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Abstract

Logical reasoning over Knowledge Graphs (KGs) is a fundamental technique that
can provide efficient querying mechanism over large and incomplete databases.
Current approaches employ spatial geometries such as boxes to learn query rep-
resentations that encompass the answer entities and model the logical operations
of projection and intersection. However, their geometry is restrictive and leads to
non-smooth strict boundaries, which further results in ambiguous answer entities.
Furthermore, previous works propose transformation tricks to handle unions which
results in non-closure and, thus, cannot be chained in a stream. In this paper, we
propose a Probabilistic Entity Representation Model (PERM) to encode entities as
a Multivariate Gaussian density with mean and covariance parameters to capture
its semantic position and smooth decision boundary, respectively. Additionally, we
also define the closed logical operations of projection, intersection, and union that
can be aggregated using an end-to-end objective function. On the logical query rea-
soning problem, we demonstrate that the proposed PERM significantly outperforms
the state-of-the-art methods on various public benchmark KG datasets on standard
evaluation metrics. We also evaluate PERM’s competence on a COVID-19 drug-
repurposing case study and show that our proposed work is able to recommend
drugs with substantially better F1 than current methods. Finally, we demonstrate
the working of our PERM’s query answering process through a low-dimensional
visualization of the Gaussian representations.

1 Introduction

Knowledge Graphs (KGs) are structured heterogeneous graphs where information is organized as
triplets of entity pair and the relation between them. This organization provides a fluid schema
with applications in several domains including e-commerce [[I]], web ontologies [2} 3], and medical
research [4} 3. Chain reasoning is a fundamental problem in KGs, which involves answering a chain
of first-order existential (FOE) queries (translation, intersection, and union) using the KGs’ relation
paths. A myriad of queries can be answered using such logical formulation (some examples are given
in Figure[I). Current approaches [6l in the field rely on mapping the entities and relations onto a
representational latent space such that the FOE queries can be reduced to mathematical operations in
order to further retrieve the relevant answer entities.

Euclidean vectors [6l [9]] provide a nice mechanism to encode the semantic position of the entities by
leveraging their neighborhood relations. They utilize a fixed threshold over the vector to query for
answer entities (such as a k-nearest neighbor search). However, queries differ in their breadth. Certain
queries would lead to a greater set of answers than others, e.g., query Canadians will result in a
higher number of answers than query Canadian Turing Award winners. To capture this query
behavior, spatial embeddings [7. [8] learn a border parameter that accounts for broadness of
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Q: Who (X) are the Canadian (C) and European (E) Turing (T)
Award (A) winners (W)?

X AX names( X, IW. [winners(W, 3T.category(T, A))
Neitizen(W, Europe) U citizen(W, Canada)]])

Q: Which drugs (T) i with all p ins (P)
associated with SARS diseases (D)?
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(a) Drug Repurposing (DRKG). (b) Open-domain (FB15K).

Figure 1: Sample FOE queries from different datasets that utilize existential quantification (3),
intersection (M), and union (U) operations. The simple operations need to be chained together in an
end-to-end objective function to retrieve relevant results for complex queries.

queries by controlling the volume of space enclosed by the query representations. However, these
spatial embeddings rely on more complex geometries such as boxes [[7]] which do not have a closed
form solution to the union operation, e.g., the union of two boxes is not a box. Thus, further FOE
operations cannot be applied to the union operation. Additionally, their strict borders lead to some
ambiguity in the border case scenarios and a non-smooth distance function, e.g., a point on the border
will have a much smaller distance if it is considered to be inside the box than if it is considered to be
outside. This challenge also applies to other geometric enclosures such as hyperboloids [8]].

Another line of work includes the use of structured geometric regions [[12} [7] or density functions
[13]] instead of vector points for representation learning. While these approaches utilize
the representations for modeling individual entities and relations between them, we aim to provide a
closed form solution to logical queries over KGs using the Gaussian density function which enables
chaining the queries together. Another crucial difference in our work is in handling a stream of
queries. Previous approaches rely on Disjunctive Normal Form (DNF) transformation which requires
the entire query input. In our model, every operation is closed in the Gaussian space and, thus,
operations of a large query can be handled individually and aggregated together for the final answers.
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Figure 2: Results of the query Europeans U Canadians. Entities in the darker areas have higher
probability of being the answers than lighter areas. We can observe from (c) that the non-smooth
borders of box geometry do not encompass the answer Hinton.

To alleviate the drawbacks of operations not being closed under unions and border ambiguities, we
propose Probabilistic Entity Representation Model (PERM). PERM models entities as a mixture of
Gaussian densities. Gaussian densities have been previously used in natural language processing [14]]
and graphs [15]] to enable more expressive parameterization of decision boundaries. In our case, we



utilize a mixture of multivariate Gaussian densities due to their intuitive closed form solution for
translation, intersection, and union operations. In addition, they can also enable the use of a smooth
distance function; Mahalanobis distance [16]]. Figure[2 provides an example of such a case where
the non-smooth boundaries of box query embeddings are not able to capture certain answers. We
utilize the mean (1) and co-variance (X) parameters of multivariate Gaussian densities to encode
the semantic position and spatial query area of an entity, respectively. The closed form solution
for the operations allows us to solve complex queries by chaining them in a pipeline. PERM does
not need to rely on DNF transformations, since all the outputs are closed in the Gaussian space
and complex queries can be consolidated in an end-to-end objective function, e.g., in Figure 2b]
Europeans U Canadians is a Gaussian mixture and the single objective is to minimize the distance
between the mixture and entity Hinton, whereas in the case of boxes (shown in Figure 2a), we have
two independent objectives to minimize the distance from each box in the union query. Summarizing,
the contributions of our work is as follows:

