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Abstract

We show a simple reduction which demonstrates the cryptographic hardness of
learning a single periodic neuron over isotropic Gaussian distributions in the pres-
ence of noise. More precisely, our reduction shows that any polynomial-time
algorithm (not necessarily gradient-based) for learning such functions under small
noise implies a polynomial-time quantum algorithm for solving worst-case lattice
problems, whose hardness form the foundation of lattice-based cryptography. Our
core hard family of functions, which are well-approximated by one-layer neural
networks, take the general form of a univariate periodic function applied to an affine
projection of the data. These functions have appeared in previous seminal works
which demonstrate their hardness against gradient-based (Shamir’18), and Statisti-
cal Query (SQ) algorithms (Song et al.’17). We show that if (polynomially) small
noise is added to the labels, the intractability of learning these functions applies to
all polynomial-time algorithms, beyond gradient-based and SQ algorithms, under
the aforementioned cryptographic assumptions. Moreover, we demonstrate the
necessity of noise in the hardness result by designing a polynomial-time algorithm
for learning certain families of such functions under exponentially small adversarial
noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is
rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction
algorithm. Furthermore, in the absence of noise, this algorithm can be directly
applied to solve CLWE detection (Bruna et al.’21) and phase retrieval with an
optimal sample complexity of d + 1 samples. In the former case, this improves
upon the quadratic-in-d sample complexity required in (Bruna et al.’21).

1 Introduction

The empirical success of Deep Learning has given an impetus to provide theoretical foundations
explaining when and why it is possible to efficiently learn from high-dimensional data with neural
networks. Currently, there are large gaps between positive and negative results for learning, even
for the simplest neural network architectures [61, 29, 14, 27]. These gaps offer a large ground for
debate, discussing the extent up to which improved learning algorithms can be designed, or whether
a fundamental computational barrier has been reached.

One particular challenge in closing these gaps is establishing negative results for improper learning
in the distribution-specific setting, in which the learner can exploit the peculiarities of a known input
distribution, and is not limited to outputting hypotheses from the target function class. Over the last
few years, authors have successfully developed distribution-specific hardness results in the context
of learning neural networks, offering different flavors. On one hand, there have been several results
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proving the failure of a restricted class of algorithms, such as gradient-based algorithms [54, 52], or
more generally Statistical Query (SQ) algorithms [33, 20, 57, 29, 17]. Notably, such results apply to
the simplest cases, such as learning one-hidden-layer neural networks over the standard Gaussian
input distribution [29, 17]. On the other hand, a different line of work has shown the hardness
of learning two-hidden-layer neural networks for any polynomial-time algorithm by leveraging
cryptographic assumptions, such as the existence of local pseudorandom generators (PRGs) with
polynomial stretch [15]. Despite such significant advances, important open questions remain, such as
whether the simpler case of learning one hidden-layer neural network over standard Gaussian input
remains hard for algorithms not captured by the SQ framework. To make this question more precise,
are non-SQ polynomial-time algorithms, which may inspect individual samples – such as stochastic
gradient descent (SGD) [1] – able to learn one-hidden layer neural networks over Gaussian input?
Understanding the answer to this question is a partial motivation of the present work.

A key technique for constructing hard-to-learn functions is leveraging “high-frequency” oscillations
in high-dimensions. The simplest instance of such functions is given by pure cosines of the form
f(x) = cos(2πγ⟨w, x⟩), where we refer to w ∈ Sd−1 as its hidden direction, and γ as its frequency.
Such functions have already been investigated by previous works [57, 54, 52] in the context of lower
bounds for learning neural networks. For these hard constructions, the frequency γ is taken to scale
polynomially with the dimension d. Note that as the univariate function cos(2πγt) is O(γ)-Lipschitz,
the function f is well-approximated by one-hidden-layer ReLU network of poly(γ)-width on any
compact set (see e.g., Appendix G). Hence, understanding the hardness of learning such functions is
an unavoidable step towards understanding the hardness of learning one-hidden-layer ReLU networks.

In this work, we pursue this line of inquiry, focusing on weakly learning the cosine neuron class
over the standard Gaussian input distribution in the presence of noise. Our main result is a proof,
via a reduction from a fundamental problem in lattice-based cryptography called the Shortest Vector
Problem (SVP), that such learning task is hard for any polynomial-time algorithm, based on the
widely-believed cryptographic assumption that (approximate) SVP is computationally intractable
against quantum algorithms (See e.g., [49, 43, 19, 3] and references therein). Our result therefore
extends the hardness of learning such functions from a restricted family of algorithms, such as gradient-
based algorithms or SQ, to all polynomial-time algorithms by leveraging cryptographic assumptions.
Note, however, that SQ lower bounds are unconditional because they are of an information-theoretic
nature. Therefore, our result, which is conditional on a computational hardness assumption, albeit a
well-founded one in the cryptographic community, and SQ lower bounds are not directly comparable.

The problem of learning cosine neurons with noise can be studied in the broader context of inferring
hidden structures in noisy high-dimensional data, as a particular instance of the family of Generalized
Linear Models (GLM) [45, 44]. Multiple inference settings, including, for example, the well-
known planted clique model [30, 5], but also GLMs such as sparse regression [23] exhibit so-called
computational-to-statistical gaps. These gaps refer to intervals of signal-to-noise ratio (SNR) values
where inference of the hidden structure is possible by exponential-time estimators but appears out of
reach for any polynomial-time estimator. Following this line of work, we define the SNR of our cosine
neuron learning problem to be the inverse of the noise level, and analyze its hardness landscape. As it
turns out, weakly learning the cosine neuron class provides a rich landscape, yielding a computational-
to-statistical gap based on a worst-case hardness guarantee. We note that this is in contrast with the
“usual” study of such gaps where such worst-case hardness guarantees are elusive and they are mostly
based on the refutation of restricted computational classes, such as Sum-of-Squares [10], low-degree
polynomials [37], Belief Propagation [9], or local search methods [24].

Finally, we establish an upper bound for the computational threshold, thanks to a polynomial-time
algorithm based on the Lenstra-Lenstra-Lovász(LLL) lattice basis reduction algorithm (see details
in Section 3.3). Our proposed algorithm is shown to be highly versatile, in the sense that it can
be directly used to solve two seemingly very different GLMs: the CLWE detection problem from
cryptography and the phase retrieval problem from high-dimensional statistics. Remarkably, this
method bypasses the SQ and gradient-based hardness established by previous works [54, 57]. Our
use of the LLL algorithm to bypass a previously considered “computationally-hard” region adjoins
similar efforts to solve linear regression with discrete coefficients [60, 26], [37, Sec. 4.2.1], as well as
the correspondence retrieval problem [6], which includes phase retrieval as a special case. We show
in Section 3.3 and Appendix F how our algorithms obtain optimal sample complexity for recovery in
both these problems in the noiseless setting. An interesting observation is that in the latter case, the
resulting algorithm, and also the very similar LLL-based algorithm by [6], improves upon AMP-based
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algorithms [11] in terms of sample complexity, often thought to be optimal among all polynomial-time
algorithms [41]. While our LLL algorithm can be seen as an appropriate modification of [6], our
analysis employs different tools, leading to improved guarantees. More precisely, our analysis easily
extends to distributions that are both log-concave and sub-Gaussian, as opposed to solely Gaussian in
[6]. In addition, our algorithm incorporates an explicit rounding step for LLL, which allows us to
determine its precise noise-tolerance (see details in Appendix F).

1.1 Related work
Hardness of learning from cryptographic assumptions. Among several previous works [34, 35]
which leverage cryptographic assumptions to establish hardness of improper learning, most relevant
to our results is the seminal work of Klivans and Sherstov [36] whose hardness results are also based
on SVP. To elaborate, they show that learning intersections of halfspaces, which can be seen as
neural networks with the threshold activation, is hard based on the worst-case hardness of GapSVP,
a decision version (approximate) SVP. Our work differs, though, in several important aspects from
theirs. First, and perhaps most importantly, our result holds over the well-behaved Gaussian input
distribution over Rd, whereas their hardness utilizes a non-uniform distribution over the Boolean
hypercube {0, 1}d. Second, at a technical level and in agreement with our continuous input domain
and their discrete input domain, we take a different reduction route from SVP. Their link to SVP
is the Learning with Errors (LWE) Problem [49], whereas our link in the reduction is the recently
developed Continuous Learning with Errors (CLWE) Problem [13]. On another front, very recently,
[15] presented an abundance of novel hardness results in the context of improper learning by assuming
the mere existence of Local Pseudorandom Generators (LPRGs) with polynomial stretch. While the
LPRG and SVP assumptions are not directly comparable, we emphasize that we rely on the worst-
case hardness of GapSVP, whereas LPRG assumes average-case hardness. A worst-case hardness
assumption is arguably weaker as it requires only one instance to be hard, whereas an average-case
hardness assumption requires instances to be hard on average.

Lower bounds against restricted class of algorithms and upper bounds. As mentioned
previously, a widely adapted method for proving hardness of learning is through SQ lower
bounds [33, 12, 58, 20]. Among previous work, most closely related to our work is [57] and [54],
who consider learning linear-periodic function classes which contain cosine neurons. By constructing
a different class of hard one-hidden-layer networks, stronger SQ lower bounds over the Gaussian
distribution, in terms of both query complexity and noise rate, have been established [29, 17]. Yet,
for technical reasons, the SQ model cannot rule out algorithms such as stochastic gradient descent
(SGD), since these algorithms can in principle inspect each sample individually. In fact, [1] carry this
advantage of SGD to the extreme and show that SGD is poly-time universal. [7] establishes sharp
bounds using SGD for weakly learning a single planted neuron, and reveals a fundamental depen-
dency between the regularity of their dimension-independent activation function, which they name
the “information exponent”, and the sample complexity. The regularity of the activation function
has been leveraged in several works to yield positive learning results [31, 61, 27, 56, 4, 28, 21, 16].
Finally, statistical-to-computational gaps using the family of Approximate Message Passing (AMP)
algorithms [18, 47] for the algorithmic frontier have been established in various high-dimensional
inference settings, including proper learning of certain single-hidden layer neural networks [8], spiked
matrix-tensor recovery [50] and also GLMs [11].

The LLL algorithm and statistical inference problems. For our algorithmic results, we employ
the LLL algorithm. Specifically, our techniques are originally based on the breakthrough use of the
LLL algorithm to solve a class of average-case subset sum problems in polynomial-time, as established
first by Lagarias and Odlyzko [38] and later via a greatly simplified argument by Frieze [22]. While
the power of LLL algorithm is very well established in the theoretical computer science [53, 39],
integer programming [32], and computational number theory communities (see [55] for a survey),
to the best of our knowledge, it has found only a handful of applications in the theory of statistical
inference. Nevertheless, a few years ago, a strengthening of the original LLL-based arguments by
Lagarias, Odlyzko and Frieze has been used to prove that linear regression with rational-valued
hidden vector and continuous features can be solved in polynomial-time given access only to one
sample [60]. This problem has been previously considered “computationally-hard” [23] and is proven
to be impossible for the LASSO estimator [59, 25], greedy local-search methods [23] and the AMP
algorithm [48]. In a subsequent work to [60], the suggested techniques have been generalized to
the linear regression and phase retrieval settings under the more relaxed assumptions of discrete
(and therefore potentially irrational)-valued hidden vector [26]. Our work is based on insights from
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[60, 26], but is importantly generalizing the use of the LLL algorithm (a) for the recovery of an
arbitrary unit continuous-valued hidden vector and (b) for multiple GLMs such as the cosine neuron,
the phase retrieval problem, and the CLWE problem. However, for noiseless phase retrieval, we note
that the optimal sample complexity of d+ 1 has previously been achieved by [6] using an LLL-based
algorithm very similar to ours.

1.2 Main Contributions: the Hardness Landscape of Learning Cosine Neurons
In this work, we thoroughly study the hardness of improperly learning single cosine neurons over
isotropic d-dimensional Gaussian data. We study them under the existence of a small amount of
adversarial noise per sample, call it β ≥ 0, which we prove is necessary for the hardness to take
place. Specifically we study improperly (weakly) learning in the squared loss sense, the function
f(x) = cos(2πγ⟨w, x⟩), for some hidden direction w ∈ Sd−1, from m samples of the form
zi = f(xi) + ξi, i = 1, . . . ,m where xi

i.i.d.∼ N(0, Id) and arbitrary |ξi| ≤ β.

Information-theoretic bounds under constant noise. We first address the statistical, or also
known as information-theoretic, question of understanding for which noise level β one can hope to
learn f(x) from polynomially in d many samples, by using computationally unconstrained estimators.
Since the range of the functions f = fw is the interval [−1, 1] it is a trivial observation that for any
β ≥ 1 learning is impossible. This follows because the (adversarial) noise could then produce always
the uninformative case where zi = 0 for all i = 1, . . . ,m.

Our first result (see Section 3.1 for details), is a design and analysis of an algorithm which runs
in O(exp(d log(γ/β))) time and satisfies the following property. For any β smaller than a suffi-
ciently small constant, the output hypothesis of the algorithm learns the function f with access to
O(d log(γ/β)) samples, with high probability. To the best of our knowledge, such an information-
theoretic result has not appeared before in the literature of learning a single cosine neuron. We
consider this result essential and reassuring as it implies that the learning task is statistically achiev-
able if β is less than a small constant. Therefore, any hardness claim in terms of polynomial-time
algorithms aiming to learn this function class is meaningful and implies a computational barrier.

Cryptographic hardness under moderately small noise. Our second and main result, presented
in Section 3.2, is a reduction establishing that (weakly) learning this function class under any β which
scales at least inverse polynomially with d, i.e. β ≥ d−C for some constant C > 0, is as hard as a
worst-case lattice problem on which the security of lattice-based cryptography is based on.
Theorem 1.1 (Informal). Consider the function class Fγ = {fγ,w(x) = cos(2πγ⟨x,w⟩) | w ∈
Sd−1}. Weakly learning Fγ over Gaussian inputs x ∼ N(0, Id) under any inverse-polynomial
adversarial noise when γ ≥ 2

√
d and β = 1/poly(d), is hard, assuming worst-case lattice problems

are secure against quantum attacks.

The exact sense of cryptographic hardness used is that weakly learning the single cosine neuron
under the described assumptions, reduces to solving a worst-case lattice problem, known as the
Gap Shortest Vector Problem (GapSVP). The approximation factor of GapSVP obtained in our
reduction, is not known to be NP-hard [2], but it is widely believed to be computationally hard
against any polynomial-time algorithm, including quantum algorithms [43]. The reduction makes
use of a recently developed average-case detection problem, called Continuous Learning with Errors
(CLWE) [13] which has been established to be hard under the same hardness assumption on GapSVP.
Our reduction shows that weakly learning the single cosine neuron in polynomial time, implies a
polynomial-time algorithm for solving the CLWE problem (see Section 2 for the definition). The link
here between the two settings comes from the periodicity of the cosine function, and the fact that the
CLWE has an appropriate mod 1 structure, as well.

Interestingly, our reduction works for any class of function g(x) = ϕ(γ⟨w, x⟩) where ϕ is a 1-periodic
and O(1)-Lipschitz function and under γ ≥ 2

√
d, generalizing the hardness claim much beyond

the single cosine neuron. Moreover, our reduction shows that the computational hardness in fact
applies to a certain position-dependent random noise model, instead of bounded adversarial noise
(See Remark 3.5). Lastly, as mentioned above, we highlight that this is a (conditional) lower bound
against any polynomial-time estimator, not just SQ or gradient-based methods.

Polynomial-time algorithm under exponentially small noise. We finally address the question of
whether there is some polynomial-time algorithm that can weakly learn the single cosine neuron, in
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the presence of potentially exponentially small noise. Notably, the current lower bound with respect
to SQ [57] or gradient based methods [54] apply without any noise assumption per-sample, raising
the suspicion that no “standard” learning method works even in the case β = 0.

We design and analyze an algorithm for the single cosine neuron which provably succeeds in learning
the function f = fw when β ≤ exp(−Õ(d3)), and with access to only d+ 1 samples. Note that this
sample complexity is perhaps surprising: one needs only one more sample than just receiving the
samples in the “pure” linear system form ⟨w, xi⟩ instead of cos(2πγ⟨w, xi⟩) + ξi. The algorithm
comes from reducing the problem to an integer relation detection question and then make a careful
use of the powerful Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm [40] to solve it in
polynomial time. The integer relation detection allows us to recover the (unknown) integer periods
naturally occuring because of the periodicity of the cosine, which then allows us to provably “invert”
the cosine, and then learn the hidden direction w simply by solving a linear system.

The LLL algorithm is a celebrated algorithm in theoretical computer science and mathematics, which
has rarely been used in the learning literature (with the notable recent exceptions [6, 60, 26]). We
consider our connection between learning the single cosine neuron, integer relation detection and the
LLL algorithm, a potentially interesting algorithmic novelty of the present work. We note that [13]
likewise use the LLL algorithm to solve CLWE in the noiseless setting. When applied to CLWE, our
algorithm, via a significantly more involved application of the LLL algorithm and careful analysis,
improves upon their algorithm in terms of both sample complexity and noise-tolerance.

Application to noiseless phase retrieval: d+ 1 samples suffice. Notice that the cosine activation
function loses information in two distinct steps: first it “loses” the sign, since it is an even function,
and then it “loses” localisation beyond its period (fixed at [−1/2, 1/2)). As a result, any algorithm
learning the cosine neuron (such as our proposed LLL-based algorithm) can be immediately extended
to solve the two separate cases, where one only loses the sign (which is known as the phase retrieval
problem in high dimensional statistics) or only the localisation (which is known as the CLWE problem
in cryptography). In particular, the noiseless cosine learning problem ‘contains’ the phase retrieval
problem, where one is asked to recover an unknown vector w from measurements |⟨xi, w⟩|, since
cos(2πγ⟨w, xi⟩) = cos(2πγ|⟨xi, w⟩|). Therefore, as an immediate consequence of our algorithmic
results, we achieve the optimal sample complexity of noiseless2 phase retrieval. As mentioned
previously, this algorithmic result, while interesting and a consequence of our analysis for cosine
learning, has already been established in the prior work [6] using a very similar LLL-based algorithm.

We note that achieving in polynomial-time the optimal sample complexity is perhaps of independent
interest from a pure algorithm design point of view. While Gaussian elimination can trivially solve for
w given d samples of the form ⟨xi, w⟩ where xi

i.i.d.∼ N(0, Id), our algorithm shows that by “losing” the
sign of ⟨xi, w⟩ one needs only one sample more to recover again w in polynomial-time. However, we
remark that the LLL algorithm has a running time of O(d6 log3 M) [46]3, where d is the dimension
and M is the maximum ℓ2-norm of the given lattice basis vectors, which can relatively quickly become
computationally challenging with increasing dimension despite its polynomial time complexity. We
refer the reader to Appendix F for a formal statement of the phase retrieval problem and our results.

2 Definitions and Notations
Distribution-specific PAC-learning. We consider the problem of learning a sequence of real-
valued function classes {Fd}d∈N, each over the standard Gaussian input distribution on Rd, an
instance of what is called distribution-specific PAC learning [35, 54]. The input is a multiset of
i.i.d. labeled examples (x, y) ∈ Rd × R, where x ∼ N(0, Id), y = f(x) + ξ, f ∈ Fd, and ξ ∈ R is
some type of observation noise. We denote by D = Df the resulting data distribution. The goal of
the learner is to output an hypothesis h : Rd → R that is close to the target function f in the squared
loss sense over the Gaussian input distribution. We say a learning algorithm is proper if it outputs an
hypothesis h ∈ Fd. On the other hand, we say a learning algorithm is improper if h is not necessarily
in Fd [51]. We omit the index d, when the input dimension is clear from the context.

We denote by ℓ : R×R→ R≥0 the squared loss function defined by ℓ(y, z) = (y− z)2. For a given
hypothesis h and a data distribution D on pairs (x, z) ∈ Rd×R, we define its population loss LD(h)

2Or exponentially small noise; see Corollary F.1 for the precise statement
3The L2 algorithm by [46] speeds up LLL using floating-point arithmetic, but the running time still grows

faster than O(d5).
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Figure 1: Our results at a glance for weakly learning the class Fγ . Section 3.1 describes information-
theoretical limits, Section 3.2 presents the reduction from CLWE, while Section 3.3 introduces an
efficient algorithm based on LLL.

over a data distribution D by

LD(h) = E
(x,y)∼D

[ℓ(h(x), y)] . (1)

Definition 2.1 (Weak learning). Let ϵ = ϵ(d) > 0 be a sequence of numbers, δ ∈ (0, 1) a fixed
constant, and let {Fd}d∈N be a sequence of function classes defined on input space Rd. We say
that a (randomized) learning algorithm A ϵ-weakly learns {Fd}d∈N over the standard Gaussian
distribution if for every f ∈ Fd the algorithm outputs a hypothesis hd such that for large values of d
with probability at least 1− δ

LDf
(hd) ≤ LDf

(E[f(x)])− ϵ .

Note that E[f(x)] is the best constant predictor for the data distribution D = Df . Hence, we refer to
LD(E[f(x)]) = VarZ∼N(0,Id)(f(Z)), as the trivial loss, and ϵ as the edge of the learning algorithm.

From simplicity, we refer to an hypothesis as weakly learning a function class if it can achieve edge ϵ
which is depending inverse polynomially in d.

Periodic Neurons. Let γ = γ(d) > 1 be a sequence of numbers indexed by the input dimension
d ∈ N, and let ϕ : R→ [−1, 1] be an 1-periodic function. We denote by Fϕ

γ the function class

Fϕ
γ = {f : Rd → [−1, 1] | f(x) = ϕ(γ⟨w, x⟩), w ∈ Sd−1} (2)

Note that each member of the function class Fϕ
γ is fully characterized by a unit vector w ∈ Sd−1.

We refer such function classes as periodic neurons.

