1904.12342v4 [cs.DB] 17 Jun 2021

arxiv

Video Analytics with Zero-streaming Cameras

Mengwei Xu!?*, Tiantu Xu3*, Yunxin Liu?, and Felix Xiaozhu Lin

5

YPeking University
2Beijing University of Posts and Telecommunications
3Purdue ECE
Institute for Al Industry Research (AIR), Tsinghua University
>University of Virginia

Abstract

Low-cost cameras enable powerful analytics. An unexploited
opportunity is that most captured videos remain “cold” with-
out being queried. For efficiency, we advocate for these cam-
eras to be zero streaming: capturing videos to local storage
and communicating with the cloud only when analytics is
requested.

How to query zero-streaming cameras efficiently? Our re-
sponse is a camera/cloud runtime system called DIVA. It
addresses two key challenges: to best use limited camera
resource during video capture; to rapidly explore massive
videos during query execution. DIVA contributes two uncon-
ventional techniques. (1) When capturing videos, a camera
builds sparse yet accurate landmark frames, from which it
learns reliable knowledge for accelerating future queries. (2)
When executing a query, a camera processes frames in mul-
tiple passes with increasingly more expensive operators. As
such, DIVA presents and keeps refining inexact query results
throughout the query’s execution. On diverse queries over
15 videos lasting 720 hours in total, DIVA runs at more than
100x video realtime and outperforms competitive alterna-
tive designs. To our knowledge, DIVA is the first system for
querying large videos stored on low-cost remote cameras.

1 Introduction

Cameras are pervasive: a survey of 61 organizations shows
that from 2015 to 2018 their average number of cameras has
increased by almost 70%, from 2,900 to 4,900 [6]. Insights
of videos can be extracted by queries such as “get the daily
peak pedestrian count in the past week” [36,67,82,101]. Four
recent trends motivate our work.

*Mengwei Xu and Tiantu Xu contributed equally to the paper.
*Work done during Mengwei Xu’s visit to Purdue University.
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Figure 1: The design space of video analytics systems, show-
ing this work and prior systems.

(1) Low-cost, wireless cameras grow fast As key comple-
ments to high-end cameras, low-cost cameras (<$40) are in-
creasingly pervasive [17,18,34]. These cameras often have
limited compute resources yet spacious storage. Being wire-
less, these cameras are meant to be installed by individuals or
small businesses with ease just as other wireless sensors.

(2) Most videos are cold Users deploy cameras to know-
ingly capture excessive videos, expecting that most videos
will never be queried [72]. This is because interesting events
are often unforeseeable, e.g., car accidents; the need for exam-
ining such events emerges well after the fact. §2.1 presents a
6-month study of real-world camera deployment, where only
<0.005% of captured videos are eventually queried.

(3) Transmitting cold videos wastes wireless bandwidth Cold
videos should not compete with human users for network
bandwidth. If streaming video in real-time, a single cam-
era generates traffic at 0.2 MB/s—0.4 MB/s (720P@1-30
FPS); with multiple cameras on one network, their always-on
streams easily consume most, if not all, bandwidth of con-
sumer WiFi, which is 0.2 MB/s—3 MB/s (median: 0.99) in a
recent global survey [9] and less than 1.5 MB/s in an academic
study [47]. A dedicated network for cameras is expensive, as
the network monetary cost will exceed the camera cost in
several months [14].

(4) Camera storage can retain videos long enough A cheap



camera can already store videos for weeks or months. Such
retention periods already satisfy many video scenarios [2,
10]. In fact, legal regulations often prevent retention longer
than a few months, mandating video deletion for privacy [1,
7]. Existing measures can assure data security of on-camera
videos. §2.3 will provide evidence in detail.

Zero streaming & its use cases How to analyze cold videos
produced by numerous low-cost cameras? We advocate for a
system model dubbed “zero streaming”. (1) Cameras continu-
ously capture videos to their local storage without uploading
any. (2) Only in response to a retrospective query, the cloud
reaches out to the queried camera and coordinates with it
to process the queried video. (3) While the video is being
processed, the system presents users with inexact yet useful
results; it continuously refines the results until query com-
pletion [50]. In this way, a user may explore videos through
interactive queries, e.g., aborting an ongoing query based on
inexact results and issuing a new query with revised parame-
ters [45,46]. Zero streaming has rich use cases, for example:

* To trace the cause of recent frequent congestion on a high-
way, a city planner queries cameras on nearby local roads,
requesting car counts seen on these local roads.

* To understand how recent visitors impact bobcat activities,
aranger queries all the park’s cameras, requesting time ranges
where the cameras capture bobcats.

Advantages Zero streaming suits resource-frugal cameras in
large deployment. When capturing videos, cameras require
no network or external compute resources. Only to process a
query, the cameras require networks such as long-range wire-
less [35] and cloud resources such as GPU. Zero streaming
adds a new point to the design space of video analytics shown
in Figure 1. It facilitates retrospective, exploratory analytics,
a key complement to real-time event detection and low-delay
video retrieval [51,55,65,99]. The latter demands higher com-
pute or network resources per camera and hence suits fewer
cameras around hot locations such as building entrances.

DIVA To support querying zero-streaming cameras, we
present a camera/cloud runtime called DIVA. As shown in
Figure 2, a camera captures video to local storage; it deletes
videos after their maximum retention period. In response to
a query, the camera works in conjunction with the cloud:
the camera runs operators, implemented as lightweight neural
nets (NNs), to rank or filter frames; the cloud runs full-fledged
object detection to validate results uploaded from the camera.
DIVA thus does not sacrifice query accuracy, ensuring it as
high as that of object detection by the cloud.

The major challenges to DIVA are two. (1) During video
capture: how should cameras best use limited resources for fu-
ture queries? (2) To execute a query: how should the cloud and
the camera orchestrate to deliver useful results rapidly? Ex-
isting techniques are inadequate. Recent systems pre-process
(“index”) video frames as capturing them [51] and answer
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Figure 2: Overview of DIVA

queries based on indexes only. Yet, as we will show in §8,
low-cost cameras can hardly build quality indexes in real-
time. Many systems process video frames in a streaming
fashion [40,42,92,97, 100], which however miss key oppor-
tunities in retrospective queries.

To this end, DIVA has two unconventional designs.

¢ During video capture: building sparse but sure land-
marks to distill long-term knowledge (Figure 2(a)) To op-
timize future queries, our key insight is that accurate knowl-
edge on a sparse sample of frames is much more useful than
inaccurate knowledge on all frames. This is opposite to exist-
ing designs that detect objects with low accuracy on all/most
frames as capturing them [40, 51]. On a small sample of
captured video frames dubbed landmarks, the camera runs
generic, expensive object detection, e.g., YOLOvV3 [77]. Con-
strained by camera hardware, landmarks are sparse in time,
e.g., 1 in every 30 seconds; yet, with high-accuracy object
labels, they provide reliable spatial distributions of various
objects over long videos. High accuracy is crucial, as we will
validate through evaluation (§8.3). DIVA optimizes queries
with landmarks: it prioritizes processing of frame regions with
object skewness learned from landmarks; it bootstraps oper-
ators with landmarks as training samples. Landmarks only
capture a small fraction of object instances; those uncaptured
do not affect correctness/accuracy (§4).