1. We develop Probabilistic Entity Representation Model (PERM), a method to reason over KGs
using (mixture of) Gaussian densities. Gaussians are able to provide a closed form solution to
intersection and union, and also a smooth distance function. This enables us to process a chain of
complex logical queries in an end-to-end objective function.

2. PERM is able to outperform the current state-of-the-art baselines on logical query reasoning over
standard benchmark datasets. Additionally, it is also able to provide better drug recommendations
for COVID-19.

3. PERM is also interpretable since the Gaussian embeddings can be visualized after each query
process to understand the complete query representation.

The rest of the paper is organized as follows: Section [2 presents the current work in the field. In
section[3] we present PERM and define its various operations. Section ] provides the formulation for
building the reasoning chains for complex queries. We provide the experimental setup and results in
section[5} We conclude our paper in section[6]and present its broader impact in section

2 Related Work

The topic of multi-hop chain reasoning over KGs has gained a lot of attention in recent years
[6]. These approaches utilize vector spaces to model query representation and retrieve
results using a fixed threshold. While such representations are efficient at encoding semantic
information, the fixed thresholds that are typically used in these models do not allow for an expressive
(adjustable) boundary and, thus, are not best suited for representing queries. Spatial embeddings
[, 8L 20]] enhance the simple vector representations by adding a learnable border parameter that
controls the spatial area around a query representation. These methods have strict borders that rely on
non-smooth distance function that creates ambiguity between border cases. On the other hand, in
our model, the variance parameter of the query’s Gaussian densities creates soft smoothly increasing
borders in terms of the Mahalanobis distance. Additionally, the previous methods do not provide a
closed form solution for unions which we solve using Gaussian mixture models.

Density-based embeddings have seen a recent surge of interest in various domains. Word2Gauss
provides a method of learning Gaussian densities for words from their distributional semantic
information. In addition, the authors further apply this work to knowledge graphs [[13]]. Another
approach aims to learn Gaussian graph representations from their network connections. These
methods are, however, focused on learning semantic information and do not easily extend to logical
queries over knowledge graphs. PERM primarily focuses on learning spatial Gaussian densities
for queries, while also capturing the semantic information. To achieve this, we derive closed form
solutions to FOE queries.

3 Probabilistic Entity Representation Model for Logical Operators

Knowledge Graphs (KG) G : E x R are heterogeneous graphs that store entities (&) and relations
(R). Each relation r € R is a Boolean function 7 : E x E — {True, False} that indicates if the
relation r exists between a pair of entities. Without loss of generality, KGs can also be organized as
a set of triples (eq, r, e5) C G, defined by the Boolean relation function r(eq, e2). In this work, we



focus on the following three FOE operations: translation (t), intersection (M), and union (U). The
operations are defined as below:

@]Qi] 27V, : {v1,v2, v} C E Ty (1)
qm[Qﬂ] é7Vm : {Ul,vg, ...,’Uk} CFEdaiNasN..Na; 2)
4u[Qu] 27V, : {v1,v9, v} CEJ a1 Uas U U g, 3)

where Q; = (e1,71); Qn, Qu = {(e1,71), (e2,72),..(€i, i)} and a; = ri(e;, vq)

where ¢;, gn, and g, are the translation, intersection, and union queries, respectively; and V¢, Vi, and
V4 are the corresponding results [T0]. As we notice above, each entity has a dual nature; one as being
part of a query and another as a candidate answer to a query. In PERM, we model the query space of
an entity e; € F as a multivariate Gaussian density function; e; = N (p;, 2;), where the learnable
parameters p; (mean) and X; (covariance) indicate the semantic position and the surrounding query
density of the entity, respectively. As a candidate, we only consider the p; and ignore the X; of
the entity. We define the distance of a candidate entity v; = N (u;, Y;) from a query Gaussian
e; = N (uj,%;) using the Mahalanobis distance [16] given by:

dp(viyes) = (5 — )55 (g — pa) “4)

Additionally, we need to define the FOE operations for the proposed Probabilistic Entity Representa-
tion Model. A visual interpretation of the operations; translation, intersection, and union is shown in
Figure[3] The operations are defined as follows:

Translation (t). Each entity e € F andr € R are encoded as N (ji¢, 2¢ ) and N (p,-, 32-), respectively.
We define the translation query representation of an entity e with relation r as ¢; and the distance of
resultant entity v; € V; from the query as dj given by:

G =N(pe + pr, (S SH7Y; df = da(vr, q1) (5)

