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Abstract— Ultrasound scanning is essential in several medical
diagnostic and therapeutic applications. It is used to visualize
and analyze anatomical features and structures that influence
treatment plans. However, it is both labor intensive, and its
effectiveness is operator dependent. Real-time accurate and
robust automatic detection and tracking of anatomical struc-
tures while scanning would significantly impact diagnostic and
therapeutic procedures to be consistent and efficient. In this
paper, we propose a deep learning framework to automatically
detect and track a specific anatomical target structure in
ultrasound scans. Our framework is designed to be accurate
and robust across subjects and imaging devices, to operate in
real-time, and to not require a large training set. It maintains a
localization precision and recall higher than 90% when trained
on training sets that are as small as 20% in size of the original
training set. The framework backbone is a weakly trained
segmentation neural network based on U-Net. We tested the
framework on two different ultrasound datasets with the aim
to detect and track the Vagus nerve, where it outperformed
current state-of-the-art real-time object detection networks.

Clinical Relevance—The proposed approach provides an
accurate method to detect and localize target anatomical struc-
tures in real-time, assisting sonographers during ultrasound
scanning sessions by reducing diagnostic and detection errors
and expediting the duration of scanning sessions.

I. INTRODUCTION

Ultrasound scanning is an important step in many medical

diagnostic and therapeutic workflows due to its well estab-

lished safety record, its ability to visualize differences among

soft tissues, and portability [1], [2]. However, ultrasound

scanning is labor intensive where a scanning session can

take up to 30 minutes. Ultrasound scans are also sono-

grapher dependent, creating relatively high cross operator

variability in accurate anatomical structure identification;

novice sonographers demonstrate high diagnostic error rates

at up to 52% more than expert sonographers [3]. Ultrasound

imaging is primarily used to image soft tissue, which is
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Fig. 1: Object localization precision and recall for the 2nd

dataset (a) versus the number of subjects used for training

(testing on a separate subject), and (b) versus the number

of training images (3 subjects for training and 2 for testing.

Images chosen randomly from training set).

inherently compressible, creating additional within-subject

image variability. Despite these limitations, the trained clini-

cian must carry out accurate and precise ultrasound scanning

as it is critical for identification of targeted structures, as

well as for precise and accurate therapy administration [1].

An automatic framework tool that assists sonographers in

detecting and localizing anatomical structures may radically

improve reliable across-subjects scanning for both novice and

expert sonographers.

Object detectors are designed to localize objects and

identify their underlying category or class within an image

[4], [5]. Before the era of deep learning (DL), many tradi-

tional object detection algorithms used handcrafted features

to detect objects that usually did not generalize well to

real life situations. However, some prominent traditional

methods, such as the Viola-Jones Detectors [4], Histogram of

Oriented Gradients (HOG) [6], and Deformable Part-based

Model (DPM) [7] were quite successful. Nevertheless, since

the introduction of DL based object detection algorithms,

they outperformed traditional methods on every significant

performance metric [5], [8].

In medical imaging, object detection problems have been

historically tackled using region of interest (ROI) tracking

or segmentation-based approaches. For ROI tracking, several

methods have been developed such as block matching [9]

where exhaustive search-based block matching (ES-BM) is

used to track anatomical structures such as arteries across

sequential frames [10], elliptical shape fitting to track and

localize arteries and veins [11], and deep learning methods

using networks that compare similarities between frames

ar
X

iv
:2

10
6.

13
84

9v
1 

 [c
s.C

V
]  

25
 Ju

n 
20

21



[12]. Even though these ROI tracking methods have shown

great potential in tracking objects in ultrasound scans, their

ability to assist sonographers in detecting and localizing

target anatomical structures during scanning sessions is hin-

dered by their slow inference speeds [12], [13], or their

dependency on operators to identify the target ROI at the

beginning of a scanning session [9], or both.

Segmentation-based approaches are used to recover a

pixel-wise representation of every part within an image that

belongs to an object [14]. Often, the goal of such algorithms

is to identify the presence of an object in a medical scan,

localize it, and estimate its size. These three goals are

achievable through object detection algorithms [8], where

the annotations used for training can be generated at a rate

that is orders of magnitude faster than pixel-wise annotations

used in segmentation algorithms.