Cosine Learning. We define the cosine distribution on dimension d with frequency γ = γ(d),
adversarial noise rate β = β(d), and hidden direction w ∈ Sd−1 to be the distribution of samples of
the form (x, z) ∈ Rd × R, where x

i.i.d.∼ N(0, Id), some bounded adversarial noise |ξ| ≤ β, and

z = cos(2πγ⟨w, x⟩) + ξ. (3)

The cosine learning problem consists of weakly learning the cosine distribution, per Definition 2.1.
This learning problem is the central subject of our analysis. Hence, we slightly abuse notation and
denote the corresponding cosine function class by

Fγ = {cos(2πγ⟨w, x⟩) | w ∈ Sd−1}. (4)

Continuous Learning with Errors (CLWE) [13]. We define the CLWE distribution Aw,β,γ on
dimension d with frequency γ = γ(d) ≥ 0, and noise rate β = β(d) ≥ 0 to be the distribution of
i.i.d. samples of the form (x, z) ∈ Rd × [−1/2, 1/2) where x ∼ N(0, Id), ξ ∼ N(0, β) and

z = γ⟨x,w⟩+ ξ mod 1 . (5)

Note that for the mod 1 operation, we take the representatives in [−1/2, 1/2). The CLWE problem
consists of detecting between i.i.d. samples from the CLWE distribution or an appropriate null
distribution. In the context of CLWE, we refer to the distribution N(0, Id)× U([−1/2, 1/2)) as the
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null distribution and denote it by A0. Given γ = γ(d) and β = β(d), we consider a sequence of
decision problems {CLWEβ,γ}d∈N, indexed by the input dimension d, in which the learner is given
samples from an unknown distribution D such that either D ∈ {Aw,β,γ | w ∈ Sd−1}, and D = A0.
The algorithm is asked to decide whether D ∈ {Aw,β,γ | w ∈ Sd−1} or D = A0 in polynomial-time.
Under this setup, we define the advantage of an algorithm as the difference between the probability
that it correctly detects samples from D ∈ {Aw,β,γ | w ∈ Sd−1}, and the probability that errs
(decides “D ̸= A0”) given samples from D = A0. We call the advantage negligible if it decays
superpolynomially. For a more detailed setup of this problem, we refer the reader to Appendix B.

Bruna et al. [13] showed worst-case evidence that the CLWE problem is computationally hard even
with inverse polynomial noise rate β if γ ≥ 2

√
d, despite its seemingly mild requirement of non-

negligible advantage. In fact, their evidence of computational intractability is based on worst-case
lattice problems called the Gap Shortest Vector Problem (GapSVP) [42]. In particular, they showed
that distinguishing a typical CLWE distribution, where the randomness is over the uniform choice
of hidden direction w ∈ Sd−1, from the null distribution is as hard as solving the worst instance of
GapSVP. For a formal definition of the GapSVP, we refer the reader to Appendix B, but note that
the (quantum) worst-case hardness of this lattice problems is widely-believed by the cryptography
community [43] (See Conjecture 2.3).

Theorem 2.2 ([13, Corollary 3.2]). Let β = β(d) ∈ (0, 1) and γ = γ(d) ≥ 2
√
d such that γ/β is

polynomially bounded. Then, there is a polynomial-time quantum reduction from O(d/β)-GapSVP
to CLWEβ,γ .

Conjecture 2.3 ([43, Conjecture 1.2]). There is no polynomial-time quantum algorithm that solves
GapSVP to within polynomial factors.

Weak learning and parameter recovery. Recall that every element of the function class Fγ is
fully characterized by the hidden unit vector w ∈ Sd−1. Hence, one possible strategy towards
achieving weak learning of the cosine distribution, could be to recover the vector w from samples of
the form (3). The following lemma (proven in Appendix I) shows that given any w′ sufficiently close
to w one can construct an hypothesis that weakly learns the function f(x) = cos(2πγ⟨w, x⟩).
Proposition 2.4. Suppose γ = ω(1). For any w′ ∈ Sd−1 with min{∥w − w′∥22, ∥w + w′∥22} ≤
1/(16π2γ2), the functions hA(x) = cos(2πγ⟨A, x⟩), A ∈ {w′, w} satisfy for large values of d that

Ex∼N(0,Id)[ℓ((hw(x), hw′(x))] ≤ Varx∼N(0,Id)[(hw(x))
2]− 1/12.

The LLL algorithm and integer relation detection. In our algorithmic result, we make use of
an appropriate integer relation detection application of the celebrated lattice basis reduction LLL
algorithm [40]. We say that for some b ∈ Rn the vector m ∈ Zn \ {0} is an integer relation for
b if ⟨m, b⟩ = 0. We make use of the following theorem, and we refer the interested reader to the
Appendix E for a complete proof and intuition behind the result.

Theorem 2.5. Let n,N ∈ N. Suppose b ∈ (2−NZ)n with b1 = 1. Let also m ∈ Zn be an
integer relation of b. Then an appropriate application of the LLL algorithm with input b outputs
an integer relation m′ ∈ Zn of b with ∥m′∥2 = O(2n/2∥m∥2∥b∥2) in time polynomial in n,N and
log(∥m∥∞∥b∥∞).

Notation. Let Z denote the set of integers and R denote the set of real numbers. For a ∈ R,
We use Z≥a and R≥a for the set of integers at least equal to a, and for the set of real numbers
at least equal to a, respectively. We denote by N = Z≥1 the set of natural numbers. For k ∈ N
we set [k] := {1, 2, . . . , k}. For d ∈ N, 1 ≤ p < ∞ and any x ∈ Rd, ∥x∥p denotes the p−norm
(
∑︁d

i=1 |xi|p)1/p of x, and ∥x∥∞ denotes max1≤i≤d |xi|. Given two vectors x, y ∈ Rd the Euclidean
inner product is ⟨x, y⟩ :=

∑︁d
i=1 xiyi. By log : R+ → R we refer the natural logarithm with

base e. For x ∈ Z and N ∈ N we denote by (x)N := sgn(x)⌊2Nx⌋/2N . Throughout the paper
we use the standard asymptotic notation, o, ω,O,Θ,Ω for comparing the growth of two positive
sequences (ad)d∈N and (bd)d∈N: we say ad = Θ(bd) if there is an absolute constant c > 0 such
that 1/c ≤ ad/bd ≤ c; ad = Ω(bd) or bd = O(ad) if there exists an absolute constant c > 0 such
that ad/bd ≥ c; and ad = ω(bd) or bd = o(ad) if limd ad/bd = 0. We say x = poly(d) if for some
0 ≤ q < r it holds Ω(dq) = x = O(dr).
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3 Main Results
In this section we present our main results towards understanding the fundamental hardness of
(weakly) learning the single cosine neuron class given by (4). We present our results in terms of
signal to noise ratio (SNR) equal to 1/β, where recall that β > 0 is an upper bound on the level of
adversarial noise ξ one may introduce at the samples given by (3). All proofs of the statements are
deferred to the appendices of each subsection.

A key correspondence. At the heart of our main results are the following simple elementary
equalities that hold for all v ∈ R, and may help the intuition of the reader.

cos(2π(v mod 1)) = cos(2πv) (6)
arccos(cos(2πv)) = 2π|v mod 1| , (7)

where in Eq (7), we recall that our mod 1 operation takes representatives in [−1/2, 1/2).
An immediate outcome of these equalities, is a key correspondence between the labels of cosine
samples and “phaseless” CLWE samples, where we reminder the reader that the notion of a CLWE
sample is defined in (5). By (6), applying the cosine function to CLWE labels results in the cosine
distribution with the same frequency, and hidden direction. Conversely, by (7), applying arccos to
cosine labels results in an arguably harder variant of CLWE, in which the (mod 1)-signs of the labels
are dropped, with again the same frequency and hidden direction. We say this “phaseless” variant of
CLWE is harder than CLWE as we can trivially take the absolute value of CLWE labels to obtain
these phaseless CLWE samples, and so an algorithm for solving phaseless CLWE automatically
implies an algorithm for CLWE.

We have ignored the issue of additive noise for the sake of simplicity in the above discussion. Indeed,
the amount of noise in the samples is a key quantity for characterizing the difficulty of these learning
problems and the main technical challenge in carrying the reduction between learning single cosine
neurons and CLWE. In subsequent sections, we carefully analyze the interplay between the noise
level and the computational difficulty of these learning problems.

3.1 The Information-Theoretically Possible Regime: Small Constant Noise
Before discussing the topic of computational hardness, we address the important first question of
identifying the noise levels β under which some estimator, running in potentially exponential time,
can weakly learn the class of interest from polynomially many samples. Note that any constant level
of noise above 1, that is β ≥ 1, would make learning impossible for trivial reasons. Indeed, as the
cosine takes values in [−1, 1] if β ≥ 1 all the labels zi can be transformed to the uninformative 0 value
because of the adversarial noise. One can naturally wonder whether any estimator can succeed at the
presence of some constant noise level β ∈ (0, 1). In this section, we establish that for sufficiently
small but constant β > 0 weak learning is indeed possible with polynomially many samples by
running an appropriate exponential-time estimator.

Towards establishing this result, we leverage Proposition 2.4, according to which to achieve weak
lernability it suffices to construct an estimator that achieves ℓ2 recovery of w or −w with an ℓ2 error
O(1/γ). For this reason, we build an exponential-time algorithm that achieves this ℓ2 guarantee.

Theorem 3.1 (Information-theoretic upper bound). For some constants c0, C0 > 0 (e.g. c0 =
1 − cos( π

200 ), C0 = 40000) the following holds. Let d ∈ N and let γ = γ(d) > 1, β(d) ≤ c0,
and τ = arccos(1 − β)/(2π). Moreover, let P be data distribution given by (3) with frequency γ,
hidden direction w, and noise level β. Then, there exists an exp(O(d log(γ/τ)))-time algorithm
using O(d log(γ/τ)) i.i.d. samples from P that outputs a direction ŵ ∈ Sd−1 satisfying min{∥ŵ −
w∥22, ∥ŵ + w∥22} ≤ C0τ

2/γ2 with probability 1− exp(−Ω(d)).

The following corollary follows immediately from Theorem 3.1, Proposition 2.4 and the elementary
identity that arccos(1− β) = Θ(

√
β) for small β.

Corollary 3.2. Under the assumptions of Theorem 3.1 there exists some sufficiently small c1 > 0,
such that if β ≤ c1 there exist a exp(O(d log(γ/β)))-time algorithm using O(d log(γ/β)) i.i.d.
samples from P that weakly learns the function class Fγ .

The proof of both Theorem 3.1 and Corollary 3.2 can be found in Appendix C.
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3.2 The Cryptographically Hard Regime: Polynomially Small Noise
Given the results in the previous subsection, we discuss now whether a polynomial-time algorithm can
achieve weak learnability of the class Fγ for some noise level β smaller than an inverse polynomial
quantity in d, which we call an inverse-polynomial edge, per Definition 2.1. We answer this in
the negative by showing a reduction from CLWE to the problem of weakly learning Fγ to any
inverse-polynomial edge. This implies that a polynomial-time algorithm for weakly learning Fγ

would yield polynomial-time quantum attacks against worst-case lattice problems, which are widely
believed to be hard against quantum computers. As mentioned in the introduction, our reduction
applies with any 1-periodic and O(1)-Lipschitz activation ϕ. We defer the proofs to Appendix D.
Theorem 3.3. Let d ∈ N, γ = ω(

√
log d), β = β(d) ∈ (0, 1). Moreover, let L > 0, let ϕ : R →

[−1, 1] be an L-Lipschitz 1-periodic univariate function, and τ = τ(d) be such that β/(Lτ) =
ω(
√
log d). Then, a polynomial-time (improper) algorithm that weakly learns the function class

Fϕ
γ = {fγ,w(x) = ϕ(γ⟨w, x⟩) | w ∈ Sd−1} over Gaussian inputs xi.i.d.∼ N(0, Id) under β-bounded

adversarial noise implies a polynomial-time algorithm for CLWEτ,γ .

By the hardness of CLWE (Theorem 2.2) and our Theorem 3.3, we can immediately deduce the
cryptographic hardness of learning the single cosine neuron under inverse polynomial noise.

Corollary 3.4. Let d ∈ N, γ = γ(d) ≥ 2
√
d and τ = τ(d) ∈ (0, 1) be such that γ/τ = poly(d),

and β = β(d) be such that β/τ = ω(
√
log d). Then, a polynomial-time algorithm that weakly learns

the cosine neuron class Fγ under β-bounded adversarial noise implies a polynomial-time quantum
algorithm for O(d/τ)-GapSVP.
Remark 3.5 (Robust learning under position-dependent random noise is hard). Robustness against
advesarial noise in Theorem 3.3 is not necessary for computational hardness. In fact, the reduction
only requires robustness against a certain position-dependent random noise. More precisely, for a
fixed hidden direction w ∈ Sd−1, the random noise ξ̃ is given by ξ̃ = ϕ(γ⟨w, x⟩+ ξ)− ϕ(γ⟨w, x⟩),
where x ∼ N(0, In) and ξ ∼ N(0, β).

3.3 The Polynomial-Time Possible Regime: Exponentially Small Noise
In this section, in sharp contrast with the previous section, we design and analyze a novel polynomial-
time algorithm which provably weakly learns the single cosine neuron with only d+1 samples, when
the noise is exponentially small. The algorithm is based on the celebrated lattice basis reduction LLL
algorithm and its specific application obtaining the integer relation detection guarantee described in
Theorem 2.5. Let us also recall from notation that for a real number x and N ∈ Z≥1, we denote by
(x)N := sgn(x)⌊2Nx⌋/2N . We establish the following result, proved in Appendix E.
Theorem 3.6. Suppose that 1 ≤ γ ≤ dQ for some fixed Q > 0, and β ≤ exp(−(d log d)3). Then
Algorithm 1 with input (xi, zi)i=1,...,d+1 i.i.d. samples from (3) with frequency γ, hidden direction w
and noise level β, outputs w′ ∈ Sd−1 with

min{∥w′ − w∥2, ∥w′ + w∥2} = O

(︃
β

γ

)︃
=

1

γ
exp(−Ω((d log d)3)) ,

and terminates in poly(d) steps, with probability 1− exp(−Ω(d)). Moreover, if the algorithm skips
the last normalization step, the output w′ ∈ Rd satisfies min{∥w′ − γw∥2, ∥w′ + γw∥2} = O (β).

In particular, by combining our result with Proposition 2.4, one concludes the following result.
Corollary 3.7. Suppose that ω(1) = γ = poly(d) and β ≤ exp(−(d log d)3). Then there exists a
polynomial-in-d time algorithm using d + 1 samples from a single cosine neuron distribution (3),
with frequency γ and noise level β, that weakly learns the function class Fγ .

Proof sketch of Theorem 3.6. For the purposes of the sketch let us focus on the noiseless case, explain-
ing at the end how an exponentially small tolerance is possible. In this setting, we receive m samples
of the form zi = cos(2π⟨w, xi⟩), i ∈ [m]. The algorithm then uses the arcosine and obtains the
“phaseless” CLWE values z̃i which according to (7) satisfy for some unknown ϵi ∈ {−1, 1},Ki ∈ Z
⟨w, xi⟩ = ϵizĩ +Ki. Notice that if we knew the integer values of ϵi,Ki, since we know z̃i, the prob-
lems becomes simply solving a linear system for w. The algorithm then leverages the application of
the powerful LLL algorithm to perform integer relation detection and identify the values of ϵi,Ki, as
stated in Theorem 2.5. The way it does it is as follows. It first finds coefficients λi, i = 1, 2, . . . , d+1
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Algorithm 1: LLL-based algorithm for learning the single cosine neuron.

Input: i.i.d. noisy γ-single cosine neuron samples {(xi, zi)}d+1
i=1 .

Output: Unit vector ŵ ∈ Sd−1 such that min(∥ŵ − w∥, ∥ŵ + w∥) = exp(−Ω((d log d)3)).
for i = 1 to d+ 1 do

zi ← sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2π) mod 1

Construct a d× d matrix X with columns x2, . . . , xd+1, and let N = d3(log d)2.
if det(X) = 0 then

return ŵ = 0 and output FAIL
Compute λ1 = 1 and λi = λi(x1, . . . , xd+1) given by (λ2, . . . , λd+1)

⊤ = X−1x1.
Set M = 23d and ṽ =

(︁
(λ2)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N

)︁
∈ R2d+2

Output (t1, t2, t) ∈ Zd+1 × Zd+1 × Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)× (2d+ 3) integer-valued matrix,(︃

M2N (λ1)N M2N ṽ
0(2d+2)×1 I(2d+2)×(2d+2)

)︃
Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 ∨ (t2/g) /∈ {−1, 1}d+1 then

return ŵ = 0 and output FAIL
ŵ ← SolveLinearEquation(w′, X⊤w′ = (t2/g)z + (t1/g))
return ŵ/∥ŵ∥ and output SUCCESS.

such that
∑︁d+1

i=1 λixi = 0 which can be easily computed because we have d+ 1 vectors in Rd. Then
using the definition of z̃i, the relation between the coefficient implies the identity

d+1∑︂
i=1

ϵiλiz̃i +

d+1∑︂
i=1

Kiλi =

d+1∑︂
i=1

λi⟨xi, w⟩ = 0. (8)

In particular, the ϵi,Ki are coefficients in an integer relation connecting the known numbers
λizi, λi, i = 1, 2, . . . , d + 1. Now, an issue is that as one cannot enter the real numbers as in-
put for the lattice-based LLL, the algorithm truncates the numbers to the first N bits and then hope
that post-truncation all the near-minimal integer relations between these truncated numbers remain a
(small multiple of) ϵi,Ki, a sufficient condition so that LLL can identify them based on Theorem
2.5. We establish that indeed this the case and this is the most challenging part of the argument. The
argument is based on some careful application of the anticoncentration properties of low-degree poly-
nomials (notice that the λi are rational functions of xi by Cramer’s rule), to deduce that the numbers
λi, λizi are in “sufficient general position”, in terms of rational independence, for the argument to
work. We remark that this is a potentially important technical advancement over the prior applications
of the LLL algorithm towards performing such inference tasks, such as for average-case subset sum
problems [38, 22] or regression with discrete coefficients [60, 26] where the corresponding λi, λizi
coefficients are (truncated) i.i.d. continuous random variables in which case anticoncentration is
immediate (see e.g. [60, Theorem 2.1]). The final step is to prove that the algorithm is able to tolerate
some noise level. We establish that indeed if N = Θ̃(d3) then indeed the argument can still work and
tolerate exp(−Θ̃(d3))-noise by showing that the near-minimal integer relations remain unchanged
under this level of exponentially small noise.

Remark 3.8 (CLWE with exponentially small noise). Notice that the detection problem in CLWE (5)
reduces to the cosine learning problem (3). Indeed, if ž = γ⟨x,w⟩+ ξ̌ mod 1 ∈ [−1/2, 1/2) is a
CLWE sample, then z = cos(ž) satisfies

z = cos(2πγ⟨x,w⟩) + ξ ,

with |ξ| ≤ 2πγ|ξ̌|. Algorithm 1 and the associated analysis Theorem 3.6 thus improve upon the exact
CLWE recovery of [13, Section 6] in two aspects: (i) it requires d+ 1 samples as opposed to d2; and
(ii) it tolerates exponentially small noise.
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A Future Directions

Our results heavily rely on the specific nature of the periodic activation function, so a natural question
is to which extent our results can be extended beyond the single periodic neuron class.

• For lower bounds, a challenging but very interesting generalization would be to establish
the cryptographic-hardness of learning certain family of GLMs whose activation function
does not need to be periodic. A potentially easier route forward on this direction, would
be to consider the Hermite decomposition of the activation function, similar to [A3], and
establish lower bounds on the performance of low-degree methods [A23], of SGD [A3], or
of local search methods methods [A15], for activation functions whose low-degree Hermite
coefficients are exponentially small.

• For upper bounds, we believe that our proposed LLL-based algorithm may be extended
beyond learning even periodic activation functions, such as the cosine activation, by appro-
priately post-processing the measurements, but leave this for future work. Furthermore, it
would be interesting to better understand (empirically or analytically) the noise tolerance
of our LLL-based algorithm for “low-frequency” activation functions, such as the absolute
value underlying the phase retrieval problem which has “zero” frequency.

B Formal Setup

In this section, we present the formal definitions of all problems required to state our hardness result
(Theorem 2.2). We begin with a description of average-case decision problems, of which the CLWE
decision problem is a special instance [A6].

B.1 Average-Case Decision Problems

We introduce the notion of average-case decision problems (or simply binary hypothesis testing
problems), based on [A17], where we refer the interested reader for more details. In such average-
case decision problems the statistician receives m samples from either a distribution D or another
distribution D′, and needs to decide based on the produced samples whether the generating distribution
is D or D′. We assume that the statistician may use any, potentially randomized, algorithmA which is
a measurable function of the m samples and outputs the Boolean decision {YES,NO} corresponding
to their prediction of whether D or D′ respectively generated the observed samples. Now, for any
Boolean-valued algorithm A examining the samples, we define the advantage of A solving the
decision problem, as the sequence of positive numbers⃓⃓⃓

Px∼D⊗m [A(x) = YES]− Px∼D′⊗m [A(x) = YES]
⃓⃓⃓
.

As mentioned above, we assume that the algorithm A outputs two values “YES” or “NO”. Further-
more, the output “YES” means that algorithm A has decided that the given samples x comes from
the distribution D, and “NO” means that A decided that x comes from the alternate distribution D′.
Therefore, naturally the advantage quantifies by how much the algorithm is performing better than
just deciding with probability 1/2 between the two possibilities.

Our setup requires two standard adjustments to the setting described above. First, in our setup we
consider a sequence of distinguishing problems, indexed by a growing (dimension) d ∈ N, and for
every d we receive m = m(d) samples and seek to distinguish between two distributions Dd and D′

d.
Now, for any sequence of Boolean-valued algorithms A = Ad examining the samples, we naturally
define the advantage of A solving the sequence of decision problems, as the sequence of positive
numbers ⃓⃓⃓

Px∼D⊗m
d

[A(x) = YES]− Px∼D′⊗m
d

[A(x) = YES]
⃓⃓⃓
.

As a remark, notice that any such distinguishing algorithm A required to terminate in at most time
T = T (d), is naturally implying that the algorithm has access to at most m ≤ T samples.