Intersection (N). Intuitively, the intersection of two Gaussian densities implies a random variable
that belongs to both the densities. Given that the entity densities are independent of each other, we
define the intersection of two entity density functions ey, e5 as g and distance of resultant entity
v € V4 from the query as df, given by:

qn :N(IU’€I7EEI)N(IU’€27Z€2) :N(M?HZS); d% = dN(UQO) (6)
where, Egl = 21_1 + 22_1
and piz = B3(35 1 + X7 pe) = B3 ps = X5 + 57 e
We provide a brief sketch of the proof that the intersection of Gaussian density functions is a closed
operation. A complete proof is provided in Appendix [Al Let us consider two Gaussian PDFs

P(61) = N(u1,%1) and P(62) = N (u2,X2). Their intersection implies a random variable that is
distributed as the product, P(6;)P(f2) The intersection P(0) = N (us3, X3) is derived as follows:

P(6) = P(61).P(62)
log(P(0)) = (& — 111) ST @ — ) + (0 — 12) "S5 (@ — piz)
(2 — 13)" S5 (& — pa) = (& — ) TS (@ — pun) + (2 — p2) "S5 (& — o)
Comparing coefficients; Y3' =X 4+ 35 3 = 2335 s + 27 ue)

 —

Union (U). We model the union of multiple entities using Gaussian mixtures. The union of entity
density functions given by eq, e, €3, ..., €, is defined as g, and the distance of resultant entity
vy € WV, from the query as d, given by:

=Y 6N (te,,Se); Al = bidn (00, N (pie,, Se,)) (7)

i=1 i=1
exp (N (e, Xe,))
Sy eaxp (N (pe; s ;)

¢; € ® are the weights for each Gaussian density in the Gaussian mixture, calculated using the
self-attention mechanism over the parameters of the Gaussians in the mixture, i.e., i, , 2, Vi : 1 — n.

where, ¢; =
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(a) Translation (q¢) (b) Intersection (gn) (c) Union (qu)
(d) Chain Translation (c;) (e) Chain Intersection (cn) (f) Chain Union (cy)

Figure 3: The logical single (top row) and chain operations (bottom row) of translation, intersection,
and union in the Gaussian space. The operations are closed and will result in either a Gaussian density
or a Gaussian mixture. The input operands are given in blue and red and the resultant Gaussian
density/mixture is depicted in purple. For simplicity, the example is given for a univariate Gaussian
model, but in our work, we use multivariate Gaussian densities.

4 Chain Reasoning over Knowledge Graphs

We consider the Gaussian density function (embedding of a single entity) as a special case of Gaussian
mixture with a single component. This ensures that all the operations defined in Section [3|are closed
under the Gaussian space with an output that is either a single (for translations and intersections) or
multi-component Gaussian mixture (for unions). Hence, for chaining the queries, we need to define
the logical operators with a Gaussian density and a Gaussian mixture input. In this section, we define
the different operators (depicted in Figure[3), in the case of a Gaussian mixture input.

Chain Translation. Let us assume that the input query embedding is an n-component mixture
p=> i N(u, ;) and we need to translate it with relation 7 = N (s, £,). Intuitively, we would
like to translate all the Gaussians in the mixture with the relation. Hence, we model this translation as
¢; and the distance from entities v; € V; as df given by:

=Y &N (i + pry (757 ®)
=1

dfiZd’idN(vt,N(MHrum(E;l+2?1)71) 9
=1

Chain Intersection. A Gaussian mixture is a union over individual densities. Based on the dis-
tributive law of sets, an intersection over a Gaussian mixture p = » ., N (u;, ¥;) and entity
e = N (jie, Xe) implies the union of the intersection between the entity and each Gaussian density in
the mixture. Hence, we derive this intersection as cn and the distance from entities v € V as df:

cn = U N (e, SN (16 556) = Y &N (pes Be)N (5 %)
=1
= Cn = Z@N(Memu Peni) (10
i=1

where, E;nli = E;l + E;l and flen; = Zem(E;lue + Ee_lui)

de, = Z¢idN(Uﬂ7N(Meﬂi7 Zeﬂi)) (11
i=1

Chain Union. The union of an entity e = A'(u., ¥.) with a Gaussian mixture Y | ¢;N (1, 5;) is
the addition of the entity to the mixture. Hence, the union ¢, and the distance from entities v, € V{,



df, can be defined as follows:

Cy = Z(biN(Mh Zz) + ¢€N(M€?z€) (12)
i=1
dEJ = Z ¢idN(vU7N(,Ufia Ez)) + ¢edN(UUaN(/~Le7 Ee)) (13)

i=1

Implementation Details. To calculate the weights (¢; € ®) of the Gaussian mixtures, we use the
popular self-attention mechanism [21]]. The gradient descent over Mahalanobis distance (Eq. )
and derivation for the product of Gaussians (Eq. [6) are given by and Appendix [A, respectively.
Another important note is that we do not need to compute ¥ for the operations, but rather we only
need to compute the !, Also, storing the complete X~ ! requires quadratic memory, i.e., a Gaussian
density of d variables requires d x d parameters for 3. So, we only store a decomposed matrix
Lof 21 : %=t = LL”. Thus, for a Gaussian density of d variables our memory requirement is
d x (r + 1) parameters (d for y and d x 7 for ¥~1). For computing the z3 for intersection, in Eq.
(6), we use a linear solver (torch.solve) for faster computation. All our models are implemented
in Pytorch [23]] and run on four Quadro RTX 8000. |I|

5 Experiments

This section describes the experimental setup used to analyze the performance of PERM on various
tasks with a focus on the following research questions:

1. Does PERM'’s query representations perform better than the state-of-the-art baselines on the task
of logical reasoning over standard benchmark knowledge graphs?

