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Abstract. Suppose f(x, y) + κ
2
‖x‖2 − σ

2
‖y‖2 is convex where κ ≥ 0, σ > 0,

and the argmin function γ(x) = {γ : infy f(x, y) = f(x, γ)} exists and is single
valued. We will prove γ is differentiable almost everywhere. As an application

we deduce a minimum principle for certain semiconcave subsolutions.

1. Introduction

The first part of this paper is a proof of the following elementary statement
about regularity of certain argmin functions.

Theorem 1. Suppose f : Rn × Rm → R is such that

(1) There are κ ≥ 0 and σ > 0 so

f(x, y) +
κ

2
‖x‖2 − σ

2
‖y‖2 is convex.

(2) For each x ∈ Rn there is a unique γ(x) such that

inf
y
f(x, y) = f(x, γ(x)).

Then the function γ is differentiable almost everywhere.

Our motivation for this is the following. Following Harvey-Lawson [10, 11], by
a (primitive) subequation on an open X ⊂ Rn we mean a subset F ⊂ J2(X) of the
space of 2-jets on X with certain properties. Given such an F and a C2 function f ,
we say that f is F -subharmonic if every 2-jet of f lies in F . Moreover, using the
so-called viscosity technique it is possible to extend the notion of F -subharmonicity
to any upper-semicontinuous function (details and precise definitions will be given
in §3).

In our previous work [23] we introduced a notion of “product subequation” F#P
on X×Rm and show (under suitable hypothesis) that if F is convex and f is F#P-
subharmonic then its marginal function

g(x) := inf
y
f(x, y)

is F -subharmonic. This statement generalises the classical statement that the mar-
ginal function of a convex function is again convex. We will use Theorem 1 to prove
a similar minimum principle that does not require F to be convex:

Theorem 2. Let X ⊂ Rn be open and F ⊂ J2(X) be a constant-coefficient
primitive subequation that depends only on the Hessian part. Suppose

f : X × Rm → R
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is locally semiconcave, bounded from below, and F#P-subharmonic. Then the
marginal function

g(x) = inf
y
f(x, y)

is F -subharmonic on X.

A few remarks are in order.

(1) The semiconcavity assumption on f is rather unnatural, since one would
expect a subsolution to have some kind of convexity rather than concavity, but it
captures what we are able to prove. Observe that f is certainly locally semiconcave
if it is C1,1

loc .

(2) The assumption that f is F#P-subharmonic implies that for each x the
function y 7→ f(x, y) is convex. This along with the semiconcavity assumption

implies that y 7→ f(x, y) is C1,1
loc .

(3) Theorem 2 can be proved rather easily when f is C2 (see [23, Prop. 7.5] for
a stronger statement). To do so, we first approximate f by adding a small multiple
of the function (x, y) 7→ ‖y‖2, so there is no loss in assuming f is strictly convex in
y and that for each fixed x the function y 7→ f(x, y) attains its unique minimum at
some point γ(x). Said another way, γ(x) is the unique point such that

∂f

∂y
|(x,γ(x)) = 0.

If we assume f is C2 we can then:
(a) Use the implicit function theorem to deduce that γ is C1.
(b) Use the chain rule to compute the Hessian of g at a point x in terms of the

Hessian of f at the point (x, γ(x)) and the derivative of γ at x.
The combination of (b) and assumption that f is F#P-subharmonic yields that g
is F -subharmonic as claimed.

(4) If we assume furthermore that F is convex, then using smooth mollification
to approximate any upper-semicontinuous F#P-subharmonic function by those
that are C2, we can deduce a much more general minimum principle – this is the
approach taken in [23].

(5) If instead we assume that f is merely C1,1
loc then it is of course twice differen-

tiable almost everywhere. However it may well be that f is not twice differentiable
at any point of the form (x, γ(x)) so part (b) of the above argument does not apply.

To prove Theorem 2 we will first use a partial-sup convolution to approximate
f by F#P-subharmonic functions fε such that

fε(x, y) +
1

2ε
‖x‖2 − ε

2
‖y‖2 is convex.

In particular for fixed x the function y 7→ fε(x, y) is strongly convex, and we
will further arrange so the argmin of fε is a well-defined single-valued function γ.
Having done so we can apply Theorem 1 to deduce that γ is differentiable almost
everywhere, which will act in lieu of the implicit function argument used in (a).
From this one can prove, essentially from the definition, that at almost every point
x the Hessian of g is contained in F . As g is semiconvex, this is known by the
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Almost-Everywhere Theorem of Harvey-Lawson [9] to be enough to conclude that
g is F -subharmonic.

Comparison with other work: The authors do not have sufficient expertise to
properly survey all previously known regularity results that are related to Theorem
1. Suffice to say there has been much interest in studying regularity of marginal
functions (by which we mean functions of the form infy f(x, y) or supy f(x, y) for
some function f which also go under the name “performance function”) due to its
relevance for optimization problems (see for instance [3, 8, 16, 20] and the references
therein). For example, various regularity properties of marginal functions have been
shown when f has some convexity property (see for example [21, Theorems 23.4
and 24.5]) and without this convexity hypothesis (e.g. [6, 17, 18, 19, 25] to list just
a few).

Much less appears to have been written about regularity of the argmin function
itself. We remark that in general the argmin function will be multi-valued, and so
regularity must be phrased in terms of set-valued functions [6]. The only previous
such results we have found relate to continuity rather than differentiability (for
example [26, Theorem 2.10], which is taken from [22, Theorems 1.17 and 7.41],
gives conditions under which the argmin function is outer semicontinuous).