* To execute queries: multipass processing with online
operator upgrade (Figure 2(b)) To process large videos, our
key insight is to refine query results in multiple passes, each
pass with a more expensive/accurate operator. Unlike prior
systems processing all frames in one pass and delivering re-
sults in one shot [40, 58, 59], multipass processing produces
useful results during query execution, enabling users to ex-
plore videos effectively. To do so, DIVA’s cloud trains oper-
ators with a wide spectrum of accuracies/costs. Throughout
query execution, the cloud keeps pushing new operators to the
camera, picking the next operator based on query progress,
network conditions, and operator accuracy. The early oper-
ators quickly explore the frames for inexact answers while
later operators slowly exploit for more exact answers.

On 720-hour videos in total from 15 different scenes, DIVA
runs queries at more than 100x video realtime on average,
with typical wireless conditions and low-cost hardware. DIVA
returns results quickly: compared to executing a query to



completion, DIVA takes one order of magnitude shorter time
to return half of the result frames. Compared to competitive
alternatives, DIVA speeds up queries by at least 4 x.

Contributions We have made the following contributions.

* Zero streaming, a new model for low-cost cameras to oper-
ate on frugal networks while answering video queries.

* Two novel techniques for querying zero-streaming cam-
eras: optimizing queries with accurate knowledge from sparse
frames; processing frames in multiple passes with operators
continuously picked during a query.

* DIVA, a concrete implementation that runs queries at more
than 100X realtime with uncompromised query accuracy. To
our knowledge, DIVA is the first system designed for querying
large videos stored on low-cost remote cameras.

Ethical considerations In this study: all visual data used is
from the public domain; no information traceable to human
individuals is collected or analyzed.

2 Motivations

2.1 Cold videos are already pervasive

Case study: Cold videos in real-world deployment We
conduct an IRB-approved study examining existing camera
deployment on PKU campus. Spanning 1 mi?, the campus
hosts tens of thousands of employees and operates more
than 1,000 cameras. All captured videos are stored for a few
months for retrospective queries before deletion. The camera
deployment supports Al-based queries, e.g., object detection,
not traceable to unique persons, and reviews by human an-
alysts. We analyzed system logs spanning six continuous
months: in over 3,000,000 hours of videos (5.4 PB) have been
captured, only <0.005% video data from <2% cameras are
queried.

Why are most videos cold? (1) Interesting video events
are both unpredictable (thus the need for capturing exces-
sive videos) and sparse (thus low chances for footage being
queried). For example, severe traffic breakdown contributes
to less than 5% of the time per day [89]; Foreign intelli-
gence surveillance court only reviewed a tiny fraction of video
for terrorism events [93]. (2) Analyzing videos is expensive:
it still requires a GPU of a few thousand dollars for high-
accuracy object detection over a video stream [59]. (3) In
years to come, cheap cameras will produce more videos.

2.2 Target queries and their execution

We target ad-hoc queries [51,59,96, 100]. The query parame-
ters, including object classes, video timespans, and expected
accuracies, are specified at query time rather than video cap-
ture time. Such queries are known for flexibility.

High-accuracy object detection is essential Object detec-
tion is the core of ad-hoc queries [58]. Minor accuracy loss
in object detection may result in substantial loss in query
performance, as we will demonstrate in §8. While NNs signif-
icantly advance object detection, new models with higher ac-
curacy demand much more compute. For instance, compared
to YOLOV3 (2018) [77], CornerNet (2019) [64] improves
Average Precision by 28% while being 5x more expensive.

Low-cost cameras cannot answer queries without cloud
Cameras in real-world deployment are reported to be resource-
constrained [65]. Low-cost cameras (<$40) have wimpy cores,
e.g., Cortex-A9 cores for YI Home Camera [18] and MIPS32
cores for WyzeCam [17]; their DRAM is no more than a few
GBs [15, 16]. In recent benchmarks, they run state-of-the-art
object detection at 0.1 FPS [8, 66], incapable of keeping up
with video capture at 1-30 FPS [51, 59]. NN accelerators
still cannot run high-accuracy object detection fast enough at
low enough monetary cost, e.g., Intel’s Movidius ($70) runs
YOLOV3 at no faster than 0.5 FPS. In the foreseeable future,
we expect that the resource gap between high-accuracy object
detection and low-cost camera continues to exist.

2.3 A case for zero streaming

Streaming cold videos wastes bandwidth As discussed in
§1, cameras are cheap while wireless spectrum is precious.
Deploying streaming cameras on a shared network incurs
poor experience [3, 11] and draws researcher attention [40,
100]. Dedicated networks are costly [14] and thus only suit a
small number of cameras in critical locations. While wireless
bandwidth grows, consumer demand grows even faster, e.g.,
20x for VR/AR and 10x for gaming [5]. Cold video traffic
should not contend with consumers for network bandwidth.

Streaming optimizations cannot offset the waste One may
reduce FPS or resolution of streamed videos. Even if users tol-
erate the resultant lower query accuracy, the saved bandwidth
is incomparable to the waste on overwhelmingly streamed
cold videos, as we will experimentally show (§8). On-camera
“early filters” [40,42,65] are still suboptimal when querying
massive cold videos. (1) Without knowing query objects/pa-
rameters at video capture time, a camera may run a generic
filter, e.g., discarding no-motion frames; it still streams sub-
stantial survival frames (e.g., consider a street-view camera).
As stated above, most of these frames will remain cold and
hence wasted. (2) The camera may run a large set of specific
filters covering all possible query objects/parameters. Even if
possible, this incurs a much higher compute cost to camera.

Edge processing does not justify streaming Cameras may
stream to edge servers. Yet, streaming hundreds if not thou-
sands of always-on, cold video streams, even if possible on
certain wireless infrastructures, still wastes precious wireless
spectrum at the edge [69]. Furthermore, deploying and man-
aging video edge servers can be challenging and costly in



many scenarios, such as construction sites and remote farms.

Size  Yr.2017 Yr.2020 720p@30FPS 720p@1FPS
128GB $45 $17 ~11 days ~3 weeks
256GB $150 $28 ~3 weeks ~ 6 weeks

Table 1: Cheap uSD cards on cameras retain long videos for
humans to review [4] or for machines to analyze [51].