2. What is the role of individual components in PERM’s overall performance gain?

3. Is PERM able to recommend better therapeutic drugs for COVID-19 from drug re-purposing
graph data compared to the current baselines?

4. Are we able to visualize the operations on PERM’s query representations in the latent space?

5.1 Datasets and Baselines

We utilize the following standard benchmark datasets to compare PERM’s performance on the task
of reasoning over KGs:

e FB15K-237 [24] is comprised of the 149,689 relation triples and textual mentions of Freebase
entity pairs. All the simply invertible relations are removed.

e NELL995 consists of 107,982 triples obtained from the 995" jteration of the Never-Ending
Language Learning (NELL) system.

° DBPediis a subset of the Wikipedia snapshot that consists of a multi-level hierarchical taxonomy
over 240,942 articles.

¢ DRKG (Drug Re-purposing Knowledge Graph) is used to evaluate the performance of our
model on both the logical reasoning and drug recommendation tasks.

Table 1: Dataset statistics including the number of unique entities, relations, and edges, along with
the splits of dataset triples used in the experiments.

Dataset # Entities # Relations # Edges | # Training # Validation # Test
FB15k-237 14,505 237 310,079 272,115 17,526 20,438
NELL995 63,361 200 142,804 114,213 14,324 14,267
DBPedia 34,575 3 240,942 168,659 24,095 48,188
DRKG 97,238 107 5,874,271 | 4,111,989 587,428 1,174,854

'Tmplementation code: https://github. com/Akirato/PERM-GaussianKG
https://www.kaggle.com/danofer/dbpedia-classes



More detailed statistics of these datasets are provided in Table|l} For our experiments, we select the
following baselines based on (i) their performance on the logical reasoning task and (ii) their ability
to extend to all FOE query combinations.

e Graph Query Embedding (GQE) [6] embeds entities and relations as a vector and utilizes
TransE [17] to learn the query embeddings. The distance of the answer entities is calculated using
L1-norm.

e Query2Box (Q2B) [7] embeds entities and relations as axis aligned hyper-rectangles or boxes and
utilize FOE queries to learn query representations. The distance of answer entities is given by a
weighted combination of the answer’s distance from the center and the border of the query box.

e Beta Query Embedding (BQE) [[11]] utilizes beta distribution to learn query representations
from FOE queries with a novel addition of negation queries. The distance is calculated as the
dimension-wise KL divergence between the answer entity and the query beta embedding.

e Complex Query Decomposition (CQD) [10] answers complex queries by reducing them to
simpler sub-queries and aggregating the resultant scores with t-norms.

Some of the other baselines [18]] focus solely on the multi-hop problem. They could not be
intuitively extended to handle all FOE queries, and hence, we did not include them in our study.

Table 2: Performance comparison of PERM against the baselines to study the efficacy of the
query representations. The columns present the different query structures and the overall average
performance. The last row presents the Average Relative Improvement (%) of PERM compared to
CQD over all datasets across different query types. Best results for each dataset are shown in bold.
The MRR results for experiments are given in Appendix |C|
HITS@3
Dataset Model | 1t 2t 3t 2N 3N 2U Nt tN Ut | Avg
FB15k-237  GQE 404 214 147 | 262 390 .164 | .087 .162 .155 | 221
BQE 455 122 102 | 232 459 141 | 224 124 101 | 218
Q2B 467 240 186 | .324 453 239 | .050 .108 .193 | .251
CQD S120 288 221 | 352 457 284 | 129 249 121 | .290
PERM | .520 286 .216 | .361 .490 .305 | .128 212 .239 | .306
NELL995  GQE A17 231 203 | 318 454 200 | .081 .188 .139 | .248
BQE J11 156 132 | 438 540 (153 | 250 160 .091 | .292
Q2B 555 266 233 | 343 480 369 | 132 212 .163 | .306
CQD 667 350 .288 | 410 .529 531 | .171 277 156 | .375
PERM | 581 286 .243 | 352 508 .460 | .143 .195 .200 | .328
DBPedia GQE 673 .006° N.A. | .873 .879 402 | .160 .668 0.00 | .458
BQE 881 .007° N.A. | 1.00 1.00 .384 | 435 .590 0.00 | .565
Q2B 832 .007° N.A.|1.00 1.00 .649 | 224 .856 0.00 | .571
CQD 870 .007° N.A. | 1.00 1.00 .673 | 218 .787 0.00 | .569
PERM | 950 .007° N.A. | 1.00 1.00 .782 | 232 .952 0.00 | .615
DRKG GQE 420 218 153 | 270 409 181 | .101 .186 .174 | .235
BQE S54 0 141 123 | 347 512 185 | 281 173 124 | 271
Q2B 499 263 199 | 337 489 284 | .068 .134 235 | 279
CQD S54 323 238 | 369 495 341 | 184 310 .150 | .329
PERM | .565 322 236 | .387 .540 .376 | .190 .273 .297 | .354