Regarding the minimum principle, the fact that the marginal function of a convex
function is again convex is a basic property in convex analysis. In the complex case
this has an analog for plurisubharmonic functions due to Kiselman [14, 15]. Both
convexity and plurisubharmonicity are massively generalized through the notion of
F -subharmonic functions which uses the viscosity technique that arose in the study
of fully non-linear degenerate second-order differential equations (in particular the
work of Caffarelli–Nirenberg–Spruck [5] and Lions–Crandall–Ishii [7], who often
refer to such functions as subsolutions).

Our motivation for introducing the product F#P came from a desire to gener-
alise this minimum principle to general subequations, which we do in [23] under the
assumption that F is convex. As discussed above, this assumption is needed only
to be able to approximate F#P-subharmonic functions by smooth ones, and thus
suggests that it is a facet of the proof rather than an essential requirement. Theo-
rem 2 is, as far as we know, the first such minimum principle that does not require
any convexity hypothesis on the subequation in question. For further background
in this area the reader is referred to [23].

Organization: Section 2 is devoted to the proof of Theorem 1. In §2.1 we recall
some standard terminology and notation concerning semiconvex functions, and use
this to give a refined statement (Theorem 7) about calmness of the argmin func-
tion. Theorem 1 then follows immediately from this by Stepanov’s Theorem (see
Corollary 8). In §2.2 we collect some further properties of semiconvex functions, in
preparation for §2.3 in which we give a functional equation for the argmin function.
Then the proof of Theorem 7 is given in §2.5 using the Implicit Function Theorem
for Lipschitz maps (which for completeness is proved in Appendix A).

In Section 3 we summarize the basics of F -subharmonic functions in a way suited
to our needs, including the idea of product subequations in §3.2. In Section 4 we
describe the partial sup-convolution, which is used in Section 5 to complete the
proof of Theorem 2.
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2. Differentiability of the Argmin Function

2.1. Statement. In this section we prove that the argmin function of a certain kind
of semiconvex functions is differentiable (resp. calm) almost everywhere. Suppose
Ω ⊂ Rn+m is open and let π : Rn+m → Rn be the projection, and write

Ωx = {y ∈ Rm : (x, y) ∈ Ω}.
We will assume throughout that Ω is convex and that each Ωx is connected. Now
suppose

f : Ω→ R
and set

g(x) := inf
y∈Ωx

f(x, y) for x ∈ π(Ω).

Definition 3 (Argmin). The argmin function is the set-valued function

argminf (x) := {γ ∈ Ωx : inf
y∈Ωx

f(x, y) = f(x, γ)}

where we allow the possibility that argminf (x) is empty.

Below we shall make assumptions on f that ensure that argmin(x) is everywhere
defined and single-valued. In such cases we shall write

γ(x) = argminf (x)

so

f(x, γ(x)) = inf
y∈Ωx

f(x, y) = g(x) for all x ∈ π(Ω).

The precise statement we will prove requires some terminology concerning sub-
differentials. Let X ⊂ Rn be open.

Definition 4. Suppose g : X → R. For each x0 ∈ X define

∇x0
g = {u ∈ Rn : g(x)− g(x0) ≥ u.(x− x0) for all x sufficiently near x0}

which may be empty. We call any u ∈ ∇x0
g a lower support vector for g at x0.

Similarly if κ ∈ R we let

∇κx0
g = {u ∈ Rn : g(x)−g(x0) ≥ u·(x−x0)−κ

2
‖x−x0‖2 for all x sufficiently near x0}.

Definition 5 (Semiconvexity and Semiconcavity). Let κ ≥ 0. We say g : X → R is
κ-semiconvex (resp. κ-semiconcave) if g(x) + κ

2 ‖x‖
2 is convex (resp. g(x)− κ

2 ‖x‖
2

is concave). If g is κ-semiconvex/semiconcave for some κ ≥ 0 then we say simply g
is semiconvex/semiconcave.

Remark 6. In the literature one will also find the term weakly-convex/concave
also used for semiconvex/semiconcave.

One can check that g : X → R is locally κ-semiconvex if and only if ∇κx0
g is

non-empty for all x0. Moreover g is differentiable at x0 if and only if ∇x0
g is a

singleton, in which case its unique element is the derivative of g at x0. Finally if g
is a convex function on a convex set X then

∇κx0
g = {u ∈ Rn : g(x)− g(x0) ≥ u · (x− x0)− κ

2
‖x− x0‖2 for all x}.

We now give a refined statement of Theorem 1 that will be proved in section
§2.3.
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Theorem 7 (Argmin is calm almost everywhere). Let Ω ⊂ Rn+m be open, convex
and so that Ωx is connected for all x. Also let f : Ω → R and suppose there are
κ ≥ 0 and σ > 0 so that

f(x, y) +
κ

2
‖x‖2 − σ‖y‖2 is convex and (2.1)

argminf (x) is non-empty for all x ∈ π(Ω). (2.2)

Then

(i) The function

g(x) := inf
y
f(x, y) = f(x, γ(x)) for x ∈ π(Ω)

is κ-semiconvex and γ(x) := argminf (x) is single valued for all x ∈ π(Ω).
(ii) Given any x0 ∈ π(Ω) and u0 ∈ ∇κx0

g there exists a Lipschitz function

φ : V → R

defined on a neighbourhood V of (x0, u0) in R2n such that

γ(x) = φ(x, u) for all (x, u) ∈ V with u ∈ ∇κxg.