Cameras can retain videos long enough Table | shows the
price of uSD cards has been dropped by 2.6x-5.4x in the
past few years. Cameras can retain videos for several weeks
and for several months soon. Such a retention period is already
adequate for most retrospective query scenarios, where videos
are retained from a few weeks to a few months based on best
practice and legal regulations [1,2,7, 10]. For privacy, many
regulations prohibit video retention longer than a few months
and mandate deletion afterwards [1,7].

Our model & design scope To harness cold videos, we ad-
vocate for zero streaming. We focus on cold videos being
queried for the first time and querying individual cameras. We
intend our design to form the basis of future enhancement and
extension, e.g., resource scheduling for multiple queries/user-
s/tenants [40], caching for repetitive queries [95], exploiting
past queries for refinement [41], and exploiting cross-camera
topology [54]. We address limited compute resource on cam-
eras [15] and limited network bandwidth [47]. We do not
consider the cloud as a limiting factor, assuming it runs fast
enough to process frames uploaded from cameras.

3 The DIVA Overview

Query types Concerning a specific camera, an ad-hoc query
(7, C) covers a video timespan 7, typically hours or days,
and an object class C as detectable by modern NN, e.g., any
of the 80 classes of YOLOvV3 [77]. As summarized in Table 2,
DIVA supports three query types: Retrieval, e.g., “retrieve
all images that contain buses from yesterday”’; Tagging, e.g.,
“return all time ranges when any deer shows up in the past
week”, in which the time ranges are returned as metadata but
not images; Counting, e.g., “return the maximum number of
cars that ever appear in any frame today”.

System components DIVA spans a camera and the cloud.
Between them, the network connection is only provisioned
at query time. To execute a query, a camera runs lightweight
NN, or operators, to filter or rank the queried frames for
upload. On the uploaded frames, the cloud runs generic, high-
accuracy object detection and materializes query results. Ta-
ble 2 summarizes executions for different queries:

o The camera executes rankers for Retrieval and max Count
queries. A ranker scores frames; a higher score suggests that
a frame is more likely to contain any object of interest (for
Retrieval) or a large count of such objects (for max Count).
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Figure 3: The workflow of a query’s execution.

e The camera executes filters for Tagging queries. A filter
scores frames; it resolves any frame scored below/above two
pre-defined thresholds as negative/positive, and deems other
frames as unresolved. For each resolved frame, the camera
uploads a positive/negative tag; the camera either uploads
unresolved frames for the cloud to decide or defer them to
more accurate filters on camera in subsequent passes.

Query execution Upon receiving a query, the cloud retrieves
all landmarks in queried video as low-resolution thumbnails,
e.g., 100x100, with object labels and bounding boxes (Fig-
ure 3 o). The cloud uses landmarks: (1) to estimate object
spatial distribution, e.g., “90% queried objects appear in a
100x 100 region on the top-right”, which is crucial to query
optimization (§4); (2) as the initial training samples for boot-
strapping a family of camera operators (@). The camera fil-
ters/ranks frames and uploads the ranked or surviving frames
(9). The cloud processes the uploaded frames and emits
results, e.g., positive frames. It trains operators for higher
accuracy (e). Observing resource conditions and positive
ratios in uploaded frames, the cloud upgrades the operator on
camera (0). With the upgraded operator, the camera contin-
ues to process remaining frames (@). Step (9)—(@) repeat
until query abort or completion. Throughout the query, the
cloud keeps refining the results presented to the user (0).

Notable designs (1) The camera processes frames in mul-
tiple passes, one operator in each pass. (2) The camera pro-
cesses and uploads frames asynchronously. For instance,
when the camera finishes ranking 100 out of total 1,000
frames, it may have uploaded the top 50 of the 100 ranked
frames. This is opposed to common ranking which holds off
frame upload until all the frames are ranked [38,53,61]. (3)
The processing/upload asynchrony facilitates video explo-
ration: it amortizes query delay over many installments of
results; it pipelines query execution with user thinking [45].
Table 2 summarizes a user’s view of query results and the
performance metrics. While such online query processing has
been known [43,71], we are the first applying it to visual data.

Limitations DIVA is not designed for several cases and may
underperform: querying very short video ranges, e.g., minutes,
for which simply uploading all queried frames may suffice
without operators; querying non-stationary cameras for which
landmarks may not yield accurate object distribution. DIVA
is vulnerable to loss of video data in case of camera stor-



Type & Semantics Execution

User’s view of query results Performance Metrics

Retrieval.
Get positive video frames (i.e.,
containing C) within T

Camera: multipass ranking of frames
Uploaded: ranked frames

Cloud: object detection for identifying true positives

The rate of the user receiving
positive frames

e Positive frames being uploaded;
e Estimated % of positives retrieved

Tagging. Camera: multipass filtering of frames e Avideo timeline with pos/neg ranges; The refining rate of tagging
Get time ranges from T that Uploaded: unresolved frames; tags of resolved frames | o Tagging resolution, i.e., 1 in every N resolution seen by the user
contain C Cloud: object detection to tag unresolved frames adjacent frames tagged

Counting. Camera: multipass ranking (max) or random sampling | e Running counts that converge to ground | The rate of running counts

(mean/median) of frames
Uploaded: ranked or sampled frames
Cloud: object detection to count objects

Get max/mean/median count
of Cacross all framesin T

truth; converging to ground truth
® % of frames processed;
e Estimated time to complete the query

Table 2: A summary of supported queries. 7 is the queried video timespan; C is the queried object class
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Figure 4: Class spatial skews in videos. In (a) Banff: 80%
and 100% of cars appear in regions that are only 19% and
57% of the whole frame, respectively.
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Figure 5: Class spatial distribution can be estimated from
sparse frames sampled over long video footage. Among
the three heatmaps: while sparse sampling over short footage
(left) significantly differs from dense sampling of long footage
(right), sparse sampling of long footage (middle) is almost
equivalent to the right. Video: Tucson (see Table 4).

age failure. Users can mitigate such a risk via cross-camera
data backup (RAID-like techniques) on the same local area
network or by increasing camera deployment density.

4 Landmark Design

Surveillance cameras have a unique opportunity: to learn ob-
Jject class distribution from weeks of videos. We focus on
spatial skews: objects of a given class are likely to concen-
trate on certain small regions on video frames. In examples
of Figure 4(a)-(b), most cars appear near a stop sign; most
persons appear in a shop’s aisle. Such long-term skews are
rarely tapped in prior computer vision work, which mostly
focused on minute-long videos [52, 54,78, 81, 102]. Com-
pared to recent work that improved classifier performance
by cropping video frames [40], DIVA takes a step further by
automatically learning spatial skews from sparse frames with
resource efficiency.