PERM vs Q2B (%) | 10.9 123 13.0 | 720 6.10 26.3 | 842 50.8 243 | 159
PERM vs CQD (%) | 3.80 -09 -24 | 200 580 950|180 -55 93.0| 6.2

5.2 (RQ1) Reasoning over KGs

To evaluate the efficacy of PERM’s query representations, we compare it against the baselines on
different FOE query types; (i) Single Operator: 1t, 2¢, 3¢, 2N, 3N, 2U and (ii)) Compound Queries:
Nt, tN, Ut. We follow the standard evaluation protocol [[7Z, [T} [8] and utilize the three splits of a KG

3DBPedia has an extremely large number of resultant grand-children leaves (== 10% per grand-parent) for the
2t task and, thus, we notice poor performance on 2t task across all the evaluation models.



for training Gyyq4n. validation G454, and evaluation Gy (details in Table[I). The models are trained
on Gi,qin, With validation on G,4;,4. The final evaluation metrics for comparison are calculated on
Giest. For the baselines, we calculate the relevance of the answer entities to the queries based on the
distance measures proposed in their respective papers. In PERM, the distance of the answer entity
from the query Gaussian density is computed according to the measures discussed in Sections [3|and
M We use the evaluation metrics of HITS@K and MRR to compare the ranked set of results obtained
from different models. Given the ground truth £ and model outputs {ey, e, ..., e, } € E, the metrics
are calculated as follows:

K A
1 1,ife, € B
HITS@K = — ; =97
= ;f<ek>, I (ex) {0’ else
ijife; € B

I 1
MRR = n ; m; fled) = {oo, else

From the results provided in Table |Z, we observe that PERM, is able to outperform all the current
state-of-the-art approaches, on an average across all FOE queries by 6.2%. Specifically, we see a
consistent improvement for union queries; 9.5% and 93% in the case of 2U and Ut, respectively.
Comparing the models based on only geometries, we notice the clear efficacy of PERM query
representations with an average improvement of 37.9%, 15.9%, and 37.3% over vectors (GQE),
boxes (Q2B), and beta distribution (BQE), respectively. Given these improvements and the ability to
handle compound queries in an end-to-end manner, we conclude that Gaussian distributions are better
at learning query representations for FOE reasoning over KGs. Additionally, we provide PERM’s
results on sample queries from different datasets in Table 3]

Table 3: Qualitative results of PERM on samples from different datasets. Results given in green and
red indicate a correct and incorrect prediction, respectively.

Query Results

Who are European and Canadian Turing awards | Jeffrey Hinton, Yoshua Bengio, Andrew Yao
winners?
Which Actors and Football Players also became | Arnold Schwarzenegger, Heath Shuler, Frank

Governors? White
Which treatment drugs interact with all proteins | Ribavirin, Dexamethasone, Hydroxychloro-
associated with SARS diseases? quine

5.3 (RQ2) Ablation Study

In this section, we evaluate the need for different components and their effects on the overall
performance of our model. First, we look at the contribution of utilizing different types of queries
to the performance of our model. For this, we train our model on different subsets of queries;
(i) only 1t queries, (ii) only translation (1¢,2¢,3t) queries and (iii) only single operator queries
(1¢,2t,3t,2M,3N,2U). Furthermore, we look at the need for attentive aggregation in the case of union
of Gaussian mixtures. We test other methods of aggregation; (i) vanilla averaging and (ii) MLP [28].

Table 4: Ablation study results. Performance comparison of PERM (final) against different variants

of our model. It, translation and single utilize the 1-hop queries, all translation queries and all single

operator queries, respectively. The average and MLP variants utilize vanilla averaging and MLP for

aggregation in union queries. The metrics reported here are an average over all the datasets. Finer

evaluation with results for each dataset is given in Appendix|D| Best results are given in bold.
H

Model Variants 1t 2t 3t 2N 3N 2U Nt tN Ut | Avg
PERM-1t¢ 649 141 128 | 410 466 477 | .095 257 .102 | .303
PERM-translation | .649 .182 .179 | 463 535 479 | .128 308 .143 | .341
PERM-single 652 225 228 | 524 .632 475 | .167 398 181 | .387
PERM-average 628 222 224 | 524 .624 444 | 158 387 .180 | .377
PERM-MLP 642 225 228 | 526 .631 462 | .166 .400 .183 | .385
PERM (final) .654 225 232 | 525 .635 481 | .170 .408 .184 | .390




From Table [, we notice that utilizing only 1¢ queries significantly reduces the performance of our
model by 22.3% and even increasing the scope to all translation queries is still lower in performance
by 12.5% for this case. However, we notice that training on all single operator queries results in
comparable performance to the final PERM model. But, given the better overall performance, we
utilize all the queries in our final model. For union aggregation, we observe that attention has a clear
advantage and both vanilla averaging and MLP lead to a lower performance by 3.33% and 1.28%,
respectively. Thus, we adopt self-attention in our final model.