(iii) The function γ is calm almost everywhere. That is, for almost all x0 ∈ π(Ω)
there are C and δ > 0 such that

‖γ(x)− γ(x0)‖ ≤ C‖x− x0‖ for ‖x− x0‖ < δ. (2.3)

Corollary 8 (The Argmin is Differentiable Almost Everywhere). Under the hy-
pothesis of the Theorem the argmin function γ is differentiable almost everywhere.

Proof. This follows from (2.3) and Stepanov’s Theorem [24] (see also [12, Theorem
3.4]). �

The strategy of the proof of Theorem 7 is to construct a functional equation
satisfied by the argmin function, and then apply the implicit function theorem for
Lipschitz functions. In the next section we setup the necessary machinery to do so.

2.2. Properties of semiconvex functions. We collect a few basic statements
about convex and semiconvex functions. As above Ω ⊂ Rn+m is open, convex and
Ωx is connected for all x.

Lemma 9. Suppose f : Ω→ R and f̃(x, y) = f(x, y) + κ‖x‖
2

2 . Then

∇(x0,y0)f = ∇(x0,y0)f̃ + κx0

as sets.

Proof. This is immediate from the definition, and left to the reader. �

Lemma 10. Suppose f : Ω→ R and h : Rm → R and set

f̂(x, y) = f(x, y) + h(x) for (x, y) ∈ Ω.

Then

argminf̂ (x) = argminf (x) + h(x). (2.4)

In particular argminf̂ is single-valued if and only if argminf is single-valued.
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Proof. Clearly

argminf̂ (x) = {γ : γ = inf
y
f̂(x, y)} = {γ : γ = inf

y
f(x, y)+h(x)} = argminf (x)+h(x)

giving (2.4). The last statement follows immediately. �

Lemma 11. Let f : Ω → R and suppose f(x, y) + κ
2 ‖x‖

2 is convex. Then g(x) =
infy f(x, y) is κ-semiconvex.

Proof. Write f̃(x, y) = f(x, y) + κ
2 ‖x‖

2 so

g(x) +
κ

2
‖x‖2 = inf

y
f̃(x, y)

which is the marginal function of convex function defined on Ω (which is assumed
to be convex and Ωx is connected for each x). Thus g(x) + κ

2 ‖x‖
2 is convex. �

Lemma 12 (Gradient at argmin). Suppose that f : Ω → R is convex and set
g(x) = infy f(x, y). Then for all x ∈ π(Ω) and γ ∈ argminf (x)

u ∈ ∇xg ⇒ (u, 0) ∈ ∇(x,γ)f.

Proof. Suppose γ ∈ argminf (x) so g(x) = f(x, γ). Let u ∈ ∇xg. Then for any
(x′, y′) ∈ Rn × Rm,

f(x′, y′)− f(x, γ) ≥ g(x′)− g(x) (2.5)

≥ u.(x′ − x) = (u, 0).((x′, y′)− (x, γ)) (2.6)

so (u, 0) ∈ ∇(x,γ)f as claimed. �

The next statement is a slight modification of [13, Proposition 6.4].

Proposition 13. Let σ > 0 and suppose f : Rn+m → R is such that f(x, y)− σ
2 ‖y‖

2

is convex. Define the set-valued function

G(p) = p+∇pf for p = (x, y) ∈ Rn+m.

Then

(i) G is non-contractive. That is, if ζi ∈ G(pi) for i = 1, 2 then

‖ζ1 − ζ2‖ ≥ ‖p1 − p2‖. (2.7)

(ii) There exist a single-valued function H : Rn+m → Rn+m that is inverse to G,
by which we mean

H(ζ) = p⇐⇒ ζ ∈ G(p). (2.8)

(iii) The function H is Lipschitz with Lipschitz constant 1. Moreover there is a
µ < 1 such that letting π2 : Rn+m → Rm denote the second projection,

‖π2H(ζ1)− π2H(ζ2)‖ ≤ µ‖ζ1 − ζ2‖ for all ζ1, ζ2 ∈ Rn+m. (2.9)

Proof. Let pi := (xi, yi) ∈ Rn+m for i = 1, 2. We first claim

(∇p2f −∇p1f).(p2 − p1) ≥ σ‖y2 − y1‖2 for all (xi, yi) ∈ Rn+m. (2.10)

To see this, let f̃(x, y) = f(x, y) − σ
2 ‖y‖

2 which by assumption is convex and

∇(x,y)f̃ = ∇(x,y)f − (0, σy). Then

f̃(p1)− f̃(p2) ≥ ∇p2 f̃ .(p1 − p2) = ∇p2f.(p1 − p2)− σy2.(y1 − y2). (2.11)

Swapping the indices we also have

f̃(p2)− f̃(p1) ≥ ∇p1 f̃ .(p2 − p1) = ∇p1f.(p2 − p1)− σy1.(y2 − y1). (2.12)
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Adding (2.11) and (2.12) and rearranging gives (2.10).
Now from Cauchy-Schwarz and (2.10)

‖G(p1)−G(p2)‖‖p1 − p2‖ ≥ (G(p1)−G(p2)).(p1 − p2)

= (p1 − p2 +∇p1f −∇p2f).(p1 − p2)

≥ ‖p1 − p2‖2 + σ‖y1 − y2‖2 (2.13)

≥ ‖p1 − p2‖2

which in particular implies (i).
We claim next that G is surjective, by which we mean for all ζ ∈ Rn+m there is

an p ∈ Rn+m such that ζ ∈ G(p). To see this let

φ(p) :=
1

2
‖p‖2 + f(p)− p.ζ.