The design is backed up by three key observations. (1) One
object class may exhibit different skews in different videos
(Figure 4(a)-(c)); different classes may exhibit different skews

in the same video (Figure 4(c)). (2) The skews are pervasive:
surveillance cameras cover long time spans and a wide field
of view, where objects are small; in the view, objects are
subject to social constraints, e.g., buses stop at traffic lights,
or physical constraints, e.g., humans appear on the floor. (3)
The skews can be learned through sparse frame samples, as
exemplified by Figure 5.

To exploit such an opportunity, DIVA makes the following
design choices. High-accuracy object detection: at capture
time, the camera runs an object detector with the highest
accuracy as allowed by the camera’s hardware, mostly mem-
ory capacity. This is because camera operators crucially de-
pend on the correctness of landmarks, i.e., the object labels
and bounding boxes. We will validate this experimentally
(§8.3). Sparse sampling at regular intervals: to accommo-
date slow object detection on cameras, the camera creates
landmarks at long intervals, e.g., 1 in every 30 seconds in
our prototype (§8). Sparse sampling is proven valid for esti-
mating statistics of low-frequency signals [37], e.g., object
occurrence in videos in our case. We will validate this (§8.3);
without assuming a priori of object distribution, regular sam-
pling ensures unbiased estimation of the distribution [79].
Given a priori, cameras may sample at corresponding random
intervals for unbiased estimation.

Key idea: exploiting spatial skews for performance The
cloud learns the object class distribution from landmarks of
the queried video timespan. It generates a heatmap for spatial
distribution (Figure 4). Based on the heatmap, the cloud pro-
duces camera operators consuming frame regions of different
locations and sizes. Take Figure 4(a) as an example: a filter
may consume bottom halves of all frames and accordingly fil-
ter frames with no cars; for Figure 4(b), a ranker may consume
a smaller bounding box where 80% persons appear and rank
frames based on their likelihood of containing more persons.
Figure 6 shows that, by zooming into smaller regions, opera-
tors run faster and deliver higher accuracy. By varying input
region locations/sizes, DIVA produces a set of operators with
diverse costs/accuracies. By controlling the execution order
of operators, DIVA processes “popular” frame regions prior
to “unpopular” regions. DIVA never omits any region when it
executes a query to completion to guarantee correctness.

What happens to instances uncaptured by landmarks?
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Figure 6: On-camera operators benefit from long-term
video knowledge substantially. Each marker: an operator.
For querying buses on video Banff (see Table 4).

Sparse by design, landmarks are not meant to capture all
object instances; instead, they are used as inexact estima-
tors and initial training samples. Reducing landmarks will
degrade query speed, as we will experimentally quantify in
§8.3. Doing so, however, does not affect query correctness
or accuracy: the instances uncaptured by landmarks will be
eventually processed by DIVA as a query goes on.

5 Online Operator Upgrade

5.1 The rationale

Three factors determine a query’s execution speed:

1. Pending workloads: the difficulty of the frames to be pro-
cessed, i.e., how likely will the frame be mis-filtered or mis-
ranked on camera.

2. Camera operators: cheap operators spend less time on
each frame but are more likely to mis-filter/mis-rank frames,
especially difficult frames. This is shown in Figure 6.

3. Network condition: the available uplink bandwidth.

The three factors interplay as follows.

o Queries executed with on-camera rankers A camera
ranks and uploads frames asynchronously (§3). The key is
to maximize the rate of true positive frames arriving at the
cloud, for which the system must balance ranking speed/ac-
curacy with upload bandwidth. (1) When the camera runs a
cheaper ranker, it ranks frames at a much higher rate than
uploading the frames; as a result, the cloud receives frames
hastily selected from a wide video timespan. (2) When the
camera runs an expensive ranker, the cloud receives frames
selected deliberately from a narrow timespan. (3) The camera
should never run rankers slower than upload, which is as bad
as uploading unranked frames.

As an example, Ecypap and Egxp on the top of Figure 7
compare two possible executions of the same query, running
cheap/expensive rankers respectively. Shortly after the query
starts (0), Ecueap swiftly explores more frames on camera;
it outperforms Egxp by discovering and returning more true
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Figure 7: Three alternative executions of a Retrieval
query, showing multipass ranking (bottom) outperforms
running individual rankers alone (top two). Each row:
snapshots of the upload queue at three different moments.
In a queue: ranking/uploading frames from left to right.
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Figure 8: Cheap/expensive camera operators excel at dif-
ferent query stages. Each subfigure: two alternative execu-
tions of the same query, showing query progress (bars) and
the corresponding operator’s progress (arrows).

positive frames. As both executions proceed to harder frames
(Q), Ecueap makes more mistakes in ranking; it uploads an
increasingly large ratio of negatives which wastes the exe-
cution time. By contrast, Egxp ranks frames slower yet with
much fewer mistakes, hence uploading fewer negatives. It
eventually returns all positives earlier than Ecggap (0).

The microbenchmark in Figure 8(a) offers quantitative evi-
dence. E1 spends less time (0.7 x) in returning the first 90%
positives, but more time (1.7 ) in returning 99% positives.
Furthermore, lower upload bandwidth favors a more expen-
sive ranker, as the uploaded frames would contain a higher
ratio of positives, better utilizing the precious bandwidth.
¢ Queries executed with on-camera filters The key is to
maximize the rate of resolving frames on camera. Cheap
filters excel on easy frames, resolving these frames fast with
confidence. They are incapable on difficult frames, wasting
time on attempting frames without much success in resolving.
They would underperform expensive filters that spend more
time per frame yet being able to resolve more frames.

The benchmark in Figure 8(b) shows two executions with
cheap/expensive filters. Early in the query, E1 makes faster
progress as the camera quickly resolves 50% of the frames
(4 x less time than E2). Later in the execution, E1 lags behind
as the camera cannot resolve the remaining frames and must



upload them. By contrast, E2 resolves 82% of frames on
camera and only uploads the remaining 18%. As a result, E2
takes 1.3 less time in completing 90% and 99% of the query.

Summary & implications It is crucial for DIVA to pick op-
erators with optimal cost/accuracy at query time. The choice
not only varies across queries but also varies throughout a
query’s execution: easy frames are processed early, leaving
increasingly difficult frames that call for more expensive op-
erators. DIVA should monitor pending frame difficulty and
network bandwidth and upgrade operators accordingly.

5.2 Multipass, multi-operator execution

DIVA manages operators with the following techniques. (1) A
camera processes frames iteratively with multiple operators.
(2) The cloud progressively updates operators on camera,
from cheaper ones to more expensive ones, as the direction
shown in Figure 6. In picking operators, the cloud dynami-
cally adapts operator speed to frame upload speed. (3) The
cloud uses frames received in early execution stages to train
operators for later stages; as the latter operators are more
expensive, they require more training samples.

e Multipass ranking This is exemplified by the bottom execu-
tion in Figure 7. The camera first runs a cheap ranker, moving
positives towards the front of the upload queue (@). Subse-
quently, the camera runs an expensive ranker, continuously
reordering unsent frames in a smaller scope (e). Throughout
the query, the camera first quickly uploads easy frames that are
quickly ranked and slows down to vet difficult frames with ex-
pensive/accurate ranking. Notably, the cheaper ranker roughly
prioritizes the frames as input for the expensive ranker, en-
suring the efficacy of the expensive ranker. In actual query
executions, a camera switches among 4-8 operators (§8).

e Multipass filtering The camera sifts undecided, unsent
frames in multiple passes, each with a more expensive filter
over a sample of the remaining frames. Throughout one query,
early, cheaper filters quickly filter easier frames, leaving more
difficult frames for subsequent filters to resolve.