Now, as mentioned above, we require another adjustment. We assume that the distributions Dd, D
′
d

are each generating m samples in two stages: first by drawing a common structure for all samples,
unknown to the statistician (also usually called in the statistics literature as a latent variable), which
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we call s, and second by drawing some additional and independent-per-sample randomness. In
CLWE, s corresponds to the hidden vector w chosen uniformly at random from the unit sphere
and the additional randomness per sample comes from the Gaussian random variables xi. Now, to
appropriately take into account this adjustment, we define the advantage of a sequence of algorithms
A = {Ad}d∈N solving the average-case decision problem of distinguishing two distributions Dd,s

and D′
d,s parametrized by d and some latent variable s chosen from some distribution Sd, as⃓⃓⃓

Ps∼Sd,x∼D⊗m
d,s

[A(x) = YES]− Ps∼Sd,x∼D′⊗m
d,s

[A(x) = YES]
⃓⃓⃓
.

Finally, we say that algorithm A = {Ad}d∈N has non-negligible advantage if its advantage is at least
an inverse polynomial function of d, i.e., a function behaving as Ω(d−c) for some constant c > 0.

B.2 Decision and Phaseless CLWE

We now give a formal definition of the decision CLWE problem, continuing the discussion from
Section 2. We also introduce the phaseless-CLWE distribution, which can be seen as the CLWE
distribution Aw,β,γ defined in (5), with the absolute value function applied to the labels (recall that we
take representatives in [−1/2, 1/2) for the mod 1 operation). The Phaseless-CLWE distribution is, at
an intuitive level, useful for stating and proving guarantees of our LLL algorithm in the exponentially
small noise regime for learning the cosine neuron (See Section 3.3 and Appendix E).

Definition B.1 (Decision-CLWE). For parameters β, γ > 0, the average-case decision problem
CLWEβ,γ is to distinguish from i.i.d. samples the following two distributions over Rd × [−1/2, 1/2)
with non-negligible advantage: (1) the CLWE distribution Aw,β,γ , per (5), for some uniformly
random unit vector w ∈ Sd−1 (which is fixed for all samples), and (2) N(0, Id)× U([−1/2, 1/2]).

Phaseless-CLWE. We define the Phaseless-CLWE distribution on dimension d with frequency γ, β-
bounded adversarial noise, hidden direction w to be the distribution of the pair (x, z) ∈ Rd× [0, 1/2]

where x
i.i.d.∼ N(0, Id) and

z = ϵ(γ⟨x,w⟩+ ξ) mod 1 (9)

for some ϵ ∈ {−1, 1} such that z ≥ 0, and bounded noise |ξ| ≤ β.

B.3 Worst-Case Lattice Problems

We begin with a definition of a lattice. A lattice is a discrete additive subgroup of Rd. In this work,
we assume all lattices are full rank, i.e., their linear span is Rd. For a d-dimensional lattice Λ, a set
of linearly independent vectors {b1, . . . , bd} is called a basis of Λ if Λ is generated by the set, i.e.,
Λ = BZd where B = [b1, . . . , bd]. Formally,

Definition B.2. Given linearly independent b1, . . . , bd ∈ Rd, let

Λ = Λ(b1, . . . , bd) =

{︄
d∑︂

i=1

λibi : λi ∈ Z, i = 1, . . . , d

}︄
, (10)

which we refer to as the lattice generated by b1, . . . , bd.

We now present a worst-case decision problem on lattices called GapSVP. In GapSVP, we are given
an instance of the form (Λ, t), where Λ is a d-dimensional lattice and t ∈ R, the goal is to distinguish
between the case where λ1(Λ), the ℓ2-norm of the shortest non-zero vector in Λ, satisfies λ1(Λ) < t
from the case where λ1(Λ) ≥ α(d) · t for some “gap” α(d) ≥ 1. Given a decision problem, it is
straightforward to conceive of its search variant. That is, given a d-dimensional lattice Λ, approximate
λ1(Λ) up to factor α(d). Note that the search version, which we call α-approximate SVP in the main
text, is harder than its decision variant, since an algorithm for the search variant immediately yields
an algorithm for the decision problem. Hence, the worst-case hardness of decision problems implies
the hardness of their search counterparts. We note that GapSVP is known to be NP-hard for “almost”
polynomial approximation factors, that is, 2(log d)1−ϵ

for any constant ϵ > 0, assuming problems in
NP cannot be solved in quasi-polynomial time [A22, A20]. As mentioned in the introduction of the
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Algorithm 2: Information-theoretic recovery algorithm for learning cosine neurons
Input: Real numbers γ = γ(d) > 1, β = β(d), and a sampling oracle for the cosine distribution

(3) with frequency γ, β-bounded noise, and hidden direction w.
Output: Unit vector ŵ ∈ Sd−1 s.t. min{∥ŵ − w∥2, ∥ŵ + w∥2} = O(arccos(1− β)/γ).

Let τ = arccos(1− β)/(2π), ϵ = 2τ/γ, m = 64d log(1/ϵ), and let C be an ϵ-cover of the unit
sphere Sd−1. Draw m samples {(xi, yi)}mi=1 from the cosine distribution (3).

for i = 1 to m do
zi = arccos(yi)/(2π)

for v ∈ C do
Compute
Tv = 1

m

∑︁m
i=1 1 [|γ⟨v, xi⟩ − zi mod 1| ≤ 3τ ] + 1 [|γ⟨v, xi⟩+ zi mod 1| ≤ 3τ ]

return ŵ = argmaxv∈C Tv .

paper, the problem is strongly believed to be computationally hard (even with quantum computation),
for any polynomial approximation factor α(d) [A32].

Below we present formal definitions of two of the most fundamental lattice problems, GapSVP
and the Shortest Independent Vectors Problem (SIVP). The SIVP problem, similar to GapSVP, is
also believed to be computationally hard (even with quantum computation) for any polynomial
approximation factor α(d). Interestingly, the hardness of CLWE can also be based on the worst-case
hardness of SIVP [A6].
Definition B.3 (GapSVP). For an approximation factor α = α(d), an instance of α-GapSVP is
given by an d-dimensional lattice Λ and a number t > 0. In YES instances, λ1(Λ) ≤ t, whereas in
NO instances, λ1(Λ) > α · t.
Definition B.4 (SIVP). For an approximation factor α = α(d), an instance of SIVPα is given by an
d-dimensional lattice Λ. The goal is to output a set of d linearly independent lattice vectors of length
at most α · λd(Λ).

C Exponential-Time Algorithm: Constant Noise

We provide full details of the proof of Theorem 3.1, restated as Corollary C.5 at the end of this
section. The goal of Algorithm 2 is to use m = poly(d) samples to recover in polynomial-time the
hidden direction w ∈ Sd−1, in the ℓ2 sense. More concretely, the goal is to compute an estimator
ŵ = ŵ((xi, zi)i=1,...,m) for which it holds min{∥ŵ−w∥22, ∥ŵ+w∥22} = o(1/γ2), with probability
1− exp(−Ω(d)).
We first start with Lemma C.1, which reduces the recovery problem under the cosine distribution
(See Eq. (3)) to the recovery problem under the phaseless CLWE distribution (See Appendix B.2).
Then, we prove Lemma C.4, which states that there is an exponential-time algorithm for recovering
the hidden direction w ∈ Sd−1 in Phaseless-CLWE under sufficiently small adversarial noise.
Theorem 3.1 follows from Lemmas C.1 and C.4.
Lemma C.1. Assume β ∈ [0, 1]. Suppose that one receives a sample (x, z̃) from the cosine distribu-
tion on dimension d with frequency γ under β-bounded adversarial noise. Let z̄ := sgn(z̃)min(1, |z̃|).
Then, the pair (x, arccos(z̄)/(2π) mod 1) is a sample from the Phaseless-CLWE distribution on
dimension d with frequency γ under 1

2π arccos(1− β)-bounded adversarial noise.

Proof. Recall z̃ = cos(2π(γ⟨w, x⟩)) + ξ, for x ∼ N(0, Id) and |ξ| ≤ β. It suffices to show that
1

2π
arccos(z̄) = ϵγ⟨w, x⟩+ ξ′ mod 1 (11)

for some ϵ ∈ {−1, 1} and ξ′ ∈ R with |ξ′| ≤ 1
2π arccos(1− β).

First, notice that we may assume that without loss of generality z̄ = z̃. Indeed, assume for now z̃ > 1.
The case z̃ < −1 can be shown with almost identical reasoning. From the definition of z̃, it must
hold that ξ > 0 and z̃ ≤ 1 + ξ. Hence

z̄ = 1 = cos(2π(γ⟨w, x⟩)) + ξ̃.
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Algorithm 3: Information-theoretic recovery algorithm for learning the Phaseless-CLWE
Input: Real numbers γ = γ(d) > 1, β = β(d), and a sampling oracle for the phaseless-CLWE

distribution (9) with frequency γ, β-bounded noise, and hidden direction w.
Output: Unit vector ŵ ∈ Sd−1 s.t. min{∥ŵ − w∥2, ∥ŵ + w∥2} = O(β/γ).

Let ϵ = 2τ/β, m = 64d log(1/ϵ), and let C be an ϵ-cover of the unit sphere Sd−1. Draw m
samples {(xi, zi)}mi=1 from the phaseless CLWE distribution (9).

for v ∈ C do
Compute
Tv = 1

m

∑︁m
i=1 1 [|γ⟨v, xi⟩ − zi mod 1| ≤ 3β] + 1 [|γ⟨v, xi⟩+ zi mod 1| ≤ 3β]

return ŵ = argmaxv∈C Tv .

for ξ̃ := ξ + 1 − z̃ ∈ (0, ξ) ⊆ (0, β). Hence, (x, z̄) is a sample from the cosine distribution in
dimension d with frequency γ under β-bounded adversarial noise.

Now, given the above observation, to establish (11), it suffices to show that for some ϵ ∈ {−1, 1},
and K ∈ Z, ⃓⃓⃓⃓

1

2π
arccos(z̃)− ϵγ⟨w, x⟩ −K

⃓⃓⃓⃓
≤ 1

2π
arccos(1− β) ,

or equivalently using that the cosine function is 2π periodic and even, it suffices to show that

| arccos(z̃)− arccos(cos(2πγ⟨w, x⟩))| ≤ arccos(1− β) .

The result then follows from the definition of z̃ and the simple calculus Lemma K.7.

We will use the following covering number bound for the running time analysis of Algorithm 2, and
the proof of Lemma C.4.

Lemma C.2 ([A42, Corollary 4.2.13]). The covering numberN of the unit sphere Sd−1 satisfies the
following upper and lower bound for any ϵ > 0(︃

1

ϵ

)︃d

≤ N (Sd−1, ϵ) ≤
(︃
2

ϵ
+ 1

)︃d

. (12)

Remark C.3. An ϵ-cover for the unit sphere Sd−1 can be constructed in time O(exp(d log(1/ϵ)))
by sampling O(N logN) unit vectors uniformly at random from Sd−1, where we denote by N =
N (Sd−1, ϵ). The termination time gurantee follows from Lemma C.2 and the property holds with
probability 1− exp(−Ω(d)). We direct the reader for a complete proof of this fact in Appendix H.

Now we prove our main lemma, which states that recovery of the hidden direction in Phaseless-CLWE
under adversarial noise is possible in exponential time, when the noise level β is smaller than a small
constant.

Lemma C.4 (Information-theoretic upper bound for recovery of Phaseless-CLWE). Let d ∈ N and
let γ = γ(d) > 1, and β = β(d) ∈ (0, 1/400). Moreover, let P be the Phaseless-CLWE distribution
with frequency γ, β-bounded adversarial noise, and hidden direction w. Then, there exists an
exp(O(d log(γ/β)))-time algorithm, described in Algorithm 3, using O(d log(γ/β)) samples from
P that outputs a direction ŵ ∈ Sd−1 satisfying

min(∥ŵ − w∥22, ∥ŵ + w∥22) ≤ 40000β2/γ2 (13)

with probability 1− exp(−Ω(d)).

Proof. Let P be the Phaseless-CLWE distribution and w be the hidden direction of P . We describe
first the steps of the Algorithm 3 we use and then prove its correctness.

Let ϵ = β/γ, and C be an ϵ-cover of the unit sphere. By Remark C.3, we can construct such
an ϵ-cover C in O(exp(d log(γ/β))) time such that |C| ≤ exp(O(d log(γ/β))). We now draw
m = 36d log(γ/β) samples {(xi, zi)}mi=1 from P . Now, given these samples and the threshold value
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t = 3β, we compute for each of the |C| ≤ exp(O(d log(γ/β))) directions v ∈ C the following
counting statistic,

Tv :=
1

m

m∑︂
i=1

(1 [|γ⟨v, xi⟩ − zi mod 1| ≤ 3β] + 1 [|γ⟨v, xi⟩+ zi mod 1| ≤ 3β]) .

Tv is simply measuring the fraction of the zi’s falling in a mod 1-width 3β interval around γ⟨v, xi⟩
or −γ⟨v, xi⟩, accounting for the uncertainty over the sign ϵ ∈ {−1, 1} in the definition of Phaseless-
CLWE. We then suggest our estimator to be ŵ = argmaxv∈C Tv. The algorithm can be clearly
implemented in |C| ≤ exp(O(d log(γ/β))) time.

We prove the correctness of our algorithm by establishing (13) with probability 1− exp(−Ω(d)). We
first show that some direction v ∈ C which is sufficiently close to w satisfies Tv ≥ 2

3 with probability
1 − exp(−Ω(d)). Indeed, let us consider v ∈ C be a direction such that ∥w − v∥2 ≤ ϵ = β/γ.
The existence of such a v follows from our definition of C. We denote for every i = 1, . . . ,m by
ϵi ∈ {−1, 1} the sign chosen by the i-th sample, and

ξi = zi − ϵiγ⟨w, xi⟩ (14)
the adversarial noise added to the sample per (9). Now notice that the following trivially holds almost
surely for v,

Tv ≥
1

m

m∑︂
i=1

1 [|γ⟨v, xi⟩ − ϵizi mod 1| ≤ 3β] .

By elementary algebra and using (14) we have ϵizi− γ⟨v, xi⟩ mod 1 = γ⟨w− v, xi⟩+ ξi mod 1.
Combining the above it suffices to show that

1

m

m∑︂
i=1

1 [|γ⟨w − v, xi⟩+ ξi mod 1| ≤ 3β] ≥ 2

3
. (15)

with probability 1− exp(−Ω(d)).
Now we have

P[|γ⟨w − v, xi⟩+ ξi mod 1| ≤ 3β] ≥ P[|γ⟨w − v, xi⟩ mod 1| ≤ 2β]

≥ P[|γ⟨w − v, xi⟩| ≤ 2β]

using for the first inequality that β-bounded adversarial noise cannot move points within distance 2β
to the origin to locations with distance larger than 3β from the origin and for the second the trivial
inequality |a| ≥ |a mod 1|. Now, notice that γ⟨w−v, xi⟩ is distributed as a sample from a Gaussian
(see Definition K.1) with mean 0 and standard deviation at most γ∥v−w∥2 ≤ γϵ = β. Hence, we can
immediately conclude P[|γ⟨w−v, xi⟩| ≤ 2β] ≥ 3/4 since the probability of a Gaussian vector falling
within 2 standard deviations of the mean is at least 0.95. By a standard application of Hoeffding’s
inequality, we can then conclude that (15) holds with probability 1−exp(−Ω(m)) = 1−exp(−Ω(d)).
We now show that with probability 1−exp(−Ω(d)) for any v ∈ C which satisfies min(∥v−w∥2, ∥v+
w∥2) ≥ 200β/γ, it holds Tv ≤ 1/2. Notice that given the established existence of a v which is
β/γ-close to w and satisfies Tv ≥ 2/3, with probability 1 − exp(−Ω(d)), the result follows. Let
v ∈ C be a direction satisfying ∥v − w∥2 ≥ 200β/γ. Without loss of generality, assume that
∥v − w∥2 ≤ ∥v + w∥2. Then, using (14) we have γ⟨v, xi⟩ − zi = γ⟨v − ϵiw, xi⟩ − ϵiξi mod 1
and γ⟨v, xi⟩ + zi = γ⟨v + ϵiw, xi⟩ + ϵiξi mod 1. Hence, since ϵ ∈ {−1, 1}, |ξi| ≤ β for all
i = 1, . . . ,m we have by a triangle inequality

Tv ≤
1

m

m∑︂
i=1

(1 [|γ⟨v − w, xi⟩ mod 1| ≤ 4β] + 1 [|γ⟨v + w, xi⟩ mod 1| ≤ 4β]) .

Now by our assumption on v both γ⟨v−w, xi⟩ and γ⟨v+w, xi⟩ are distributed as mean-zero Gaussians
with standard deviation at least γ∥w−v∥2 ≥ 200β. Hence, both γ⟨v−w, xi⟩ mod 1 and γ⟨v+w, xi⟩
mod 1 are distributed as periodic Gaussians with width at least 200β (see Definition K.1). By
Claim K.6 and the fact that β < 1/400,

P[|γ⟨v − w, xi⟩ mod 1| ≤ 4β] ≤ 16β/(400β
√
2π) · (1 + 2(1 + (400β)2)e−1/(160000β2)

≤ 4/(25
√
2π) <

1

12
.
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By symmetry the same upper bound holds for P[|γ⟨v + w, xi⟩ mod 1| ≤ 4β]. Hence,

P(xi,zi)∼P [{|γ⟨v − w, xi⟩ mod 1| ≤ 3β} ∪ {|γ⟨v + w, xi⟩ mod 1 mod 1| ≤ 3β}] < 1/6 .

By a standard application of Hoeffding’s inequality, we have

P[Tv > 1/2] ≤ exp(−m/18) ≤ exp(−2d log(1/ϵ)),

and by the union bound over all v ∈ C satisfying ∥v − w∥ ≥ 200β/γ,

P

⎡⎣ ⋃︂
∥v−w∥≥200β/γ

{Tv > 1/2}

⎤⎦ < |C| · exp(−2d log(1/ϵ)) = exp(−Ω(d)) .

This completes the proof.

Finally, we discuss the recovery in terms of samples from the cosine distribution.

Corollary C.5 (Restated Theorem 3.1). For some constants c0, C0 > 0 (e.g., c0 = 1 −
cos(π/200), C0 = 40000) the following holds. Let d ∈ N and let γ = γ(d) > 1, β = β(d) ≤ c0,
and τ = 1

2π arccos(1 − β). Moreover, let P be the cosine distribution with frequency γ, hidden
direction w, and noise level β. Then, there exists an exp(O(d log(γ/τ)))-time algorithm, described
in Algorithm 2, using O(d log(γ/τ)) i.i.d. samples from P that outputs a direction ŵ ∈ Sd−1

satisfying min{∥ŵ − w∥22, ∥ŵ + w∥22} ≤ C0τ
2/γ2 with probability 1− exp(−Ω(d)).

Proof. We first define m = O(d log(γ/β)) reflecting the sample size needed for the algorithm
analyzed in Lemma C.4 to work. We then draw m samples {(xi, z̃i)}mi=1 from the cosine distribution.
From this point Algorithm 2 simply combines the reduction step of Lemma C.1 and then the algorithm
described in the proof of Lemma C.4.

Specifically, using Lemma C.1, we can transform our i.i.d. samples to i.i.d. samples from the
Phaseless CLWE distribution on dimension d with frequency γ under 1

2π arccos(1 − β)-bounded
adversarial noise. The transformation simply happens by applying the arccosine function to every
projected zĩ, so it takes O(1) time per sample, a total of O(m) steps. We then use the last step
of Algorithm 2 and employ Lemma C.4 which analyzes Algorithm 2 to conclude that the output
ŵ ∈ Sd−1 satisfies min(∥ŵ−w∥2, ∥ŵ+w∥2) ≤ 40000τ2/γ2 with probability 1−exp(−Ω(d)).

D Cryptographically-Hard Regime: Polynomially-Small Noise

We give a full proof of Theorem 3.3, restated as Theorem D.1 here. Given Theorem 3.3, Corollary 3.4,
also restated below as Corollary D.2, follows from the hardness of CLWE [A6].

Theorem D.1 (Restated Theorem 3.3). Let d ∈ N, γ = ω(
√
log d), β = β(d) ∈ (0, 1). Moreover,

let L > 0, let ϕ : R → [−1, 1] be an L-Lipschitz 1-periodic univariate function, and τ = τ(d) be
such that β/(Lτ) = ω(

√
log d). Then, a polynomial-time (improper) algorithm that weakly learns

the function class Fϕ
γ = {fγ,w(x) = ϕ(γ⟨w, x⟩) | w ∈ Sd−1} over Gaussian inputs xi.i.d.∼ N(0, Id)

under β-bounded adversarial noise implies a polynomial-time algorithm for CLWEτ,γ .

Proof. Recall that a polynomial-time algorithm for CLWEτ,γ refers to distinguishing between
m samples (xi, zi = γ⟨w, xi⟩ + ξi mod 1)i=1,2,...,m, where xi ∼ N(0, Id), ξi ∼ N(0, τ) and
w ∼ U(Sd−1), from m random samples (xi, zi)i=1,2,...,m, where yi ∼ U([0, 1]) with non-negligible
advantage over the trivial random guess (See Appendix B.1 and B.2). We refer to the former sampling
process as drawing m i.i.d. samples from the CLWE distribution, where from now on we call P for
the CLWE distribution, and to the latter sampling process as drawing m i.i.d. samples from the null
distribution, which we denote by Q. Here, and everywhere in this proof, the number of samples m
denotes a quantity which depends polynomially on the dimension d.