The function p 7→ 1
2‖p‖

2 − p.ζ is convex, and hence so is φ and

∇p0φ = ∇p0f + p0 − ζ = G(p0)− ζ.

Similarly the function

ψ(p) :=
1

4
‖p‖2 + f(p)− p.ζ = φ(p)− 1

4
‖p‖2

is convex. Pick b ∈ ∇0ψ so ψ(p)− ψ(0) ≥ b.p giving

φ(p) ≥ φ(0) +
1

4
‖p‖2.

As φ is continuous this implies φ has a global minimum at some p0 ∈ Rn+m, and
so 0 is a lower support vector for φ at 0. Thus 0 ∈ ∇p0φ = G(p0)− ζ implying that
ζ ∈ G(p0). Thus G is surjective as claimed.

In particular the inverse H to G defined by

H(ζ) = {p ∈ Rn+m : ζ ∈ G(p)}

is non-empty, and G being non-contractive implies that it is single-valued. That H
has Lipshitz constant 1 follows from (i).

Finally given ζ1, ζ2 set pi := (xi, yi) := H(ζi) so by definition ζi ∈ G(pi) and
yi = π2H(ζi) . To ease notation let α := ‖x1−x2‖ and β := ‖y1−y2‖ = ‖π2H(ζ1)−
π2H(ζ2)‖. Then dividing (2.13) by ‖p1 − p2‖ gives

‖ζ1 − ζ2‖ ≥ (α2 + β2)1/2 + σ
β2

(α2 + β2)1/2
.

If α ≥ σβ then ‖ζ1 − ζ2‖ ≥ (1 + σ2)1/2β. If α ≤ σβ then

‖ζ1 − ζ2‖ ≥ β + σ
β2

(σ2β2 + β2)1/2

= (1 +
σ

(1 + σ2)1/2
)β.

Hence (2.9) holds with µ := min{(1 + σ2)1/2, (1 + σ
(1+σ2)1/2

)}−1 < 1. �

We will also need the following simpler corollary (which is proved in the same
way, or follows formally from Proposition 13 upon taking m = 0).
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Corollary 14. Suppose g : Rn → R is convex and define the set-valued function

G1(x) = x+∇xg for x ∈ Rn.

Then

(1) G1 is non-contractive, that is

‖G1(x1)−G1(x2)‖ ≥ ‖x1 − x2‖ for all x1, x2 ∈ X. (2.14)

(2) There exist a single-valued function H1 : Rn → Rn that is inverse to G1,
and H1 is Lipschitz with Lipschitz constant 1.

2.3. Functional Equation for argmin. Suppose now that f : Rn+m → R is
convex and as usual let g(x) = infy f(x, y) which is also convex. Consider the
set-valued functions

G1(x) = x+∇xg,
G(x, y) = (x, y) +∇(x,y)f.

By Proposition 13 and Corollary 14 these have single-valued inverses H1 : Rn → Rn
and H : Rn+m → Rn+m. That is

H1(u) = x⇔ u ∈ G1(x) for x, u ∈ Rn (2.15)

H(u, v) = (x, y)⇔ (u, v) ∈ G(x, y) for (x, y), (u, v) ∈ Rn+m. (2.16)

We use these to define a functional equation for argminf . Let

J : Rn × Rn × Rm → Rm

J(x, u, y) := y − π2H(H1(x+ u) + u, y). (2.17)

Proposition 15 (Functional Equation for argmin). Suppose that f(x, y) is convex
and let g(x) = infy f(x, y). Then

J(x,∇xg, argminf (x)) = 0 for all x ∈ Rn.

That is,

J(x, u, γ) = 0 for all x ∈ Rn and γ ∈ argminf (x) and u ∈ ∇xg.

Proof. Let x ∈ Rn, γ ∈ argminf (x) and u ∈ ∇xg. Then x + u ∈ G1(x) so (2.15)
gives H1(x+ u) = x. On the other hand since γ ∈ argminf (x) we have by Lemma
12,

(u, 0) ∈ ∇(x,γ)f.

Thus

(x, γ) + (u, 0) = (u+ x, γ) ∈ G(x, γ)

so (2.15) gives H(u+ x, γ) = (x, γ). So

J(x, u, γ) = γ − π2H(H1(x+ u) + u, γ)

= γ − π2H(x+ u, γ) = γ − π2(x, γ)

= 0

as claimed. �

We next collect two basic properties of J :
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Lemma 16 (Properties of J). The function J is Lipschitz in (x, u, y). Moreover if
f(x, y)− σ

2 ‖y‖
2 is convex for some σ > 0 then there is a λ > 0 such that for fixed

x, u

‖J(x, u, y1)− J(x, u, y2)‖ ≥ λ‖y1 − y2‖ for all y1, y2.