6 Query Execution Planning

DIVA plans a concrete query execution by (1) the camera’s
policy for selecting frames to process; (2) the cloud’s policy
for upgrading on-camera operators. We now discuss them.

6.1 Executing Retrieval queries

Policy for selecting frames To execute the initial operator,
the camera prioritizes fixed-length video spans (e.g., 1 hour)
likely rich in positive frames, estimated based on landmark
frames. In executing subsequent operators, the camera pro-
cesses frames in their existing ranking as decided by earlier
operators, as described in §5. The camera gives opportunities

to frames never ranked by prior operators, interleaving their
processing with ranked frames with mediocre scores (0.5).

Policy for operator upgrade As discussed in §3, DIVA
switches from cheap operators to expensive ones, and matches
operator speed to frame upload rate. To capture an operator
op’s relative speed to upload, it uses one simple metric: the
ratio between the two speeds, i.e., f,, = FPS,p/FPSyer. Op-
erators with higher f;, tend to rapidly explore frames while
others tend to exploit slowly. The operator speed F'PS,), is
profiled offline. (1) Selecting the initial operator In general,
DIVA should fully utilize the upload bandwidth with positive
frames. As positive frames are scattered in the queried video
initially, the camera should explore all frames sufficiently fast.
Otherwise, it would either starve the uplink or knowingly up-
load negative frames. Based on this idea, the cloud picks the
most accurate operator from the ones that are fast enough,
i.e., fop X Rpos > 1, where R, is the ratio of positives in the
queried video, estimated from landmarks. (2) When to up-
grade: current operator losing its vigor The cloud upgrades
operators either when the current operator finishes processing
all frames, or the cloud observes a continuous quality decline
in recently uploaded frames, an indicator of the current op-
erator’s incapability. To decide the latter, DIVA employs a
rule: the positive ratio in recently uploaded frames are kx (de-
fault: 5) lower than the frames uploaded at the beginning; (3)
Selecting the next operator: slow down exponentially Since
the initial operator promotes many positives towards the front
of the upload queue, subsequent operators, scanning from the
queue front, likely operate on a larger fraction of positives. Ac-
cordingly, the cloud picks the most accurate operator among
much slower ones, S.t. fo,(i11) > 0 X fop(i), Where o controls
speed decay in subsequent operators. A larger o leads to more
aggressive upgrade: losing more speed for higher accuracy. In
the current prototype, we empirically choose oe = 0.5. Since f
is relative to F PS,.; measured at every upgrade, the upgrade
adapts to network bandwidth change during a query.

6.2 Executing Tagging queries

Recall that for Tagging, a camera runs multipass filtering; the
objective of each pass is to tag, as positive (P) or negative
(N), at least one frame from every K adjacent frames. We
call K the group size; DIVA pre-defines a sequence of group
sizes as refinement levels, e.g., K = 30, 10, ..., 1. As in prior
work [51,58,59], the user specifies tolerable error as part of
her query, e.g., 1% false negative and 1% false positive; DIVA
trains filters with thresholds to meet the accuracy.

Policy for selecting frames The goal is to quickly tag easy
frames in individual groups while balancing the workloads
of on-camera processing and frame upload. An operator op
works in two stages of each pass. i) Rapid attempting. op
scans all the groups; it attempts one frame per group; if it
succeeds, it moves to the next group; it adds undecidable



frames (U) to the upload queue. ii) Work stealing. op steals
work from the end of upload queue. For an undecidable frame
f belonging to a group g, op attempts other untagged frames
in g; once it succeeds, it removes f from the upload queue as
f no longer needs tagging in the current pass. After one pass,
the camera switches to the next refinement level (e.g., 10 —
5). It keeps all the tagging results (P,N,U) while cancels all
pending uploads. It re-runs the frame scheduling algorithm
until it meets the finest refinement level or query terminated.

Policy for operator upgrade Given an operator op and Y, ,,
the ratio of frames it can successfully tag, DIVA measures
op’s efficiency by its effective tagging rate, FPS,p X Yop +
FPS,, as a sum of op’s successful tagging rate and the up-
loading rate. As part of operator training, the cloud estimates
Yop for all the candidate operators by testing them on all land-
marks (early in query) and uploaded frames (later in query).
To select every operator, initial or subsequent, the cloud picks
the candidate with the highest effective tagging rate. The
cloud upgrades operators either when the current operator has
attempted all remaining frames or another candidate having
an effective tagging rate fx or higher (default value 2).

6.3 Executing Counting queries

Max Count: Policy for selecting frames To execute the ini-
tial operator, the camera randomly selects frames to process,
avoiding the worst cases that the max resides at the end of the
query range. For subsequent operators, the camera processes
frames in existing ranking decided by earlier operators.

Max Count: Policy for operator upgrade As the camera
runs rankers, the policy is similar to that for Retrieval with a
subtle yet essential difference. To determine whether the cur-
rent operator shall be replaced, the cloud must assess the qual-
ity of recently uploaded frames. While for Retrieval, DIVA
conveniently measures the quality as the ratio of positive
frames, the metric does not apply to max Count, which seeks
to discover higher scored frames. Hence, DIVA adopts the
Manbhattan distance as a quality metric among the permuta-
tions from the ranking of the uploaded frames (as produced by
the on-camera operator) and the ranking that is re-computed
by the cloud object detector. A higher metric indicates worse
quality hence more urgency for the upgrade.

Average/Median Count: no on-camera operators After
the initial upload of landmarks, the camera randomly samples
frames in queried videos and uploads them for the cloud to
refine the average/median statistics. To avoid any sampling
bias, the camera does not prioritize frames; it instead relies
on the Law of Large Numbers (LLN) [48] to approach the
average/median ground truth through continuous sampling.