54 (RQ3) Case Study: Drug Recommendation

In this experiment, we utilize the expressive power of PERM’s query representations to recommend
therapeutic drugs for COVID-19 from the DRKG dataset. Drugs in the dataset are already approved
for other diseases and the aim is to utilize the drug-protein-disease networks and employ them towards
treating COVID-19. This can potentially reduce both the drug development time and cost [29]. For

this experiment, we utilize the treatment relation in DRKG and retrieve drugs D : D %% X,
where X is a set of SARS diseases related to the COVID-19 virus. Given that we only need these
limited set of entity types (only SARS diseases and drugs) and relation types (only treatments), we
only consider the DRKG subgraph that contains this necessary set of entities and relations for learning
the representations. We compare the recommendations of different models against a set of actual
candidates currently in trials for COVID-19. We use the top-10 recommendations with the evaluation
metrics of precision, recall, and F1-score for comparison.

Table 5: Performance comparison of various models on the COVID-19 drug recommendation problem
using precision (P), recall (R), and F1-score (F1) metrics. The top three drugs recommended by the
models are given in the last column. The recommendations given in green and red indicate correct
and incorrect predictions, respectively. The last two rows provide the average relative improvement
of PERM compared to the state-of-the-art baselines Q2B and CQD.

Model P@10 R@10 F1 Top Recommended Drugs

GQE 119 174 141 Piclidenoson, Ibuprofen, Chloroquine
BQE .159 .200 177 Ribavirin,Oseltamivir, Ruxolitinib

Q2B .194 255 221 Ribavirin, Dexamethasone, Deferoxamine
CQDb .209 .260 232 Ribavirin, Dexamethasone, Tofacitinib
PERM 217 269 251 | Ribavirin, Dexamethasone, Hydroxychloroquine
PERM vs Q2B (%) 11.9 5.5 13.6

PERM vs CQD (%) 3.8 3.5 8.2

We can observe from Table [5|that PERM is able to provide the best drug recommendations, across all
evaluation metrics. Our model is able to outperform the current methods by atleast 3.8%, 3.5%, and
8.2% in precision, recall, and F1, respectively. Also, the top recommended drugs by our PERM are
more inline with the current drug development candidates, thus, showing the better performance of
our model’s query representations.

5.5 (RQ4) Visualization of the Gaussian Representations

To visualize the entity and query in the latent space, we extract representative entity samples from the
FB15K-237 dataset and present them in a 2-dimensional space for better comprehension.

Figure [d] depicts the different entities and the mechanism through which PERM narrows down to the
particular answer set. Notice that, we are able to perform an intersection after a union operation due
to the closed form nature of our operations. This is currently not possible in state-of-the-art baseline
methods. Additionally, it should be noted that, unions widen the query space and intersections narrow
them down (as expected). Furthermore, the variance parameter acts as a control over the spatial area
that an entity should cover and more general entities such as Turing Award and Europe occupy a
larger area than their respective sub-categories, namely, winners and Europeans.
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Q: Who (X) are the Canadian (C) and European (E) Turing (T) Award (A) winners (W)? @&#
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(a) Query processing in PERM. This figure depicts a univariate version of the (b) Bivariate version of the final
entity Gaussian embeddings for better visualization of the process. The same query space, given in grayscale

property, however, generalizes over an increased number of dimensions, i.e., with darker colors representing
multivariate case. a higher probability of answers.

Figure 4: An illustration of the flow for a sample complex query in the representational space. We
note that intersection after union is possible in our PERM model because the operations are closed in
Gaussian distributions and this is not possible in current methods including BQE, Q2B, and CQD.

6 Conclusion

In this paper, we present Probabilistic Entity Representation Model (PERM), a model to learn
query representations for chain reasoning over knowledge graphs. We show the representational
power of PERM by defining closed form solutions to FOE queries and their chains. Additionally,
we also demonstrate its superior performance compared to its state-of-the-art counterparts on the
problems of reasoning over KGs and drug recommendation for COVID-19 from the DRKG dataset.
Furthermore, we exhibit its interpretability by depicting the representational space through a sample
query processing pipeline.

7 Broader Impact

PERM is the first method that models an individual entity in knowledge graphs using Gaussian
density function, making it possible to solve FOE queries using a closed form solution. This enables
its application in domains that require chain reasoning. The main idea of the proposed solution can
also be extended to any domain that can encode its basic units as Gaussians and extend the units
through FOE queries, e.g., in topic modeling, topics can be encoded as Gaussians and documents as
union of topics.

However, PERM depends on the integrity of the knowledge graph used for training. Any malicious
attacks/errors [30l that lead to incorrect relations could, further, lead to incorrect results and affect
the confidence of our model. Furthermore, due to the connected nature of complex queries, this attack
could propagate and affect a larger set of queries. Such incorrect results would be problematic in
sensitive areas of research such as drug recommendations and cybersecurity and, thus, it is necessary
to maintain the integrity of training data before learning representations and querying with PERM.
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The following is the supplementary Appendix for the paper; Probabilistic Entity Representation
Model for Reasoning over Knowledge Graphs. All the references given in the following sections are
made in context of the main paper.

A Derivation for Product of Multivariate Gaussians

The following sections provide the proof for the product of Gaussians for both the univariate case
and multivariate case (used in Egs.(6) and (10)).

