the validator checks for any inconsistencies between
user-specified Clauses and the dataframe content. To do so, it lever-
ages the dataframe’s pre-computed metadata to verify the input
intent. If the user’s input does not align with the data present in
the dataframe, the validator provides early warnings and suggests
corrections to the input intent.

5.2.2 Compiler. During intent specification, users have the ability
to omit certain optional details, making them partial specifications.
Users also implicitly construct a collection of visualizations by using
a union or wildcard character for Axis or Filter. Post validation,
the compiler expands the Clauses into multiple visualizations and
adds in defaults for the omitted details, making the Clauses com-

plete. This transformation is performed in three steps.
1) Expand: If the input intent implicitly encodes multiple visual-
izations, the compiler “unrolls” these visualizations into individual
Vis objects as a cross-product of the specified Clauses, leading to
a VisList containing the resulting visualization specifications.
2) Lookup: For each Vis in the VisList, Lux populates the omitted
details using the dataframe’s pre-computed metadata. The compiler
also removes any invalid visualizations generated that are either
not supported in Lux or use ineffective encodings.
3) Infer: Finally, Lux infers the visualization encodings, including
the marks, channels, and transforms (sort, aggregation, binning)
required for generating the visualizations. The compiler implements
rule-based heuristics drawn from best practices in design [26, 42].
After intent processing, Lux can now use the complete intent spec-
ification to either generate a Vis directly or generate a set of ap-
propriate recommendations (described next).

5.3 Recommendation Generation

As described in the framework in Figure 5, actions organize col-
lections of views into recommendations displayed to the users.
The action registry in Lux keeps tracks of a list of possible actions
that could be applicable for generating recommendations at any
point in the analysis. On initialization, Lux registers a set of default

actions (described in Section 4) applied to all dataframes. Users
can also register their own custom actions programmatically by
writing a Python-based UDF. The UDF generates a VisList of
possible visualizations and optionally scores and ranks each Vis.
The custom action is “triggered” whenever the dataframe satisfies
the user-specified condition on when the action is applicable; Lux
recommends visualizations based on the action.

6 EXECUTION AND OPTIMIZATION

We now describe Lux’s execution engine that is responsible for com-
puting metadata and generating visualizations. We first describe
the two major tasks performed by this execution engine. Then, we
describe three optimizations aimed at speeding up these tasks.

6.1 Execution Engine

We now discuss how we computes metadata and visualizations.

MetadataComputation:Themetadata computed includes attribute-
level statistics and data types. The statistics include the list of unique
values, cardinality, and min/max of the attribute. The unique values
is used to determine the candidates generated by a wildcard for a fil-
ter on the column, or for validating filter input for the column, and
for computing the cardinality. The cardinality information is used
to determine the data type, while min/max is used for determining
the limits on the visualization axes. Next, the execution engine
infers the semantic data type based on the internal data type and
cardinality information. Lux supports nominal, quantitative, geo-
graphic, and temporal data types. If the data type is misclassified,
users can override the automatically-inferred data type.

Visualization Processing: After the user or system-specified in-
tent has been transformed into one or more Vis objects with a
complete specification, the execution engine translates each Vis
to queries responsible for processing the data required for the vi-
sualizations. First, the engine applies any filters and retrieves rel-
evant attributes. Next, the execution engine performs different
visualization-specific operations depending on the mark type. For
example, to process the data for a histogram, the engine bins an
attribute into fixed-sized bins and performs a count aggregation
for each bin. Table 2 summarizes the relational operations that
corresponds to processing different visualization types.

6.2 Optimization

Next, we describe several optimizations aimed at minimizing the
overhead incurred by Lux.

Intelligent workflow-based optimizations (wflow): During
an analysis session, users constantlymodify and operate on dataframes,
which means that the metadata and associated recommendations
can change throughout a session, especially during reshaping and
type-modifying operations. Thus, unlike conventional visual an-
alytics, where metadata can be computed upfront and stays fixed
throughout, here, metadata needs to be constantly updated to en-
sure that recommendations are generated correctly. As a result, the
computation associated with keeping the metadata “fresh” after
each dataframe operation can be computationally expensive. We
propose two techniques to reduce this overhead: 1) lazily compute
the metadata and recommendations only when users explicitly
print dataframes; 2) cache and reuse results later on in the session.
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Since users often interspersed dataframe printing with several
dataframe operations, it is likely that the computed metadata and
recommendations would be outdated before users see the results.
As a result, we can delay computation and compute the metadata
and recommendations only after the user has explicitly requested
to print a dataframe. Each LuxDataFrame keeps track of how fresh
the metadata and recommendations are and expires them when
an operation makes a change to the dataframe. In particular, we
leverage pandas’s internal functions that are triggered when:
• the dataframe is modified inplace instead of returning a new
dataframe, e.g., df.dropna(inplace=True)

• columns in the dataframe are updated, either through the bracket
or dot notation, e.g., df.Frac or df["Frac"] = df["value"]/100

• the row or column labels are changed,
e.g., df.rename(columns="val":"value")

Additionally, recommendations are expired when the intent is mod-
ified. On printing the dataframe, Lux recomputes the metadata as
needed and generates the recommendations accordingly. This lazy
strategy ensures no overhead on any non-print operations. Future
work on more intelligent, fine-grained maintenance and expiration
strategies can improve system performance (e.g., only refresh meta-
data and recommendation relevant to a specific column instead of
entire dataframe for a single column update).

