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Abstract—In order to meet the high data rate requirements of
emerging roadway use cases, mmWave vehicular communications
will be needed. This work studies the ability of vehicles to com-
municate with a Roadside Unit (RSU) placed at an intersection.
Practical mmWave radios utilize a codebook, a discrete set of
analog beams, that is periodically searched during runtime to
find the optimal beam to use for each receiver. This search creates
overhead as the wireless channel is not used for communication
while this beam search is happening. This work focuses on
reducing the overhead of beam training by optimizing the site-
specific codebook design of a RSU. Owing to the sparsity of the
mmWave channel and the user distribution for vehicles, it is
found that 85% of beams can be removed from the codebook
with zero-impact. By carefully selecting the usage of wide beams
the codebook size can be further reduced to just 64 beams
while still providing omni-directional coverage for an intersection.
Other research thrusts have focused on attempting to augment
or remove beam training entirely; however, this necessitates
a change to the PHY layer. Codebook optimization achieves
approximately 80% of the communications performance that
would be achieved if beam training overhead could be completely
removed while only requiring a radio configuration update. Thus,
this work finds that today’s commercial mmWave radios are
sufficient for deployments in RSUs. To validate the proposed
codebook optimization algorithm, a detailed mmWave ray tracing
framework that encompasses 3D environmental information and
material properties of reflectors is developed.

Index Terms—Connected Vehicles, mmWave Networks, Ma-
chine Learning

I. INTRODUCTION

Advancements in Autonomous Vehicles (AVs) and Ad-
vanced Driver Assistance Systems (ADASs) are ushering in a
new era of roadway safety and efficiency beyond what human
drivers are able to achieve alone. However, the current gener-
ation of these technologies are primarily geared towards deci-
sion making using only the information gleaned from on-board
sensors and prior knowledge (such as an HD Map). In order to
meet ambitious policy goals, such as zero roadway deaths [1],
it may be necessary for vehicles to work in harmony, both
with one another, and with the roadway infrastructure (e.g.
Street IoT cameras and LiDARs). This allows the utilization
of multiple vantage points to collaboratively perceive the
environment in order to create enhanced roadway awareness
as well as for vehicles and infrastructure to coordinate their
actions to increase roadway safety, not only for the vehicles,
but also for other roadway users such as pedestrians and
bicycles which are unable to directly benefit from techno-

logical advances in machine perception and autonomy. This
roadway collaboration is the motivation for solutions such as
Cellular Vehicle-to-Everything (C-V2X) communications; yet,
while current use cases of C-V2X are limited to exchange of
small messages, future use cases that require the exchange
of dense sensor information, such as camera feeds or point
clouds, will necessitate data rates – potentially GBPS per
user [2] – that current C-V2X solutions are simply unable
to provide. Millimeter-Wave (mmWave) communications are
increasingly popular solutions for providing high data rates
and low latency links and have been included in the latest 5G
and Wi-Fi standards.

Despite the clear benefits of mmWave, many of its draw-
backs were previously thought to be exacerbated by vehicular
use cases. For instance, while the increased path loss of
mmWave can be more than overcome with the usage of
directional beams from phased arrays, the high mobility of
vehicles could lead to frequent beam misalignment and a sim-
ple beam training strategy (i.e. sweeping all possible beams to
find the best configuration) could incur such a large overhead
that mmWave communications is no longer fruitful. In order
to eliminate, or greatly reduce, the beam training overhead,
complex beam management solutions were developed that
utilized deep learning to derive beam management policies by
inferring the beams to use from vehicle locations [3] or camera
data [4]. However, this work demonstrates that, with the proper
codebook design, simple beam management strategies are still
effective for mmWave Roadside Units (RSUs).

