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Abstract: A car-following model describes the longitudinal control strategy of a driver in reaction to the 
movements of the front cars in the same lane. Because of inter-driver differences, drivers may demonstrate 
distinct maneuvers in the same excitation of the surrounding traffics. Therefore, the parameters of a car-
following model need to be determined per each driver individually. Calibrating a car-following model is 
commonly treated as a constrained optimization problem. The model parameters, viewed as the optimized 
variables, are found by minimizing a predefined cost function with a nonlinear numeric solver. However, 
nonlinear optimization can hardly guarantee global optimality, and more importantly, different 
formulations of the cost function frequently yield different parameter identification results. To bypass the 
issues mentioned above, we propose a purely algebraic approach to identify the parameters of a car-
following model. Simulation results demonstrate its effectiveness. 
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1. INTRODUCTION 

A car-following model describes the longitudinal maneuver of 
a driver in reaction to the movement of the front vehicles in 
the same lane. Different car-following models (Chandler et al., 
1958), (Gazis et al., 1959), (Bexelius, 1968), (Tordeux et al., 
2010) have been proposed since the 1950s, and they are 
playing an important role in microscopic traffic simulation 
packages. For instance, car-following models serve as efficient 
tools to test and evaluate critical components of modern 
intelligent transportation systems, such as traffic signal control 
devices (Chen & Sun, 2016) or connected and automated 
vehicles (Wang et al., 2020). Moreover, because of individual 
differences (Ossen et al., 2006, Schnelle et al., 2017, Zhang et 
al., 2017, Schnelle et al., 2018), drivers may react to the 
surrounding traffic in very different ways. With individualized 
car-following models, we can adapt embedded control 
algorithms, such as cruise control, to better serve a particular 
driver (J. Wang et al., 2013, Wang & Rajamani, 2004, Ma & 
Wang, 2021) and powertrain control (Ma & Wang, 2019), and 
human-centric automated driving (Hu & Wang, 2021). 

The discrepancies of drivers’ behaviors can be partially 
reflected in the identified driver model parameters after model 
calibration. In practice, model calibration is usually treated as 
a constrained optimization problem: Find

* ˆmin J X X  such that .lb ub  Here,  

indicates the parameter vector to be determined, and ,lb ub  
are the predefined lower and upper bounds of . ,X usually 
termed as the measure of performance (MOP), is a measured 
variable and X̂  is the simulated counterpart from the car-
following model. Finally, J indicates a cost function. 

Thus, there exists substantial flexibility for setting up an 
optimization problem. For instance, X  can be selected as ego-
car’s longitudinal speed, acceleration, inter-vehicle gap 

distance, time headway, and queue length. Besides, the cost 
function J  can be formulated as squared mean error,  mean 
absolute error, or logged mean absolute error  (Hollander & 
Liu, 2008). Finally, as the explicit mathematical relationship 
between the cost function and the optimized variables is hard 
to obtain, a gradient-free numerical solver needs to be selected. 
However, there exist a large number of candidates, such as 
genetic algorithm (Kesting & Treiber, 2008), Box’s complex 
method (Balakrishna et al., 2007) and downhill simplex 
method (Tordeux et al., 2010). 

Unfortunately, as revealed in (Punzo et al., 2012), gradient-
free solvers are sensitive to the initial optimization point and 
can frequently lead to local optimality. Consequently, it is not 
strange to encounter a situation where the identified 
parameters, which yield a practically low cost function value, 
are far from true values. Furthermore, different selections of 
MOP ,X  along with various formulations of the cost function 
J  can result in distinct parameter identification results. The 
standardization of setting up the optimization problem is still 
lacking (Brockfeld et al., 2004). 

To bypass the difficulties in numerically estimating the 
parameters of a car-following model, we adopt a differential 
algebra perspective (Diop & Fliess, 1992) to analytically 
identify the parameters of a car-following model. The 
algebraic method aims at obtaining static and exact 
formulations of the unknown parameters by performing 
algebraic operations on the model itself. Consequently, the 
identification result is independent of the cost function .J  
Moreover, no numeric solver is required. The key contribution 
of this paper is to demonstrate the feasibility of applying the 
algebraic approach for identifying parameters in a car-
following model. 