Rpi3 (default): Raspberry Pi 3 ($35). 4xCortex-A53, 1IGB DRAM

Cameras | 0id: XU4 (849) 4xCortexAl15 & 4xCortexA7, 2GB DRAM

CloudServer | 2x Intel Xeon E5-2640v4, 128GB DRAM GPU: Nvidia Titan V

(a) Hardware platforms

Cam:Landmarks Cam:Query Cloud:Query
ClondOnly - Only upload frames
OptOp Yv3 every 30 secs Run one optimal op Yv3onall
PreIndexAll | YTiny every sec Parse YTiny result uploaded frames
DIVA Yv3 every 30 secs Multi passes & ops

(b) DIVA and the baselines. The table summarizes their executions for

capture and query. NNs: Yv3 — YOLOV3, high accuracy (mAP=57.9)

YTiny — YOLOv3-tiny, low accuracy (mAP=33.1).
Table 3: Experiment configurations

Name Object  Description
JacksonH [25] car A busy intersection in Jackson Hole, WY
JacksonT [26] car A night street in Jackson Hole, WY
Banff [20] bus A cross-road in Banff, Alberta, Canada
T Mierlo [29] truck A rail crossing in Netherlands
Miami [28] car A cross-road in Miami Beach, FL
Ashland [19] train A level crossing in Ashland, VA
Shibuya [31] bus An intersection in Shibuya (3% 7Y ), Japan
Chaweng [22] bicycle Absolut Ice Bar (outside) in Thailand
Lausanne [27] car A pedestrian plaza in Lausanne, Switzerland
(6] Venice [32] person A waterfront walkway in Venice, Italy
Oxford [30] bus A street beside Oxford Martin school, UK
Whitebay [33] person A beach in Virgin Islands
1 CoralReef [23] person An aquarium video from CA
BoatHouse [21] person A retail store from Jackson Hole, WY
W Eagle [24] eagle A tree with an eagle nest in FL

Table 4: 15 videos used for test. Each video: 720P at 1FPS
lasting 48 hours. Column 1: video type. T — traffic; O/ —
outdoor/indoor surveillance; W — wildlife.

7 Implementation and Methodology

Operators We architect on-camera operators as variants
of AlexNet [63]. We vary the number of convolutional
layers (2-5), convolution kernel sizes (8/16/32), the last
dense layer’s size (16/32/64); and the input image size
(25x25/50x50/100x 100). We empirically select 40 oper-
ators to be trained by DIVA online; we have attempted more
but see diminishing returns. These operators require small
training samples (e.g., 10K images) and run fast on camera.
Background subtraction filters static frames at low over-
head [51]. DIVA employs a standard technique [12]: during
video capture, a camera detects frames that have little motion
(< 1% foreground mask) and omits them in query execution.
On our camera hardware (Table 3), background subtraction is
affordable in real time during capture. For fair comparisons,
we augment all baselines with background subtraction.

Videos & Queries We test DIVA on 15 videos captured
from 15 live camera feeds (Table 4). Each video lasts con-
tinuous 48 hours including daytime and nighttime, collected
between Oct. 2018 to Mar. 2019. We preprocess all videos
to be 720P at 1 FPS, consistent with prior work [51]. We
test Retrieval/Tagging/Counting queries on 6/6/3 videos. We
intentionally choose videos with disparate characteristics and
hence different degrees of difficulty. For instance, Whitebay

s



is captured from a close-up camera, containing clear and large
persons; Venice is captured from a high camera view and
hence contains blurry and small persons. For each video, we
pick a representative object class to query; across videos,
these classes are diverse. For Tagging, we set query error to
be < 1% FN/FP as prior work did [59].

A query’s accuracy is reflected by its execution progress.
For retrieval/counting, we report accuracy as the fraction of
positive frames returned. There is no false positive because
the cloud always runs the high-accuracy object detector as a

“safety net”, of which the output is regarded as the ground truth.

For tagging, we report accuracy as query errors, meaning the
percentage of frames mistakenly tagged. To issue a query, the
user sets the target error, which by default is 1% as in prior
work. Table 2 and §6 provide more details.

Test platform & parameters As summarized in Table 3(a),
we test on embedded hardware similar to low-cost cam-
eras [15, 16]. We use Rpi3 as the default camera hardware
and report its measurement unless stated otherwise. During
query execution, both devices set up a network connection
with 1MB/s default bandwidth to emulate typical WiFi con-
dition [47]. Note that this network bandwidth is not meant
for streaming; it is only for a camera while the camera is
being queried. We run YOLOV3 as the high-accuracy object
detector on camera and cloud (Table 3(b)). In calculating ac-
curacy, we use the output of YOLOV3 as the ground truth
as in prior work [51, 59]. On Rpi3, we partition YOLOV3
into three stages, each fitting into DRAM separately. We will
study alternative models, landmarks, and resources in §8.3.

Baselines As summarized in Table 3(b), we compare DIVA
with three alternative designs augmented with background
subtraction and only process/transmit non-static video frames.

* CloudOnly: a naive design that uploads all queried frames
at query time for the cloud to process.

* OptOp: in the spirit of NoScope [59], the camera runs only
one ranker/filter specialized for a given query, selected by a
cost model for minimizing full-query delay. To make optop
competitive, we augment it with landmark frames to reduce
the operator training cost. Compared to DIVA, optop’s key
differences are the lack of operator upgrade and the lack of
operator optimization by long-term video knowledge.

* PreIndexAll: in the spirit of Focus [51], the camera runs
a cheap yet generic object detector on all frames. We pick
YOLOV3-tiny (much cheaper than YOLOV3) as the detector
affordable by Rpi3 in real time (1 FPS). The detector plays
the same role as an operator in DIVA, except that it runs
at capture time: for Retrieval and Counting, the detector’s
output scores are used to prioritize frames to upload at query
time; for Tagging, the output is used to filter the frames that
have enough confidence. PreIndexAll implements all run-
time features of Focus except feature clustering. We left out
clustering because we find it performs poorly on counting
queries. Compared to DIVA, pPreIndexall’s key differences

are: it answers queries solely based on the indexes built at
capture time; it requires no operator training or processing
actual images at query time.

8 Evaluation

8.1 End-to-end performance

Full query delay is measured as: (Retrieval) the time to
receive 99% positive frames as in prior work [51]; (Tagging)
the time taken to tag every frame; (Counting) the time to
reach the ground truth (max) or converge within 1% error of
the ground truth (avg/median). Overall, DIVA delivers good
performance and outperforms the baselines significantly.

* Retrieval (Figure 9(a)). On videos each lasting 48 hours,
DIVA spends ~1,900 seconds on average, i.e., 89 of video
realtime. On average, DIVA’s delay is 3.8 X, 3.1%, and 2.0x
shorter than Cloudonly, PreIndexAll, and OptOp, respectively.

» Tagging (Figure 9(b)). DIVA spends ~581 seconds on av-
erage (297 x realtime). This delay is 16.0x, 2.1, and 4.3
shorter than Cloudonly, PreIndexAll, and OptOp, respectively.