Naive codebook designs must cover the entire angular
space; yet, when mmWave radios are deployed to a static
location, they can leverage the sparsity of mmWave channels
and user distributions for fine tuning those codebooks. One
research thrust is to design codebooks for low overhead
channel estimation that can be used to select optimal beams
from a larger codebook without necessitating beam training
[5]. While this presents a promising research direction, it
would require changes to the PHY layer to utilize this new
channel estimation. Another thrust is to directly optimize the
codebooks for communications by leveraging the static nature
of a RSU to adapt to its environment and user distribution. This
second approach has the advantage of being able to be easily
deployed onto current Commercial Off-the-Shelf (COTS) ra-
dios, as many already support codebook configuration, and
for that reason is the approach taken by this work. Prior
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work has focused on codebook adaptations that increase the
Received Signal Strength (RSS) of users [6] and by extension
this increases the data rate that each user can utilize.

In this work, we propose to create low overhead codebook
designs by pruning away unused beams, and incorporating
wide area beams when needed. Our codebook pruning al-
gorithm leads to low beam searching overhead, as it uses
less than 15% of beams from a naive codebook design. In
addition, our algorithm judiciously uses wide beams that cover
the user distributions where the RSS is already high and thus
directivity gains can be traded for longer beam coherence
times (the time between beam switches). By minimizing the
overhead of beam training, the effective data rate of each
user is increased, because a greater portion of channel time
is devoted to communications rather than channel sensing.
To verify the adaptive codebook design, we develop a high-
fidelity simulation framework for mmWave enabled Connected
Vehicles, which combines a wireless ray tracer with an open-
source autonomous driving simulator (CARLA [7]). Our sim-
ulator faithfully models the mmWave signal propagation, as
well as its interaction with different environmental objects (i.e.
foliage, street posts, and building facades) and material types
(i.e. glass, metal, and concrete). It allows for easy scripting
and visualization of customizable scenarios.

This work focuses only on codebook design for mmWave
RSUs and does not consider beam forming performed by
the vehicles which can add additional overhead but provides
higher RSS and can reduce inter-cell interference [8]. This is
done because the hardware configurations (i.e. panel sizes and
placements on vehicles) of users cannot be assumed as they are
likely to vary. Furthermore, this work only considers codebook
optimization for a single mmWave RSU for simplicity, but
future works may explore whether there are benefits to jointly
optimizing codebooks of nearby RSUs.

II. SYSTEM MODEL

Our solution framework targets mmWave nodes placed
along the roadside (RSUs) in order to facilitate high through-
put, low latency, communications with vehicles. The RSU
could enable both Vehicle-to-Infrastructure (V2I) or Vehicle-
to-Network (V2N) applications such as collaborative percep-
tion or remote driving. Many works consider an RSU with a
single panel that provides up to 180◦ coverage. In this work,
we consider a deployment at an intersection that necessitates
omni-directional coverage and therefore considers a multi-
panel mmWave node [9] in order to provide this coverage
(specifically, 4 panels are used with rotations of 90◦ between
each panel as suggested in [10]). Each panel is assumed to
contain a 16 × 16 phased array operating at 60 GHz and
transmitting at 43 dBm, the maximum allowable by the FCC
at this frequency [11]. The RSU is mounted at a height of
10.5m above the roadway.

A. Beam Management Protocol

Beam management protocols in use today typically have 5
steps: i) Base Station (BS) initiates a beam sweep where it

transmits a reference packet, ii) User Equipments (UEs) listen
to the beam sweep to determine which transmit beam provides
the highest RSS, iii) the BS listens on each of the swept
beams for responses from UEs, a random access channel,
indicating their best beam for communication, iv) (optionally)
beam refinement occurs, and finally v) communication occurs
between BS and UE using the beams found through this
training procedure. Step iv, beam refinement, can either allow
the BS to determine a better beam to use (such as going from
wide to narrow beams in a two level search scheme) or allow
the UE to determine a suitable beam. The current work does
not model this step because Codebook Optimization makes
beam refinement by the BS unnecessary – thus, allowing
simpler beam management protocols.