The rest of this paper is organized as follows. Section 2 
formulates the Bexelius car-following model, which serves as 
a benchmark to illustrate the proposed algebraic parameter 
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identification method. Section 3 illustrates, step-by-step, the 
algebraic parameter identification strategy. Section 4 
demonstrates the effectiveness of the proposed method via 
simulations. Finally, Section 5 concludes this paper. 

2. BEXELIUS CAR-FOLLOWING MODEL 

The Bexelius model (Bexelius, 1968) is constructed from the 
CHM car-following model (Chandler et al., 1958) by 
extending the single-car preview to include the two vehicles 
ahead of the ego-car. The Bexelius model is graphically 
presented in Fig. 1. 

 
Fig. 1. Bexelius car-following model. 

The Bexelius model reads: 

 1 1 2 2 .x x r x rv t c v t T c v t T   (1) 

In (1), 1
1 ,n

x x xv t v t v t where xv t is the 

longitudinal velocity of the ego-car (last car) and 1n
xv t  

represents the longitudinal velocity of the immediate leading 
car in the same lane. Similarly, 2

2 ,n
x x xv t v t v t  with 

2n
xv t  as the longitudinal velocity of the second nearest car 

in front. 

There exist three constants in (1): 1,c 2c are the sensitivity 
parameters and rT  is the driver reaction delay. Note that if we 
only consider the immediate leading car, we have: 

 1 1 ,x x rv t c v t T   (2) 

which is the famous CHM car-following model. 

3. ALGEBRAIC PARAMETER IDENTIFICATION 

Algebraic parameter identification is rooted in the concept of 
nonlinear observability: If a parameter can be expressed as a 
function of system inputs, measurable outputs, as well as their 
finite order derivatives, then it can be identified (Fliess & Sira–
Ramírez, 2003). Unlike Luenberger observer (Luenberger, 
1966) or Kalman Filter (Kalman, 1960), algebraic parameter 
identification is not derived from Lyapunov stability theory. 
As a consequence, the persistence of excitation condition is not 
required, and there is no asymptotical convergence phase for 
the parameter identification. 

The workflow to algebraically identify the parameters in (1) is 
sketched in Fig. 2. The blue and red background colors 
indicate that the corresponding blocks are executed in the time 
domain and frequency domain, respectively. 

 
Fig. 2. The workflow of algebraic parameter identification. 

Appling Laplace transform on (1) yields: 

 1 1 2 20 .r rT s T s
x x x xsv s v c v s e c v s e   (3) 

To remove the unknown initial speed condition 0 ,xv  we 
differentiate both sides of (3) with respect to the Laplace 
variable s, and obtain: 

1 2
1 1 1 2 2 2 .r

x
x

T sx x
r x r x

dv s
v s s

ds
d v s d v s

c c T v s c c T v s e
ds ds

 

 (4) 

To continue our analysis, we reformulate the time delay term 
rT se  via the Padé approximation. Since human reaction delay 

during a car-following process can be as high as 2.2s  
(Brackstone & McDonald, 1999), we employ the second-
degree Padé formula to alleviate the approximation error, as: 

 
2 2

2 2

12 6 .
12 6

rT s r r

r r

T s T se
T s T s

  (5) 

The different Padé formulas are compared in Fig. 3, where we 
use d to indicate the time delay. Hence, using (5) can cogently 
mitigate the approximation error. 

 
Fig. 3. Padé delay approximation. 

Then, we substitute (5) back into (4), and we obtain: 
2 2

2 2

1 2
1 1 1 2 2 2

12 6 *
12 6

x r r
x

r r

x x
r x r x

dv s T s T sv s s
ds T s T s

d v s d v s
c c T v s c c T v s

ds ds

  (6) 

Rearranging (6) leads to: 

2 2 2 3

1 1
1 1 1

12 2 3 2
1 1 1 1

2 2
2 2 2

12

6

12 6 12

6

12 6 12

x
x

x x
r x r x

x x
r x

x
r x r x

x x
r x

dv s
v s s

ds

dv s dv s
T sv s s T s v s s

ds ds

d v s d v s
c c T s v s

ds ds

d v s
c T s s v s c T s v s

ds

d v s d v s
c c T s v s

ds ds

22 2 3 2
2 2 2 26 .x

r x r x

d v s
c T s s v s c T s v s

ds

  (7) 
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After that, we introduce a sentinel parameter (Garcia-
Rodriguez et al., 2009) into (7). Sentinel parameter is an 
artificial variable to determine when the algebraically 
identified parameters can be assumed sufficiently close to their 
true values. Multiplying the left side of (7) with xs b  and the 
right side with s+1, yields: 