Lux further memoizes the metadata and recommendations so
that any subsequent prints to an unmodified dataframe do not re-
quire recomputation. While this may sound like an overly specific
use case, such operations are, in fact, very common. In dataframe
sessions, users frequently perform “non-committal” operations that
do not make changes to the dataframe to be used in subsequent anal-
yses. These non-commital actions often involve printing dataframes
as intermediate results to facilitate quick experimentation and de-
bugging. As shown in In[3-5] in Figure 8, users may try to print out a
column, perform grouping and aggregation, or print out descriptive
summaries, all without modifying the original dataframe. In this
case, when the user revisits the original dataframe, the memoized
recommendations are immediately accessible to them.

[1]

[2]

[3]

[4]

[5]

Figure 8: Example workflow demonstrating the applicability of

wflow optimizations.

Approximate, early pruning of search space (prune): As de-
scribed in Section 5.3, Lux searches through a VisList of candi-
dates during recommendation generation phase to displays the
most interesting visualizations to users. Dataframes that are wide
or contain high-cardinality attributes can often result in large visu-
alization search spaces. For instance, the Correlation action scales
quadratically with the number of quantitative attributes in the
dataframe. With prune, Lux first performs a preliminary pass over
VisList to approximate the score of each visualization and then
proceeds to recompute the top-k selected visualizations in a second
pass to process each of the displayed visualizations exactly.

Lux leverages a cached sample of the dataframe to approximate
visualization scores (e.g., approximating correlation on a scatterplot

Vis Type Relational Operation

Scatterplot Selection on 2 columns
Color Scatterplot Selection on 3 columns
Line/Bar Group-By aggregation
Colored Line/Bar 2D Group-By aggregation
Histogram Binning + Count
Heatmap 2D Binning + Count
Color Heatmap 2D Binning + Count + Group-By aggregation

Table 2: Table summarizing the relational operations performed

for processing different visualizations. Primary operations that ac-

counts for the bulk of the visualization processing costs are listed.

by using only 30k rows on a dataframe with 1M rows), although
other approximate query processing (AQP) methods could be ap-
plied.

Given that the prune optimization performs two passes over the
VisList (first pass for pruning, followed by an exact recomputation
for the top-k), the additional recomputation cost incurred can be
higher than doing a single pass over the VisList. Therefore, this
optimization should only be applied when the approximate savings
are larger than the recomputation cost of the top k visualizations:
𝑁 × 𝑡𝑒𝑥𝑎𝑐𝑡 ≫ 𝑁 × 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 + 𝑘 × 𝑡𝑒𝑥𝑎𝑐𝑡 , where 𝑁 represents the
number of candidate visualizations, 𝑡𝑒𝑥𝑎𝑐𝑡 and 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 are the cost
of computing the exact and approximate scores, respectively. In-
tuitively, in the ideal case where 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 is close to zero, 𝑁 needs
to be at least greater than 𝑘 as a minimum requirement for the
prune optimization to provide meaningful savings. The cost of
scoring a visualization is dominated by the relational operations
for extracting the required visualization data (e.g., selecting two
columns from a dataframe for scatterplots as shown in Table 2).
Therefore, we calculate 𝑡𝑒𝑥𝑎𝑐𝑡 and 𝑡𝑎𝑝𝑝𝑟𝑜𝑥 using the estimated cost
of these operations (described in Section 6.3).
Cost-based scheduling of actions (stream):We find that users
generally spend an average of 28 seconds5 skimming through the
pandas table view before toggling to the Lux view. To ensure inter-
active responses, recommendation results can be streamed into the
frontend widget as the computation for each action completes with-
out having to wait for all of the actions to finish rendering. After
compiling the visualizations for each action, we estimate the cost
of the action as the sum of the visualization costs in the VisList,
using the cost model describe next. This estimate is then used for
scheduling the cheapest action to compute first, followed by com-
puting the remaining in the background. In datasets where a few
“laggard” actions dominate the overall recommendation generation
(e.g., Correlation for a wide and highly quantitative dataset), the
stream optimization provides users with early results and returns
interactive control back to the user, instead of incurring a high wait
time during their analysis session.