B. Achievable Data Rates

We model the MAC layer throughput by considering the bit
rate achievable for a given RSS and the available percentage
of channel time for communication after beam management.
In short, the effective data rates are calculated with

R̂ = (1− OH)R(Prx) (1)

where R(·) is provided by a rate table that defines the Modu-
lation and Coding Scheme (MCS) to use at a specified RSS.
Beam training overhead (OH) is calculated as the percentage of
channel time that is used for beam training. More specifically,

OH =
(1 +Nslots)NbeamsTmeas

Tsweep
(2)

where the measurement time, Tmeas = 17.84µs as defined in
the 5G NR standard, and the number of random access slots
per beam, Nslots, was assumed to be 4. The number of beams
swept, Nbeams, and the beam sweep interval, Tsweep, are both
floating variables used in performance evaluation. The 5G NR
default configuration is a beam sweep interval of 20ms while
the default interval for WiFi is 100ms. 5G specifies that only
64 beams can be swept per interval which means that typically
not all possible beams can be swept; while the current work
utilizes this constraint for determining the maximum possible
codebook size, it also relaxes it for easier comparison with the
performance of larger codebooks.

III. MODELING DYNAMIC MMWAVE V2I SCENARIOS

There are two predominant types of methodologies for
channel modeling. In Sub-6 GHz communications, stochastic
channel models are widely used for evaluating algorithm
performance. They’re computationally efficient, but lack the
ability to show how leveraging site specific information can
be exploited for enhanced radio control or site planning. In
mmWave communications, ray tracing has been shown to
be quite accurate in modeling a wireless environment [8]. It
is conditioned upon the specific “3D Map” that defines the
geometry of a scene, and so can model a specific cell site
instead of a generic channel model – allowing demonstration
of techniques that predict optimal beams from UE locations
[3]. Going beyond the wireless domain, the environment
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Fig. 1: Block diagram of the simulation setup for mmWave data generation.

models can also be extended to provide additional sensing
modalities such as cameras and LiDARs for exploring how
multi-modal sensing can aid in radio control [6], [12].

A. Methodology

An overview of the developed simulation and data genera-
tion methodology is provided in Figure 1. The key contribution
is the ability to simultaneously leverage two widely used
simulators, CARLA [7], an Open Source Autonomous Driving
Simulator that provides the models and mobility simulations
of the physical world, and Wireless InSite [13], a ray tracing
simulator that provides wireless channels between transmitters
and receivers in a specific 3D environment. Each simulator is
ran at discrete time steps in a synchronous fashion, allowing
for extraction of sensing (i.e. RGB/LiDAR/Depth) observa-
tions and observations about the wireless system’s operation
(i.e. a beamspace RSS Matrix) that describe the same instant
of time in the same scenario.

CARLA has a set of community defined maps, or “towns”,
that allow for simulation of vehicles in various urban, sub-
urban, rural, or highway scenarios. The current work uses
“Town03”, which is a urban scenario featuring a 5-way
intersection and a roundabout. Rather than simulate the entire
town, which would be needlessly computationally expensive
as a single mmWave radio cannot provide coverage for the
entire town, a study area is defined that centers at the 5-
way intersection (the deployment scenario can be viewed in
Figure 2a). CARLA facilitates multiple methods for defining
a scenario, three different ways were used in the current
work: i) initializing traffic randomly within the study area
and using CARLA’s autopilot to drive the vehicles until
they leave this area, ii) creating a simple waypoint following
algorithm that utilized CARLA’s low level control (e.g. throt-
tle/brake/steering) to drive a pre-defined route, and iii) utilizing
CARLA’s wrappers around the OpenDRIVE map to cover
the entire possible user distribution with receive antennas.
Two modifications were necessary to CARLA in order to

add the ability to co-simulate wireless communications. First,
we need to extract the static meshes of the environment at
any given time step. To meet this requirement, we add an
additional Remote Procedure Call (RPC) server to the CARLA
simulator that would provide all, or a queried subset, of the
meshes within the simulator. A Python client, running in lock
step with CARLA’s already exposed Python API, can then
query the simulator to extract the static meshes within the
environment – this includes the <x, y, z> coordinates of the
triangular meshes along with meta-data that aids in material
hinting as will be outlined below. Second, CARLA provides
the capability of placing sensors anywhere in the environment,
or even attaching them to other actors such as vehicles. In
order to reuse this functionality, we create a “dummy” sensor
within the server for mmWave that would allow for tracking
the locations and orientations of all antennas placed within the
environment, even as they changed due to vehicle mobility.