2

2 3

2 2 3 4

3 2 31 1
1 1 1 1

12 12 12

6 6 6

12 12

x x
x x x

x x
r x x

x x
r x x

x x
r x x

dv s dv s
sv s s b v s s

ds ds

dv s dv s
T sv s s v s s

ds ds

dv s dv s
T s v s s v s s

ds ds

d v s d v s
c s c T s v s s v

ds ds

21 1
1 1 1

2 2 31 1
1 1 1

3 2 32 2
2 2 2 2

2
2 2

12 6 12 6

6 6

12 12

12 6

x x
r x x

x x
r x x

x x
r x x

x
r x

s

d v s d v s
c T v s s v s s

ds ds

d v s d v s
c T s v s s v s s

ds ds

d v s d v s
c s c T s v s s v s

ds ds

d v s
c T v s s

d
2 2

2

2 2 32 2
2 2 2

12 6

6 6 .

x
x

x x
r x x

d v s
v s s

s ds

d v s d v s
c T s v s s v s s

ds ds

  (8) 

As will be shown later, by observing the value of the sentinel 
parameter xb  we can deduce the convergence status of the 
other estimated parameters. 

Before converting (8) back into the time domain, we first 
multiply 5s  on both sides of (8) and move all the unknown 
parameters to the right side, as: 

 

4 3 5 4

4 3 2

2 3 2 1

15 4
1

12 12 12

6 6 6 6

12 1

x x
x x x

x x
r x x

x x
r x x

x

dv s dv s
s v s s b s v s s

ds ds

dv s dv s
T s v s s v s s

ds ds

dv s dv s
T s v s s v s s

ds ds

d v s
c s s

ds
1 3 3 2

1 1 1

1 15 4 3
1 1 1

1 12 4 3 2
1 1 1

25
2

2

12 6 12 6

6 6

12

x
r x x

x x
r x x

x x
r x x

x

d v s
c T s v s s v s

ds

d v s d v s
c T s v s s v s s

ds ds

d v s d v s
c T s v s s v s s

ds ds

d v s
c s

ds
24 3 3 2

2 2 2

2 25 4 3
2 2 2

2 22 4 3 2
2 2 2

12

12 6 12 6

6 6 .

x
r x x

x x
r x x

x x
r x x

d v s
s c T s v s s v s

ds

d v s d v s
c T s v s s v s s

ds ds

d v s d v s
c T s v s s v s s

ds ds

 

 (9) 

Therefore, no derivative operations ,s will appear in 
the time domain when we convert (9) back to the time domain. 
In this case, high-frequency measurement noises will not be 
amplified. Moreover, all the measured variables, i.e., ,xv t  

1 ,xv t  and 2xv t in (9), will be integrated at least once. 
The integration serves as a low-pass filter to wipe out high-
frequency measurement noises. 

Recall that the inverse Laplace transform reads: 

 

1

1

1

0

,

,

.

vv v

t

s d dt

d ds t

s d

  (10) 

Applying (10) on (9) yields a linearly identifiable form, in 
terms of the unknown parameter set, as: 

 ,T
Bex Bex BexP t q t   (11) 

with 2 2 3 2 3
1 1 1 1 2 2 2 2, , , , , , , , , , ,Bex x r r r r r r r rb T T c cT cT cT c c T c T c T  

and 1 2 10 11, , , , ,
T

BexP t p t p t p t p t where 

 
5 4

1 12 ,x xp t v t tv t   (12) 

 
4 3 2

2 6 ,x x x xp t v t tv t v t tv t   (13) 

 
3 2

3 ,x x x xp t v t tv t v t tv t   (14) 

 
5 4

4 1 112 ,x xp t t v t t v t   (15) 

 
5 4 3

5 1 1 1 112 6 12 6 ,x x x xp t v t t v t v t t v t  

 (16) 

 
4 3 2

6 1 1 1 16 6 ,x x x xp t v t v t t v t t v t  

 (17) 