6.3 Cost Models for Visualization Types

We now discuss the latency cost estimation of different visualization
types (e.g., bar chart or scatterplot) used for prune and stream. The
visualization cost is dominated by operations that Lux performs
for each visualization type, as summarized in Table 2. We outline
the functional form of the cost model and note that the coefficients
A-D can be empirically fitted offline.

To develop a cost model for each visualization type, we profile
the visualization processing time for a set of visualizations with

5Based on 514 collected logs of Lux usage, the time spent on the initial pandas table
follows a long-tail distribution, with a median of 2.8 seconds and standard deviation
of 183.4 seconds.
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different parameters that could affect the runtime6. Given the time
(measured in milliseconds) on a machine with parameters as dis-
cussed in Section 7, we perform a polynomial fit with the relevant
parameters7.

Scatterplots require selecting two columns (i.e., X/Y), so the cost
of visualizing a scatterplot is linear in the number of points (N). In
practice, the cost of selecting a column in pandas is dependent on
the numpy datatype (dtype) of the selected column, with integer
columns being the fastest, followed by float and object dtypes. We
account for the effect of data types via the channel cardinality
𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , which is the sum of the cardinality across all channel
attributes (e.g., X/Y/color).

cost(scatter) = 𝐴 ·𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝐵 · 𝑁 +𝐶 (6)

where A = −1.75 × 10−4 , B = 6.04 × 10−6, C = 2.85. Colored scatter-
plots select one additional color column, with A = −1.75× 10−4, B=
6.04× 10−6, C = 2.27 for quantitative colorbar and A = −3.46× 10−4,
B = 1.59 × 10−5, C = 3.31 for categorical colorbar.

We find that the channel cardinality and data type is a stronger
determinant to the computation cost compared to the number of
rows (𝑁 ) in the dataframe. The coefficient for channel cardinality
in the linear equation is negative, which implies that the larger the
channel cardinality, the greater the runtime. In other words, a scat-
terplot plotting longitude and latitude containing floats with high
cardinality will take longer than plotting low-cardinality integer
columns.

For bar charts, Lux essentially performs a group-by aggregation.
The cost is therefore dependent on the number of unique values in
group-by dimension (𝐺𝑏𝑎𝑟 ), i.e., the number of bars:

cost(bar) = 𝐴 ·𝐺𝑏𝑎𝑟 + 𝐵 · 𝑁 +𝐶 (7)

where A = 2.86 × 10−3, B = 9.90 × 10−5, C = 20.83. For colored bar
charts, Lux performs group-by on both the bar dimension and the
color attribute. Hence the dependence on the number of unique
colors, 𝐺𝑐𝑜𝑙𝑜𝑟 .

We also observe a weak non-linear interaction effect between
𝐺𝑐𝑜𝑙𝑜𝑟 and 𝐺𝑏𝑎𝑟 .

cost(color bar) = 𝐴 ·𝐺𝑏𝑎𝑟 + 𝐵 ·𝐺𝑐𝑜𝑙𝑜𝑟 (8)
+𝐶 ·𝐺𝑐𝑜𝑙𝑜𝑟 ·𝐺𝑏𝑎𝑟 +𝐷 · 𝑁 + 𝐸

where A = 2.01× 10−2, B = −1.81× 10−2, C =1.88× 10−3, D =1.27×
10−4, E = 37.12.
For histograms and heatmaps, Lux performs a binning of the data
points into a number of bins or a two-dimension grid, followed by
aggregation. For both chart types, the visualization cost is linear to
the number of rows:

𝑐 (histogram/heatmap) = 𝐴 · 𝑁 + 𝐵 (9)

where A = 1.38× 10−5, B = 5.31 for histograms and A = 9.17× 10−5,
B = 58.68 for heatmaps. For colored heatmaps, the aggregation
function for the color attribute is an average of the datapoints
that lie in the cell for color bars with quantitative attributes (A
= 2.63 × 10−4, B = 126.06), while the aggregation is based on the

6The time measured is solely based on the data operations performed to generate
the data required for each visualization. This does not account for the time it takes
to render the visualization (which is largely dependent on the specific visualization
libraries and the number of graphical marks that is drawn).
7Fitting coefficients with values below 10−5 are discarded as they have little influence
on the overall cost. The terms in the equation are arranged in descending order of
importance of each term, based on the value of the coefficient.

majority vote (i.e., mode) of the datapoints for color bars with
categorical attributes (A = 1.11 × 10−4, B = 92.38).

The cost is largely independent of the number of bins or grid size
because the number of total rows that the group-by aggregation
needs to be processed is the same regardless of the number of
buckets the data is divided among.8 We also note that the heatmap’s
coefficients differs for different aggregation functions. For example,
for heatmaps without color, the aggregation is based on the counts
in each bin, and for quantitative colored heatmaps, the aggregation
is an average of the data points that lie in the cell.