Proof. Clearly J is Lipschitz in all variables since both H and H1 are. For the
second statement, suppose f(x, y) − σ

2 ‖y‖
2 is convex and let π2 : Rn × Rm → Rm

be the second projection. We know from Proposition 13(iii) that there is a µ < 1
such that

‖π2H(v, y1)− π2H(v, y2)‖ ≤ µ‖y1 − y2‖for all v, y1. (2.18)

Now fix x, u and let v := H1(x+ u) + u. Then if y1, y2 ∈ Rm,

‖J(x, u, y2)− J(x, u, y1)‖ = ‖y2 − y1 − π2H(v, y2) + π2H(v, y1)‖
≥ ‖y2 − y1‖ − ‖π2H(v, y2)− π2H(v, y1)‖
≥ (1− µ)‖y2 − y1‖.

�

2.4. Statement of Alexandrov’s Theorem. Let X ⊂ Rn be open. The follow-
ing is a precise version of Alexandrov’s Theorem:

Theorem 17 (Alexandrov’s Theorem). Let g : X → R be locally convex. Then
the set-valued function

x 7→ ∇xg
is differentiable at x0 for almost all x0 in X. That is, for almost all x0 there is an
L ∈ Hom(Rn,Rm) such that for all ε > 0 there is a δ > 0 such that for ‖x−x0‖ < δ
we have

‖u− u0 −
L

2
(x− x0)|‖ ≤ ε‖x− x0‖ for all u ∈ ∇xg and u0 ∈ ∇x0

g. (2.19)

Moreover for almost all x0 the function g is twice differentiable at x0 and Hessx0
(g) =

L. That is, for any ε > 0 there is a δ > 0 such that

|g(x)−g(x0)−∇g|x0
.(x−x0)− 1

2
(x−x0)t Hessx0

(g)(x−x0)〉| ≤ ε‖x−x0‖2 (2.20)

for all ‖x− x0‖ < δ.

Proof. This originates in [2] and for an exposition the reader is referred to [13,
Theorems 6.1,7.1]. (We remark that the latter cited work requires the function to
be convex and defined on all of Rn; but the statement we want is local, and being
locally convex, g is also locally Lipschitz [1], and so using [28, Theorem 4.1] we
know that X is covered by small open sets U such that g|U extends to a convex
function on Rn so the cited work applies.) �

2.5. Proof of Theorem 7.

Lemma 18 (Continuity of argmin). Let Ω ⊂ X × R be convex and such that Ωx

is connected for each x ∈ X. Let f : Ω → R be continuous, and suppose that for
each x ∈ X the function y 7→ f(x, y) is strongly convex and attains its minimum
at some point. Then γ(x) = argminf (x) is single valued and continuous.
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Proof. For fixed x the hypothesis imply that y 7→ f(x, y) is a strongly convex
function on the connected set Ωx that attains its minimum, and thus this minimum
γ(x) must be a unique. We first claim that γ is locally bounded. Fix x0 ∈ X and
let a := γ(x0). Then by strong convexity there is an ε > 0 and c > 0 such that
f(x0, y) > a + ε if ‖y − γ(x0)‖ ≥ c. By continuity we may take δ > 0 small so
if ‖x − x0‖ < δ and ‖y − γ(x0)‖ = c then f(x, y) > a + ε and, and furthermore
that f(x, γ(x0)) < a + ε. But by strict convexity of y 7→ f(x, y) this implies
γ(x) ∈ [γ(x0)− c, γ(x0) + c] for all ‖x− x0‖ < δ, and thus γ is locally bounded.

Now suppose (xn) is a sequence in X converging to x as n→∞. By the above
we may assume S := {γ(xn)} is bounded. Let b be a cluster point of S, so there is
a subsequence xnr

with γ(xnr
)→ b as r →∞. By continuity of f for any y ∈ Rm,

f(x, b) = lim
r→∞

f(xnr
, γ(xnr

)) ≤ lim
r→∞

f(xnr
, y) = f(x, y).

Hence b = γ(x). As this holds for all cluster points of S we deduce γ(xn) → γ(x)
as n→∞, proving continuity of γ. �

Proof of Theorem 7. We first claim that there is no loss in generality in assuming
that Ω = Rn+m. To see this, suppose f : Ω → R has properties (2.1) and (2.2).
Then γ = argminf is single-valued and continuous (Lemma 18). So given x0 ∈ π(Ω)
there are small balls x0 ∈ U ⊂ π(Ω) and γ(x0) ∈ V ⊂ Rm so that U × V ⊂ Ω and
γ(U) ⊂ V . Moreover as f is semiconvex, by shrinking U, V we may assume that

f |U×V is Lipschitz (all convex functions are Lipschitz, see e.g. [1]). Let f̃(x, y) :=
f(x, y)+ κ

2 ‖x‖
2− σ

2 ‖y‖
2 which we are assuming is convex on Ω. Then [28, Theorem

4.1] we know f̃ |U×V extends to a convex function h̃ on all of Rn+m. Now let

h(x, y) := h̃(x, y)− κ

2
‖x‖2 +

σ

2
‖y‖2.

For fixed x the convex function y 7→ h(x, y) agrees with the function y 7→ f(x, y)
when y ∈ V . Since V contains γ(x) = argminf (x), this implies argminh(x) =
argminf (x) = γ(x). Hence h satisfies the hypothesis of the Theorem with Ω =

Rn+m, and so γ|U has the properties in the conclusion of the theorem (which are
all local), which proves the claim.