In this paper, we propose a real-time object detection

framework that is designed to autonomously detect, identify,

and localize a specific anatomical structure in ultrasound

scans. The specific anatomical structure we will identify

is the cervical Vagus nerve encased within Carotid artery

sheath. The Carotid sheath encapsulated Vagus nerve sits

at a variable depth (dependent on transducer probe to skin

pressure) of approximately 1.2 to 2.5 cm (at high and

low cervical transducer skin pressure due to jugular vein

compression) [15], [16]. The proposed method uses a weakly

supervised and modified U-Net convolutional neural network

(CNN) as its backbone detection and localization algorithm

[14]. It is designed to autonomously assist sonographers in

real-time to enhance their ability to detect and track objects

of interest during scanning sessions. We show that the pro-

posed method outperforms YOLOv4 [17] and EffecientDet

[18], the current state-of-the-art real-time object detection

methods, in detecting the Vagus nerve.

II. RELATED WORK

A. DL Based Object Detection

Deep learning based object detection methods, and specif-

ically CNN based methods, are currently the state-of-the-

art [8], [5]. These detectors can be categorized into two

broad categories, the two stage detectors such as Faster

R-CNN [19], and the one stage detectors such as SSD

[20] and YOLO [21]. Two stage detectors that defined the

early success of DL based methods, are designed to have

high identification and localization accuracy, while one stage

detectors are designed to be fast and operate in real-time

at 30+ frames per seconds (fps). Recently, these real-time

methods achieved state-of-the-art object detection accuracy

with a performance that is as good as, or better than, two

stage methods [18].

However, both one and two stage detectors require large

training sets. If one and two stage detectors are trained on

smaller data sets (that is often times the case in medical

imagery); overfiting and poor generalization can occur [22].

B. Object Detection in Medical Imaging

Autonomous object detection in medical imaging has been

historically treated as a segmentation problem. Pixel-wise

annotations based on the presence of an object within an

image are used to train detector algorithms to identify that

object. In ultrasound, geometrical shapes fitting such as

ellipse fitting for the detection of vessels, and contextual and

textural features have been used to detect objects through a

segmentation-based approach [23], [24].

Most of the current advances in medical images’ segmen-

tation are based on DL approaches. One specific approach,

the U-Net, that uses a contracting path followed by an

expansive path, with skip connections between the two paths

to preserve high resolution features localization, has proven

to be highly trainable with a small training set making it

very suitable for usage with medical images [14]. Several

improvements have been made on the design of U-net, such

as utilizing increased skip connections and deep supervision,

have improved the accuracy performance of the network at

the expense of segmentation time [25].

Even though highly efficient in learning from smaller

training sets when compared to object detectors, these seg-

mentation approaches are expensive in their need for detailed

annotations that require highly experienced medical person-

nel. Hence, a weakly supervised object detection framework

that uses a modified U-Net trained as a backbone can achieve

high accuracy with minimal supervision, reducing the cost

of deployment while maintaining the capability to accurately

detect and localize target objects.

III. PROPOSED FRAMEWORK

Our proposed framework to detect, localize and track a

specific target anatomical structure in real-time consists of

4 stages, as outlined in Fig. 2. The 1st stage is designed to

pre-process the scans, the 2nd stage to detect and localize

the target object within a scan, the 3rd stage to classify

whether a scan contains the target object, and the 4th and final

stage to fine tune the detection parameters. The framework

is designed to have an inference latency of less than 33 ms

when operating on a medium range graphical processing unit

(GPU) such as the Nvidia RTX 2080 Ti.

A. Stage 1: Pre-Processing

In this stage, the frames are prepared for the backbone

network in stages 2 and 3. The current ultrasound frame

is stacked with the previous two frames as a three channel

tensor of size H ×W × 3, where H and W are the height

and width of the scan (frame). Using 3 frames instead of 1

has improved the localization accuracy by 1.7%. The frames

intensity values are then normalized to be in the range [0, 1).
During training, we used extensive data augmentation

to improve our framework’s ability to overcome overfit-

ting, and generalize to data outside of the training set

[26], [27]. The augmentation pipeline includes geometrical

transformations and color space randomized contrast and

brightness transformations to account for differences in ultra-

sound signals’ energy levels. Most importantly, the pipeline



Fig. 2: Overview of the proposed object detection framework with its four stages outlined.

deployed: 1) deformable elastic transformations [28] with

random Gaussian kernels to elastically deform the grid of

an image, which simulates the elastic differences among

soft tissues within and across subjects, and 2) mixtures

of input scans to enhance the coverage of the probability

space while minimizing the risk function during training by

implementing vicinal risk minimization instead of empirical

risk minimization [29]. While computationally efficient, the

empirical risk defined as Re(f) = 1/n
∑n

i=1 �(f(xi), yi)
only considers the performance of f(x) on a finite set of

training examples for a dataset consisting of training data

D = {(xi, yi)}ni=1 with n examples of input (xi) and target

(yi) pairs, prediction algorithm f(x), and a loss function

�(f(xi), yi). The empirical risk is used to approximate the

expected risk, which is the average of the loss function �
over the joint distribution of inputs and targets P (X,Y ),
where the joint distribution is only known at the train-

ing examples and can be approximated by the empirical

distribution Pδ(x, y) = 1/n
∑n

i=1 δ(x = xi, y = yi).
However, the distribution can be approximated by Pv(x̃, ỹ) =
1/n