Let ϵ = ϵ(d) ∈ (0, 1) be an inverse polynomial, and let A be a polynomial-time learning algorithm
that takes as input m samples from P , and with probability 2/3 outputs a hypothesis h : R → R
such that LP (h) ≤ LP (E[ϕ(z)])− ϵ. Since we are using the squared loss, we can assume without
loss of generality that h : R → [−1, 1] because clipping the output of the hypothesis h, i.e.,
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h̃(x) = sgn(h) ·max(|h(x)|, 1) is always an improvement over h pointwise because the labels are
always inside the range [−1, 1].
Let D be an unknown distribution on 2m i.i.d. samples, that is equal to either P or Q. Our reduction
consists of a statistical test that distinguishes between D = P and D = Q. Our test is using the
(successful in weakly learning fγ,w if D = P ) predictor h returned by A on (some appropriate
function of the first) m out of the 2m samples drawn from D. Then, we compute the empirical loss
of h on the remaining m samples from D, and m samples drawn from Q, respectively, and test

L̂D(h) ≤ L̂Q(h)− ϵ/4 . (16)

We conclude D = P if h passes the test and D = Q otherwise. The way we prove that this test
succeeds with probability 2/3− o(1), is by using the fact that A outputs a hypothesis h with ϵ-edge
with probability 2/3 when given m samples from P as input. In the following, we now formally
prove the correctness of this test.

We first assume D = P , and consider the first m samples (xi, zi)i=1,...,m drawn from P . Now
observe the elementary equality that for all v ∈ R it holds ϕ(v mod 1) = ϕ(v). Hence,

ϕ(γ⟨w, xi⟩+ ξi) = ϕ(zi).

Furthermore, notice that by the fact that the ϕ is an L-Lipschitz function we have

ϕ(γ⟨w, xi⟩) + ξ̃i = ϕ(zi) (17)

for some ξ̃i ∈ [−L|ξi|, L|ξi|]. By Mill’s inequality, for all i = 1, 2, . . . ,m we have P[|ξi| > β/L] ≤√︁
2/π exp(−β2/(2L2τ2)). Since β/(Lτ) = ω(

√
log d), we conclude that

P[
m⋃︂
i=1

{|ξi| > β/L}] ≤
√︁
2/π ·m exp(−β2/(8π2τ2)) = md−ω(1) = o(1) ,

where the last equality holds because m depends polynomially on d. Hence, it holds that
|ξ′i| ≤ L|ξi| ≤ β ,

for all i = 1, . . . ,m with probability 1−o(1) over the randomnesss of ξi, i = 1, 2, . . . ,m. Combining
the above with (17), we conclude that with probability 1 − o(1) over ξi, using our knowledge of
(xi, zi), we have at our disposal samples from the function fγ,w(x) = ϕ(γ⟨w, x⟩) corrupted by
adversarial noise of magnitude at most β. Let us write by ϕ(P ) the data distribution obtained by
applying ϕ to labels of the samples from P , and similarly write ϕ(Q) for the null distribution Q.

By assumption and the above, given these samples (xi, ϕ(zi))i=1,2,...,m we have that A outputs an
hypothesis h : Rd → [−1, 1] such that for m large enough, with probability at least 2/3,

Lϕ(P )(h) ≤ Lϕ(P )

(︃
E

(x,z)∼P
[ϕ(z)]

)︃
− ϵ,

for some ϵ = 1/poly(d) > 0.

Now, note that by Claim K.6, the marginal distribution of ϕ(γ⟨w, x⟩) is 2 exp(−2π2γ2)-close in
total variation distance to the distribution of ϕ(y), where y ∼ U([0, 1]). Moreover, notice that since
the loss ℓ is continuous, and h(x), x ∈ Rd and of course ϕ(z), y ∈ R both take values in [−1, 1],

sup
(x,y)∈Rd×R

ℓ(h(x), ϕ(y)) ≤ sup
(a,b)∈[−1,1]d×[−1,1]

ℓ(a, b) ≤ 4; . (18)

Let us denote c = E(x,y)∼Q[ϕ(y)] for simplicity. Clearly |c|, |ϕ(y)| ≤ 1. Also,

|Lϕ(P )(c)− Lϕ(Q)(c))| =
⃓⃓⃓⃓

E
(x,y)∼P

[(ϕ(y)− c)2]− E
(x,y)∼Q

[(ϕ(y)− c)2]

⃓⃓⃓⃓
≤
∫︂ 1

−1

ϕ(y)2|P (y)−Q(y)|dy + 2c

∫︂ 1

−1

|ϕ(y)||P (y)−Q(y)|dy

≤ (1 + 2|c|)
∫︂ 1

−1

|P (y)−Q(y)|dy

≤ 6 · TV (Py, Qy)

≤ 12 exp(−2π2γ2) .
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From the above, since Ez∼P [ϕ(z)] is the optimal predictor for P under the squared loss, we deduce

Lϕ(P )

(︃
E

(x,z)∼P
[ϕ(z)]

)︃
≤ Lϕ(P )

(︃
E

y∼Q
[ϕ(y)]

)︃
≤ Lϕ(Q)

(︃
E

y∼Q
[ϕ(y)]

)︃
+ 12 exp(−2π2γ2) .

Now since Ey∼Q[ϕ(y)] is the optimal predictor for Q under the squared loss, Lϕ(Q)(E[ϕ(y)]) ≤
Lϕ(Q)(h) for any predictor h. In addition, exp(−2π2γ2) = o(ϵ) since γ = ω(

√
log d) and ϵ is an

inverse polynomial in d. Hence, for d large enough, with probability at least 2/3

Lϕ(P )(h) ≤ Lϕ(P )(E[ϕ(γ⟨w, x⟩)])− ϵ

≤ Lϕ(Q)(h) + 12 exp(−2π2γ2)− ϵ

≤ Lϕ(Q)(h)− ϵ/2 . (19)

Using the remaining m samples from P , we now compute the empirical losses L̂ϕ(P )(h) =
1
m

∑︁m
i=1 ℓ(h(xi), ϕ(zi)), and L̂ϕ(Q)(h) =

1
m

∑︁m
i=1 ℓ(h(xi), ϕ(yi)), where (xi, zi) are drawn from

P and (xi, yi) are drawn from Q. By a standard use of Hoeffding’s inequality, and the fact that the
loss is bounded based on (18), it follows that

|L̂ϕ(P )(h)− Lϕ(P )(h)| ≤
ϵ

8
,

with probability 1− exp(−Ω(m)) and respectively

|L̂ϕ(Q)(h)− Lϕ(Q)(h)| ≤
ϵ

8
,

with probability 1− exp(−Ω(m)) for sufficiently large, but still polynomial in d, m. Combining the
last two displayed equations with (19), we have that, for m large enough, with probability at least
2/3− o(1),

L̂ϕ(P )(h) ≤ Lϕ(P )(h) +
ϵ

8
≤ L̂ϕ(Q)(h)−

ϵ

4
.

Hence, for m large enough, with probability at least 2/3−o(1), the test correctly concludes D = P or
D = Q by using the empirical loss L̂ϕ(D)(h), and comparing it with the value L̂ϕ(Q)(h)− ϵ/4.

Corollary D.2 (Restated Corollary 3.4). Let d ∈ N, γ = γ(d) ≥ 2
√
d and τ = τ(d) ∈ (0, 1) be

such that γ/τ = poly(d), and β = β(d) be such that β/τ = ω(
√
log d). Then, a polynomial-time

algorithm that weakly learns the cosine neuron class Fγ under β-bounded adversarial noise implies
a polynomial-time quantum algorithm for O(d/τ)-GapSVP.

Proof. The cosine function ϕ(z) = cos(2πz) is 2π-Lipschitz and 1-periodic. Hence, the result
follows from Theorem D.1 with L = 2π.

Remark D.3 (CLWE with subexponentially small noise). The intermediate regime of subexpo-
nentially small noise, which corresponds to the uncharted region between “Crypto-Hard” and

“Polynomial-Time Possible” in Figure 1 where β = exp(−Θ(dc)) for some c ∈ (0, 1), has not been
explored in our work. However, we conjecture that this regime is still hard for polynomial-time
algorithms. While [A6] did not consider this noise regime for the CLWE problem, given the prob-
lem’s analogy to the LWE problem [A36], it is plausible that the quantum reduction from CLWE
to GapSVP also applies for subexponentially small noise, since the quantum reduction for LWE
extends to subexponentially small noise. That is, it is possible that the requirement γ/β = poly(d)
in Theorem 2.2 can be relaxed, given the high degree of similarity between CLWE and LWE. If
this is true, then a polynomial-time algorithm for CLWE with γ ≥ 2

√
d and β ∈ (0, 1) implies a

polynomial-time quantum algorithm for O(d/β)-GapSVP. Hence, by Theorem 3.3, a polynomial-time
algorithm for our setting with subexponentially small noise would yield a “breakthrough” quantum
algorithm for GapSVP, since no polynomial-time algorithms are known to achieve subexponential
approximation factors of the form 2O(dc) for any constant c < 1. In more detail, the best known
algorithms for GapSVP are lattice block reductions, such as the Block Korkin-Zolotarev (BKZ)
algorithm and its variants [A39, A38, A33], or slide reductions [A14, A1], which actually solve the
harder search problem. These block reduction algorithms, which can be seen as generalizations of
the LLL algorithm, trade-off running time for better SVP approximation factors. However, none is
known to achieve approximation factors of the form 2O(dc) for any constant c < 1 in polynomial
time.
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E LLL-based Algorithm: Exponentially Small Noise

In this section we offer the required missing proofs from the Section 3.3.

E.1 The LLL Algorithm: Background and the Proof of Theorem 2.5

The most crucial component of the algorithm analyzed in this section is an appropriate use of the LLL
lattice basis reduction algorithm. The LLL algorithm receives as input n linearly independent vectors
v1, . . . , vn ∈ Zn and outputs an integer combination of them with “small" ℓ2 norm. Specifically, let
us (re)-define the lattice generated by n integer vectors as simply the set of integer linear combination
of these vectors.

Definition E.1. Given linearly independent v1, . . . , vn ∈ Zn, let

Λ = Λ(v1, . . . , vn) =

{︄
n∑︂

i=1

λivi : λi ∈ Z, i = 1, . . . , n

}︄
, (20)

which we refer to as the lattice generated by integer-valued v1, . . . , vn. We also refer to (v1, . . . , vn)
as an (ordered) basis for the lattice Λ.

The LLL algorithm is defined to approximately solve the search version of the Shortest Vector Problem
(SVP) on a lattice Λ, given a basis of it. We have already defined decision-SVP in Appendix B.3. We
define the search version below for completeness.

Definition E.2. An instance of the algorithmic ∆-approximate SVP for a lattice Λ ⊆ Zn is as follows.
Given a lattice basis v1, . . . , vn ∈ Zn for the lattice, Λ; find a vector ˆ︁x ∈ Λ, such that

∥ˆ︁x∥ ≤ ∆ min
x∈Λ,x ̸=0

∥x∥ .

The following theorem holds for the performance of the LLL algorithm, whose details can be found
in [A26].

Theorem E.3 ([A26]). There is an algorithm (namely the LLL lattice basis reduction algorithm),
which receives as input a basis for a lattice Λ given by v1, . . . , vn ∈ Zn which

(1) solves the 2
n
2 -approximate SVP for Λ and,

(2) terminates in time polynomial in n and log (maxni=1 ∥vi∥∞) .

In this work, we use the LLL algorithm for an integer relation detection application.

Definition E.4. An instance of the integer relation detection problem is as follows. Given a vector
b = (b1, . . . , bn) ∈ Rn, find an m ∈ Zn \ {0}, such that ⟨b,m⟩ =

∑︁n
i=1 bimi = 0. In this case, m

is said to be an integer relation for the vector b.

We now establish Theorem 2.5, by proving following more general result. In particular, Theorem
2.5 follows from the theorem below by choosing M = 2n+1∥m′∥2 and using notation m (used in
Theorem 2.5) instead of m′ (used in Theorem E.5), and m′ (used in Theorem 2.5) instead of t (used
in Theorem E.5).

The following theorem, is rigorously showing how the LLL algorithm can be used for integer relation
detection. The proof of the theorem, is based upon some key ideas of the breakthrough use of the
LLL algorithm to solve the average-case subset sum problem by Lagarias and Odlyzko [A24], and
Frieze [A13], and its recent extensions in the context of regression [A44, A16].

Theorem E.5. Let n,N ∈ Z>0. Suppose b ∈ (2−NZ)n with b1 = 1. Let also m′ ∈ Zn be an integer
relation of b, an integer M ≥ 2

n+1
2 ∥m′∥2 and set b−1 = (b2, . . . , bn) ∈ (2−NZ)n−1. Then running

the LLL basis reduction algorithm on the lattice generated by the columns of the following n × n
integer-valued matrix,

B =

(︃
M2Nb1 M2Nb−1

0(n−1)×1 I(n−1)×(n−1)

)︃
(21)

outputs t ∈ Zn which
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(1) is an integer relation for b with ∥t∥2 ≤ 2
n+1
2 ∥m′∥2∥b∥2 and,

(2) terminates in time polynomial in n,N, logM and log(∥b∥∞).

Proof. It is immediate that B is integer-valued and that the determinant of B is M2N ̸= 0, and
therefore the columns of B are linearly independent. Hence, from Theorem E.3, we have that the
LLL algorithm outputs a vector z = Bt with t ∈ Zn such that it holds

∥z∥2 ≤ 2
n
2 min

x∈Zn\{0}
∥Bx∥2. (22)

Moreover, it terminates in time polynomial in n and log(M2N∥b∞∥∞) and therefore in time polyno-
mial in n,N, logM and log(∥b∥∞).

Since m′ is an integer relation for b it holds, Bm′ = (0,m′
2, . . . ,m

′
n)

t and therefore

min
x∈Zn\{0}

∥Bx∥2 ≤ ∥Bm′∥2 ≤ ∥m′∥2.

Hence, combining with (22) we conclude

∥z∥2 ≤ 2
n
2 ∥m′∥2. (23)

or equivalently √︂
(M⟨2Nb, t⟩)2 + ∥t−1∥22 ≤ 2

n
2 ∥m′∥2, (24)

where t−1 := (t2, . . . , tn) ∈ Zn−1.

Now notice that since 2N ⟨b, t⟩ = ⟨2Nb, t⟩ ∈ Z either 2N ⟨b, t⟩ ≠ 0 and the left hand side of (24)
is at least M , or 2N ⟨b, t⟩ = 0. Since the former case is impossible given the right hand side of
inequality described in (24) and that M ≥ 2

n+1
2 ∥m′∥2 > 2

n
2 ∥m′∥2 we conclude that 2N ⟨b, t⟩ = 0

or equivalently ⟨b, t⟩ = 0. Therefore, t is an integer relation for b.

To conclude the proof it suffices to show that ∥t∥2 ≤ 2
n
2 +1∥m′∥2∥b∥2. Now again from (24) and the

fact that t is an integer relation for b, we conclude that

∥t−1∥2 ≤ 2
n
2 ∥m′∥2. (25)

But since ⟨b, t⟩ = 0 and b1 = 1 we have by Cauchy-Schwartz and (24)

|t1| = |⟨t−1, b−1⟩| ≤ ∥t−1∥2∥b−1∥2 ≤ 2
n
2 ∥m′∥2∥b∥2.

Hence,

∥t∥2 ≤
√
2max{2n

2 ∥m′∥2∥b∥2, 2
n
2 ∥m′∥2} ≤ 2

n+1
2 ∥m′∥2∥b∥2,

since ∥b∥2 ≥ |b1| = 1.

E.2 Towards proving Theorem 3.6: Auxiliary Lemmas

We first repeat the algorithm we analyze here for convenience, see Algorithm 4. Next, we present
here three crucial lemmas towards proving the Theorem 3.6. The proofs of them are deferred to later
sections, for the convenience of the reader.
Remark E.6. While the main recovery guarantee in Theorem 3.6 is stated in terms of the hidden
direction w ∈ Sd−1, Algorithm 4 in fact also recovers the vector γw (up to global sign), if one skips
the last line of the algorithm, which normalises the output to the unit sphere. Such recovery is shown
as a crucial step towards establishing the main result. This stronger recovery will be used for exact
phase retrieval (See Appendix F).

The first lemma establishes that given a small, in ℓ2 norm, “approximate" integer relation between
real numbers, one can appropriately truncate each number to some sufficiently large number of bits,
so that the truncated numbers satisfy a small in ℓ2-norm integer relation between them. This lemma is
important for the appropriate application of the LLL algorithm, which needs to receive integer-valued
input. Recall that for real number x we denote by (x)N its truncation to its first N bits after zero, i.e.
(x)N := 2−N⌊2Nx⌋.
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Algorithm 4: LLL-based algorithm for learning the single cosine neuron (Restated)

Input: i.i.d. noisy γ-single cosine neuron samples {(xi, zi)}d+1
i=1 .

Output: Unit vector ŵ ∈ Sd−1 such that min(∥ŵ − w∥, ∥ŵ + w∥) = exp(−Ω((d log d)3)).
for i = 1 to d+ 1 do

zi ← sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2π) mod 1

Construct a d× d matrix X with columns x2, . . . , xd+1, and let N = d3(log d)2.
if det(X) = 0 then

return ŵ = 0 and output FAIL
Compute λ1 = 1 and λi = λi(x1, . . . , xd+1) given by (λ2, . . . , λd+1)

⊤ = X−1x1.
Set M = 23d and ṽ =

(︁
(λ2)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N

)︁
∈ R2d+2

Output (t1, t2, t) ∈ Zd+1 × Zd+1 × Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)× (2d+ 3) integer-valued matrix,(︃

M2N (λ1)N M2N ṽ
0(2d+2)×1 I(2d+2)×(2d+2)

)︃
Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 ∨ (t2/g) /∈ {−1, 1}d+1 then

return ŵ = 0 and output FAIL
ŵ ← SolveLinearEquation(w′, X⊤w′ = (t2/g)z + (t1/g))
return ŵ/∥ŵ∥ and output SUCCESS.

Lemma E.7. Suppose n ≤ C0d for some constant C0 > 0 and s ∈ Rn satisfies for some m ∈ Zn

that |⟨m, s⟩| = exp(−Ω((d log d)3)). Then for some sufficiently large constant C > 0, if N =
⌈d3(log d)2⌉ there is an m′ ∈ Zn+1 which is equal with m in the first n coordinates, which satisfies
that ∥m′∥2 ≤ Cd

1
2 ∥m∥2 and is an integer relation for the numbers (s1)N , . . . , (sn)N , 2−N .

The proof of Lemma E.7 is in Section K.3.

The following lemma establishes multiple structural properties surrounding d+ 1 samples from the
cosine neuron, of the form (xi, zi), i = 1, . . . , d+ 1 given by (3).

Lemma E.8. Suppose that γ ≤ dQ for some constant Q > 0. For some hidden direction w ∈ Sd−1

we observe d+ 1 samples of the form (xi, zi), i = 1, . . . , d+ 1 where for each i, xi is a sample from
the distribution N(0, Id), and

zi = cos(2π(γ⟨w, xi⟩)) + ξi,

for some unknown and arbitrary ξi ∈ R satisfying |ξi| ≤ exp(−(d log d)3). Denote by X ∈ Rd×d the
random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1− exp(−Ω(d))
the following properties hold.

(1) maxi=1,...,d+1 ∥xi∥2 ≤ 10
√
d.

(2) mini=1,...,d+1 | sin(2πγ⟨xi, w⟩)| ≥ 2−d.

(3) For all i = 1, . . . , d + 1 it holds zi ∈ [−1, 1] and zi = cos(2π(γ⟨xi, w⟩ + ξ′i)), for some
ξ′i ∈ R with |ξ′i| = exp(−Ω((d log d)3)).

(4) The matrix X is invertible. Furthermore, ∥X−1x1∥∞ = O(2
d
2

√
d).

(5) 0 < |det(X)| = O(exp(d log d)).

The proof of Lemma E.8 is in Section K.3.

As explained in the description of our main results in Section 3.3, a step of crucial importance
is to show that all “near-minimal" integer relations, such as (8), for the (truncated versions of)
λi, λiz̃i, i = 1, . . . , d+ 1 are "informative". In what follows, we show that the integer relation with
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appropriately “small" norm are indeed informative in terms of recovering the unknown ϵi,Ki of (8)
and therefore the hidden vector w. The following technical lemma is of instrumental importance for
the analysis of the algorithm.
Lemma E.9. Suppose that γ ≤ dQ for some constant Q > 0, and N = ⌈d3(log d)2⌉. Let ξ′ ∈ Rd+1

be such that ∥ξ′∥∞ ≤ exp(−(d log d)3) and w ∈ Sd−1. Suppose that for all (xi)i=1,...,d+1 are i.i.d.
N(0, Id) and that for each i = 1, . . . , d+1 for some z̃i ∈ [−1/2, 1/2] there exist ϵi ∈ {−1, 1},Ki ∈
Z with |Ki| ≤ dQ such that

γ⟨w, xi⟩ = ϵiz̃i +Ki − ξ′i. (26)

Define also X ∈ Rd×d the matrix with columns the x2, . . . , xd+1 and set λ1 = 1 and
(λ2, . . . , λd+1)

t = X−1x1. Then with probability 1 − exp(−Ω(d)), any integer relation t ∈
Z2d+3 between the numbers (λ1)N , . . . , (λd+1)N , (λ1z̃1)N , . . . , (λd+1z̃d+1)N , 2−N with ∥t∥2 ≤
22d satisfies in the first 2d + 2 coordinates it is equal to a non-zero integer multiple of
(K1, . . . ,Kd+1, ϵ1, . . . , ϵd+1).

The proof of Lemma E.9 is in Section E.4.

E.3 Proof of Theorem 3.6

We now proceed with the proof of the Theorem 3.6 using the lemmas from the previous sections.

Proof. We analyze the algorithm by first analyze it’s correctness step by step as it proceeds and then
conclude with the polynomial-in-d bound on its termination time.