So from now on assume f : Rn+m → R satisfies (2.1) and (2.2). Consider first
the case κ = 0, so (x, y) 7→ f(x, y) − σ

2 ‖y‖
2 is convex. Then in particular f is

convex, and so g(x) = infy f(x, y) is also convex. Moreover for fixed x the function
y 7→ f(x, y) is strictly convex, and so argminf (which is assumed to be non-empty)
must be single valued. Consider the functional J from (2.17) so by Proposition 15

J(x, u, γ(x)) = 0 for all x and u ∈ ∇xg. (2.21)

Fix x0 ∈ Rn and u0 ∈ ∇x0g so J(x0, u0, γ(x0)) = 0. The properties of J proved
in Lemma 16 mean we can apply the Inverse-function Theorem for Lipschitz maps
(for convenience of the reader we give a proof of this in Appendix A, and apply
it here with r replaced with 2n and s replaced with m). This yields a Lipschitz
function φ : V → Rm defined on a neighbourhood V of (x0, u0) such that

J(x, u, y) = 0⇔ y = φ(x, u).

This combined with (2.21) gives

γ(x) = φ(x, u) for all (x, u) ∈ V with u ∈ ∇xg.
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We next prove γ is calm almost everywhere. As g is convex we have by Alexan-
drov’s Theorem (2.19) that for almost all x0 there are δ1 > 0 and linear L : Rn → Rn
such that for ‖x− x0‖ < δ1

‖u− u0‖ ≤ (1 + ‖L‖)‖x− x0‖ for all u ∈ ∇xg and u0 ∈ ∇x0
g. (2.22)

Pick u0 ∈ ∇x0
g, and let φ : V → R be the Lipschitz function constructed above.

For concreteness say that V contains the set ‖x− x0‖ < δ2 and ‖u− u0‖ < δ2 and
that φ has Lipschitz constant C ′ there. Thus

γ(x) = φ(x, u) for ‖x− x0‖ < δ2, ‖u− u0‖ < δ2 and u ∈ ∇xg.

Set

δ := min{δ1,
δ2

1 + ‖L‖
}

and suppose ‖x− x0‖ < δ. Picking any u ∈ ∇xg, by (2.22) ‖u− u0‖ < δ2 and so

‖γ(x)−γ(x0)‖ = ‖φ(x, u)−φ(x0, u0)‖ ≤ C ′(‖x−x0‖+‖u−u0‖) ≤ C ′(2+‖L‖)‖x−x0‖.

Thus γ is calm x0.
The case of general κ is easily reduced to the case κ = 0. For suppose f(x, y) +

κ
2 ‖x‖

2 − σ
2 |y|

2 is convex and argminf is single-valued. Set

f̃(x, y) = f(x, y) +
κ

2
‖x‖2

Then f̃(x, y)− σ
2 ‖y‖

2 is convex, and by (2.4)

argminf̃ (x) = argminf (x).

Thus argminf̃ is also single-valued, so by the above the Theorem can be applied to

f̃ . Let

γ(x) := argminf̃ (x) = argminf (x)

Setting g̃(x) := infy f̃(x, y), given x0 and u0 ∈ ∇x0
g̃ we know that there is a locally

Lipschitz function φ̃ : Ṽ → R defined on a neighbourhood Ṽ of (x0, u0) such that

γ(x) = φ̃(x, u) for (x, u) ∈ Ṽ with u ∈ ∇xg̃.

Set φ(x, u) = φ̃(x, u + κx) which is locally Lipschitz around (x0, u0 + κx0). And

if u ∈ ∇κg then u − κx0 ∈ ∇xg̃ so γ(x) = φ̃(x, u − κx0) = φ(x, u). Thus the
conclusion of the Theorem also holds for f and we are done. �

3. F-subharmonic functions

3.1. Basic definitions. We summarise some basic properties of F-subharmonic
functions from the work of Harvey-Lawson. We refer the reader to [23] for a more
detailed summary, or the original papers [10, 11]. Let X ⊂ Rn be open and

J2(X) := X × R× Rn × Sym2
n = X × J2

n

be the jet-bundle over X. For F ⊂ J2(X) and x ∈ X we write

Fx = {(r, p, A) ∈ J2
n : (x, r, p, A) ∈ F}.

Definition 19 (Primitive Subequations). We say that F ⊂ J2(X) is a primitive
subequation if

(1) (Closedness) F is closed.
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(2) (Positivity)

(r, p, A) ∈ Fx and P ∈ Posn ⇒ (r, p, A+ P ) ∈ Fx. (3.1)

We say that F ⊂ J2(X) has the Negativity Property if

(3) (Negativity)

(r, p, A) ∈ Fx and r′ ≤ r ⇒ (r′, p, A) ∈ Fx. (3.2)

Definition 20 (Upper contact points, Upper contact jets). Let

f : X → R ∪ {−∞}.

We say that x ∈ X is an upper contact point of f if f(x) 6= −∞ and there exists
(p,A) ∈ Rn × Sym2

n such that

f(y) ≤ f(x) + p.(y − x) +
1

2
(y − x)tA(y − x) for all y sufficiently near x.

When this holds we refer to both (f(x), p, A) and (p,A) as an upper contact jet of
f at x.

Definition 21 (F-subharmonic function). Suppose F ⊂ J2(X). We say that an
upper-semicontinuous function f : X → R ∪ {−∞} is F-subharmonic if

(f(x), p, A) ∈ Fx for all upper contact jets (p,A) of f at x.

We let F (X) denote the set of F -subharmonic functions on X.

Clearly being F -subharmonic is a local condition on X.