At each discrete time step, the scene geometry is extracted
from the CARLA simulation and used to create project feature
files for a Wireless InSite simulation1. Each of the meshes
have a set of material hints extracted as well that help to form
an imperfect matching to potential properties of them in the
Radio Frequency (RF) domain. For instance, meshes labeled
with asphalt or concrete can be matched with a concrete
material in the Wireless InSite simulation; similarly, foliage
or palm can be matched with a foliage material. Therefore,
the developed simulation has material diversity consisting of
brick, concrete, foliage, grass, dry earth, glass, metal, and
wood – each material has a unique color in the Wireless InSite
simulation shown in Figure 1. Each RSU panel is modeled as
a separate transmit antenna and each of the vehicles in the
simulation include a single receive antenna placed on the roof
of the vehicle. The location and orientation of these antennas
are extracted from the CARLA simulation and juxtaposed with
a set of common parameters such as the transmit power in

1The static features within the environment (e.g. buildings) can be collected
once and only dynamic objects (e.g. vehicles) need to be updated at each step.
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(a) Road map of the study area considered in the current work. (b) Paths within the Angle of Departure for each RSU panel.

Fig. 2: The RSU is placed next to a 5-way intersection and includes four panels, with their headings indicated as arrows in
2a, utilized to provide omni-directional coverage. The scatter plot on top of the road map indicates potential UE locations that
could be covered by this RSU (i.e. they contain propagation paths with the potential for positive SNR). The color scheme
indicates the distance from the origin and is meant to provide continuity between 2a and 2b to visualize the relationship
between the angular domain, where beamforming decisions are made, and the spatial domain, where vehicles exhibit mobility.

order to create the set of transmitters and receivers for the
Wireless InSite simulation. Wireless InSite then provides the
propagation paths between each transmit and receive pair and
these paths are post processed to create beam space channel
matrices used in performance evaluation.

B. Related Work

Broadly, modeling dynamic scenarios using ray tracing
requires the interfacing of five interconnected components:
i) a geometry definition (meshes, materials, BS transforms,
etc.), ii) a mobility model (traffic simulation, drone mobility,
pedestrian movement, etc.), iii) a ray tracing engine (i.e.
Wireless InSite [13]), iv) hardware emulation (i.e. phased
array beam performance), and (optionally) v) rendering multi-
modal sensing data describing the current scene. The current
work extends prior work by presenting new approaches to
components i, ii, and v.

Some prior works [8], [14] have used 3D models from Open
Street Map to create site specific geometry definitions; how-
ever, these works utilize simplified models of the environment
that do not include potential static blockages such as foliage or
street lamps. They model the sides of buildings as completely
flat surfaces which could lead to unrealistic reflections, and
assume that the entire world is made of concrete and thus
lacks material diversity. The current work remedies all of these
limitations for a higher fidelity environment at the cost of no
longer having a model based on a specific real world location
but rather a representative deployment scenario. Additionally,
prior works placed the RSU on the side of a single street; the
current work models a 5-way intersection that requires omni-
directional coverage from the RSU.

All prior works utilize SUMO [15] to model vehicular
traffic (the interfacing of SUMO and Wireless InSite was first
developed in [14]). We extend the ability to model mmWave
communications in large scale representative traffic scenarios

with the ability to script specific scenarios. Using CARLA’s
vehicle control API, we conduct a virtual drive test of specific
routes using a waypoint following algorithm.

IV. CODEBOOK OPTIMIZATION

Practical mmWave radios utilize analog beamforming over a
pre-defined set of possible beamforming weights – a codebook.
At runtime, the radios search within this codebook to find
the best possible configuration (i.e. the beam with the highest
RSS). This process must be repeated periodically as the
decisions made are no longer valid due to rotation/translation
of UEs or blockages. Thus, a good codebook would provide
high RSS to all users, take limited time to search through (e.g.
it’s small), and be robust to UE mobility.