We start with using part 3 of Lemma E.8 which gives us that zi ∈ [−1, 1] with probability 1 −
exp(−Ω(d)) for all i = 1, 2, . . . , d + 1. Therefore the zi’s remain invariant under the operation
zi ← sgn(zi)min(|zi|, 1), with probability 1− exp(−Ω(d)). Furthermore, using again the part 3 of
Lemma E.8 the z̃i’s computed in the second step satisfy

cos(2πz̃i) = cos(2π(γ⟨w, xi⟩+ ξ′i))

for some ξ′i ∈ R with |ξ′i| ≤ exp(−Ω((d log d)3)). Using the 2π- periodicity of the cosine as well as
that it is an even function we conclude that for all for i = 1, . . . , d+1 there exists ϵi ∈ {−1, 1},Ki ∈
Z for which it holds for every i = 1, . . . , d+ 1

γ⟨w, xi⟩ = ϵiz̃i +Ki − ξ′i. (27)

Notice that if we knew the exact values of ϵi,Ki, since we already know xi, z̃i the problem would
reduce to inverting a (noisy) linear system of d + 1 equations and d unknowns. The rest of the
algorithm uses an appropriate application of the LLL to learn the values of ϵi,Ki and solve the (noisy)
linear system.

Now, notice that using the part 5 of Lemma E.8 with probability 1− exp(−Ω(d)) the matrix X is
invertible and the algorithm is not going to terminate in the second step.

In the following step, the λi, i = 1, 2, . . . , d + 1 are given by λ1 = 1 and the unique λi =
λi(x1, . . . , xd+1) ∈ R, i = 2, . . . , d+ 1 satisfying

d+1∑︂
i=1

λixi = x1 +X(λ2, . . . , λd+1)
⊤ = 0.

Hence, we conclude that for the unknown direction w it holds

d+1∑︂
i=1

λiγ⟨w, xi⟩ = γ⟨w,
d+1∑︂
i=1

λixi⟩ = 0.

Using now (27) and rearranging the noise terms we conclude

d+1∑︂
i=1

λiz̃iϵi +

d+1∑︂
i=1

λiKi =

d+1∑︂
i=1

λiξ
′
i. (28)
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Now using the fourth part of Lemma E.8 and the upper bound on ∥ξ′∥∞ we have with probability
1− exp(−Ω(d)) that⃓⃓⃓⃓
⃓
d+1∑︂
i=1

λiξ
′
i

⃓⃓⃓⃓
⃓ = O(d∥λ∥∞∥ξ′∥∞) = O(d2

d
2

√
d exp(−Ω((d log d)3))) = exp(−Ω((d log d)3)).

Hence, using (28) we conclude that with probability 1− exp(−Ω(d)) it holds⃓⃓⃓⃓
⃓
d+1∑︂
i=1

λiz̄iϵi +

d+1∑︂
i=1

λiKi

⃓⃓⃓⃓
⃓ = exp(−Ω((d log d)3)). (29)

Define s ∈ R2d+2 given by si = λi, i = 1, . . . , d+1 and si = λi−d−1z̃i−d−1, i = d+2, . . . , 2d+2.
Define also m ∈ Z2d+2 given by mi = Ki, i = 1, . . . , d+1 and mi = ϵi−d−1, i = d+1, . . . , 2d+2.
For these vectors, given the above, it holds with probability 1 − exp(−Ω(d)) that |⟨s,m⟩| =
exp(−Ω((d log d)3)) based on (29). Now notice that

max
i=1,...,d+1

|Ki| = O(γ
√
d) (30)

with probability 1− exp(−Ω(d)). Indeed, from the definition of Ki we have for large enough values
of d that |Ki| ≤ γ|⟨w, xi⟩| + 1 + |ξi| ≤ γ∥xi∥2 + 2. Recall that using part 1 of Lemma E.8 for
all i = 1, . . . , d + 1 it holds ∥xi∥2 = O(

√
d) with probability 1 − exp(−Ω(d)). Hence, for all i,

|Ki| = O(γ
√
d), with probability 1− exp(−Ω(d)). Therefore, since |ϵi| = 1 for all i = 1, . . . , d+1

it also holds with probability 1− exp(−Ω(d)) that ∥m∥2 = O(d∥K∥∞) = O(γd
3
2 ).

We now employ Lemma E.7 for our choice of s and m to conclude that for the N chosen by the
algorithm there exists an integer m′

2d+3 so that m′ = (m,m′
2d+3) ∈ Z2d+3 is an integer relation for

(λ1)N , . . . , (λd+1)N , (λ1z1)N , . . . , (λd+1zd+1)N , 2−N with ∥m′∥2 = O(d2γ).

Now we set b ∈ (2−NZ)2d+3 given by bi = (λi)N for i = 1, . . . , d+ 1, bi = (λi−d−1z̃i−d−1)N for
i = d + 2, . . . , 2d + 2, and b2d+3 = 2−N . Notice that b1 = (1)N = 1 and furthermore that the ṽ
defined by the algorithm satisfies ṽ = (b2, . . . , b2d+3). On top of this, we have that the m′ defined in
previous paragraph is an integer relation for b with ∥m′∥2 = O(d2γ). Since γ is polynomial in d we
have that 2

2d+3+1
2 ∥m′∥2 ≤ 23d for large values of d. Hence, to analyze the LLL step of our algorithm

we use Theorem E.5 for n = 2d+ 3, to conclude that the output of the LLL basis reduction step is a
t = (t1, t2, t

′) ∈ Zd+1 × Zd+1 × Z which is an integer relation for b and it satisfies that

∥t∥2 ≤ 2d+2∥m′∥2∥b∥2,
with probability 1− exp(−Ω(d)).

Now we use part 4 of Lemma E.8 to conclude that ∥λ∥2 ≤ d∥λ∥∞ = O(2
d
2 d

3
2 ), with probability

1− exp(−Ω(d)). Since for any real number x it holds |(x)N | ≤ |x|+1 and z̃i ∈ [−1/2, 1/2] for all
i = 1, 2, . . . , d+1 we conclude that ∥b∥2 = O(∥λ∥2) = O(2

d
2 d

3
2 ), with probability 1−exp(−Ω(d)).

Furthermore, since ∥m′∥ = O(d2γ) we conclude that since γ is polynomial in d, for large values of
d it holds,

∥t∥2 = O(2
3d
2 ) ≤ 22d , (31)

with probability 1− exp(−Ω(d)).
We now use the above and (30) to crucially apply Lemma E.9 and conclude that for some non-zero
integer multiple c it necessarily holds (t1)i = cKi and (t2)i = cϵi, with probability 1− exp(−Ω(d)).
Note that the assumptions of the Lemma can be checked to be satisfied in straightforward manner.
Now, the greatest common divisor between the elements of t2 equals either c or−c, since the elements
of t2 are just c-multiples of ϵi which themselves are taking values either −1 or 1. Hence the step of
the algorithm using Euclid’s algorithm outputs g such that g = ϵc for some ϵ ∈ {−1, 1}. In particular,
t2/g = ϵ(ϵ1, . . . , ϵd+1) ̸= 0 implying that the algorithm does not enter the if-condition branch on the
next step.

Finally, since c = ϵg it also holds t1/g = ϵ(K1, . . . ,Kd+1) and therefore the last step of the
algorithm is solving the linear equations for i = 2, . . . , d+ 1 given by

⟨xi, ŵ⟩ = ϵ (ϵiz̃i + ϵKi) = ϵγ⟨xi, w⟩+ ϵξ′i,
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where we have used (27). Hence if ξ′ = (ξ′2, . . . , ξ
′
d+1)

t we have

ŵ = ϵγw + ϵX−1ξ .

Hence,
∥ŵ − ϵγw∥2 ≤ ∥X−1ξ∥2.

Now, using standard results on the extreme singular values of X , such as [A37, Equation (3.2)],
we have that σmax(X

−1) = 1/σmin(X) ≤ 2d, with probability 1 − exp(−Ω(d)). Hence, with
probability 1− exp(−Ω(d)) it holds

∥ŵ − ϵγw∥2 ≤ O
(︂
2

d
2 ∥ξ∥2

)︂
.

Now since almost surely ∥ξ∥2 ≤ dβ and β ≤ exp(−(d log d)3) we have 2
d
2 ∥ξ∥2 = O(β) =

exp(−Ω((d log d)3)) and therefore, with probability 1− exp(−Ω(d)) it holds

∥ŵ − ϵγw∥2 ≤ O (β) = exp(−Ω((d log d)3)). (32)

Finally, since |∥x∥2−∥x′∥2| ≤ ∥x−x′∥2 we also have |∥ŵ∥2−γ| ≤ O(β) = exp(−Ω((d log d)3))
and therefore⃦⃦⃦⃦

ŵ

∥ŵ∥
− ϵw

⃦⃦⃦⃦
2

= γ−1

⃦⃦⃦⃦
γ

∥ŵ∥2
ŵ − ϵwγ

⃦⃦⃦⃦
2

≤ γ−1

(︃
∥ŵ − ϵγw∥2 +

∥ŵ − γ∥2
γ − |γ − ∥ŵ∥2|

)︃
≤ γ−1 (∥ŵ − ϵγw∥2 +O(β))

≤ O

(︃
β

γ

)︃
= exp(−Ω((d log d)3)) ,

since γ = ω(β). Since ϵ ∈ {−1, 1} the proof of correctness is complete.

For the termination time, it suffices to establish that the step using the LLL basis reduction algorithm
and the step using the Euclid’s algorithm can be performed in polynomial-in-d time. For the LLL
step we use Theorem E.5 to conclude that it runs in polynomial-time in d,N, logM and log ∥λ∥∞.
Now clearly N, logM are polynomial in d. Furthermore, by part 4 of Lemma E.8 also log ∥λ∥∞
is polynomial in d with probability 1 − exp(−Ω(d)). The Euclid’s algorithm takes time which is
polynomial in d and in log ∥t2∥∞. But we have established in (31) that ∥t2∥2 ≤ ∥t∥2 ≤ 22d, with
probability 1 − exp(−Ω(d)) and therefore the Euclid’s algorithm step also indeed requires time
which is polynomial-in-d.

E.4 Proof of Lemma E.9

We focus this section on proving the crucial Lemma E.9. As mentioned above, the proof of the lemma
is quite involved, and, potentially interestingly, it requires the use of anticoncentration properties of
the coefficients λi which are rational function of the coordinates of xi. In particular, the following
result is a crucial component of establishing Lemma E.9.
Lemma E.10. Suppose w ∈ Sd−1 is an arbitrary vector on the unit sphere and γ ≥ 1. For two
sequences of integer numbers C = (Ci)i=1,2,...,d+1, C

′ = (C ′
i)i=1,2,...,d+1 we define the polynomial

PC,C′(x1, . . . , xd+1) in d(d+ 1) variables which equals
det(x2, . . . , xd+1) (⟨γw, x1⟩C1 + (C ′)1) (33)

+

d+1∑︂
i=2

det(x2, . . . , xi−1,−x1, xi+1, . . . , xd+1) (⟨γw, xi⟩Ci + (C ′)i) ,

where each x1, . . . , xd+1 is assumed to have a d-dimensional vector form.

We now draw xi’s in an i.i.d. fashion from the standard Gaussian measure on d dimensions. For any
two sequences C,C ′ it holds

Var(PC,C′(x1, . . . , xd+1)) = (d− 1)!γ2
∑︂

1≤i<j≤d+1

(Ci − Cj)
2 + d!

d+1∑︂
i=1

(C ′)2i .

Furthermore, for some universal constant B > 0 the following holds. If Ci, C
′
i are such that either

the Ci’s are not all equal to each other or the C ′
i’s are not all equal to zero, then for any ϵ > 0,

P(|PC,C′(x1, . . . , xd+1)| ≤ ϵ) ≤ B(d+ 1)ϵ
1

d+1 . (34)
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Proof. The second part follows from the first one combined with the fact that under the assumptions
on C,C ′ in holds that for some i = 1, . . . , d+ 1 either (Ci − C ′

i)
2 ≥ 1 or (C ′

i)
2 ≥ 1. In particular,

in both cases since γ ≥ 1,

Var(PC,C′(x1, . . . , xd+1)) ≥ (d− 1)! ≥ 1.

Now we employ [A30, Theorem 1.4] (originally proved in [A7]) which implies that for some universal
constant B > 0, since our polynomial is multilinear and has degree d+ 1 it holds for any ϵ > 0

P
(︃
|PC,C′(x1, . . . , xd+1)| ≤ ϵ

√︂
Var(PC,C′(x1, . . . , xd+1))

)︃
≤ B(d+ 1)ϵ

1
d+1 .

Using our lower bound on the variance we conclude the result.

Now we proceed with the variance calculation. First we denote

µ(x−1) := det(x2, . . . , xd+1) ,

and for each i > 2

µ(x−i) := det(x2, . . . , xi−1,−x1, xi+1, . . . , xd+1).

As all coordinates of the xi’s are i.i.d. standard Gaussian, for each i = 1, . . . , d + 1 the random
variable µ(x−i) has mean zero and variance d!. Furthermore, let us denote ℓ(xi) := ⟨γw, xi⟩, which
is a random variable with mean zero and variance γ2. In particular µ(x−i)ℓ(xi) has also mean zero
as µ(x−i) is independent with xi. Now notice that under this notation,

PC,C′(x1, . . . , xd+1) =

d∑︂
i=1

Ciµ(x−i)ℓ(xi) +

d∑︂
i=1

C ′
iµ(x−i).

Hence, we conclude

E[PC,C′(x1, . . . , xd+1)] = 0.

Now we calculate the second moment of the polynomial. We have

E[P 2
C,C′(x1, . . . , xd+1)] =

d+1∑︂
i=1

C2
i d!γ

2 +
∑︂

1≤i̸=j≤d

CiCjE[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)] +

d+1∑︂
i=1

C ′2
i d! .

Now for all i ̸= j,

E[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)]

= E[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)⟨γw, xi⟩⟨γw, xj⟩]

=

d∑︂
p,q=1

γ2wpwqE[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q]

Now observe that the monomials of the product

det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q

have the property that each coordinate of the various x′
is appears at most twice; in other words

the degree per variable is at most 2. Hence, the monomials that could potentially have not zero
mean with respect to the standard Gaussian measure are the ones where all coordinates of every
xi, i = 1, . . . , d + 1 appear exactly twice or none at all, in which case the monomial has mean
equal to the coefficient of the monomial. By expansion of the determinants, we have that the studied
product of polynomials equals to the sum over all σ, τ permutations on d variables of the terms

(−1)sgn(στ
−1)(. . . xi−1,σ(i−1)(−x1)σ(i)xi+1,σi+1 . . .)(. . . xj−1,τ(j−1)(−x1)τ(j)xj+1,τ(j+1) . . .)(xi)p(xj)q.

Hence, a straightforward inspection allows us to conclude that for every coordinate to appear
exactly twice, we need the corresponding permutations σ, τ to satisfy τ(i) = p, σ(j) = q (from the
coordinates (xi)p, (xj)q), σ(i) = τ(j) (from the coordinate of x1) and finally σ(x) = τ(x) for all
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x ∈ [d] \ {i, j} (the rest coordinates). Furthermore, the value of the mean of this monomial would
then be given simply by (−1)sgn(στ−1).

Now we investigate more which permutations σ, τ can satisfy the above conditions. The last two
conditions imply in straightforward manner that τ−1σ is the transposition (i, j). Hence, τ−1σ(j) = i.
But we have σ(j) = q and therefore i = τ−1σ(j) = τ−1(q) which gives τ(i) = q. We have though
as our condition that τ(i) = p which implies that for such a pair of permutations σ, τ to exist it must
hold p = q. Furthermore, for any σ with σ(j) = p there exist a unique τ satisfying the above given
by τ = σ ◦ (i, j), where ◦ corresponds to the multiplication in the symmetric group Sd. Hence, if
p ̸= q no such pair of permutations exist and the mean of the product is zero. If p = q there are
exactly (d− 1)! such pairs (all permutations σ sending j to p and τ given uniquely given σ) which
correspond to (d− 1)! monomials with mean (−1)sgn(σ)+sgn(τ) = (−1)sgn(σ−1τ) = −1, where we
used that the sign of a transposition is −1. Combining the above we conclude that

E[det(. . . , xi−1,−x1, xi+1, . . .) det(. . . , xj−1,−x1, xj+1, . . .)(xi)p(xj)q] = −(d− 1)!1(p = q).

Hence, since ∥w∥2 = 1,

E[µ(x−i)ℓ(xi)µ(x−j)ℓ(xj)] =

d∑︂
p=1

−γ2w2
p = −γ2.

Therefore,

E[P 2
C,C′(x1, . . . , xd+1)] =

d+1∑︂
i=1

C2
i d!γ

2 − (d− 1)!γ2
∑︂

1≤i ̸=j≤d+1

CiCj +

d+1∑︂
i=1

C ′2
i d!

= (d− 1)!γ2
∑︂

1≤i<j≤d+1

(Ci − Cj)
2 + d!

d+1∑︂
i=1

(C ′)2i .

The proof is complete.

We now proceed with the proof of Lemma E.9.

Proof of Lemma E.9. Let t1, t2 ∈ Zd+1, t′ ∈ Z with ∥(t1, t2, t′)∥2 ≤ 22d which is an integer
relation;

d+1∑︂
i=1

(λi)N (t1)i +

d+1∑︂
i=1

(λiz̃i)N (t2)i + t′2−N = 0.

First note that it cannot be the case that t1 = t2 = 0 as from the integer relation it should be also
that t′ = 0 and therefore t = 0 but an integer relation needs to be non-zero. Hence, from now on we
restrict ourselves only to the case where t1, t2 are not both zero. Now, as clearly |t′| ≤ 22d it also
holds ⃓⃓⃓⃓

⃓
d+1∑︂
i=1

(λi)N (t1)i +

d+1∑︂
i=1

(λiz̃i)N (t2)i

⃓⃓⃓⃓
⃓ ≤ 22d2−N .

Consider T the set of all pairs t = (t1, t2) ∈ (Zd+1 × Zd+1) \ {0} for which there does not exist a
c ∈ Z \ {0} such that for i = 1, . . . , d+ 1 (t1)i = cKi and (t2)i = cϵi.

To prove our result it suffices therefore to prove that

P

⎛⎝ ⋃︂
t∈T ,∥t∥2≤22d

{︄⃓⃓⃓⃓
⃓
d+1∑︂
i=1

(λi)N (t1)i +

d+1∑︂
i=1

(λiz̃i)N (t2)i

⃓⃓⃓⃓
⃓ ≤ 22d/2N

}︄⎞⎠ ≤ exp(−Ω(d))

for which, since for any x it holds |x−(x)N | ≤ 2−N and ∥(t1, t2)∥1 ≤
√︁

2(d+ 1)∥(t1, t2)∥2 ≤ 23d

for large values of d, it suffices to prove that for large enough values of d,

P

⎛⎝ ⋃︂
t∈T ,∥t∥2≤22d

{︄⃓⃓⃓⃓
⃓
d+1∑︂
i=1

λi(t1)i +

d+1∑︂
i=1

λiz̃i(t2)i

⃓⃓⃓⃓
⃓ ≤ 24d/2N

}︄⎞⎠ ≤ exp(−Ω(d)).
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Notice that by using the equations (26) it holds
d+1∑︂
i=1

λi(t1)i +

d+1∑︂
i=1

λiz̃i(t2)i

=

d+1∑︂
i=1

λi(t1)i +

d+1∑︂
i=1

λi(ϵiγ⟨w, xi⟩ − ϵiKi + ϵiξ
′
i)(t2)i

=

d+1∑︂
i=1

λi (ϵi⟨γw, xi⟩(t2)i − ϵiKi(t2)i + ϵiξi(t2)i + (t1)i)

=

d+1∑︂
i=1

λi (⟨γw, xi⟩Ci + C ′
i) +

d∑︂
i=1

λiξ
′
iCi,

for the integers Ci = ϵi(t2)i and C ′
i = −ϵiKi(t2)i + (t1)i. Since t ∈ T some elementary alge-

bra considerations imply that either not all (Ci)i=1,...,d+1 are equal to each other or one of the
(C ′

i)i=1,2,...,d+1 is not equal to zero. Let us call this region of permissible pairs (C,C ′) as C. Fur-
thermore, given that all t satisfy ∥t∥2 ≤ 22d, and that for all Ki satisfy |Ki| ≤ dQ it holds that any
(C,C ′) defined through the above equations with respect to t1, t2, ϵi,Ki satisfies the crude bound
that

∥(C,C ′)∥22 ≤ ∥t2∥22 + 2(d2Q∥t2∥22 + ∥t1∥22) ≤ 26d.

Hence, using this refined notation it suffices to show

P

⎛⎝ ⋃︂
(C,C′)∈C,∥(C,C′)∥2≤23d

{︄⃓⃓⃓⃓
⃓
d+1∑︂
i=1

λi (⟨γw, xi⟩Ci + C ′
i) +

d∑︂
i=1

λiξiCi

⃓⃓⃓⃓
⃓ ≤ 24d/2N

}︄⎞⎠ ≤ exp(−Ω(d)).

Now notice that from our exponential-in-d norm upper bound assumptions on C, the part 4 of Lemma
E.8, and since N = o((d log d)3), the following holds with probability 1− exp(−Ω(d))

d∑︂
i=1

|λiξiCi| = O(24d∥ξ∥∞) = O(exp(−(d log d)3)) = O(2−N ).

Hence it suffices to show that for large enough values of d,

P

⎛⎝ ⋃︂
(C,C′)∈C,∥(C,C′)∥2≤23d

{︄⃓⃓⃓⃓
⃓
d+1∑︂
i=1

λi (⟨γw, xi⟩Ci + C ′
i)

⃓⃓⃓⃓
⃓ ≤ 25d/2N

}︄⎞⎠ ≤ exp(−Ω(d)).

Using the polynomial notation of Lemma E.10 and specifically notation (33), as well as the fact that
by Cramer’s rule λi are rational functions of the coordinates of xi satisfying λidet(x2, . . . , xd+1) =
det(. . . , xi−1,−x1, xi+1, . . .) it suffices to show

P

⎛⎝ ⋃︂
(C,C′)∈C,∥(C,C′)∥2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ |det(x2, . . . , xd+1)|25d/2N}

⎞⎠ ≤ exp(−Ω(d)).

Using the fifth part of the Lemma E.8 there exists some constant D > 0 for which it suffices to show

P

⎛⎝ ⋃︂
(C,C′)∈C,∥(C,C′)∥2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ 2Dd log d/2N}

⎞⎠ ≤ exp(−Ω(d)).