∑n
i=1 ν(x̃, ỹ|xi, yi) where ν is a vicinity distribution

that computes the probability of finding the virtual input-

target pair (x̃, ỹ) in the vicinity of the training input-target

pair (xi, yi) [29]. The virtual input-target pair (x̃, ỹ) can be

defined as x̃ = λxi+(1−λ)xj and ỹ = λyi+(1−λ)yj , where

(xi, yi) and (xj , yj) are two randomly selected input-target

pairs from the training set, and λ is sampled from a beta

distribution (λ ∼ Beta(α, α), α = 0.1). This approximation

offers a more comprehensive representation and coverage of

the joint distribution P (X,Y ). The use of mixtures of inputs

have been implemented in image classification problems to

minimize vicinal risk [30]. In our framework, we have built

and implemented an approach to use mixtures of inputs to

minimize vicinal risk for segmentation-based algorithms.

In this stage, the masks that are used to train the network

are created from bounding box coordinates as images (ten-

sors) of size H×W where pixel values within the bounding

box are set to 1. This mask will be used to weakly train

the network in stage 2 to detect and localize the presence of

target objects within the boundaries of the box.

B. Stage 2: Backbone Detection Network

Our framework’s backbone network is designed based on a

modified U-net architecture as shown in Fig. 2. The proposed

network uses 4 depth levels as the standard U-Net with 2

convolutional layers in each depth level as well as the bridge

of the network. However, in our proposed framework we

used 32, 64, 128, 256, and 512 channels in the feature maps

at levels 1, 2, 3, 4, and the bridge, respectively. The original

method used twice the number of feature maps channels at

each of these levels. Reducing the number of channels allows

the network to operate in real-time.

Reducing the size of a neural network usually reduces

performance. To cope with this, we incorporated several

modifications to improve the performance of the network

such as two dimensional (2D) dropout layers in addition

to original dropout layers. 2D dropout layers regularize

the activations more efficiently when high correlation exists

among pixels that are close to each other [31]. We also

incorporated batch normalization layers and added a local-

ization promoting term to the cost function. The original cost

function of U-net is a confidence promoting loss function that

computes the binary cross-entropy (BCE) between each pixel

of the ground truth and predicted mask. For each element of

the predicted mask with a value x and ground truth value y
at location (i, j), where i = 1, 2, ..., H and j = 1, 2, ...,W ,

the BCE cost function can be computed for each training

batch as:

Lbce(X,Y ) = − 1

N

N∑
n=1

[
1

M

M∑
m=1

[
� (xm,n, ym,n)

]]
, (1)

where N is the size of the batch, M is the number of ele-

ments in the mask and is equal to H×W , X is the predicted

mask, Y is the ground truth mask, and � (xm,n, ym,n) is the

loss computed element-wise between the ground truth and

predictions, and is defined as:

� (x, y) = wcy log σ(x) + (1− y) log σ(x). (2)



In (2), the weight wc adjusts the loss function penalization

for class c based on the training set size imbalance for

each class, and σ(x) is the sigmoid function defined as

σ(x) = 1/(1+exp(−x)) and it maps the predicted elements

into a probability space of predictions where σ(x) constitutes

an object if larger than or equal to 0.5, and background

otherwise. The weight wc and the threshold of σ(x) are

used to influence the precision and recall of the network.

The loss function promoting localization is based on the dice

coefficient between the predicted and ground truth mask. The

dice coefficient (Dc) is defined as [32]:

Dc(Ŷ , Y ) =
2(Ŷ � Y )∑M

m=1 ŷm +
∑M

m=1 ym
, (3)

where � represents the element-wise multiplication and

ŷm = σ(xm). The dice coefficient loss can then be defined

to penalize lower Dc values, which yields lower localization

performance, as:

LDc(X,Y ) = 1−Dc(Ŷ , Y ). (4)

The overall object detection loss function is defined as:

Lobj(X,Y ) = αbceLbce(X,Y ) + αdiceLDc
(X,Y ), (5)

where αbce and αdice are coefficients that control the contri-

bution of BCE loss and Dice loss, respectively, to the overall

loss function. In our implementation we chose αbce = 0.25
and αdice = 1.