A.1 Univariate Case

N(u,0) = exp ((x ; u>2>
s e (22 (222
e - (52) ¢ (552)

_ (03 +of)a® — 2(0F s + o3u)a + (uf03 + pio?)

2 2
0103
2 2 2 _2 2 2
2 _ gloipztospm) K105 +H50]
o € 2 a%—‘—o‘% l.—’_ 0%—‘,—0%
- 1o, 1
o7 T 32
2
(o3 pa+odm) 2
x — JiH2TIa ) 2 2 2 2 2 2
_ o5 +o? _ H105 + paoq o1z + 05
= i 1\ 5 + K ,where K = 5 5 — 55
(2 +52) 0103 0103
T (0Fpa+osu) 2 9 9
PO o3 toi ~ N (ofp2 +o3pu1) 1 + LR
()ocexp i T\_9 ~ 31 2 7(72 72)
(7% + 0_?) o3 T 01 o1 03

A.2 Multivariate Case

N, %) = exp ((x — )7 (@ — p))
P(0) = P(61)P(02) = exp ((z — p1) 27 (2 — p1)) -exp ((z — p) e (@ — 112))
log(P(0)) = (z — 1) 'S (& — 1) + (2 — p2) " 25 (2 — paa)
=" S e — pf Xy e — TS i B+ 2Ty e — g B e — T8y e — iy X5 s
=2 (S0 43 o = (e Sy g By e — 2 (51 + 5y ) — (01 By 4 g By o)
Let’s assume P(6) o< N (pus, X3), then,
log(P(9)) = (z — 13)TS5 " (w — 13) + K
=TS e — 2T s — A 2 e N s + K
Comparing coefficients,
P e e
S5y =27 + 55 e
= iz = S3(57 " 1 + By o)
pa = (571 + 35N T HE i+ 55 e)

Notice that we need X5 while calculation p3. However, to save computational memory, we only store
the inverses of covariances, i.e., 21_1, 3y ! and g 1. So, to solve for ;i3 and avoid the computationally
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expensive process of matrix inversion, we use the linear solver torch.solve on the equation
-1 -1 -1
23 M3 = Zl M1 + 22 2.

B Algorithm for KG Reasoning with PERM

Algorithm [T provides an outline of PERM’s overall framework to learn representations of entities
e € I and relations r € R. The algorithm describes the training from FOE operations of translation

(lines E}{7), intersection (lines[8}{11)), and union (lines[12HI3).

Algorithm 1: PERM training algorithm

Input: Training data D, D~, Dy, which are set of all (query (Q), result (V")) for translation,
intersection, and union, respectively;

Output: Entity £ and Relation R gaussian density functions;

Randomly initialize ¢ = N (e, Xe) € E andr = N (., X)) € R);

for number of epochs; until convergence do

{ = 0; # Initialize loss

for {(e,r,V}) € D,} do

gt = N(pe + pir, (71 +3,1)71) from Eq.

# Update loss for translation queries

=10+ Evtevt dN(Uth)

end

for {(Qﬁ, Vm) € Dﬁ} do

qn = N (us, X3), from Eq. (6)

# Update loss for intersection queries

l = l + Zvnevm d/\/(vm, CIQ)

end

or {(QU7 Vu) S Du} do

qu = Z?:l ¢iN(/1‘61‘7 Eei) from Eq.

# Update loss for union queries

l=1+ ZUUGVU Z?:l Gidn (v, N (pe; s X))

=y

end

# Update E and R with backpropagation
E<+ FE— AEl

R+ R — ARl

end
return E,R

C MRR metrics for Reasoning over KGs

Table[6 provides the Mean Reciprocal Rank (MRR) results for the reasoning over KGs experiment,
given in section[3]

D Finer Evaluation of Ablation Study

Table 7] provides finer results of our ablation study.
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Table 6: Performance comparison of PERM against the baselines to study the efficacy of the
query representations. The columns present the different query structures and the overall average
performance. The last two rows presents the Average Relative Improvement (%) of PERM compared
to Q2B and CQD over all datasets across query types. Best results for each dataset are shown in bold.

Metrics Mean Reciprocal Rank
Dataset Model | 1t 2t 3t 2N 3N 20U | Nt tN Ut | Avg
FB15k-237  GQE 346 191 144 | 258 361 144 | .087 .164 .149 | .205
BQE 390 .109 100 | .228 425 124 | 224 126 .097 | .203
Q2B 400 225 173 | 275 378 198 | .105 .180 .178 | .235
CQD 439 270 206 | 299 381 235 | 271 415 112 | 292
PERM | 445 268 .201 | .306 .409 .253 | 269 .353 .220 | .303
NELL995  GQE 311 193 175 | 273 399 159 | .078 .168 .130 | .210
BQE 530 130 114 | 376 475 122 | 241 .143  .085 | .246
Q2B 413 227 208 | 288 414 266 | .125 193 155 | 254
CQD 442 251 226 | 304 441 348 | (124 212 .104 | .273
PERM | 432 244 217 | .296 438 .332 | .122 .178 .190 | .272
DBPedia GQE 502 .005 N.A.|.749 773 320 | .154 597 0.00 | .388
BQE 657 006 N.A. | .964 .966 306 | 419 .527 0.00 | .481
Q2B 619 .006 N.A. | .840 .863 468 | 212 .779 0.00 | 473
CQD .648 .006 N.A. | .840 .863 485 | .206 .716 0.00 | .471
PERM | .706 .006 N.A. | .841 .862 .564 | .219 .869 0.00 | .508
DRKG GQE 313 182 132 | 232 360 .144 | .097 .166 .163 | .199
BQE 413 118 106 | .298 451 .147 | 270 .154 116 | .230
Q2B 371225 178 | 283 422 205 | .064 122 223 | 233
CQD 413277 213 | 310 427 246 | 174 .282 .143 | 276
PERM | 420 .276 211 | .325 .465 .271 | .179 .249 .282 | .298
PERM vs Q2B (%) | 11.1 163 125 | 490 470 249 | 559 294 245 | 20.5
PERM vs CQD (%) | 420 -12 -25 | 140 440 106 | 1.80 150 92.8 | 12.6
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Table 7: Performance comparison of (final) PERM model against its variants to study the contributions
of its components. The columns present the query structures and the overall average performance.