Now since N = Θ(d3(log d)2) we have N = ω(d log d). Hence, for sufficiently large d it suffices to
show

P

⎛⎝ ⋃︂
(C,C′)∈C,∥(C,C′)∥2≤23d

{|PC,C′(x1, . . . , xd+1)| ≤ 2−
N
2 }

⎞⎠ ≤ exp(−Ω(d)).
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By a union bound, it suffices∑︂
(C,C′)∈C,∥(C,C′)∥2≤23d

P
(︂
|PC,C′(x1, . . . , xd+1)| ≤ 2−

N
2

)︂
≤ 2−Ω(d). (35)

Now the integer points (C,C ′) with ℓ2 norm at most 23d are at most 23d
2+d as they have at most

23d+1 choices per coordinate. Furthermore, using the anticoncentration inequality (34) of Lemma
E.10, we have for any (C,C ′) ∈ C that it holds for some universal constant B > 0,

P
(︂
|PC,C′(x1, . . . , xd+1)| ≤ 2−

N
2

)︂
≤ B(d+ 1)2−

N
2(d+1) .

Combining the above with the left hand side of (35), the right hand side is at most

B(d+ 1)23d
2+d2−

N
2(d+1) = exp(O(d2)− Ω(N/d)) = exp(−Ω(d)),

where we used that N/d = Ω(d2 log d). This completes the proof.

F Exact Recovery for Phase Retrieval with Optimal Sample Complexity

Phase retrieval is a classic inverse problem [A12] with important applications in computational
physics and signal processing, and which has been thoroughly studied in the high-dimensional
statistics and non-convex optimization literature [A4, A21, A18, A35, A5, A9, A28, A29, A34]. In
the noiseless setting, the phase retrieval problem asks one to exactly recover a hidden signal w ∈ Rd,
up to global symmetry ±w, given sign-less measurements of the form

y = |⟨x,w⟩| .

As mentioned in Section 1.2, our cosine learning problem can be seen as “containing” the phase
retrieval problem since the even-ness of the cosine function immediately “erases” the sign of the inner
product ⟨x,w⟩. More precisely, the phase retrieval problem can be reduced to the cosine learning
problem by simply applying the cosine function to the measurements and noticing that

cos(2π|⟨x,w⟩|) = cos(2π⟨x,w⟩) .

Hence, Algorithm 1, without the last normalization step (see Remark E.6), can be immediately used to
exactly solve phase retrieval under exponentially small noise. Formally, Theorem 3.6 (for γ = ∥w∥2)
certifies near exact recovery for (Gaussian) phase retrieval using only d+ 1 samples:
Corollary F.1 (Recovery of Phase Retrieval under exponentially small noise). Let us consider
noise level β ≤ (2π)−1 exp(−(d log d)3), and arbitrary w ∈ Rd such that 1 ≤ ∥w∥2 = poly(d).
Suppose {(xi, yi)}i=1,...d+1 are i.i.d. samples of the form xi ∼ N(0, Id) and yi = |⟨xi, w⟩| + ξ̌i,
with arbitrary |ξ̌i| ≤ β. Then Algorithm 1 with input {(xi, zi = cos(2πyi))}i=1,...d+1 returns an
un-normalized output w′ satisfying min{∥w′ −w∥2, ∥w′ +w∥2} = O(β) and terminates in poly(d)
steps, with probability 1− exp(−Ω(d)).

Remarkably, our lattice-based algorithm improves upon the AMP-based algorithm analysed in [A5],
which requires m ≈ 1.128d in the high-dimensional regime for exact recovery, and therefore shows
that AMP is not optimal amongst polynomial-time algorithms in the regime of exponentially small
adversarial noise. Hence, this adds phase retrieval to a list of problems, including for example linear
regression with discrete coefficients, where in the exponentially-small noise regime no computational-
statistical gap is present [A44] [A23, Section 4.2.1]. We note that the possibility that LLL might
be efficient for exponentially-small noise phase retrieval was already suggested in [A44] and later
established for discrete-valued w in [A16]. In fact, previous results by [A2] have already shown
that exact (i.e., noiseless) phase retrieval is possible with optimal sample complexity using an LLL-
based algorithm very similar to ours. We also remark that our result is stated under the Gaussian
distribution, as opposed to generic i.i.d. entries as in [A5]. The reason is that we rely crucially on
anti-concentration properties of random low-degree polynomials, which are satisfied in the Gaussian
case [A7, A30]. However, these anti-concentration properties can be extended to log-concave random
variables [A7, Theorem 8], and as a result our analysis easily extends to xi following a product
distribution of a density which is both log-concave and sub-Gaussian. In this respect, we strengthen
previous results by [A2], whose analysis is tailored to the Gaussian case.
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An interesting question is whether the sample size d + 1 is information-theoretically optimal to
recover w up to error β from the studied phase retrieval setting. In other words, whether the recovery
is possible with d samples by any estimator, and irrespective of any computational constraints. For
simplicity, we focus on the noiseless case β = 0, in which case the goal is exact recovery. We note
that the answer depends on the prior knowledge on w, or, assuming throughout a rotationally invariant
prior for w, on the prior distribution of ∥w∥. Indeed, in the extreme setting where the hidden vector
w ∈ Rd is unconstrained, we immediately observe that there are 2d possible vectors w′ satisfying
|⟨xi, w

′⟩| = |⟨xi, w⟩|. As a consequence, by taking into consideration the global sign flip symmetry,
exact recovery is possible only with probability at most 2−d+1. On the other extreme, if one knew
that ∥w∥ = 1, then generically only two (w and −w) of these 2d possibilities will satisfy the exact
norm constraint, making exact recovery (up to global sign flip) possible with only d samples in that
case. The following theorem addresses the general case between these two extremes, and establishes
that exact recovery using only d samples cannot be generally certified with high probability, in stark
contrast with Corollary F.1.

Theorem F.2. Assume a uniform prior on the direction w/∥w∥2 ∈ Sd−1, and assume that γ =
∥w∥2 > 0 is distributed independently of w according to a probability density qγ which satisfies the
following assumption: For some B >

√
2 and C > 0, the function qγ : R→ [0,+∞) satisfies

qγ(t)t
−d+1 is non-increasing in t ∈ [1, B] , and

∫︂ B

√
2

qγ(t)dt ≥ C. (36)

Consider d ≥ 2 i.i.d. samples {xi, yi = |⟨xi, w⟩|}i=1...d, where xi are i.i.d. N(0, Id) and w is
drawn from two independent variables: w/∥w∥ uniformly distributed in Sd−1 and ∥w∥ is distributed
with density qγ satisfying (36). Let A be any estimation procedure (deterministic or randomized)
that takes as input {(xi, yi)}i=1,...,d and outputs w′ ∈ Rd. Then with probability ω(d−2) it holds
w′ ̸∈ {−w,w}.

This theorem is proved in Appendix J. The main idea of the proof is to show that, with non-neglibile
probability (ω(d−2)), some of the ‘spurious’ solutions w′ satisfying |⟨xi, w

′⟩| = |⟨xi, w⟩| are such
that ∥w′∥ ≤ ∥w∥. Combined with our assumption on the prior qγ and the optimality of MAP
estimators in terms of error probability, the result follows. We also note that Assumption (36) is very
mild, and is satisfied e.g. when γ is uniformly distributed in [1, B], or when w is either uniformly
distributed in a circular ring, or follows a Gaussian distribution. Therefore, our proposed algorithm, as
well as the algorithm used in [A2], obtains a sharp optimal sample complexity in this phase-retrieval
setup, in the sense that even one less sample than the sample complexity of our algorithm is not
sufficient for exact recovery with high probability.

Finally, we would like to highlight that our result and the described lower bound should be also
understood in contrast with the recently established weak recovery threshold that d/2(1 + o(1))
measurements actually suffice for achieving some non-trivial (constant) error with w [A35].

G Approximation with One-Hidden-Layer ReLU Networks

The members of the cosine function class Fγ = {cos(2πγ⟨w, x⟩) | w ∈ Sd−1} consist of a
composition of the univariate 2π-Lipschitz, 1-periodic function ϕ(z) = cos(2πz), and an one-
dimensional linear projection z = γ⟨w, x⟩. Notice that since x ∼ N(0, Id), z lies within the
interval [−R,R], where R = γ

√︁
2 log(1/δ), with probability at least 1− δ due to Mill’s inequality

(Lemma K.3). Hence, to achieve ϵ-squared loss over the Gaussian input distribution, it suffices for the
ReLU network to uniformly approximate the univariate function ϕ(z) = cos(2πz) on some compact
interval [−R(γ, ϵ), R(γ, ϵ)], and output 0 for all z ∈ R outside the compact interval.

The uniform approximability of univariate Lipschitz functions by the family of one-hidden-layer
ReLU networks on compact intervals is well-known. To establish our results, we will use the
quantitative result from [A11], which we reproduce here as Lemma G.1. We present our ReLU
approximation result for the cosine function class right after, in Theorem G.2.

Lemma G.1 ([A11, Lemma 19]). Let σ(z) = max{0, z} be the ReLU activation function, and fix
L, η,R > 0. Let f : R→ R be an L-Lipschitz function which is constant outside an interval [−R,R].
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There exist scalars a, {αi, βi}wi=1, where w ≤ 3RL
η , such that the function

h(x) = a+

w∑︂
i=1

αiσ(x− βi)

is L-Lipschitz and satisfies

sup
x∈R

⃓⃓
f(x)− h(x)

⃓⃓
≤ η.

Moreover, one has |αi| ≤ 2L.
Theorem G.2. Let d ∈ N, γ ≥ 1, and ϵ ∈ (0, 1) be a real number. Then, the cosine function class
Fγ = {cos(2πγ⟨w, x⟩) | w ∈ Sd−1} can be ϵ-approximated (in the squared loss sense) over the
Gaussian input distribution x ∼ N(0, Id) by one-hidden-layer ReLU networks of width at most

O

(︃
γ
√︂

log(1/ϵ)
ϵ

)︃
.

Proof. Let R = ⌈γ
√︁

2 log(8/ϵ)⌉+ 1/2, and z = γ⟨w, x⟩. Then, by Mill’s inequality (Lemma K.3)
and the fact that R > γ,

P(|z| ≥ R) ≤
√︃

2

π
exp

(︃
− R2

2γ2

)︃
≤ ϵ

8
. (37)

Let f : R → R be a function which is equal to cos(2πz) on [−R,R] and 0 outside the compact
interval. We claim that f is still 2π-Lipschitz. First, note that cos(2πR) = cos(−2πR) = 0.
Moreover, f is 2π-Lipschitz within the interval [−R,R] and 0-Lipschitz in the region |z| > R.
Hence, it suffices to consider the case when one point z falls inside [−R,R] and another point z′
falls outside the interval. Without loss of generality, assume that z ∈ [−R,R] and z′ > R. The same
argument applies for z′ < −R. Then,

|f(z′)− f(z)| = |f(R)− f(z)| ≤ 2π|R− z| ≤ 2π|z′ − z| .

Now set L = 2π, η =
√︁
ϵ/2, R = ⌈γ

√︁
2 log(8/ϵ)⌉ + 1/2 in the statement of Lemma G.1, and

approximate f with a one-hidden-layer ReLU network g(z) of width at most O
(︃
γ
√︂

log(1/ϵ)
ϵ

)︃
.

Then,

E
x∼N(0,Id)

[(cos(2πγ⟨w, x⟩)− g(γ⟨w, x⟩))2] = E
z∼N(0,γ)

[(cos(2πz)− g(z))2]

=
1

γ
√
2π

∫︂
(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

=
1

γ
√
2π

∫︂
|z|≤R

(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

+
1

γ
√
2π

∫︂
|z|>R

(cos(2πz)− g(z))2 exp(−z2/(2γ2))dz

≤ η2 +
4

γ
√
2π

∫︂
|z|>R

exp(−z2/(2γ2))dz

≤ η2 + 4(ϵ/8)

< ϵ ,

where the first inequality follows from the fact that the squared loss is bounded by 4 for all z /∈
[−R,R] since cos(2πz) ∈ [−1, 1] and g(z) ∈ [−η, η] ⊂ [−1, 1] and the second inequality uses (37).
This completes the proof.

H Covering Algorithm for the Unit Sphere

The (very simple) randomized exponential-time algorithm for constructing an ϵ-cover of the d-
dimensional unit sphere Sd−1 is presented in Algorithm 5. We prove the algorithm’s correctness in
the following claim, which is essentially an appropriate application of the coupon collector problem.
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Algorithm 5: Exponential-time algorithm for constructing an ϵ-cover of the unit sphere
Input: A real number ϵ ∈ (0, 1), and natural number d ∈ N.
Output: An ϵ-cover of the unit sphere Sd−1 containing 2N logN points, where

N = (1 + 4/ϵ)d with probability 1− exp(−Ω(d)).
Initialize the cover C = ∅, and set m = 2N logN .
for i = 1 to m do

Sample x ∼ N(0, 1)
v ← x/∥x∥2
Add v ∈ Sd−1 to C

return C.

Claim H.1. Let d ∈ N be a number, let ϵ ∈ (0, 1) be a real number, and let N = ⌈(1 + 4/ϵ)d⌉.
Then, ⌈2N logN⌉ vectors sampled from Sd−1 uniformly at random forms an ϵ-cover of Sd−1 with
probability at least 1− exp(−Ω(d)).

Proof. By Lemma C.2, we know that there exists an ϵ/2-cover of Sd−1 with size less than N =
⌈(1 + 4/ϵ)d⌉. Let us assume for simplicity and without loss of generality, that it’s size equals to N ,
by adding additional arbitrary points on the sphere to the cover if necessary. We denote this ϵ/2-cover
by K. Of course, K ⊆ Sd−1 by the definition of an ϵ-cover in [A42, Section 4.2].

Now, observe that any family W of M vectors on the sphere, say W = {w1, . . . , wM}, with the
property that for any v ∈ K there exist i ∈ [M ] such that ∥v − wi∥2 ≤ ϵ/2 is an ϵ-cover of Sd−1.
Indeed, let x ∈ Sd−1. Since K is an ϵ/2-cover, there exist v ∈ K with ∥x− v∥2 ≤ ϵ/2. Moreover,
using the property of the family W , there exists some i ∈ [M ] for which ∥v − wi∥2 ≤ ϵ/2. By
triangle inequality we have ∥wi − x∥2 ≤ ϵ.

Now, by definition of the ϵ/2-cover it holds⋃︂
v∈K

(︁
B(v, ϵ/2) ∩ Sd−1

)︁
= Sd−1,

where by B(x, r) we denote the Euclidean ball in Rd with center x ∈ Rd and radius r. Hence,
denoting by µ the uniform probability measure on the sphere, by a simple union bound we conclude
that for all v ∈ K, Nµ(B(v, ϵ/2) ∩ Sd−1) ≥ 1 or

µ(B(v, ϵ/2) ∩ Sd−1) ≥ 1

N
. (38)

In other words, if we fix some v ∈ K and sample a uniform point w on the sphere, it holds that with
probability at least 1/N we have ∥w − v∥2 ≤ ϵ/2.

Hence, the probability that M random i.i.d. unit vectors w1, . . . , wM are all at distance more than
ϵ/2 from a fixed v ∈ K is upper bounded by

P

(︄
M⋂︂
i=1

{∥ui − v∥2 > ϵ/2}

)︄
≤ (1− 1/N)m ≤ exp(−m/N) .

Now let M = 2N logN . By the union bound, the probability that there exists some v ∈ K not
covered by M random unit vectors w1, . . . , wM is upper bounded by

P

(︄⋃︂
v∈K
{∥ui − v∥2 > ϵ/2 for all i = 1, . . . ,M}

)︄
≤ |K| · exp(−M/N) ≤ 1/N .

Since N = exp(Ω(d)), we conclude that M = 2N logN random unit vectors form an ϵ-cover of
Sd−1 with probability 1− exp(−Ω(d)). The proof is complete.
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I The Population Loss and Parameter Estimation

Let f(x) = cos(2πγ⟨w, x⟩) be the target function defined on Gaussian inputs x ∼ N(0, Id). In this
section, we consider the proper learning setup, where we wish to learn a unit vector w′ such that the
hypothesis gw′(x) = cos(2πγ⟨w′, x⟩) achieves small squared loss with respect to the target function
f . Towards this goal, we define the squared loss associated with a unit vector w′ ∈ Sd−1.
Definition I.1. Let d ∈ N, γ ≥ 1, and w ∈ Sd−1 be some fixed hidden direction. For any w′ ∈ Sd−1,
we define the population loss L(w′) of the hypothesis gw′(x) = cos(2πγ⟨w′, x⟩) with respect to w
by

L(w′) = Ex∼N(0,Id)[(cos(2πγ⟨w, x⟩)− cos(2πγ⟨w′, x⟩))2] . (39)

Notice that because the cosine function is even, the population loss inherits the sign symmetry and
satisfies that L(w′) = L(−w′) for all w′ ∈ Sd−1. Reflecting that symmetry, we obtain a Lipschitz
relation between the population loss and the squared ℓ2 difference between w and w′ (or −w′ if
∥w + w′∥2 ≤ ∥w − w′∥2). In particular, when γ is diverging, we can rigorously show that recovery
of w with o(1/γ) ℓ2-error is sufficient for (properly) learning the associated cosine function with
constant edge. This is formally stated in Corollary I.3. We start with the following useful proposition.
Proposition I.2. For every w′ ∈ Sd−1 it holds

L(w′) = 2
∑︂

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)

(︁
1− ⟨w,w′⟩k

)︁
. (40)

In particular,
L(w′) ≤ 4π2γ2 min{∥w − w′∥22, ∥w + w′∥22}. (41)

Proof. Let {hk}k∈Z≥0
be the (probabilist’s) normalized Hermite polynomials. We have that the pair

Z = ⟨w, x⟩, Zρ = ⟨w′, x⟩ is a bivariate pair of standard Gaussian random variables with correlation
ρ = ⟨w,w′⟩. Using the fact that hk’s form an orthonormal basis in Gaussian space (See item (1) of
Lemma K.10), we have by Parseval’s identity that

L(w′) = 2(E[cos(2πγZ)2]− E[cos(2πγZ) cos(2πγZρ)])

= 2
∑︂
k∈Z

(︁
E[cos(2πγZ)hk(Z)]2 − E[cos(2πγZ)hk(Z)]E[cos(2πγZρ)hk(Z)]

)︁
.

Using now item (2) of Lemma K.10 for ρ = 1 and for ρ = ⟨w,w′⟩, we have

L(w′) = 2
∑︂
k∈Z

(︃
(2πγ)2k

k!
exp(−4π2γ2)− ⟨w,w′⟩k (2πγ)

2k

k!
exp(−4π2γ2)

)︃

= 2
∑︂

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)

(︁
1− ⟨w,w′⟩k

)︁
,

as we wanted for the first part.

For the second part, notice that since the summation on the right hand from Eq. (40) is only containing
an even power of ⟨w,w′⟩ it suffices to establish the upper bound in terms of ∥w − w′∥22. The exact
same argument can be used to obtain the upper bound in terms of ∥w + w′∥22, due to the observed
sign symmetry of the population loss with respect to w′.

Now notice that using the elementary inequality that for α ∈ (0, 1), x ≥ 1 we have (1−a)x ≥ 1−ax,
we conclude that for all k ≥ 0 (the case k = 0 is trivial) it holds

1− ⟨w,w′⟩k = 1− (1− 1

2
∥w − w′∥22)k ≤

k

2
∥w − w′∥22 .

Hence, combining with the first part, we have

L(w′) ≤
∑︂

k∈2Z≥0

k
(2πγ)2k

k!
exp(−4π2γ2)∥w − w′∥22

≤
∑︂

k∈Z≥0

k
(2πγ)2k

k!
exp(−4π2γ2)∥w − w′∥22 .
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Now notice that
∑︁

k∈Z≥0
k (2πγ)2k

k! exp(−4π2γ2) is just the mean of a Poisson random variable with
parameter (and mean) equal to 4π2γ2. Hence, the proof of the second part of the proposition is
complete.

The following Corollary is immediate given the above result and the item (3) of Lemma K.10.

Corollary I.3. Let d ∈ N and γ = γ(d) = ω(1). For any w′ ∈ Sd−1 which satisfies min{∥w −
w′∥22, ∥w + w′∥22} ≤ 1

16π2γ2 and sufficiently large d,

L(w′) ≤ Var(cos(2πγ⟨w, x⟩))− 1/12 .

Proof. Using our condition and w′ and the second part of the Proposition I.2 we conclude

L(w′) ≤ 1

4
.

Now using item (3) of Lemma K.10 we have that for large values of d (since γ = ω(1)), it holds

1

3
≤ Var(cos(2πγ⟨w, x⟩)) .

The result follows from combining the last two displayed inequalities.

J Optimality of d+ 1 samples for exact recovery under norm priors

In this appendix, we argue that d+ 1 samples are necessary in order to obtain exact recovery with
probability 1− exp(−Ω(d)), irrespective of any estimation procedure. Since our upper bound holds
for arbitrary w/∥w∥2 ∈ Sd−1, and arbitrary 1 ≤ γ = ∥w∥2 = poly(d), it suffices to prove a lower
bound for some distributional assumption on γ and w/∥w∥2 which respects these constraints. Hence,
for our lower bound, we assume a uniform prior on the direction w/∥w∥2 ∈ Sd−1, and assume that
γ = ∥w∥2 > 0 is distributed independently of w according to a probability density qγ which satisfies
the following assumption.

Assumption J.1. For some B >
√
2 and C > 0, the function qγ : R → [0,∞) satisfies that

qγ(t)t
−d+1 is non-increasing for t ∈ [1, B], and

∫︁ B√
2
qγ(t)dt ≥ C.

We now state our lower bound, restating Theorem F.2 for convenience.

Theorem J.2. Consider d ≥ 2 samples {(xi, yi = |⟨xi, w⟩|)}i=1...d, in which the xi’s are drawn
i.i.d. from N(0, Id), and w is drawn from two independent variables: w/∥w∥ uniformly distributed in
Sd−1 and ∥w∥ distributed with density satisfying Assumption J.1. Let A be any estimation procedure
(deterministic or randomized) that takes as input {(xi, yi)}i=1,...,d and outputs w′ ∈ Rd. Then with
probability ω(d−2) it holds w′ ̸∈ {−w,w}.