 
3 2

7 1 1 ,x xp t v t v t   (18) 

 
5 4

8 2 212 ,x xp t t v t t v t   (19) 

5 4 3

9 2 2 2 212 6 12 6 ,x x x xp t v t t v t v t t v t  

 (20) 

 
4 3 2

10 2 2 2 26 6 ,x x x xp t v t v t t v t t v t  

 (21) 

 
3 2

11 2 2 ,x xp t v t v t   (22) 

and 
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4 3

12 .Bex x xq t v t tv t   (23) 

Note that we use 
n

t  to represent the iterated integrals 
1 1

0 0 0
1 ,nt

n nt t t
d d with 0 0.t  Especially, if 

1,n we simplify 
1

t  as .t  

Note that there are eleven unknown parameters in (11). In 
other words, we have an underdetermined equation. The 
common method to solve this underdetermined equation is to 
formulate a least-squares problem, as: 

 * arg min , ,
Bex

Bex BexJ t   (24) 

where 

 
2

0
, .

t T
Bex Bex Bex BexJ t P q d   (25) 

Assigning 

 
0

,
t

Pq Bex BexM P q d   (26) 

 
0

,
t T

PP Bex BexM P P d   (27) 

 
0

,
tT T

qP Pq Bex BexM M q P d   (28) 

 
0

,
t

qq Bex BexM q q d   (29) 

we can reformulate (25) as: 

 

1 1

1

,

.

T T
Bex qq qP Bex Bex Pq Bex PP Bex

T

Bex PP Pq PP Bex PP Pq

qq qP PP Pq

J t M M M M

M M M M M

M M M M

 

 (30) 

Therefore, the optimal Bex  to minimize (25) can be 
analytically derived as: 

 1* ,Bex PP PqM M   (31) 
where 

0

1 1 1 2 1 110 0 0

2 10

11 1 11 110 0

,

t T
PP Bex Bex

t t t

t

t t

M P P d

p p d p p d p p d

p p d

p p d p p d

  (32) 

0

1 2 110 0 0
, , , .

t

Pq Bex Bex

Tt t t

Bex Bex Bex

M P q d

p q d p q d p q d
 

 (33) 

Note that at 0,t  (31) is indefinite as matrix PPM  is singular. 
However, since PPM  is positive semi-definite, its numeric 
condition shall improve as time goes by. Once the minimum 
absolute eigenvalue of PPM  becomes far away from zero, (31) 
yields the reliably identified parameters. 

4. SIMULATION RESULTS 

In this section, we utilize Matlab simulation to verify the 
proposed algebraic parameter identifier. As shown in Fig. 1, 
speed profiles of a three-car-platoon are required. In this paper, 

1n
xv t  and 2n

xv t  are retrieved from the reconstructed 
NGSIM dataset (Coifman & Li, 2017). Meanwhile, the 
synthetic speed profile xv t  of the last car is generated from 

the Bexelius model (1) with predefined parameters *
1 0.8,c

*
2 0.3,c  and * 0.5.rT  Profiles of 1 ,n

xv t  2 ,n
xv t  and  xv t  

are exhibited in Fig. 4. 

 
Fig. 4. Three car speed profiles. 

Note that the dataset in (Coifman & Li, 2017) is retrieved from 
a video record of the I-80 highway near San Francesco, from 
4:00 PM to 4:15 PM. Therefore, typical speed profiles in a 
congested traffic scenario are demonstrated in Fig. 4. 

As we mentioned in Section 3, algebraic identification does 
not maintain an asymptotical convergence phase. Instead, the 
convergence of the identification is determined by the numeric 
condition of the matrix .PPM  To determine when the estimated 
parameters from (31) can be assumed close to their true values, 
we leverage the estimated sentinel parameter ˆ .xb  Unlike the 
other unknown parameters, the ground truth value of the 
sentinel parameter, 1,xb  is known a priori in (8). As x̂b  is 
estimated similar to all the rest parameters, we can reasonably 
conjecture that when x̂b  remains close to 1, the estimated ˆ ,rT  

1̂,c  and 2ˆ ,c  shall also be near their corresponding actual values 
(Garcia-Rodriguez et al., 2009). Precisely speaking, 