Proposition 22. Let F ⊂ J2(X) be closed. Then

(1) (Maximum Property) If f, g ∈ F (X) then max{f, g} ∈ F (X).
(2) (Decreasing Sequences) If fj is decreasing sequence of functions in F (X)

(so fj+1 ≤ fj over X) then f := limj fj is in F (X).
(3) (Uniform limits) If fj is a sequence of functions on F (X) that converge

locally uniformly to f then f ∈ F (X).
(4) (Families locally bounded above) Suppose F ⊂ F (X) is a family of F -

subharmonic functions locally uniformally bounded from above. Then the
upper-semicontinuous regularisation of the supremum

f := sup∗f∈Ff

is in F (X).
(5) If F is constant coefficient and f is F -subharmonic on X and x0 ∈ Rn is

fixed, then the function x 7→ f(x− x0) is F -subharmonic on X − x0.

Proof. See [11, Theorem 2.6] for (1-4). Item (5) is immediate. �

Definition 23. Let F ⊂ J2(X).

(1) We say F is constant coefficient if Fx is independent of x, i.e.

(x, r, p, A) ∈ Fx ⇔ (x′, r, p, A) ∈ Fx′ for all x, x′, r, p, A.

(2) We say F depends only on the Hessian part if each Fx is independent of
(r, p), i.e.

(r, p, A) ∈ Fx ⇔ (r′, p′, A) ∈ Fx for all x, r, r′, p, p′, A.
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An important example is

P := {(x, r, p, A) ∈ J2(X) : A is semipositive}

which is a constant-coefficient primitive subequation that depends only on the Hes-
sian part. Then P-subharmonic functions are precisely those that are locally convex
[11, Example 14.2].

Lemma 24 (Sums of F -subharmonic and convex functions). Suppose F ⊂ J2(X)
is a constant coefficient primitive subequation that depends only on the Hessian
part. If f is F -subharmonic on X and g is a convex quadratic function on X, then
f + g is F -subharmonic.

Proof. The hypothesis is that g(x) = a+ b.x+ 1
2x

tCx for some a, b ∈ Rn and some
semipositive symmetric matrix C. One can check that if (p,A) is an upper-contact
point of f + g at x then (xtC + p− b, A−C) is an upper-contact jet for f at x. As
f is F -subharmonic this implies (f(x), xtC + p− b, A− C) ∈ F . Since F depends
only on the Hessian part, and satisfies the Positivity property, this in turn implies
(f(x) + g(x), p, A) ∈ F proving that f + g is F -subharmonic as required. �

3.2. Product Subequations. For Γ ∈ Hom(Rn,Rm) = Mm×n(R) consider

iΓ : Rn → Rn+m iΓ(x) = (x,Γx) (3.3)

j : Rm → Rn+m j(y) = (0, y). (3.4)

which induce natural pullback maps

i∗Γ : J2
n+m → J2

n and j∗ : J2
n+m → J2

m. (3.5)

We can write these explicitly. Suppose

p :=

(
p1

p2

)
∈ Rn+m and A :=

(
B C
Ct D

)
∈ Sym2

n+m

where the latter is in block form, so B ∈ Sym2
n and D ∈ Sym2

m. Then

i∗Γ(r, p, A) =
(
r, p1 + Γtp2, B + CΓ + ΓtCt + ΓtDΓ

)
(3.6)

j∗(r, p, A) = (r, p2, D). (3.7)

Definition 25 (Products). Let X ⊂ Rn and Y ⊂ Rm be open, and F ⊂ J2(X)
and G ⊂ J2(Y ). Define

F#G ⊂ J2(X × Y )

by

(F#G)(x,y) =

{
α ∈ J2

n+m :
i∗Γα ∈ Fx and j∗α ∈ Gy
for all Γ ∈ Hom(Rn,Rm)

}
.

Lemma 26. (1) If F and G are primitive subequations then so is F#G. More-
over if F and G both have the Negativity Property then so does F#G.

(2) Let F be a constant-coefficient primitive subequation on X. Suppose and
f is F#P-subharmonic on some open Ω ⊂ X × Y . The for each x ∈ X the
function y 7→ f(x, y) is locally convex.

Proof. The reader will easily prove these straight from the definition, or otherwise
find the proofs in [23]. �
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3.3. The almost everywhere theorem. We will rely on a very useful theorem
of Harvey-Lawson that characterizes F -subharmonic semiconvex functions in terms
of second order jets almost everywhere.

Definition 27 (Twice differentiability at a point). We say that a function f : X →
R is twice differentiable at x0 ∈ X if there exists a p ∈ Rn and an L ∈ Sym2

n such
that for all ε > 0 there is a δ > 0 such that for ‖x− x0‖ < δ we get

|f(x)− f(x0)− p.(x− x0)− 1

2
(x− x0)tL(x− x0)| ≤ ε‖x− x0‖2. (3.8)

When f is twice differentiable at x0 then the p, L in (3.8) are unique, and more-
over in this case f is differentiable at x0 and

p = ∇f |x0 =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 |x0 ∈ Rn.

When f is twice differentiable at x0 we shall refer to L as the Hessian of f at x0

and denote it by Hess(f)|x0
. Of course when f is C2 in a neighbourhood of x0 then

Hessx(f) is the matrix with entries

(Hess(f)x0
)ij :=

∂2f

∂xi∂xj
|x0
.

Definition 28 (Second order jet). Suppose that f : X → R is twice differentiable
at x0. We denote the second order jet of f at x0 by

J2
x0

(f) := (f(x0),∇f |x0
,Hess(f)|x0

) ∈ J2
n = R× Rn × Sym2

n . (3.9)

We have seen in Alexandrov’s Theorem (Theorem 17) that if f is locally semi-
convex then J2

x(f) exists for almost all x.