Proof. The key idea of the proof will be to establish that with probability ω(d−2) over the
draws of the data {xi}i=1,...,d and the hidden vector w, the following event occurs: There ex-
ist a pair of antipodal solutions {−w′, w′} different from ±w, such that the posterior prob-
ability measure p(w̃ | {(xi, yi)}i=1,...,d) over any possible hidden vector w̃ ∈ Rd satisfies
p({−w′, w′} | {(xi, yi)}) ≥ p({−w,w}| | {(xi, yi)}). In this event, the MAP estimator will
thus fail to exactly recover {−w,w} at least with probability 1/2 (over the randomness of the algo-
rithm). Finally, using the optimality of the Maximum-a-Posteriori Bayes estimator in minimizing the
probability of error, the result follows.

Let X = (xi)i=1...d ∈ Rd×d, be the matrix where for i = 1, . . . , d with i-th row equal to x⊤
i , and

X−1 its inverse (which exists with probability 1 since the determinant of a squared matrix with i.i.d.
Gaussian entries is non-zero almost surely [A8]). Furthermore, let y = (yi)i=1...d ∈ Rd the vector of
the labels. Let us introduce binary variables ε ∈ {−1, 1}d, and the associated matrix

Aε := X−1diag(ε)X, .

where by diag(ε) we refer to the d× d diagonal matrix with the vector ε on the diagonal.
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We say that a w′ ∈ Rd is a feasible solution if for all i = 1, . . . , d it holds that |⟨xi, w
′⟩| = yi. Notice

that if w′ is a feasible solution, then for any ε ∈ {−1, 1}d, Aεw
′ is also a feasible solution. This

follows since for each i = 1, . . . , d it holds by definition x⊤
i X

−1 = e⊤i , where ei is the i-th standard
basis vector, and therefore x⊤

i Aϵ = εix
⊤
i . Hence we have

|x⊤
i Aεw

′| = |εix⊤
i w

′| = yi .

On the other hand, if w′ is a feasible solution, then there exists ε ∈ {−1, 1}d, for which for all
i = 1, . . . , d, it holds ⟨xi, w

′⟩ = εiyi. Therefore, using the definition of yi and the already established
properties of Aε,

⟨xi, w
′⟩ = εiyi = x⊤

i εiw = x⊤
i Aεw .

Hence, X(w′−Aεw) = 0. As X is invertible almost surely, we conclude that w′ = Aεw. Combining
the above, we conclude that the set of feasible solutions is almost surely the set

Bw = {Aεw|ε ∈ {−1, 1}d}.
Of course, this set includes w when ε = 1 is the all-one vector, and −w when ε = −1 is the all-
minus-one vector. Furthermore, from the almost sure linear independence of all xi, i = 1, . . . , d+ 1,
and that w is drawn independent of X , we conclude that for all ε ̸∈ {−1,1} it holds almost surely
that Aεw ̸∈ {−w,w}.

Now consider the joint density of the setup in this notation (where we recall that w̃ ∈ Rd denotes the
generic vector to be recovered, while w is the actual draw of the prior), which decomposes as

p(X, w̃, y) = pX(X) · pw̃(w̃) · p(y | X, w̃) , X ∈ Rd×d, w̃ ∈ Rd, y ∈ Rd .

Notice that since we work under the noiseless assumption it holds p(y | X, w̃) = δ (y − |Xw̃|),
where by a slight abuse of notation for a vector v ∈ Rd we denote by |v| ∈ Rd the vector with
elements |vi|, i = 1, . . . , d. Further recall that in this notation we sample a hidden w ∼ pw̃ and
independently a matrix X ∼ pX . We observe the vector of labels y = |Xw| and X . The posterior
probability p(w̃ | X, y) is therefore

p(w̃ | X, y) =
p(X, w̃, y)

p(X, y)
∝ pw̃(w̃) · p(y | X, w̃) . (42)

From our previous argument, we know that this posterior distribution is necessarily supported in the
set Bw of 2d points of the form (X−1 · diag(ε))y for any ε ∈ {−1, 1}d, which include w. Denoting
by δ(w̃) the Dirac unit mass at w̃, we have

p(w̃ | X, y) =
1

Z

∑︂
w′∈Bw

αX,y(w
′)δ(w̃ − w′) , (43)

for some normalizing constant Z and some coefficients αX,y(ε) that we now determine. We evaluate
the posterior distribution over w̃ from (42) using the coarea formula [A27]: Given an arbitrary test
function ϕ ∈ C∞

c (Rd), and F : Rd → Rd defined as F (u) := |Xu|, we have

Z

∫︂
Rd

p(w̃ | X, y)ϕ(w̃)dw̃ =

∫︂
Rd

pw̃(w̃)δ(y − F (w̃))ϕ(w̃)dw̃ (44)

=

∫︂
Rd

(︄∫︂
F−1(z)

δ(y − z)pw̃(u)ϕ(u)|DF (u)|−1dH0(u)

)︄
dz(45)

=

∫︂
Rd

δ(y − z)

(︃∫︂
Bz

pw̃(u)ϕ(u)|DF (u)|−1dH0(u)

)︃
dz (46)

=
∑︂

w′∈Bw

pw̃(w
′)ϕ(w′)|det(X)|−1 , (47)

where dH0 is the 0-th dimensional Hausdorff measure. From (43) we also have that∫︂
Rd

p(w̃ | X, y)ϕ(w̃)dw̃ =
∑︂

w′∈Bw

αX,y(w
′)ϕ(w′) ,
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hence we deduce that the weights in (43) satisfy

∀ ε , αX,y(X
−1 · diag(ε)y) = pw̃(X

−1 · diag(ε)y)|det(X)|−1 .

By plugging y = |Xw| = diag(ε∗)Xw for the sign coefficients ε∗i = sign(⟨xi, w⟩), and recalling
the definition of Aε, we conclude that the posterior distribution over the hidden vector w̃ satisfies
almost surely

p(w̃ | X, y) =

{︃
1
Z pw̃(w̃) w̃ ∈ Bw
0 w̃ ̸∈ Bw

where Z :=
∑︁

w̃∈Bw
pw̃(w̃).

Now to prove the desired result, based on the folklore optimality of the Maximum-A-Posteriori (MAP)
estimator in minimizing probability of failure of exact recovery (see Lemma J.4 for completeness) it
suffices to prove that with probability ω(d−2) there exists w′ ∈ Bw \ {−w,w} such that

pw̃(w
′) ≥ pw̃(w) . (48)

Indeed, recall that since pw̃ is rotationally invariant, we have pw̃(w̃) = pw̃(−w̃) for any w̃, therefore
(48) immediately implies pw̃(±w′) ≥ pw̃(±w). Hence, the MAP estimator (and therefore any
estimator) fails to exactly recover an element of {w,−w} with probability ω(d−2), as we wanted.

Now, using a standard change of variables to spherical coordinates, for all w̃ ∈ Rd the density of
the prior equal to pw̃(w̃) = qγ(∥w̃∥2)∥w̃∥−d+1

2 . In particular, based on Assumption 36 it suffices to
prove that with probability ω(d−2) there exists a w′ ∈ Bw \ {−w,w} such that 1 ≤ ∥w′∥2 < ∥w∥2,
or equivalently there exists ε ∈ {−1, 1}d \ {−1,1} such that

1 ≤ ∥Aεw∥2 < ∥w∥2 . (49)

We establish (49) by actually studying only one such ε, potentially the simplest choice, which we call
ε(1) where ε

(1)
1 = −1 and ε

(1)
j = +1 for j = 2, . . . , d. This is accomplished by the following key

lemma:

Lemma J.3. Suppose X ∈ Rd×d has i.i.d. N(0, Id) entries, and w is drawn independently of X ,
such that w/∥w∥2 is drawn from the uniform measure of Sd−1 and its norm ∥w∥2 is independent
of w/∥w∥2 and distributed according to a density qγ satisfying Assumption (36). Set also Aε(1) =

X−1diag(ε(1))X . Then with probability greater than ω(d−2), it holds

1 ≤ ∥Aε(1)w∥2 < ∥w∥2 . (50)

This lemma thus proves (49) and the failure of the MAP estimator with probability ω(d−2).

We conclude the proof by formally stating and using the optimality of the MAP estimator in terms
of minimizing the error probability, by relating it to a standard error correcting setup. From our
previous argument, we can reduce ourselves to decoders that operate in the discrete set Bw, since any
w̃ outside this set will be different from ±w almost surely.

Lemma J.4. Suppose X is a discrete set, and let x∗ ∈ X be an element to be recovered, with
posterior distribution p(x|y), x ∈ X , after having observed the output y = g(x∗). Then, any
estimator producing x̂ = x̂(y) will incur in an error probability P(x̂ ̸= x∗) at least 1−maxx p(x|y),
with equality if x̂ is the Maximum-A-Posterior (MAP) estimator which outputs argmaxx p(x|y).

We apply the Lemma J.4 for X containing all the pairs of antipodal elements of Bw, that is X =
{{w′,−w′} : w′ ∈ Bw} and x∗ = {w,−w}. As we have established that the MAP estimator fails to
exactly recover x∗ with probability ω(d−2) this completes the proof.
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J.1 Proof of Lemma J.3

Proof. If e1 denotes the first standard basis vector, observe that by elementary algebra,

Aε(1) = X−1
(︁
Id − 2e1e

⊤
1

)︁
X = Id − 2x̃1x1 , (51)

where x⊤
1 is the first row of X and x̃1 is the first column of X−1.

We need a spectral decomposition of matrices of the form A = Id − 2uv⊤, which is provided in the
following lemma:

Lemma J.5. Let η ∈ R and A = Id − 2ηuv⊤ ∈ Rd×d, with ∥u∥2 = ∥v∥2 = 1, and α = ⟨u, v⟩.
Then A⊤A has the eigenvalue 1 with multiplicity d− 2, and two additional eigenvalues λ1, λ2 with
multiplicity 1 given by

λ1 = 1 + 2η
(︂
η − α−

√︁
η2 + 1− 2ηα

)︂
, λ2 = 1 + 2η

(︂
η − α+

√︁
η2 + 1− 2ηα

)︂
. (52)

In particular, λmin(A
⊤A) = λ1 < 1 and λmax(A

⊤A) = λ2 > 1 whenever η > 0 and |α| < 1.

From (51), we now apply Lemma J.5. By noting that ⟨x1, x̃1⟩ = 1 since XX−1 = Id, note that the
lemma applies for Aε(1) with parameters

α =

⟨︃
x1

∥x1∥2
,

x̃1

∥x̃1∥2

⟩︃
=

1

∥x1∥2 · ∥x̃1∥2
, and η = ∥x1∥2 · ∥x̃1∥2 .

Since |α| ∈ (0, 1] by Cauchy-Schwarz and and αη = 1, it follows that η ≥ 1 and the eigenvalues of
A⊤

ε(1)
Aε(1) are

(︁
λmin(A

⊤
ε(1)

Aε(1)), 1, . . . , 1, λmax(A
⊤
ε(1)

Aε(1))
)︁
, with

λmin(A
⊤
ε(1)Aε(1)) = 1 + 2η

(︂
η − α−

√︁
η2 − 1

)︂
= −1 + 2η2 − 2η

√︁
η2 − 1 (53)

λmax(A
⊤
ε(1)Aε(1)) = 1 + 2η

(︂
η − α+

√︁
η2 − 1

)︂
= −1 + 2η2 + 2η

√︁
η2 − 1 . (54)

In fact, we claim that |α| < 1 with probability 1, which by Lemma J.5 implies that

λmin(A
⊤
ε(1)Aε(1)) < 1 < λmax(A

⊤
ε(1)Aε(1)) . (55)

Indeed, recalling from Lemma J.5 that by definition α = ⟨ x1

∥x1∥ ,
x̃1

∥x̃1∥ ⟩ with x̃1 = (X⊤X)−1x1, first
observe that |α| < 1 almost surely. Indeed, |α| = 1 iff x̃1 and x1 are colinear, that is for some scalar
λ it holds (X⊤X)−1x1 = λx1, which in particular implies that x1 is an eigenvector of (X⊤X)−1,
or equivalently of X⊤X . Letting yi = x⊤

i x1, this means that

λx1 = (X⊤X)x1 =

(︄∑︂
i

xix
⊤
i

)︄
x1 =

∑︂
i

xiyi .

Since X has rank d almost surely, {xi}i=1...d are linearly independent almost surely, which in turn
implies that yi = ⟨x1, xi⟩ = 0 for i ̸= 1 almost surely. This is a 0-probability event since the xi’s are
continuously distributed and independent of each other.

In what follows to ease notation we denote ε(1) simply by ε and in particular Aε(1) simply by Aε. In
the following lemma we establish that η ≲ d2 with probability close to 1. The proof of this fact is
given in Section J.2. More precisely, we claim the following:

Lemma J.6. There exist constants C > 0 and d0 > 0 such that for any d ≥ d0,

P
(︁
η ≤ Cd2

)︁
≥ 1− 1/d .

We shall now establish (50) building from Lemma J.6. We first relate the spectrum of Aε with the
probability that ∥Aεw∥2 < ∥w∥2 or equivalently

⃦⃦⃦
Aε

w
∥w∥2

⃦⃦⃦
2
< 1. Let w̌ := w/∥w∥, so w = γw̌,

with w̌ ∈ Sd−1 uniformly distributed, and independent from γ. We claim that with respect to the
randomness of w̌ but conditioning on X it holds

Pw̌(∥Aεw̌∥ < 1) =
2

π
arcsin

(︄√︄
1− λmin(A⊤

ε Aε)

λmax(A⊤
ε Aε)− λmin(A⊤

ε Aε)

)︄
. (56)
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Indeed, assuming without loss of generality that the two eigenvectors of A⊤
ε Aε associated with the

distinct eigenvalues λmin(A
⊤
ε Aε) and λmax(A

⊤
ε Aε) are respectively e1 and e2, the first two standard

basis vectors, we have that

∥Aεw̌∥22 = λmin(A
⊤
ε Aε)w̌

2
1 + λmax(A

⊤
ε Aε)w̌

2
2 +

∑︂
i>2

w̌2
i ,

and therefore, using the uniform distribution on Sd−1 of w̌, it holds

Pw̌(∥Aεw̌∥2 < 1) = Pw̌(∥Aεw̌∥22 ≤ ∥w̌∥2)
= Pw̌(λmin(A

⊤
ε Aε)w̌

2
1 + λmax(A

⊤
ε Aε)w̌

2
2 ≤ w̌2

1 + w̌2
2)

= Pw̌

(︃
λmin(A

⊤
ε Aε)

w̌2
1

w̌2
1 + w̌2

2

+ λmax(A
⊤
ε Aε)

w̌2
2

w̌2
1 + w̌2

2

≤ 1

)︃
= Pθ∼U [0,2π]

(︁
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
)︁
,(57)

where the last equality follows since the marginal of w̌ corresponding to the first two coordinates is
also rotationally invariant.

From the last identity of (57) and (55), we verify that

Pθ∼U [0,2π]

(︁
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
)︁

=
1

2π

∫︂ 2π

0
1

[︁
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
]︁
dθ

=
2

π

∫︂ π/2

0
1

[︁
λmin(A

⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 ≤ 1
]︁
dθ

=
2

π
θ∗ ,

where θ∗ is the only solution in (0, π/2) of

λmin(A
⊤
ε Aε) cos(θ)

2 + λmax(A
⊤
ε Aε) sin(θ)

2 = 1 . (58)

From (58) we obtain directly (56), as claimed.

Now, the quantity ρ :=
1−λmin(A

⊤
ε Aε)

λmax(A⊤
ε Aε)−λmin(A⊤

ε Aε)
, expressed in terms of α = 1/η and η becomes

ρ =
1− λmin(A

⊤
ε Aε)

λmax(A⊤
ε Aε)− λmin(A⊤

ε Aε)
=
−η2 + η

√︁
η2 − 1 + 1

2η
√︁

η2 − 1
,

and satisfies 0 ≤ ρ = ρ(η) < 1 almost surely. Denoting

f(η) := arcsin (
√
ρ) ,

we verify that f ′(η) < 0 for η ≥ 1. In order to leverage Lemma J.6, we consider the event
that η ≤ C2d

2. We can lower bound f(η) as follows. First, observe that t ↦→ arcsin(
√
t) is

non-decreasing in t ∈ (0, 1), thus

f(η) ≥ arcsin

⎛⎝√︄η(
√︁

η2 − 1−
√︁

η2) + 1

2η2

⎞⎠ ,

since

−η2 + η
√︁
η2 − 1 + 1

2η
√︁
η2 − 1

≥ −η
2 + η

√︁
η2 − 1 + 1

2η2
=

η(
√︁
η2 − 1−

√︁
η2) + 1

2η2
.

Moreover, since
√
t+ 1−

√
t = 1

2
√
t
+O(t−3/2), we have that

η(
√︁
η2 − 1−

√︁
η2) + 1

2η2
=

3

4
η−2 +O(η−4) ,
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which, combined with the fact that arcsin(t) = t+O(t3) for |t| ≤ 1, leads to

f(η) ≥ 3

4
η−1 +O(η−2) .

Finally, using Lemma J.6 and the definition of f(η), we obtain that

Pw̌(∥Aεw̌∥ ≤ 1) ≥ 6

4πC2
d−2 +O(d−4)

with probability (over X) greater than 1/2. Since X and w are independent, we conclude that

PX,w̌(∥Aεw̌∥ ≤ 1) ≥ 1

2

(︃
6

4πC2
d−2 +O(d−4)

)︃
= C4d

−2 +O(d−4) , (59)

where C4 is a constant.

Now we show that

Pw̌

(︂
∥Aεw̌∥22 ≥ 1− 1/

√
d
)︂
≥ 1− exp

(︂
−Ω(
√
d)
)︂

.

Recall that w̌ is distributed uniformly on the sphere Sd−1, and that all eigenvalues of A⊤
ε Aε are all

greater or equal to 1, except for λmin. Assuming without loss of generality that e1 is the eigenvector
corresponding to λmin, we have for any w̌ ∈ Sd−1,

∥Aεw̌∥22 ≥ 1− w̌2
1 .

Let H be the hemisphere H = {w̌1 ≤ 0 | w̌ ∈ Sd−1}. By the classic isoperimetric inequality for the
unit sphere Sd−1 [A25, Chapter 1], the measure of the r-neighborhood of H , which we denote by
Hr = {u ∈ Sd−1 | dist(u,H) ≤ r}, satisfies

Pw̌(Hr) = Pw̌(w̌1 ≤ r) ≥ 1− exp(−(d− 1)r2/2) .

An analogous inequality holds for the event {w̌1 ≥ −r} by the sign symmetry of the distribution of
w̌. Plugging in r = d−1/4, It follows that

Pw̌

(︂
∥Aεw̌∥2 ≥ 1− 1/

√
d
)︂
≥ Pw̌

(︂
1− w̌2

1 ≥ 1− 1/
√
d
)︂

= Pw̌

(︂
|w̌1| ≤ 1/d1/4

)︂
≥ 1− exp

(︂
−Ω(
√
d)
)︂

.

Therefore, combining the above with (59) using the union bound, we obtain

PX,w̌

(︂√︁
1− d−1/2 ≤ ∥Aεw̌∥ ≤ 1

)︂
≥ C4d

−2 +O(d−4)− exp(−Ω(
√
d)) = C4d

−2 +O(d−4) .

(60)

Finally, since B >
√
2 and

√
1− d−1/2 ≥ 1/

√
2, we have

Pw̃(γ
√︁

1− d−1/2 ≥ 1) = Pw̃

(︃
γ ≥ 1√

1− d−1/2

)︃
=

∫︂ B

1√
1−d−1/2

qγ(v)dv := Qs (61)

Since w = γw̌, where w̌ is uniformly distributed in Sd−1 and γ is independent of w̌, we conclude by
assembling (60) and (61) that

PX,w (1 ≤ ∥Aεw∥ ≤ ∥w∥) ≥ (C4d
−2 +O(d−4))Qs = C5d

−2 +O(d−4) ,

since Qs ≥ Q1/
√
2 ≥ C for d ≥ 2 thanks to Assumption 36. This concludes the proof of (50).
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J.2 Auxiliary Lemmas

Proof of Lemma J.4. Observe that
P(x̂ ̸= x∗) = 1− P(x̂ = x∗) = 1− p(x̂|y) ≥ 1−max

x
p(x|y) ,

with equality if x̂ is the Maximum-a-Posteriori estimator.

Proof of Lemma J.5. First notice that we can reduce to a two-by-two matrix, since the directions
orthogonal to both u and v clearly belong to an eigenspace of eigenvalue 1. The result follows directly
by computing the characteristic equation det[A⊤A− λI] = 0.

Proof of Lemma J.6. First, observe that since the law of X is rotationally invariant, we can assume
without loss of generality that x1 is proportional to e⊤1 , the first standard basis vector. Using the
Schur complement, we have

X =

(︃
∥x1∥2 0
v X̄

)︃
, and X−1 =

(︃
∥x1∥−1

2 0

b X̄
−1

)︃
, (62)

where v is the (d− 1)-dimensional vector given by vi = ∥x1∥−1
2 ⟨x1, xi+1⟩ = xi+1,1 ∼ N(0, 1), X̄

is a (d− 1)× (d− 1) matrix whose entries are drawn i.i.d. from N(0, 1), and b = −∥x1∥−1
2 X̄

−1
v.