7 PERFORMANCE EVALUATION

We evaluate Lux to measure its performance on large real-world
datasets and notebook sessions, along the following dimensions:
• RQ1: What is the overall performance of Lux? Can Lux achieve
interactive latency during a typical dataframe workflow?

• RQ2: What is the effect of the number of columns on Lux’s
performance?

• RQ3: How does the approximation-based prune condition affect
the quality of the recommendations relative to no approximation?

We focus on evaluating the interactive latency in this section; we
describe the usability evaluation in the following section. Source
code for experiments and analysis can be found here 9.

7.1 Data and Methodology

Data: We use two real-world datasets to evaluate the performance
of Lux. The Airbnb dataset [23] contains 12 columns while the
Communities [35] dataset contains 128 columns. For both datasets,
we duplicated the dataset multiple times (up to 10M rows for Airbnb
and up to 100k rows for Communities) to investigate the effects
of scaling with the number of rows. After duplication, Airbnb
exemplifies datasets with a moderate number of columns and a
large number of rows, while Communities exemplifies those with
a large number of columns. The upper limits on the two datasets
cover around 98% of the datasets in the UCI repository [15].
Setup: All of our experiments were conducted on a Macbook Pro
with 32GB of RAM and an Intel Core i9 processor running macOS
10.15.6. The experiments were run using Python 3.7.7, pandas 1.2.1,
and a version of lux-api 0.2.3 adapted for purpose of the experi-
ments. We used papermill [11] to programmatically execute each
notebook cell. We set 𝑘 for top k as 15 and apply prune for any ac-
tion where the number of visualizations exceeds 𝑘 . For the sampling
policy, we used cached random samples capped at 30k rows for
approximating the visualization interestingness of dataframes over
30k rows (the choice of this parameter is justified in Section 7.4).
For the runtimes reported, we exclude the frontend drawing time
for each visualization given that it is constant and highly dependent
on the chosen visualization library and frontend.
Conditions: Our experiment measures the time it takes to execute
every cell in the notebook across five different conditions:
• no-opt: Baseline condition with no optimization applied, repre-
senting a naive implementation of Lux where the results are
explicitly computed at the end of every cell involving a reference

8Even though heatmaps and histograms can be an arbitrarily high resolution without
affecting the processing speed in the execution engine, in practice, the bin resolution
still needs to be capped at a reasonable limit, since increasing bin size impacts the
rendering speed (i.e., more marks that needs to be drawn on the frontend).
9https://github.com/lux-org/lux-benchmark
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to the dataframe. This condition is akin to the naive implementa-
tion in most visualization recommendation systems, where the
results are updated whenever the dataset is operated on.

• wflow: Condition with the wflow optimization applied.
• wflow + prune: Condition with wflow and prune applied.
• all-opt: Condition with wflow, prune, and stream applied,
representing the best achievable performance within Lux.

• pandas: Condition with only pandas and without using Lux, rep-
resenting the raw performance of dataframe workflows without
the benefits of always-on visualizations.

7.2 Overall workflow performance (RQ1)

To evaluate the overall performance of Lux with a dataframe-based
workflow, we measured the runtime for executing an example note-
book involving pandas.

Workload: The workload is based on publicly available notebooks
on Kaggle for Airbnb and Communities. These notebooks follow
a typical exploratory analysis of a dataframe that includes load-
ing, transformation, cleaning, computing statistics, and machine
learning. We modified these notebooks to print out dataframes and
series at various points in the notebook akin to what a user would
typically do for validating the results of operations. In addition,
we label each cell in the notebook as either a print of a dataframe,
print of a series, or neither (i.e., any non-Lux Python command)
to separately measure the runtime for different cell types. Table 3
shows the breakdown of the two notebook workloads by different
cell types. We define overhead as the difference in runtime between
the all-opt and pandas condition, i.e., the additional time required
to support always-on visualizations via Lux.

Airbnb Communities

N overhead [s] N overhead [s] Distr.

Print df 14 21.18 14 1.41

Print Series 7 0.61 4 0.07

Non-Lux 17 0 25 0
Table 3: Table reports the number of cells for each type (N), the ad-

ditional time incurred on top of pandas for 10M Airbnb and 100k

Communities (overhead), and the relative shape of the runtime dis-

tribution similar to Figure 9,10, (Distr.).

Overall runtime: To understand the overall performance of Lux
on dataframes with varying sizes, we varied the dataframe size from
10k to 10M rows. Figure 9 displays the overall runtime averaged
over all cells in the notebook. We find that the best achievable
performance with Lux led to significant speedup with up to 11X
improvement in overall runtime for the Airbnb dataset (and up to
345X for Communities) compared to the no-optimization baseline.