C. Stage 3: Classifier
Stage 2 is designed to localize an object within a scan, but

is not optimized to identify the presence of the target object

in the scan. Thus, to detect whether the target object is in

the scan or not, we use a classifier optimized for this task

as can be seen in Fig. 2. The classifier adds two extra layers

to the framework and uses the output of the last layer of the

bridge in stage 2, which contains 512 feature map channels,

as input. This input is flattened to a tensor of length 512 using

the average global pooling layer that was proposed as part of

ResNet [33]. This is then followed by a fully-connected layer

and an output layer for the 2 classes activated by a softmax

function where the BCE loss (defined in (1)) is used to train

the classifier.

D. Stage 4: Post-Processing
The output mask of the backbone network from stage 2

will be of size H×W . After being threshold by the sigmoid

function, the output mask will have elements with values

between 0.5 and 1, as well as 0. These elements where the

value is higher than 0.5, represent the region in which the

network believes the target object is located. The average of

the locations of these elements weighted by the confidence,

which is the output of the sigmoid function σ(x, y), is used

to estimate the center location of the target object. The

center (xc, yc) of the target location can be then estimated

as follows:

xc =

∑K
k=1 σ(xk)xk∑K
k=1 σ(xk)

, yc =

∑K
k=1 σ(yk)yk∑K
k=1 σ(yk)

. (6)

K is the number of elements where the confidence σ(x, y) is

higher than the threshold, and σ(xk) = σ(yk) = σ(xk, yk).
The weighted standard deviation of these elements’ locations

is used to estimate the width and height of the target object,

and can be defined as follows for x:

σx =

√√√√∑K
k=1 σ(xk)(xk − xc)2

(K−1)
K

∑K
k=1 σ(xk)

, (7)

where σx is the standard deviation in the x direction. σy

can be calculated using (7) by replacing the corresponding

variables. The width and height of the bounding box can then

be calculated as: width = βxσx and height = βyσy , where

βx and βy are factors that are learned during the training of

the backbone network. The output of the classifier is then

fed together with the output of the backbone network to a

decision logic such as an ”or” or ”and” to decide on the

presence of the target object in the scan. Choosing ”and” will

increase precision at the expense of recall, and vice versa.

Controlling this decision logic together with the thresholds

(σ(X)) for the backbone network and classifier can be used

in real-time by sonographers as simple methods to control

the rate of false positives or false negatives.

IV. EXPERIMENTS AND RESULTS

A. Dataset
We evaluated our model on two different ultrasound

datasets that were created by researchers at UC San Diego

Health and Jacobs School of Engineering. The scans in the

datasets were acquired to image the Vagus nerve in the mid-

cervical and upper-cervical regions of the neck. The scans

span different fields of view of the neck to create a variety

of scans that would be generated by a sonographer who is

looking to image the Vagus nerve within the neck. The two

datasets were created using different probes and image recon-

struction devices. The 1st dataset was created using a probe

and device with high quality diagnostic capabilities. The

2nd dataset used a probe that has a small footprint to work

alongside non-invasive therapeutic and stimulation devices,

and is designed to generate scans at a very rapid pace at

the expense of quality. The 1st dataset contained 6,368 scans

from 3 different subjects, while the 2nd contained 26,313

scans from 5 different subjects. Both datasets contained scans

from both the left and right side of the neck. The Vagus

nerve shape, location and surrounding anatomical structures

varies greatly within subjects and across subjects. Even a

slight movement of the probe can make it challenging for

sonographers to re-identfy the nerve and its location due to

the high variability of neck anatomy visualized with medio-

lateral or cepahlo-caudal scanning along the cervical neck

[34]. In aggregate, nerve detection with variable anatomy

datasets, provides a substantial challenge for which we will

test our proposed method and verify its robustness.

B. Implementation and Setup
We conducted 3 experiments to test the performance

and robustness of our framework. The 1st experiment was



designed to test the accuracy of the proposed method in

detecting and tracking the Vagus nerve on the 1st dataset.