Observe that X̄ and v are independent, since the choice of basis depends only on x1. The coordinates
of v are independent as well for the same reason. It follows that

∥x̃1∥22 = ∥x1∥−2
2

(︂
1 + ∥X̄−1

v∥22
)︂

≤ ∥x1∥−2
2

(︂
1 + ∥X̄−1∥2 · ∥v∥22

)︂
, (63)

where ∥X̄−1∥ = maxu∈Sd−1 ∥X̄−1
u∥2 is the operator norm of X̄−1. Now let α be a fixed constant,

which will be specified later. Additionally, assume that d is sufficiently large so that αd4 ≥ 2. From
Eq. (63), we have that

P{η2 ≥ αd4} ≤ P
{︂
∥x1∥22

(︂
∥x1∥−2

2

(︂
1 + ∥X̄−1∥2 · ∥v∥22

)︂)︂
≥ αd4

}︂
= P

{︂
1 + ∥X̄−1∥2 · ∥v∥22 ≥ αd4

}︂
≤ P

{︂
∥X̄−1∥2 · ∥v∥22 ≥ αd4/2

}︂
= P

{︂
∥X̄−1∥ · ∥v∥2 ≥

√︁
α/2 · d2

}︂
. (64)

To upper bound Eq. (64), we use the fact that X̄−1 and v are independent, and split the event into two
cases: {∥v∥2 ≥

√
d/2} and {∥v∥2 <

√
d/2}. By [A42, Theorem 3.1.1], we know that there exists a

constant C1 > 0 such that

P
{︂
∥v∥2 <

√
d/2
}︂
≤ exp(−C1 · d) .

Moreover, by [A41, Theorem 1.2], we have that for sufficiently large d, there exists a universal
constant C2 > 0 such that for any t > 0,

P
{︂
∥X̄−1∥ ≥ t

√
d
}︂
≤ C2/t .

By setting α = 2C2
2 and d sufficiently large so that exp(−C1d) ≤ 1/(2d), we have

P
{︂
∥X̄−1∥ · ∥v∥2 ≥

√︁
α/2 · d2

}︂
≤ P

{︂
∥X̄−1∥ ·

√
d/2 ≥

√︁
α/2 · d2

}︂
· P
{︂
∥v∥2 >

√
d/2
}︂
+ P

{︂
∥v∥2 ≤

√
d/2
}︂

≤ P
{︂
∥X̄−1∥ ·

√
d/2 ≥

√︁
α/2 · d2

}︂
+ exp(−C1d)

= P
{︂
∥X̄−1∥ ≥

√
2α · d3/2

}︂
+ exp(−C1d)

≤ C2/(
√
2α · d) + exp(−C1d)

≤ 1/d .
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Therefore,

P{η ≥
√
2C2 · d2} = P{η2 ≥ 2C2

2 · d4} ≤ P
{︂
∥X̄−1∥ · ∥v∥2 ≥ C2 · d2

}︂
≤ 1/d .

K Auxiliary Results

K.1 The Periodic Gaussian

Definition K.1. Let Ψs(z) : [−1/2, 1/2)→ R+ be the periodic Gaussian density function defined
by

Ψs(z) :=

∞∑︂
k=−∞

1

s
√
2π

exp

(︄
− 1

2

(︂z − k

s

)︂2)︄
.

We refer to the parameter s, the standard deviation of the Gaussian before periodicization, as the
“width” of the periodic Gaussian Ψs.
Remark K.2. For intuition, we can consider two extreme settings of the width s. If s≪ 1, then Ψs

is close in total variation distance to the Gaussian of standard deviation s since the tails outside
[−1/2, 1/2) will be very light. On the other hand, if s ≫ 1, then Ψs is close in total variation
distance to the uniform distribution on [0, 1). This intuition is formalized in Claim K.6.

The Gaussian distribution on R satisfies the following tail bound called Mill’s inequality.
Lemma K.3 (Mill’s inequality [A42, Proposition 2.1.2]). Let z ∼ N(0, 1). Then for all t > 0, we
have

P(|z| ≥ t) =

√︃
2

π

∫︂ ∞

t

e−x2/2dx ≤ 1

t
·
√︃

2

π
e−t2/2 .

The Poisson summation formula, stated in Lemma K.5 below, will be useful in our calculations. We
first define the dual of a lattice Λ to make the formula easier to state.
Definition K.4. The dual lattice of a lattice Λ, denoted by Λ∗, is defined as

Λ∗ = {y ∈ Rd | ⟨x, y⟩ ∈ Z for all x ∈ Λ} .

A key property of the dual lattice is that if B is a basis of Λ then (BT )−1 is a basis of Λ∗; in particular,
det(Λ∗) = det(Λ)−1, where det(Λ) is defined as det(Λ) = det(B) (the determinant of a lattice is
basis-independent) [A31, Chapter 1].

For “nice” functions defined any lattice, the following formula holds [A10, Theorem 2.3].
Lemma K.5 (Poisson summation formula). For any lattice Λ ⊂ Rd and any function f : Rd → C
satisfying some “niceness” assumptions4,∑︂

x∈Λ

f(x) = det(Λ∗) ·
∑︂
y∈Λ∗

ˆ︁f(y) ,
where ˆ︁f(y) = ∫︁Rd f(x)e

−2πi⟨y,x⟩dx, and Λ∗ is the dual lattice of Λ.

Note that by the properties of the Fourier transform, for a fixed c ∈ Rd∑︂
x∈Λ+c

f(x) =
∑︂
x∈Λ

f(x+ c) = det(Λ∗)
∑︂
y∈Λ∗

exp(−2πi⟨c, y⟩) · ˆ︁f(y) .
Claim K.6 (Adapted from [A40, Claim 2.8.1]). For any s > 0 and any z ∈ [−1/2, 1/2) the periodic
Gaussian density function Ψs(z) satisfies

Ψs(z) ≤
1

s
√
2π

(︂
1 + 2(1 + s2)e−1/(2s2)

)︂
.

and
|Ψs(z)− 1| ≤ 2(1 + 1/(4πs)2)e−2π2s2 .

4For our purposes, it suffices to know that the Gaussian function of any variance s > 0 satisfies this niceness
assumption. Precise conditions can be found in [A10, Theorem 2.3].
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Proof. We first derive an expression for Ψs(0) using the Poisson summation formula. Note that
the Fourier transform of f(y) = exp(−y2/2) is given by ˆ︁f(u) = √2π · exp(−2π2u2). Moreover,
viewing Z as a one-dimensional lattice, the determinant of the dual lattice ((1/s)Z)∗ = sZ is s.
Hence,

Ψs(0) =
1

s
√
2π

∑︂
y∈(1/s)Z

exp(−y2/2)

=
det(sZ)

√
2π

s
√
2π

·
∑︂
u∈sZ

exp(−2π2u2)

=
∑︂
u∈sZ

exp(−2π2u2) . (65)

We now observe that Ψs(z) ≤ Ψs(0) for any z ∈ [−1/2, 1/2). This can again be shown using the
Poisson summation formula as follows.

Ψs(z) =
1

s
√
2π

∑︂
y∈(1/s)Z+z/s

exp(−y2/2)

=
∑︂
u∈sZ

exp(−2πiuz/s) · exp(−2π2u2)

≤
∑︂
u∈sZ

| exp(−2πiuz/s)| · exp(−2π2u2)

≤
∑︂
u∈sZ

exp(−2π2u2)

= Ψs(0) .

Hence, it suffices to upper bound Ψs(0) and show a lower bound for Ψs(z) for all z ∈ [−1/2, 1/2).
For the first upper bound, we use Mill’s inequality (Lemma K.3) to obtain

Ψs(0) =
1

s
√
2π

∑︂
y∈(1/s)Z

exp(−y2/2)

≤ 1

s
√
2π

(︃
1 + 2 exp(−1/(2s2)) + 2

∫︂ ∞

1

exp(−x2/(2s2))dx

)︃
≤ 1

s
√
2π

(︁
1 + 2(1 + s2) exp(−1/(2s2))

)︁
.

For the second upper bound, we use Eq. (65) and Mill’s inequality to obtain

Ψs(0) =
∑︂
u∈sZ

exp(−2π2u2)

= 1 +
∑︂

u∈sZ\{0}

exp(−2π2u2)

= 1 + 2

∞∑︂
k=1

exp(−2π2s2k2)

≤ 1 + 2 exp(−2π2s2) + 2

∫︂ ∞

1

exp(−2π2s2x2)dx

≤ 1 + 2(1 + 1/(4πs)2) exp(−2π2s2) .
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For the lower bound on Ψs(z), we use the Poisson summation formula and Mill’s inequality again to
obtain

Ψs(z) =
∑︂
u∈sZ

exp(−2πizu/s) · exp(−2π2u2)

= 1 +
∑︂

u∈sZ\{0}

exp(−2πizu/s) · exp(−2π2u2)

≥ 1− 2

∞∑︂
k=1

| exp(−2πizk)| · exp(−2π2s2k2)

≥ 1− 2

(︃
exp(−2π2s2) +

∫︂ ∞

1

exp(−2π2s2x2)dx

)︃
≥ 1− 2(1 + 1/(4πs)2) exp(−2π2s2) .

K.2 Auxiliary Lemmas for the Constant Noise Regime

Lemma K.7. Fix some τ ∈ (0, 1]. Then, for arccos : [−1, 1]→ [0, π] it holds that

sup
x,y∈[−1,1],|x−y|≤τ

| arccos(x)− arccos(y)| ≤ arccos(1− τ).

Proof. Let us fix some arbitrary ξ ∈ [0, τ ] and consider the function G(x) = arccos(x)−arccos(x+
ξ). Given the fact that arccos is decreasing, it suffices to show that |G(x)| ≤ arccos(1− τ) for all
x ∈ [−1, 1− ξ]. By direct computation it holds

G′(x) = − 1√
1− x2

+
1√︁

1− (x+ ξ)2

=
ξ(2x+ ξ)√

1− x2
√︁
1− (x+ ξ)2(

√
1− x2 +

√︁
1− (x+ ξ)2)

.

Hence, the function G decreases until x = −ξ/2 and increases beyond this point. Consequently, G
obtains its global maximum at one the endpoints of [−1, 1− ξ]. But since cos(π − a) = − cos(a)
for all a ∈ R it also holds for all b ∈ [−1, 1] arccos(−b) + arccos(b) = π. Hence,

G(−1) = π − arccos(−1 + ξ) = arccos(1− ξ) = G(1− ξ).

Therefore,

G(x) ≤ arccos(1− ξ) ≤ arccos(1− τ).

The proof is complete.

K.3 Auxiliary Lemmas for the Exponentially Small Noise Regime

Lemma K.8. [Restated Lemma E.7] Suppose n ≤ C0d for some constant C0 > 0 and s ∈ Rn

satisfies for some m ∈ Zn that |⟨m, s⟩| = exp(−Ω((d log d)3)). Then for some sufficiently large
constant C > 0, if N = ⌈d3(log d)2⌉ there is an m′ ∈ Zn+1 which is equal with m in the first n
coordinates, satisfies ∥m′∥2 ≤ Cd

1
2 ∥m∥2 and is an integer relation for the (s1)N , . . . , (sn)N , 2−N .

Proof. We start with noticing that since N = o((d log d)3) we have

|⟨m, s⟩| ≤ exp(−Ω((d log d)3)) = O(2−N ) .
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Hence, since for any real number x we have |x− (x)N | ≤ 2−N , it holds
n∑︂

i=1

mi(si)N =

n∑︂
i=1

misi +O(

n∑︂
i=1

mi2
−N )

= O(2−N ) +O(

n∑︂
i=1

|mi|2−N )

= O(

n∑︂
i=1

|mi|2−N ).

Now observe that the number
∑︁n

i=1 mi(si)N is a rational number of the form a/2N , a ∈ Z. Hence
using the last displayed equation we can choose some integer m′

n+1 with
n∑︂

i=1

mi(si)N = m′
n+12

−N .

for which using Cauchy-Schwartz and n = O(d) it holds

|m′
n+1| = O(∥m∥1) = O(

√
n∥m∥2) = O(

√
d∥m∥2).

Hence m′ = (m1, . . . ,mn,−m′
n+1) is an integer relation for (s1)N , . . . (sn)N , 2−N . On top of that

∥m′∥22 ≤ ∥m∥22 +O(d∥m∥22) = O(d∥m∥22).
This completes the proof.

Lemma K.9 (Restated Lemma E.8). Suppose that γ ≤ dQ for some Q > 0. For some hidden
direction w ∈ Sd−1 we observe d+1 samples of the form (xi, zi), i = 1, . . . , d+1 where for each i,
xi is a sample from N(0, Id) samples, and

zi = cos(2π(γ⟨w, xi⟩)) + ξi,

for some unknown and arbitrary ξi ∈ R satisfying |ξi| ≤ exp(−(d log d)3). Denote by X ∈ Rd×d the
random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1− exp(−Ω(d))
the following properties hold.

(1)

max
i=1,...,d+1

∥xi∥2 ≤ 10
√
d.

(2)

min
i=1,...,d+1

| sin(2πγ⟨xi, w⟩)| ≥ 2−d.

(3) For all i = 1, . . . , d+ 1 it holds zi ∈ [−1, 1] and

zi = cos(2π(γ⟨xi, w⟩+ ξ′i)),

for some ξ′i ∈ R with |ξ′i| = exp(−Ω((d log d)3)).

(4) The matrix X is invertible. Furthermore,

∥X−1x1∥∞ = O(2
d
2

√
d).

(5)

0 < |det(X)| = O(exp(d log d)).

Proof. For the first part, notice that for each i = 1, 2, . . . , d + 1, the quantity ∥xi∥22 is distributed
like a χ2(d) distribution with d degrees of freedom. Using standard results on the tail of the χ2

distribution (see e.g. [A43, Chapter 2]) we have for each i,

P
(︂
∥x1∥2 ≥ 10

√
d
)︂
= exp(−Ω(d)).
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Hence,

P

(︄
d+1⋃︂
i=1

∥xi∥2 ≥ 10
√
d

)︄
≤ (d+ 1)P

(︂
∥x1∥2 ≥ 10

√
d
)︂
= O(d exp−Ω(d)) = exp(−Ω(d)),

For the second part, first notice that for large d the following holds: if for some α ∈ R we have
| sin(α)| ≤ 2−d then for some integer k it holds |α − kπ| ≤ 2−d+1. Indeed, by substracting an
appropriate integer multiple of π we have α− kπ ∈ [−π/2, π/2]. Now by applying the mean value
theorem for the branch of arcsin defined with range [−π/2, π/2] we have that

|α− kπ| = | arcsin(sinα)− arcsin(0)| ≤ 1√︁
1− ξ2

| sinα| ≤ 1

1− ξ2
2−d

for some ξ with |ξ| ≤ | sinα| ≤ 2−d. Hence, using the bound on ξ we have

|α− kπ| ≤ 1

1− 2−2d
2−d ≤ 2−d+1 .

Using the above observation, we have that if for some i it holds | sin(2πγ⟨xi, w⟩)| ≤ 2−d then for
some integer k ∈ Z it holds |⟨xi, w⟩ − k

2γ | ≤
1
γ 2

−d. Furthermore, since by Cauchy-Schwartz and
the first part with probability 1− exp(−Ω(d)) we have

|⟨xi, w⟩| ≤ ∥xi∥ ≤ 10
√
d,

it suffices to consider only the integers k satisfying |k| ≤ 10γ
√
d, with probability 1− exp(−Ω(d)).

Hence,

P

(︄
d+1⋃︂
i=1

| sin(2πγ⟨xi, w⟩)| ≤ 2−d

)︄
≤ P

⎛⎝d+1⋃︂
i=1

⋃︂
k:|k|≤10γ

√
d

|⟨xi, w⟩ −
k

2γ
| ≤ 1

γ
2−d

⎞⎠
≤ 20d

√
dγ sup

k∈Z
P
(︃
|⟨x1, w⟩ − k/2γ| ≤ 1

γ
2−d

)︃
≤ 40d

√
d2−d

= exp(−Ω(d)),

where we used the fact that ⟨x1, w⟩ is distributed as a standard Gaussian, and that for a standard
Gaussian Z and for any interval I of any interval of length t it holds P(Z ∈ I) ≤ 1√

2π
t ≤ t.

For the third part, notice that from the second part for all i = 1, . . . , d+ 1 it holds

1− cos2(2πγ⟨xi, w⟩) = sin2(2πγ⟨xi, w⟩) = Ω(2−2d)

with probability 1 − exp(−Ω(d)). Hence, since ∥ξ∥∞ ≤ exp(−(d log d)3) we have that for all
i = 1, . . . , d+ 1 it holds

zi = cos(2πγ⟨xi, w⟩)) + ξi ∈ [−1, 1],

with probability 1− exp(−Ω(d)). Hence, the existence of ξ′i follows by the fact that image of the
cosine is the interval [−1, 1]. Now by mean value theorem we have

ξi = cos(2π(γ⟨xi, w⟩+ ξ′i))− cos(2πγ⟨xi, w⟩)) = 2πγξ′i sin(2πγt)

for some t ∈ (⟨xi, w⟩ − |ξi|, ⟨xi, w⟩+ |ξi|). By the 1-Lipschitzness of the sine function, the second
part and the exponential upper bound on the noise we can immediately conclude

| sin(2πγt)| ≥ sin(2πγ⟨xi, w⟩)− |ξi| = Ω(2−d),

with probability 1− exp(−Ω(d)). Hence it holds |ξ′i|Ω(2−d) ≤ |ξi| and therefore

|ξ′i| ≤ 2d|ξi| = exp(−Ω((d log d))3)

with probability 1− exp(−Ω(d)).
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For the fourth part, for the fact that X is invertible, consider its determinant, that is the random
variable det(X). The determinant is non-zero almost surely, i.e. det(X) ̸= 0 almost surely. This
follows from the fact that the determinant is a non-zero polynomial of the entries of X , e.g. for
X = Id it equals one, hence, using folklore results as all entries of X are i.i.d. standard Gaussian
it is almost surely non-zero [A8]. Now, using standard results on the extreme singular values of
X , such as [A37, Equation (3.2)], we have that σmax(X

−1) = 1/σmin(X) ≤ 2d, with probability
1− exp(−Ω(d)). In particular, using also the first part, it holds

∥X−1x1∥∞ ≤ ∥X−1x1∥2 ≤
√︁
σmax(X−1)∥x1∥2 ≤ 2

d
2

√
d,

with probability 1− exp(−Ω(d)).
For the fifth part, notice that the determinant is non-zero from the fourth part.

For the upper bound on the determinant, we apply Hadamard’s inequality [A19] and part 1 of the
Lemma to get that

|det(x2, . . . , xd+1)| ≤
d+1∏︂
i=2

∥xi∥2 ≤ (10
√
d)d = O(exp(d log d)),

with probability 1− exp(−Ω(d)).

K.4 Auxiliary Lemmas for the Population Loss

Fix some hidden direction w ∈ Sd−1. Recall that for any w′ ∈ Sd−1, we denote by

L(w′) = Ex∼N(0,Id)[(cos(2πγ⟨w, x⟩)− cos(2πγ⟨w′, x⟩))2] .

Lemma K.10. Let us consider the (probabilist’s) normalized Hermite polynomials on the real line
{hk}k∈Z≥0

. The following identities hold for Z ∼ N(0, 1).

(1) For all k, ℓ ∈ Z≥0

E[hk(Z)hℓ(Z)] = 1[k = ℓ] .

(2) Let Zρ be a standard Gaussian which is ρ-correlated with Z. Then, for all γ > 0, k ∈ Z≥0,

E[hk(Z) cos(2πγZρ)] = (−1)k/2ρk (2πγ)
k

√
k!

exp(−2π2γ2) · 1[k ∈ 2Z≥0] .

(3) The performance of the trivial estimator, which always predicts 0, equals

Var(cos(2πγZ)) =
∑︂

k∈2Z≥0\{0}

(2πγ)2k

k!
exp(−4π2γ2) =

1

2
+O(exp(−Ω(γ2))) .

Proof. The first part follows from the standard property that the family of normalized Hermite
polynomials form a complete orthonormal basis of L2(N(0, 1)) [A23, Proposition B.2].
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For the second part, recall the basic fact that we can set Zρ = ρZ+
√︁

1− ρ2W for some W standard
Gaussian independent from Z. Using [A23, Proposition 2.10], we get

E[hk(Z) cos(2πγZρ)] = E[hk(Z) cos(2πγ(ρZ +
√︁

1− ρ2W )]

=
1√
k!
E
[︃
dk

dZk
cos(2πγ(ρZ +

√︁
1− ρ2W )

]︃
= (−1)k/2(2πργ)k 1√

k!
E[cos(2πγ(ρZ +

√︁
1− ρ2W )] · 1(k ∈ 2Z≥0)

+ (−1)(k+1)/2(2πργ)k
1√
k!
E[sin(2πγ(ρZ +

√︁
1− ρ2W )] · 1(k ̸∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!
E[cos(2πγ(ρZ +

√︁
1− ρ2W )] · 1(k ∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!
E[cos(2πγZ)] · 1(k ∈ 2Z≥0)

= (−1)k/2(2πργ)k 1√
k!

exp(−2π2γ2) · 1(k ∈ 2Z≥0) ,

where (a) in the third to last line we used that the sin is an odd function and therefore when k is
odd the corresponding term is zero, (b) in the second to last line we used that Zρ follows the same
standard Gaussian law as Z and, (c) in the last line we used the characteristic function of the standard
Gaussian to conclude that for any t > 0,

E[cos(tZ)] = Re[E[eitZ ]] = e−t2/2 .

For the third part, notice that by applying the result from part (1) and the result from part (2) (for
ρ = 1) it holds,

Var(cos(2πγZ)) =
∑︂

k∈Z≥0\{0}

E[cos(2πγZ)hk(Z)]2

=
∑︂

k∈2Z≥0\{0}

(2πγ)2k

k!
exp(−4π2γ2)

=
∑︂

k∈2Z≥0

(2πγ)2k

k!
exp(−4π2γ2)− exp(−4π2γ2)

=
∑︂
k≥0

1

2
· (2πγ)

2k

k!
exp(−4π2γ2)(1 + (−1)k)− exp(−4π2γ2)

=
1

2

⎛⎝∑︂
k≥0

(4π2γ2)k

k!
exp(−4π2γ2) +

∑︂
k≥0

(−4π2γ2)k

k!
exp(−4π2γ2)

⎞⎠− exp(−4π2γ2)

=
1

2
+

1

2
exp(−8π2γ2)− exp(−4π2γ2)

=
1

2
+O(exp(−Ω(γ2))) .
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