Printing Dataframes and Series:We measure the performance
of each cell that prints a dataframe or series to understand the
overheads associated with Lux. Figure 10 shows the average time
it takes for printing a dataframe for Airbnb and Communities. In
particular, the overhead of Lux for each print can be determined
by comparing against the cost for a print in pandas. When the
dataframe contains fewer than 1M rows for Airbnb, each print in-
curs no more than 2 seconds in addition to pandas (in the 10M case,
each print incurred an overhead of 21 seconds). For Communities,
the overhead was no more than 1.5 seconds.
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Figure 9: Average runtime of a notebook cell across the workload

for different dataframe size and conditions.

As shown in the sparkline visualization in Table 3 row 2, the
performance for printing series follows the same pattern as that of
the dataframe. However, since series only involves a single column,
it effectively avoids the costly procedure of traversing through a
large search space. The overhead on top of pandas is no more than
1 second for each series print even on the largest datasets.
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Figure 10: Average time for printing a single dataframe for different

dataframe size and conditions.

Non-Lux operations: Across all conditions except the baseline,
the runtime for non-Lux operations (Table 3 row 3) is the same—
demonstrating how Lux incurs zero overhead on any Python oper-
ations in a notebook session. When compared against the baseline,
Lux is over 100X faster for 100k Airbnb and over 650X faster for
10M Communities. The performance improvement for non-Lux
operations demonstrates how wflow’s lazy evaluation strategy
avoids unnecessary computation.

0 100 200 300 400 500 600

Number of Columns

1
2

10
20

100
200

1,000
2,000

10,000

lo
g
(s
in
g
le

 p
ri
n
t 
d
f 
ti
m
e
) 
[s
]

Synthetic (100k rows)

wflow+prune+stream (all)
wflow+prune
wflow (no-opt)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of dataframe sampled

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Communities (50k rows)

Occurrence

Filter

Correlation

Distribution

Enhance

Figure 11: Left: Time spent for a single dataframe print varying the

number of columns in a synthetic dataframe. Right: Recall curve

for different actions varying fractional samples of rows in the 50k

Communities dataset.

7.3 Effect of dataframe width (RQ2)

We investigate how the performance of Lux varies depending on
the number of columns in the dataframe. To understand the effect
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of the width of a dataframe (𝑤 ), we measure the processing time
for a single dataframe print (after the metadata has already been
precomputed). Given the dependence of actions on data types, we
leverage a synthetic dataset generated using the faker[14] library
to vary the number of columns in the dataframe, while fixing the
proportion of data types. The simulated dataframe contains 100k
rows with 78% quantitative columns, 20% nominal columns, and 2%
as temporal. Across the quantitative columns, half of the columns
are integers, while the other half are floats. For the nominal columns,
we generate columns of strings with varying cardinalities chosen
based on a geometric series between 1 to 10000.

Figure 11 left shows the runtime for different dataframe widths10.
We note that the blue no-opt curve (power=2.53) scales exponen-
tially with the number of columns. By applying the prune and
stream optimizations (red), Lux effectively lowers the cost of print-
ing a dataframe by bringing the runtime closer to linear (power=1.07).

7.4 Effect on recommendation accuracy (RQ3)

To understand how the approximation-based prune condition af-
fects the recommended results, we experimented with different frac-
tional sizes of the dataframe to be used in the sample and its effect on
the recommendation ranking. We compared the list of recommen-
dations generated with and without the optimization applied. We
computed Recall@15 of the top k results against the ground truth
rankings. We chose recall, instead of other rank position-dependent
measures, because the top-k visualizations are computed exactly
and re-ranked after selection, so the metric only needs to capture
how accurately the top-k visualizations are retrieved.

The recall curves in Figure 11 right shows that for most actions
10% (5k rows) is required in the sample for achieving over 90%
accuracy. For the 100k Airbnb dataset, the sample requirement is
around 20-40% (i.e., 20-40k rows). As a result, we chose the sampling
cap in our experiment to be 30k rows to reach an average of 90.5%
on Airbnb dataset and near perfect (≥ 95%) on Communities. Com-
pared to other actions, since Filter (light green in Figure 11 right)
enumerates over data subsets, it requires more samples to ensure
enough data points per stratum to achieve the same accuracy.

8 ASSESSMENTS WITH USERS

To understand the effectiveness and usage of Lux in typical data
science workflows, we performed two usability studies: a controlled
study with new users and a field study with existing users of Lux.