Metrics HITS@3
Dataset Variants 1t 2t 3t 2N 3N 2U Nt tNn Ut | Avg
FB15k-237 | 1t S16 179 119 | 282 360 302 | .071 .134 133 | 233
translations | .516 231 .167 | 318 413 304 | .096 .160 .185 | .266
single S110 282 212 | 359 486 296 | (126 207 235 | 302
average 499 282 209 | 360 482 282 | .119 201 234 | 296
MLP 5100 285 212 | 363 488 293 | .125 208 238 | .302
(final) 520 286 216 | 361 490 305 | 128 212 .239 | .306
NELL995 1t 576 179 134 | 275 373 456 | 072 123 111 | 255
translations | .576 231  .188 | .310 428 458 | .097 .147 .155 | .288
single S71 0 282 239 | 350 504 446 | 127 190 197 | 323
average 558 282 235 | 351 500 425 | 120 185 .196 | 317
MLP 5700 285 239 | 354 506 442 | 126 191 199 | 324
(final) 581 286 243 | 352 508 460 | .129 195 .200 | .328
DBPedia It 942 004 N.A. | .781 734 775 | 129  .600 0.00 | .496
translations | 942 .006 N.A. | .881 843 779 | .174 718 0.00 | .543
single 934 007 N.A.| 1.00 1.00 .758 | 228 .928 0.00 | .607
average 912 .007 N.A. | 997 984 723 | 216 903 0.00 | .593
MLP 932 .007 N.A. | .99 992 751 | 227 932 0.00 | .605
(final) 950 .007 N.A. | 1.00 1.00 .782 | .232 952 0.00 | .615
DRKG It 560 202 130 | 302 396 373 | (106 172 .165 | 267
translations | .560 260 .183 | 341 455 374 | .143 206 .230 | .306
single 555 317 232 | 385 536 365 | (187 266 293 | .348
average 543 317 228 | 386 531 347 | 177 259 2901 | 342
MLP 554 321 232 | 389 538 361 | .186 .267 296 | .349
(final) 565 322 236 | 387 540 376 | 190 273 297 | 354
Metrics Mean Reciprocal Rank
Dataset Variants 1t 2t 3t 2N 3n  2U Nt tNn Ut | Avg
FB15k-237 | PERM-1t 410 180 122 | 217 274 209 | .085 127 145 | .197
translations | 410 232 .171 | 245 314 210 | .115 .152 202 | .228
single 406 283 217 | 277 370 204 | 151 197 257 | 262
average 396 283 214 | 278 367 .194 | .143 191 256 | .258
MLP 405 286 217 | 280 372 202 | .150 .198 260 | .263
(final) 445 268 201 | 306 409 253 | 269 353 220 | .303
NELL995 1t 432 191 160 | 234 275 332 | .094 162 125 | 223
translations | 428 .197 .168 | .261 369 331 | .092 .134 .147 | .236
single 425 241 213 | 294 435 322 | 120 173 (187 | .268
average 415 241 210 | 295 431 307 | 113 169 .186 | .263
MLP 424243 213 | 298 436 319 | .119 174 189 | .268
(final) 432 244 217 | 296 438 332 | 122 178 .190 | .272
DBPedia It 706 .005 N.A. | .665 541 .564 | (169 791 0.00 | .430
translations | .700 .005 N.A. | .741 727 562 | .164 .655 0.00 | .444
single 694 006 N.A. | 841 862 .547 | 215 .847 0.00 | .502
average 678 006 N.A. | .838 .848 .521 | .204 .824 0.00 | .490
MLP 693 006 N.A. | 838 .855 .542 | 214 .851 0.00 | .500
(final) 706 .006 N.A. | .841 .862 .564 | 219 869 0.00 | .452
DRKG It 416 173 116 | 254 341 269 | .100 .157 .157 | .220
translations | 416 223 164 | 286 .392 270 | .135 .188 218 | .255
single 413272 207 | 323 462 263 | 176 243 278 | 293
average 404 272 204 | 324 457 250 | .167 236 276 | .288
MLP 412275 207 | 327 463 260 | 175 244 281 | 294
(final) 420 276 211 | 325 465 271 | .179 249 282 | .298
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