The 2nd experiment was designed to test the performance of

the proposed method on the more challenging 2nd dataset

and compare it to YOLOv4 and EfficientDet, the current

state-of-the-art real-time object detectors. In both of these

experiments the datasets were divided into individual scans

and split into a 64:16:20 ratio for training, validation, and

testing, respectively. The 3rd experiment was designed to test

and verify the robustness of the framework in accounting for

cross subject variabilities as well as its ability to generalize

to new subjects. Hence, in this experiment, we divided our

dataset by subject. The framework was trained on scans

from 4 subjects and tested on the 5th subject. Throughout

all three experiments, the scans were resized to 256x256 for

the 1st dataset, and to 192x192 for the 2nd dataset before

being supplied to the network in stage 2. The backbone

network was optimized using stochastic gradient descent

(SGD) with a learning rate = 10−3, momentum = 0.9, weight

decay of 10−3, batch size = 16, and trained for 200 epochs.

The proposed work was implemented in Pytorch and our

implementation is available in a Github repository [35].

TABLE I: The proposed framework localization precision

and recall. For experiments 1 and 2, the threshold for a true

positive is an IoU ≥ 0.5. For experiment 3, the threshold for

a true positive is a distance error ≤ 2.5 mm from the nerve

center.

Method Avg. Precision Avg. Recall

Experiment 1 - 1st Dataset

Ours - Single Frame 94.4% 97.2%

Experiment 2 - 2nd Dataset

Ours - Single Frame 90.89% 96.01%
Ours - Three Frames 92.67% 97.29%
YOLOv4 90.45% 97.24%
EfficientDet - d3 91.93% 96.35%

Experiment 3 - 2nd Dataset

Ours - Single Frame 93.5% 91.9%
Ours - Three Frames 95.1% 93.4%

C. Evaluation and Results

To evaluate the accuracy and robustness of the proposed

framework, we used the average precision and recall of

localization, where a detection is considered a true positive

when a certain localization threshold is met, otherwise that

detection is considered a false positive. This is the main

metric used to evaluate object detection algorithms [36].

For the 1st and 2nd experiments, the localization threshold

is based on the intersection over union (IoU) metric. For the

3rd dataset, the threshold is based on a physical distance of

2.5mm from the center of the nerve, which is equal to the

radius of a typical Vagus nerve.

Table I summarizes the performance of the proposed

framework for all of the 3 experiments. It can be seen that

the proposed framework was able to identify and localize

the Vagus nerve in both datasets with a high precision and

(a) 1st dataset (b) 2nd dataset

Fig. 3: Ultrasound scans of the Vagus nerve with the ground

truth (green) and predicted (yellow) bounding boxes.

recall. For the more challenging 2nd dataset, the results of the

2nd experiment show that the proposed method outperforms

YOLOv4 and EfficientDet - d3. For the 3rd experiment where

the 2nd dataset was divided by subjects, 4 subjects for training

and 1 subject for testing, the proposed method was still able

to generalize to subjects that it did not see during training and

achieved high localization precision and recall. This was not

the case for YOLOv4 and EffecientDet where the precision

and recall dropped below 25%. This loss of accuracy can

mainly be attributed to these methods’ need for large training

datasets with rich visual features to train their backbone and

detection networks [17], [18]. For the identification of target

frames, the performance metrics for the classifier in stage 3

are 93.01% for precision and 86.25% for recall.

Fig. 3 shows an example scan from each dataset with the

ground truth and predicted bounding boxes. To verify the

robustness of the proposed framework, we conducted two

additional experiments to analyze the proposed framework

performance on new subjects while being trained on smaller

subsets of the original dataset. The results of these two

experiments are shown in Fig. 1. In the first experiment,

we trained the framework on 1, 2, 3, and 4 subjects then

tested on a 5th subject and repeated this analysis twice for

two different test subjects. We then used three subjects for

training and two subjects for testing, randomly sampled scans

from the training set, and created training subsets of sizes

500, 800, 110, and 1400. As observed in Fig. 1, the proposed

framework has a high level of consistency and accuracy

even when trained on smaller training sets. The framework

produces high localization precision where more than 95%
of the true positives predictions are located within 1.5 mm

from the ground truth in both the lateral and axial directions,

which is shown in the heat map and histograms of the true

positive detections offset from the ground truth in Fig. 4.

V. CONCLUSION

We presented a weakly trained segmentation-based deep

learning framework for real-time object detection and local-

ization in ultrasound scans and tested its performance on

detecting the Vagus nerve with an inference time of less

than 33 ms. The framework used masks with bounding boxes

enclosing the Vagus nerve as a target for the segmentation

backbone network. It demonstrated that it can detect the

Vagus nerve and localize it successfully with a limited

number of training examples and without the need for time



Fig. 4: Heatmap (left) and histograms (right) of the lateral

and axial distance offset of the true positive detections from

the ground truth in millimeters.

consuming and expensive pixel-wise annotations, such as

those needed for segmentation tasks.
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