Existing work mostly adopts generic codebooks with beams
equally spaced within, and fully covering, the possible beam-
forming directions in the angular domain. However, site-
specific codebook optimization can occur for an RSU de-
ployment by leveraging knowledge about the UE distribution
and wireless propagation characteristics of the environment.
A good codebook optimization algorithm should be sample
efficient and only utilize data that can be easily collected in
the field. This section describes an algorithm that meets this
criteria – it only needs to sample the UE distribution once and
only requires RSS measurements.

A. Pruning Unused Beams

As can be seen in Figure 2b, the UE distribution for an RSU
is incredibly sparse. This owes to the fact that the majority
of users are concentrated “on the horizon”. Thus, a beam
pointing down a straight road, such as a city block, will cover
a large amount of road area. Indeed this was also observed
in our virtual drive test where the beam switches necessary to
maintain optimal RSS are infrequent, typically only needing to
occur on the seconds scale, when the vehicle is further away
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Fig. 3: Example of combining five narrow beams into a single
wide beam, covering the same angular area (shaded in green),
whose performance can be closely approximated by a heuristic
that uses only RSS estimates of the original narrow beams.

from the RSU. The potential UE locations nearby the RSU
exhibit more angular diversity, but the lanes of traffic can still
clearly be seen in Figure 2b, which lead to the UEs still being
relatively tightly clustered within the angular domain. While
potential Non Line-of-Sight (NLoS) paths exist, which can be
easily spotted by the discontinuities in color of Figure 2b, they
are rare. Furthermore, each panel has some overlap in coverage
with other panels due to their placement at 90◦ angles from
one another. Therefore, the majority of beams (specifically,
85% in this work) from a naively constructed codebook for
RSUs can be pruned as they cover directions with no UE
distribution. Determining which beams can be safely pruned
is quite simple. If a beam never has the highest RSS within
the collected dataset, then it can be removed as it would never
be chosen during beam training anyways.

B. Combining Narrow Beams into Wide Beams

While narrow beams provide the highest directivity gains
their narrow beam widths provide lower area coverage than a
wider beam could; thus a trade off exists between achievable
RSS and beam training overhead. This section describes how
to create wide area beams and how to estimate their achievable
RSS from measurements consisting of only the initial narrow
beams. The following section describes the process for deter-
mining when to include one or the other within a codebook
for optimal RSU performance.

While there are many ways to determine beamforming
weights, one of the easiest is the utilization of gradient
descent. Every narrow beam can be considered to be providing
coverage over a subset of the possible angular directions,
i.e. the angular area where the directivity gain is within
3dB of the peak. By combining the angular area covered
by multiple narrow beams, a wide beam can be created
for their replacement by choosing beamforming weights that
maximizes the directivity gain within that same area. Figure 3
shows an example case of creating a single, combined, beam

to cover the same area as multiple narrow beams. Specifically,
the current work utilizes the following optimization equation
and performs the gradient based optimization.

max
~w

Eθ∼C [|g(θ, ~w)|2]−
VARθ∼C [|g(θ, ~w)|2]
Eθ∼C [|g(θ, ~w)|2]

s.t. |wi| = 1 ∀i
(3)

In Eq. (3), θ represents an angular direction and C represents
the set of angular directions that the beam should cover. It was
found that simply maximizing the expected directivity gain,
E[|g(·)|2], was unstable and thus the normalized variance was
used to ensure all directions within the set were equally valued.
The constraint, |wi| = 1, ensures that power is not added to
the system and enforces that the system being modeled is a
uniform amplitude array. The current work does not consider
the impact of quantization on phase shifters. Similarly, it
is assumed that the antenna elements of a phased array
are distributed at λ