8.1 First-use Controlled Study

We performed a study to understand participants’ initial impres-
sions of Lux and whether they are able to use Lux effectively in a
controlled setting. This study was performed remotely from Octo-
ber to November 2020 using lux-api 0.2.0. This study was part of a
90-minute interactive session where participants were first intro-
duced to the basics of Lux and guided through a set of hands-on
exercises on how to use Lux. The study was conducted with two
focus groups: the first was a bootcamp for industry data practi-
tioners (N=20) and the second was an online lecture for students
in a graduate-level data visualization course (N=15). Both groups
engaged in the same set of instructions and tasks. The instructions
10We note that the no-opt condition is the same as wflow in this case since we are
only measuring a single print dataframe cell.

and tasks were made available to participants via a web link to a live
Jupyter notebook. Participants were led through three notebooks
in sequence. Each notebook contained examples and exercises cov-
ering the key concepts in Lux using three datasets (College [4],
Happy Planet Index [2], and Olympics [1]). Interactions on the Lux
widget and actions performed on the notebook were logged via
a custom extension [40]. The session concluded with a short sur-
vey documenting participants’ experience. Due to the remote and
unsupervised study setting, not all participants submitted survey
responses or performed notebook operations that were logged.
Study Findings. We collected 16 survey responses (6 from boot-
camp, 10 from lecture). The results were thematically coded and
classified by one of the authors. In response to background ques-
tions regarding the existing exploration workflows of the partic-
ipants, their concerns echoed the pain points that Lux aims to
address, including difficulty in determining the “right” visualiza-
tion to plot (5/16), modifying and iterating on visualizations (4/16),
and determining where to begin an analysis (4/16). When asked
to comment on aspects of Lux that they liked, 9/16 participants
cited how the ability to print and visualize dataframes was the
most useful. Participants also noted how the integration of Lux
with their data science workflow was seamless and intuitive. When
asked to comment on aspects of Lux that they found challenging,
8/16 participants described unfamiliarity and the learning curve
associated with the intent syntax. When asked about what they
would like to see most in future versions, participants were most
interested in improving Lux’s latency on large datasets (12/16)11,
followed by support for a wider and more useful set of recommen-
dations (8/16) and making the intent language more customizable
(7/16). At the end of the survey, 13/16 participants signed up for
follow-ups and expressed interest in continuing to use Lux.

To evaluate whether participants were able to accomplish con-
trolled tasks with Lux, we collected 23 unique logs of the partic-
ipants’ interaction with the notebooks. We qualitatively graded
how well participants performed across the three exercises. The
task success rate for the three exercises was 68% (for composing
an intent indicating multiple views), 87% (for specifying a desired
Vis), and 71% (for creating a VisList). By inspecting the trace
of attempts, on average participants were able to obtain the first
successful answer within their first five tries. Participants’ most
common mistakes involved confusion around the syntax for speci-
fying multiple visualizations via union. Finally, participants were
encouraged to try out one of the provided datasets for open-ended
exploration. While participants successfully used Lux to print and
visualize their dataframes, due to the setting and time constraints,
their interactions with Lux were brief. The limited insight into how
users performs open-ended exploration with Lux motivated the
need for the following study.

8.2 Field Study Interviews

To understand how Lux is used in real-world analytical workflows,
fromDecember 2020 to January 2021, we conducted semi-structured
interviews with participants who used Lux in their data science
work. We interviewed two industry data scientists in an insurance
(P1) and retail company (P3), and a researcher in education (P2).

11We note that the study was performed using the latest version of Lux at that point,
which did not include many of the scalability improvements described earlier (wflow
was included, but not stream and prune).
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To what extent do you find the following functionalities in Lux useful? P1 P2 P3

Printing dataframe and inspecting recommended visualizations Very useful Very useful Extremely Useful
Expressing analysis intent to steer recommendations Extremely Useful Extremely Useful Very useful
Specifying visualization of interest via Vis Moderately useful N/A (Did not use) Very useful
Specifying collections of visualizations of interest via VisList Very useful N/A (Did not use) Very useful
Exporting selected visualizations from Jupyter widget Very useful Extremely Useful N/A (Did not use)

Lux makes it easier to ... P1 P2 P3

Visualize my data across different stages in the data science workflow Agree Strongly agree Agree
Plot a single visualization that I have in mind Strongly agree Strongly agree Strongly agree
Identify what aspects of data I should visualize Strongly agree Agree Agree
Determine what to do next in my exploration Agree Somewhat agree Neutral

Table 4: Table of Likert scale ratings across the three field study participants.

Given that participants had extended exposure to Lux, our ques-
tions largely focused on understanding how Lux fits into their
existing workflows. Before the interviews, participants used Lux
over the span of 1-2 months in their professional data science work.
Their usage frequency varied: P1 used Lux daily, P2 used Lux once
every one or two weeks, P3 used Lux around ten times in total.
Unlike the first-use study where participants were led through in-
structions dedicated to how to create Vis and VisList, field study
participants learned how to use Lux on their own through tutorials
and documentation on our website. We performed a walk-through
of real-world notebooks in which participants had used Lux.