* Counting (Figure 10). DIVA’s average/median take sev-
eral seconds to converge. For average Count, DIVA’s delay
is 65.1x and up to three orders of magnitude shorter than
CloudOnly and PreIndexAll. For median Count, DIVA’s delay
is 68.3 x shorter than the others. For max Count, DIVA spends
34 seconds on average (635 realtime), which is 5.8, 5.0%,
and 1.3 shorter than Cloudonly, PreIndexAll, and OptOp.

Query progress DIVA makes much faster progress in most
time of query execution. It always outperforms CloudOnly
and optOp during Retrieval/Tagging (Figure 9). It always out-
performs alternatives in median/average count (Figure 10).

Why DIVA outperforms the alternatives? The alterna-
tives suffer from the following. (1) Inaccurate indexes.
PreIndexAll resorts to inaccurate indexes (YOLOv3-tiny)
built at capture time. Misled by them, Retrieval and Tag-
ging upload too much garbage; Counting includes significant
errors in the initial estimation, slowing down convergence.
(2) Lack of long-term knowledge. OptOp’s operators are either
slower or less accurate than DIVA, as illustrated in Figure 6.
(3) One operator does not fit an entire query. Optimal at some
point (e.g., 99% Retrieval), the operator runs too slow on easy
frames which could have been done by cheaper operators.

Why DIVA underperforms (occasionally)? On short oc-
casions, DIVA may underperform PrelIndexAll at early
query stages, e.g., BoatHouse in Figure 9. Reasons: (1)
PreIndexAll’s inaccurate indexes may be correct on easy
frames; (2) PreIndexAll does not pay for operator bootstrap-
ping as DIVA. Nevertheless, PreIndexA11’s advantage is tran-
sient. As easy frames are exhausted, indexes make more mis-
takes on the remaining frames and hence slow down the query.
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Figure 9: On Retrieval and Tagging queries, DIVA shows good performance and outperforms the alternatives. x-axis for
all: query delay (secs). y-axis for (a): % of retrieved instances; for (b): refinement level (1/N frames).
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Figure 10: On Counting queries, DIVA shows good per-
formance and outperforms the alternatives. Legend: see
Figure 9. x-axis for all: query delay (secs). y-axis for left plots:
count; for top two right plots: ground truth for avg/median
queries; for bottom right plot: % of max value.

Can DIVA outperform under different network band-
widths at query time? Table 5 summarizes DIVA’s query
delays at 9 bandwidths evenly spaced in [0.1 MB/s, 10 MB/s]
which cover typical WiFi bandwidths [9]. We have observed
that: on lower bandwidths, DIVA’s advantages over baselines
are more significant; at high bandwidths, DIVA’s advantages
are still substantial (>2x in most cases) yet less pronounced.
The limitation is not in DIVA’s design but rather its current
NNs: we find it difficult to train operators that are both fast
enough to keep up with higher upload bandwidth and accurate
enough to increase the uploaded positive ratio proportionally.

vs. “all streaming”: query speed As “all streaming” up-
loads all videos to the cloud before a query starts, the query
speed is bound by cloud GPUs but not network bandwidth.
With our default experiment setting (1 GPU and 1MB/s net-
work bandwidth), “all streaming” still runs queries much
slower than zero streaming. Adding more cloud GPUs will
eventually make “all streaming” run faster than DIVA.

Retrieval Tagging Count/Max Count/Avg&Med
CloudOnly | 4.5/14.9/52.2 | 3.61/3.9/5.1 | 2.8/21.1/42.5 | 6.9/83.4/439.2
OptOp 2.2/4.1/4.9 2.0/2.3/2.6 | 1.2/1.5/2.1 6.9/83.4/439.2"
PrelndexAll | 1.9/3.8/11.6 | 3.2/3.6/4.9 | 1.2/8.9/18.2 |2.5/14.0/41.3

*: Fall back to CloudOnly as the camera does not execute NN for these query types
Table 5: DIVA’ performance (speedup) with various band-
widths. Numbers: min/median/max of times (x) of query
delay reduction compared to baselines (rows). Averaged on
all videos and 9 bandwidths in 0.1MB/s—10MB/s.

10000x

vs. “all streaming”:

. ®Retrieval
network bandwidth 2 ,
. < 1000x <-Tagging
saving Compared to =
streaming all videos = 100«
(7]
(720P 1FPS) at capture 5 o
. D X
time, DIVA  saves o 0 % 100

traffic significantly, as
shown in Figure 11.
When only as few as
0.005% of video is
queried as in our case
study (§2), the saving
is over three orders of magnitude. Even if all captured videos
are queried, DIVA saves more than 10x, as its on-camera
operators skip uploading many frames. Among the bandwidth
reduction brought by DIVA, only less than 30% attributes
to the background subtraction technique. It shows that the
disadvantage of “all streaming” is fundamental: streaming
optimizations may help save the bandwidth (upmost several
times [96]) but cannot offset the waste, as discussed in §2.3.

Fraction of Queried Video (%)

Figure 11: DIVA significantly
reduces network traffic com-
pared to ‘all streaming”. Re-
sults averaged over all videos.

Training & shipping operators For each query, DIVA trains
~40 operators, of which ~10 are on the Pareto frontier. The
camera switches among 4—8 operators, which run at diverse
speeds (27 x—1,000x realtime) and accuracies. DIVA chooses
very different operators for different queries. Training one
operator typically takes 5-45 seconds on our test platform
and requires Sk frames (for bootstrapping) to 15k frames (for
stable accuracy). Operators’ sizes range from 0.2-15 MB.
Sending an operator takes less than ten seconds. Only the
delay in training and sending the first operator (< 40 seconds)
adds to the query delay which is included in Figure 9/10.
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Figure 12: DIVA’s both key techniques — optimization with
long-term video knowledge (opt) and operator upgrade (up-
grade), contribute to performance significantly.

Subsequent operators are trained and transmitted in parallel
to query execution. Their delays are hidden from users.
DIVA elasticity Due to DIVA’s design, the computing re-
sources available on low-cost cameras are used efficiently at
both capture and query time. Thanks to its elastic execution,
it can avoid interference with a camera’s surveillance task,
notably video encoding and storage. For instance, DIVA can
produce denser/sparser landmarks per its CPU time allocated
by the camera OS. According to our experiments on Rasp-
berry Pi 3B+, recording video at 720P and 30 FPS only uses
less than 2% of CPU time, which is negligible as compared
to NN execution. We reserve a small fraction of CPU time to
surveillance using cgroup and observe no frame drop in the
surveillance task and negligible slowdown in NN execution.

8.2 Validation of query execution design

The experiments above show DIVA’s substantial advantage
over OptOp, coming from a combination of two techniques —
optimizing queries with long-term video knowledge (“Long-
term opt”, §4) and operator upgrade (“Upgrade”, §5). We
next break down the advantage by incrementally disabling the
two techniques in DIVA. Figure 12 shows the results.