2 spacing and the current work does not
model hardware imperfections when creating the beamforming
weights or performing the evaluations. The directivity gain
of the synthesized wide area beam can be estimated from
the directivity gains of the narrow beams it is replacing. A
heuristic is used in the current work to estimate the wide area
beams performance, p̂, as

p̂ =
max p0, . . . , pn

n
(4)

where p represents the measurable receive power of the
narrow beams. In Figure 3 it can be seen that this is a quite
accurate approximation within the coverage region. Although
the heuristic underestimates the directivity gain outside of this
region, that is not a significant concern as another beam would
be used to cover UEs in that direction anyways. In order for
this estimate to remain accurate from channel measurements,
multi-path effects must remain minimal, which is typically the
case in outdoor mmWave due to channel sparsity.

C. Knapsack Optimization

Through a mixture of channel measurements of narrow
beams and performance estimation of wide beams, a dataset
can be created that estimates the utility of a large set of poten-
tial beams over the entire UE distribution served by an RSU.
This section details how to select which of those potential
beams should be included in a codebook for maximum benefit.
This can be formulated as a 0/1 knapsack problem with the
goal of solving the optimization equation

max
x

n∑
i=0

vixi

s.t.
n∑
i=0

xi ≤ N

xi ∈ 0, 1

(5)

where vi is the value of beam i, xi is an indicator of whether
this beam is included in the codebook, and the codebook size
is restricted to N .
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to codebook optimization. When a user’s RSS falls outside of
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there is nearly zero impact to the achievable bit rate – the red
line accounts for this to show that over half of receivers will
experience no effective degradation in RSS.

Determining the value of any beam is difficult. One way
would be to utilize some aggregate of the achievable RSS
across the entire UE distribution; however, there are two issues
with this approach. First, RSS is an imperfect estimator of
performance, a better indicator is the bit rate achievable which
is a non-linear function of RSS. This could be modeled with a
channel capacity equation, but a more accurate representation
is to utilize the rate table of a specific protocol – the current
work utilizes the 802.11ad rate table. Each protocol defines the
MCS to use as a function of SNR or RSS and the MCS roughly
indicates the achievable bit rate. Any RSS lying outside of
the MCS ranges will not translate to additional performance
and therefore utilizing a rate table instead of RSS alone
presents a more accurate depiction of RSU performance during
operation. Second, a beam only provides value if it is used for
communication. If a better beam exists in the codebook then
it will be used instead and there is no value to including a
beam that can provide a lower rate for a specific location.
Therefore, a beam’s value is dependent upon the codebook it
is included in and this must be repeatedly updated throughout
optimization. The value of a beam is then the aggregate
additional rate it can provide over the UE distribution.

The algorithm used for knapsack optimization is shown in
Algorithm 1. At each epoch, each beam’s values are updated
based on the currently selected codebook as described above.
The beam with the highest value is then added to the codebook
and the process repeats. In order to ensure that beams covering
the same area (i.e. a wide beam and any of the narrow beams
it is meant to replace) are not selected by the algorithm,
they are expressly forbidden. The algorithm terminates when
the codebook reaches the maximum size. The current work
restricts the codebook to a size of 64 and only includes wide
area beams meant to replace two narrow beams.

Algorithm 1: Codebook Knapsack Optimization
Input: Per Beam RSS Estimates (P ), Maximum

Codebook Size (N ), Rate Mapping Function
(R(·))

Result: Selected Beams
1 selected = []
2 forbidden = []
3 V = update value (selected, forbidden, P , R(·))
4 selection = argmax V
5 while len(selected) < N do
6 selected.append(selection)
7 forbidden.extend(all beams that overlap selection)
8 V = update value (selected, forbidden, P , R(·))
9 selection = argmax V

10 end

50 100 150 200
Beam Sweep Interval (ms)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

el
at

iv
e

E
ff

ec
tiv

e
T

hr
ou

gh
pu

t

Oracle
Pruned
Optimized

Fig. 5: Mean relative performance compared with an idealized
zero-overhead oracle solution. Realistically the beam sweep
interval in use will fall within the grey area as this is bounded
by the default configuration for 5G (20ms) and WiFi (100ms).