Study Findings. All three participants expressed that understand-
ing their data was a challenge during exploration. In fact, two of
the participants have developed their own homegrown solutions
for past projects (echoing findings from Alspaugh et al. [17]), rang-
ing from for loops across matplotlib charts in notebooks to VBA
scripts that generate plots in Excel. In their existing workflows,
P1 and P2 visualized their data programmatically via matplotlib,
while P3 largely on Tableau’s GUI for creating visualizations.

On dataframe visualizations: All three participants expressed that
they appreciated how the automatic visualizations provided by Lux
afforded them quick insight into their dataframes without the need
for code. P2 typically examines over 100 columns of data as part
of an educational course survey, and stated that Lux sped up the
amount of time for EDA by at least two-fold: “ it really helps speed

upmy exploratory analysis. If not, it will take me forever to go through

these many variables.” When asked about the scenarios for which
they would toggle to the Lux view versus the default pandas table,
most participants preferred seeing the Lux view for the purposes
of EDA. Participants described how they only use the pandas table
to quickly check if “the data looks okay” (P1) and rarely toggle back
to it unless they observe anomalous trends in the visualizations.
During the study, P2 adopted a workflow where they sampled a
single row to display the pandas table in one notebook cell, then
printed the Lux view in the cell below to check that the data falls
in the expected ranges as displayed in the visualizations.

On dataframe intents: Participants indicated that the concept of
intent was an intuitive way for steering the course of their analysis.
P1 and P2 leveraged intent as a way of systematically exploring
groups of variables they were interested in. To investigate their
research questions, P2 listed groups of independent and dependent
variables as their intent to explore each group one at a time. P1 and
P3 used intent as a way of exploring predictive variables of interest,
such as whether a customer purchased accessories alongside their
orders, to help inform feature engineering for downstream machine
learning. However, challenges in specification sometimes prevented
them from making use of intent fully. In particular, P2 and P3 both

described that they were interested in exploring alternative data
subsets for an attribute of interest (a query that is expressible in
Lux’s intent language); however, they were unaware that they could
specify filter intent with wildcards. Improving the API for intent
specification remains an important direction for future work.

On custom actions: Participants noted how the default Lux actions
largely covered the basic sets of analyses that they would typically
perform on their own. While most participants were unaware that
Lux supported the ability to create custom actions, during various
points in the interview, they described additional actions that they
would find useful. For example, P3 described how they wanted to
create a custom action that lists the top ten dataframe columns
with the most influence over a desired predictive variable. Other
participants described actions that are similar to the default Lux
actions, but with a different ranking. For example, P2 was interested
in categorical variables that involved bar charts that looked very
even, since that means that it has a closer-to-equal likelihood of
being in either categories, so the trend is potentially interesting.

On user-specified views: Somewhat surprisingly, while Vis and
VisListwere highly favored in the first-use study, they were rarely
brought up in the field study interviews. Possible explanations for
their limited use include the unfamiliarity with these concepts and
their usage of Lux in conjunction with other visualization tools. All
participants used an existing visualization tool (e.g., matplolib or
Tableau) while exploring their data with Lux. As a result, they sim-
ply used their familiar tools for specific visualizations when they
knew exactly what to plot. To fully leverage Vis and VisList in
their work, participants often asked for ways to extend or customize
the visualization type for a user-specified view. For example, P3
explained how market share data was best visualized as a top-k pie
chart, while P2 was interested in examining overlaid histogram dis-
tribution of different measures for binary variables, such as whether
or not a course was open-ended. These findings indicate that in-
creased flexibility in the intent language could afford the familiar
visualization capabilities for users when creating specified views.

Usage of Lux in data science workflows: All three participants de-
scribed using Lux explicitly in the exploration stage after data
loading and cleaning, but before advanced analysis or modeling.
P1 and P2 used Lux in conjunction with custom matplotlib code
that they repurposed for their analysis. When asked why partici-
pants did not print the dataframe for visualizations during the data
transformation and cleaning phase, P1 and P3 answered that since
the dataframe prints resulted in a few seconds of latency, they were
hesitant to do it until they were ready to “chuck in [their] data and