*ˆ 2 ,r BexT  *
1̂ 4 ,Bexc  and *

2ˆ 8Bexc (see (11)) are 
outputted as the estimated parameters when the following two 
criteria are met: 

 
var

ˆ ˆ ,

ˆ 1 .

x x

x cls

b E b

b
  (34) 

In (34), ˆ ˆ
win

t

x x wint T
E b b d T  is the moving-averaged 

identified sentinel parameter ˆ ,xb with winT  as the sliding 
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window length. 
2

2ˆ ˆ ˆ
x x xb E b E b represents the 

variance of ˆ .xb  Finally, var  and cls  are the thresholds. The 
first criterion in (34) ensures that the estimated sentinel 
parameter enters into its steady-state, and the second criterion 
guarantees its estimation correctness. Intuitively, the selection 
of var  and cls  trades off between the estimation accuracy 
and speed. A smaller threshold value could yield a more 
accurate estimation result with the cost of a longer 
convergence period. 

Once (34) is met, we can permanently stop the estimation and 
output the estimated variables if we know the parameters are 
strictly constant. On the contrary, if the identified parameters 
are slowly time-varying, we can approximate them as piece-
wise constant parameters and periodically reset (33) to obtain 
refreshed parameters (Linares-Flores et al., 2014). In the 
following, we fix var 1 5e  and 1 2.cls e  

We first demonstrate the estimation of the sentinel parameter 
xb  in Fig. 5. 

 
Fig. 5. Estimation of the minus sentinel parameter. 

The upper subplot in Fig. 5 comes from * 1 ,Bex which 

corresponds to ˆ .xb  At the beginning of the estimation, 
because of the singularity of PPM  in (31), the estimated 
sentinel parameter demonstrates strong oscillations, which is 
well captured by ˆ ˆ

x xb E b  in (34). As the condition 

number of PPM  decreases, the estimated sentinel parameter 
gradually converges and remains close to its true value: 

ˆ 1.xb  At around 5.7 ,t s  criteria (34) become satisfied, 

and we obtain ˆ ,rT  1̂,c  and 2ˆ .c   

The estimated 
* 2 ,Bex  

* 4Bex  and 
* 8Bex  are compiled 

in Fig. 6.  

 
Fig. 6. Identification of parameters of interest. 

Similar to the sentinel parameters, the estimated ˆ ,rT  1̂,c  and 

2ĉ  exhibit strong oscillations at the beginning of the 
identification process and gradually, but not asymptotically, 
converge into their corresponding true values. At 5.7 ,t s  the 
finally outputted identification results are summarized in 
Table 1. 

Table 1. Final parameter identification results. 

 rT  1c  2c  
Identification result -0.5097 0.7868 0.3009 

True value -0.5000 0.8000 0.3000 
Estimation error  1.94% 1.65% 0.30% 

Therefore, the algebraic approach yields quite accurate 
parameter identification results. As indicated in Fig. 4, the 
excitation level of the system inputs 1 2,x xv t v t  is 
quite limited in a congested traffic scenario. Therefore, we 
need to wait a long enough period until PPM  in (33) becomes 
somehow well-conditioned. This fact partially explains the 
parameter estimation errors and the relatively slower 
identification process. 

Remark 1: Before criteria (34) become satisfied, no trustful 
parameter identification results from (33) can be available. In 
this case, we can rely on the offline identified parameters from 
the historical driving data of a specific driver. 

Remark 2: Comparison between the algebraic approach and 
the typical recursive least squares (RLS) method for parameter 
identification can be found in the authors’ previous paper 
(Zejiang Wang & Wang, 2020). 

5.  CONCLUSIONS 

In this paper, we propose an algebraic parameter identification 
approach for the Bexelius car-following model. In contrast to 
the traditional optimization-based model calibration approach, 
no explicit cost function needs to be designed a priori, and no 
numerical optimization process is involved. Simulation results 
demonstrate the effectiveness of the proposed strategy. Indeed, 
the algebraic parameter identification framework can be 
applied to a class of car-following models, which can be 
expressed as its linear identifiable form in terms of the 
unknown parameters, akin to (11). Typical examples include 
the CHM model (Chandler et al., 1958), the GHR model 
(Gazis et al., 1959), and the adaptive gap-time model (Tordeux 
et al., 2010). We will study using the algebraic approach to 
identify time-varying parameters under the influence of 
modeling errors. 
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