V. RESULTS

There are three key factors affecting the performance of a
codebook design: i) the best RSS achievable for the receiver
(Figure 4), ii) the loss in communication time due to the
overhead of beam training (Figure 5 and 6), and iii) the impact
of suboptimal beam decisions caused by mobility. As shown in
Figure 4, despite the huge reduction in number of beams (1765
original beams vs. 64 beams in the optimized codebook), over
half of receivers will not experience any degradation in RSS.
Therefore, using a pruned codebook can achieve nearly 80%
of the performance available to an oracle solution (Figure 5)
that achieves the best RSS possible but takes zero overhead.

Figure 5 shows that the benefits of lower beam training
times from the smaller pruned codebooks have diminishing
returns as the beam sweep interval increases. This is due to the
overhead of longer beam training times becoming negligible
when it occurs infrequently and thus the increased bit-rates
due to potentially higher RSS becomes a factor. While the
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Fig. 6: Cumulative Distribution of effective rates, a function of the achievable bit rate due to RSS and the overhead of beam
training, among various codebook and beam sweep interval choices.

necessary beam switching times due to mobility can be on
the order of seconds, as was discovered in our virtual drive
test, it is unlikely that a beam sweep interval would be set
higher than 100ms. The beam sweep serves a dual purpose
of beam training as well as allowing for the initial attach
of UEs to the mmWave network; an excessively long beam
sweep interval could lead to delays for UEs entering the
network. When below 100ms, the lower overhead from the
optimized codebook outperforms the simple pruning strategy
that results in zero loss to achievable RSS, but still has
high overhead due to the need to measure 248 beams from
its larger codebook. While the pruned codebook achieves
a huge overhead reduction from a naive codebook design
(1765 original beams to 248 pruned beams), it would still be
incapable of running at the default 5G beam sweep interval of
20ms, whereas the optimized codebook is still able to achieve
non-trivial bit rates even with these frequent beam sweeps.

Only looking at relative performance values can be overly
pessimistic about the currently achievable performance. Figure
6 shows that, even though there is still a performance gap
between achievable rates with an optimized codebook and an
oracle solution, a large percentage of users can still achieve
multi-GBPS communications. Advanced V2X use cases that
necessitate high data rates, such as those that utilize sharing of
raw sensory data for collaborative perception, can be enabled
today with only a radio configuration update.

VI. CONCLUSION

In this work, we have demonstrated that mmWave V2X
communication can be improved through an optimized code-
book design that achieves low overhead beam management
without requiring the need for PHY layer modifications.
The codebook optimization algorithm only depends upon
beamspace RSS measurements instead of necessitating the
estimation of channel state information for all elements of the
array. The algorithm is validated through a detailed mmWave
ray tracing framework that encompasses 3D environmental
information and material properties of reflectors. While code-
book optimization alone still leaves additional optimization
space relating to beam management, it means that today’s
COTS mmWave radios are sufficient for deployments in RSUs.
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[5] N. J. Myers, Y. Wang, N. González-Prelcic, and R. W. H. Jr, “Deep
learning-based beam alignment in mmwave vehicular networks,” 2019.

[6] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Learning beam codebooks
with neural networks: Towards environment-aware mmwave mimo,”
2020.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, pp. 1–16, 2017.

[8] S. Wang, J. Huang, and X. Zhang, “Demystifying millimeter-wave
v2x: Towards robust and efficient directional connectivity under high
mobility,” in Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, MobiCom ’20, (New York, NY,
USA), ACM, 2020.

[9] Y. Huang, Y. Li, H. Ren, J. Lu, and W. Zhang, “Multi-panel mimo in
5g,” IEEE Communications Magazine, vol. 56, pp. 56–61, March 2018.

[10] Telecom Infra Project, “Tip playbook for smart cities.”
https://telecominfraproject.com/tip-playbook-for-smart-cities/, 2021.
Accessed: 2021-03-15.

[11] Federal Communications Commission, “15.255 Operation within the
band 57– 64 GHz.,” October 2002.
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