get the charts out” (P3). Participants also described how Lux needed
to be more robust in visualizing dirty or ill-formatted data.
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Post-interview survey results: Table 4 details participants’ Likert scale
ratings of the functionalities and benefits of Lux. Participants found
the use of intent and the ability to print and visualize dataframes to
be the most useful features. Participants reported that they either
did not make use of Vis, VisList, and export functionalities or
found them to be less useful. Participants described how Lux made
it easier to plot a single visualization that they had in mind, identify
aspects of data they should visualize, perform visualization across
different stages of the data science workflow, and determine what
to do next. The average System Usability Scale (SUS) [21] score
across participants is 70/100. All three participants were interested
in continuing to use Lux in their data science work.
Limitations and future work: The discrepancy between the usage of
views in the first-use and field study indicates that even though Vis
and VisList are could be learned with a focused tutorial and exer-
cise, they are not as discoverable and easy-to-use as the dataframe
visualizations. Despite the enthusiasm around Lux, we find par-
ticipants still attached to their existing visualization tool for this
functionality. They shared concerns around customizability and the
inability to express their desired visualizations in Lux, pointing to
the need for improving the flexibility of the intent language. Given
that our participants often work with data in commercial cloud data
warehouses, it is not only important for Lux to speed up processing
for recommendations (as in Section 6), but also account for data
that doesn’t fit in memory in the future.

9 RELATEDWORK

Visual Analytics. To visualize data, data scientists need to subs-
elect the aspects of data, and then define a mapping from data to
graphical encodings. This is done via one of two paradigms: code or
interactive interfaces. Interactive interfaces, such as Tableau [3, 59]
and PowerBI [12], offer easy-to-use interfaces for visualization con-
struction. Some systems also offer visualization recommendations
(VisRec). VisRec systems can either suggest interesting portions
of the data to visualize based on statistical properties [22, 32, 38,
43, 56, 60, 61] or better ways to visualize attributes that users have
selected [28, 41, 42, 44, 66]. Similarly, there has been research on
recommending interesting attributes or filters to avoid manual data
exploration during OLAP [31, 37, 50–52, 70]. While such GUI tools
have gained adoption among business analysts, they are not as
widely used by data scientists with programming expertise, due to
their lack of customizability and integration with the rest of the
data science workflow. That said, we draw on recommendation
principles from this work, as discussed in Section 4.

On the other hand, data scientists often leverage plotting li-
braries, such as Altair, matplotlib, Plotly, or ggplot, to program-
matically generate visualizations, leveraging various visualization
design principles [20, 53, 54, 58, 63]. These libraries often take a
dataframe as input, attempting to isolate visualization decisions
from data processing ones, requiring users to translate their desired
visualization goals into executable code across different visualiza-
tion and data processing libraries. Lux instead reduces the burden
on users, allowing them to provide lightweight intent as opposed
to writing long code fragments for visualization.

Given these aforementioned tradeoffs, recent projects have ex-
plored ways to integrate code and interactions in computational
notebooks [34, 71]. For example, B2 [71] facilitates bi-directional
exchange between code and interaction, and produces a persistent

trace of interaction history. Likewise, mage [34] demonstrates how
similar techniques could be generalized to other interactive data sci-
ence applications. While we draw on similar principles, our focus is
on visualization recommendation as a replacement for cumbersome
visualization code, and for suggesting promising next steps.
Visual Data Exploration with Dataframes. Of late, dataframes
have become the de-facto framework for exploratory data science.
The comprehensive, incremental set of operators make it easy to
do sophisticated data transformation, while also allowing rapid
validation after each step. Dataframes are also used as an exchange
format for interoperability across data science libraries. However,
exploring dataframes is challenging, requiring substantial program-
ming and analytical know-how. Many visualization tools have been
developed for dataframes [6, 16, 25, 46, 55]. These tools generate
interactive reports of a dataframe, covering analyses spanning from
missing values, outliers, to attribute-level visualizations and asso-
ciated statistics. In addition, bamboolib [6], pandas-profiling [46],
dataprep [55], sweetviz [25], and pandasgui [16] offer a GUI for
constructing visualizations and data transformation.

Instead, Lux adopts an always-on approach so that dataframe
visualizations are generated for free whenever the dataframe is
printed, instead of relying on users to explicitly call external com-
mands to plot or profile as needed. This always-on approach lowers
the barrier to visualizing dataframes and encourages exploration.
Moreover, while these interactive reports contain a lot of infor-
mation, similar to GUI tools, there is no way to customize or “dig
further” to investigate an interesting visual insight. Users cannot
suggest their intent, and nor can the system use this to recommend
appropriate visualizations and next steps. Finally, as we saw in
Section 6, Lux’s optimizations allow for it to be interactive on a
range of real-world datasets.

10 CONCLUSION

We propose Lux, an always-on visualization framework for ac-
celerating insight exploration and discovery. Lux is a lightweight
wrapper around dataframes that reduces the barrier of visualizing
data and guiding the process of determining analysis next-steps.
To support automated visualizations of dataframes, dataframes can
be enriched with information from the user, such as user’s intent
and history, as well as structural information and metadata. We
develop and evaluate effective optimization strategies that intelli-
gently cache and maintain metadata and recommendations. Lux’s
initial adoption and success of user evaluation points to its impor-
tance for exploratory data science — presenting a scalable solution
towards bridging the gap between users and insight discovery.
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