Both techniques contribute to significant performance.
For instance, disabling Upgrade increases the delay of retriev-
ing 90% instances by 2x and that of tagging 1/1 frames by
2x-3x. Further disabling Long-term Opt increases the delay
of Retrieval by 1.3x-2.1x and that of tagging by 1.6x-3.1x.
Both techniques disabled, DIVA still outperforms Cloudonly
with its single non-optimized operator.

Upgrade’s benefit is universal; Long-term opt’s benefit is
more dependent on queries, i.c., the skews of the queried
object class in videos. For instance, DIVA’s benefit is more
pronounced on Chaweng, where small bicycles only appear
in a region in 1/8 size of the entire frame, than Ashland,
where large trains take 4/5 of the frame. With stronger skews
in Chaweng, DIVA trains operators that are more accurate
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Figure 13: Validation of landmark design. In (a)/(b)/(c):
Left — Retrieval on Chaweng; Right — Tagging on JacksonH.

and run faster. This also accounts for DIVA’s varying (yet
substantial) advantages over the alternatives (Figure 9).

8.3 Validation of landmark design

Next, we deviate from the default landmark parameters (Ta-
ble 3) to validate the choice of sparse-but-sure landmarks.

DIVA hinges on accurate landmarks. As shown in Fig-
ure 13(a), modestly inaccurate landmarks (as produced by
YOLOV2; 48.1 mAP) increase delays for Q1/Q2 by 45% and
17%. Even less accurate landmarks (by YOLOv3-tiny; 33.1
mAP) increase the delays significantly by 5.3x and 4.3 x.
Perhaps surprisingly, such inaccurate landmarks can be worse
than no landmarks at all (“w/o LM” in Figure 13): when a
query starts, a camera randomly uploads unlabeled frames for
the cloud to bootstrap operators. Why inaccurate landmarks
hurt so much? They (1) provide wrong training samples; (2)
lead to incorrect observation of spatial skews which further
mislead frame cropping; and (3) introduce large errors into
initial statistics, making convergence harder.

DIVA tolerates longer landmark intervals. As shown in
Figure 13(b), DIVA’s Retrieval and Tagging performance
slowly degrade with longer intervals. Even with an infinite



interval, i.e., “w/o LM” in Figure 13(a), the slowdown is no
more than 3 x. On Counting, the performance degradation is
more pronounced: 5x longer intervals for around 15 x slow
down. Yet, such degradation is still much smaller than one
from inaccurate landmarks (two orders of magnitude). The
reason is that, with longer LM intervals DIVA has to upload
additional frames in full resolution (~10x larger than LMs)
when a query starts for bootstrapping operators; such a one-
time cost, however, is amortized over the full query.

Create the most accurate landmarks possible Should a
camera build denser yet less accurate landmarks or sparser yet
more accurate ones? Figure 13(c) suggests the latter is always
preferred, because of DIVA’s high sensitivity to landmark
accuracy and low sensitivity to long landmark intervals.

DIVA on wimpy/brawny cameras DIVA suits wimpy cam-
eras that can only generate sparse landmarks. Some cameras
may have DRAM smaller than a high-accuracy NN (e.g.,
~1 GB for YOLOV3); fortunately, recent orthogonal efforts
reduce NN sizes [56]. Wimpier cameras will further disad-
vantage the alternatives, e.g., PreIndexAll will produce even
less accurate indexes. On higher-end cameras (a few hundred
dollars each [13]) that DIVA is not designed for, DIVA still
shows benefits, albeit not as pronounced. High-end cameras
can afford more computation at capture time. i) They may run
PreIndexAll with improved index accuracy. In Figure 13(a),
running YOLOV2 on all captured frames (PreIndexAl1+YV2),
DIVA'’s performance gain is 1.9 x (left) or even 0.6 (right).
ii) These cameras may generate denser landmarks and rely on
the cloud for the remaining frames. Figure 13(b) shows, with
one landmark every 5 seconds, DIVA’s advantage is 1.5x.

9 Related Work

Optimizing video analytics The CV community has studied
video analytics for decades, e.g., for online training [83, 84]
and active learning [57]. They mostly focus on improving
analytics accuracy on short videos [44, 60, 68,78, 81, 102]
while missing opportunities in exploiting long-term knowl-
edge (§4). These techniques alone cannot address the systems
challenges we face, e.g., network limit or frame scheduling.
A common theme of recent work is to trade accuracy for
lower cost: VStore [96] does so for video storage; Pakha et
al. [70] do so for network transport; Chameleon [55] and
VideoStorm [52,99] do so with video formats. DIVA’s opera-
tors as well exploit accuracy/cost tradeoffs. Multiple systems
analyze archival videos on servers [58, 62,73, 80,96]. DIVA
analyzes archival videos on remote cameras and embraces
new techniques. ML model cascade is commonly used for
processing a stream of frames [39, 59, 85]: in processing a
frame, it keeps invoking a more expensive operator if the
current operator has insufficient confidence. This technique,
however, mismatches exploratory analytics, for which DIVA
uses one operator to process many frames in one pass and

produces inexact yet useful results for all of them.

Edge video analytics To reduce cloud/edge traffic, computa-
tion is partitioned, e.g., between cloud/edge [40,76,97], edge/-
drone [91], and edge/camera [100]. EIf [94] executes counting
queries completely on cameras. Most work targets live analyt-
ics, processes frames in a streaming fashion and trains NNs
ahead of time. DIVA spreads computation between cloud/-
cameras but takes a disparate design point (zero streaming)
that are inadequate in prior systems. CloudSeg [92] reduces
network traffic by uploading low-resolution frames and re-
covering them via super resolution. DIVA eliminates network
traffic at capture time at all.

Online Query Processing Dated back in the 90s, online
query processing allows users to see early results and control
query execution [49, 50]. It is proven effective in large data
analytics, such as MapReduce [43]. DIVA retrofits the idea
for video queries and accordingly contributes new techniques,
e.g., operator upgrade, to support the online fashion. DIVA
could borrow UI designs from existing online query engines.

WAN Analytics To query geo-distributed data, recent pro-
posals range from query placement to data placement [74,
86-88, 90]. JetStream [75] adjusts data quality to meet net-
work bandwidth; AW Stream [98] facilitates apps to system-
atically trade-off analytics accuracy for network bandwidth.
Like them, DIVA adapts to network; unlike them, DIVA does
so by changing operator upgrade plan, a unique aspect in
video analytics. DIVA targets resource-constrained cameras,
which are unaddressed in WAN analytics.

10 Conclusions

Zero streaming shifts most compute from capture time to
query time. We build DIVA, an analytics engine for querying
cold videos on remote, low-cost cameras. At capture time,
DIVA builds sparse but sure landmarks; at query time, it
refines query results by continuously updating on-camera
operators. Our evaluation of three types of queries shows that
DIVA can run at more than 100 x video realtime under typical
wireless network and camera hardware.
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