Theorem 29 (The Almost Everywhere Theorem). Assume that F ⊂ J2(X) is a
primitive subequation and let f : X → R be locally semiconvex. Then

f ∈ F (X)⇔ J2
x(f) ∈ Fx for almost all x ∈ X.

Proof. See [9, Theorem 4.1]. �

4. Partial sup-convolutions

Fix open U ⊂ Rn and V ⊂ Rm, and suppose f : U × V → R is upper-
semicontinuous and bounded.

Definition 30 (Partial-Sup-Convolutions). For ε > 0 the partial sup-convolution
of f is

f ε,p(x, y) := sup
z∈U
{f(z, y)− 1

2ε
‖z − x‖2} for (x, y) ∈ U × V. (4.1)

For δ > 0 let

U(δ) = {x ∈ Rn : Bδ(x) ⊂ U}.

Lemma 31 (Basic Properties of Partial-Sup-Convolutions).
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(i) (Strong Semiconvexity) Assume that for each fixed x the function y 7→ f(x, y)
is convex. Then

(x, y) 7→ f ε,p(x, y) +
1

2ε
‖x‖2

is convex.
(ii) (Monotonicity) For 0 < ε′ ≤ ε we have

f ≤ f ε
′,p ≤ f ε,p. (4.2)

(iii) Let δ := 2(ε‖f‖∞)1/2. Then

f ε,p(x, y) = sup
‖τ‖<δ

{f(x+ τ, y)− 1

2ε
‖τ‖2} for (x, y) ∈ U(δ)× V.

(iv) (Pointwise convergence)

lim
ε→0+

f ε,p(x, y) = f(x, y) for (x, y) ∈ U × V.

(v) (Magic-Property) Suppose that F is a constant-coefficient primitive subequa-
tion on U that has the Negativity Property and f is F#P-subharmonic. Then
f ε,p is F#P-subharmonic on U(δ)× V .

Proof.

f ε,p(x, y) +
1

2ε
‖x‖2 = sup

z∈U
{f(z, y)− 1

2ε
‖z − x‖2 +

1

2ε
‖x‖2}

= sup
z∈U
{f(z, y) +

1

ε
x.z − 1

2ε
‖z‖2}.

Now for fixed z the function y 7→ f(z, y) is assumed to be convex in y, and so
the function (x, y) 7→ f(z, y) is convex in (x, y). Thus, again for z fixed, (x, y) 7→
f(z, y)+ 1

εx.z+ 1
2ε‖z‖

2 is convex in (x, y), and hence so is f ε,p(x, y)+ 1
2ε‖x‖

2 proving
(i).

Item (ii) is immediate. For (iii) we claim that

f ε,p(x, y) = sup
z∈U :‖z−x‖<δ

{f(z, y)− 1

2ε
‖z − x‖2} for (x, y) ∈ U × V. (4.3)

To see this let M := ‖f‖∞. Then for z ∈ U with ‖z − x‖ ≥ δ =
√

4εM ,

f(z, y)− 1

2ε
‖z − x‖2 ≤M − 1

2ε
δ2 = −M ≤ f(x, y) ≤ f ε,p(x, y)

which proves (4.3). Then (iii) follows upon making the change of variables τ := z−x.
For the pointwise convergence fix (x, y) ∈ U × V and let a > f(x, y). Then f < a
on some open neighbourhood of (x, y). Let ε be small enough so that Bδ(x) is
contained in this neighbourhood. Then (4.3) implies f ε,p(x, y) ≤ a, proving (iv).
For the final statement, since F is constant coefficient for any fixed τ the function
f(x + τ, y) is F#P-subharmonic (where defined), and hence (iii) shows f ε,p as a
supremum of F#P-subharmonic functions. Now being F#P-subharmonic implies
that y 7→ f(x, y) is convex, and so by (i) f ε,p is certainly continuous and hence
equal to its upper semicontinuous regularisation. Thus f ε,p is F#P-subharmonic
on U(δ)× V as claimed in (v).

�

The next lemma reveals a surprising property of the above construction, namely
that the partial sup-convolution of a semiconcave function is fibrewise semiconcave.
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Lemma 32. Suppose that f is κ-semiconcave for some κ > 0. Then for ε < κ−1

and fixed x ∈ U the function

y 7→ f ε,p(x, y)− κ

2
‖y‖2

is concave.

Proof. Let x be fixed. Then

f ε,p(x, y)− κ

2
‖y‖2 = sup

z∈U
{f(z, y)− κ

2
‖y‖2 − 1

2ε
‖z − x‖2}

= sup
z∈U
{f(z, y)− κ

2
‖z‖2 − κ

2
‖y‖2 +

κ− ε−1

2
‖z‖2 +

1

ε
z.x− 1

2ε
‖x‖2}.

Observe that (since x is fixed and κ− ε−1 < 0) the function (z, y) 7→ κ−ε−1

2 ‖z‖2 +
1
ε z.x−

1
2ε‖x‖

2 is convex as a function of (z, y). Furthermore by hypothesis f(z, y)−
κ
2 ‖z‖

2 − κ
2 ‖y‖

2 is concave in (z, y). Hence y 7→ f ε,p(x, y) − κ
2 ‖y‖

2 is a supremum
of functions concave in two variables, and thus is concave. �

5. F -subharmonicity of marginal functions

Let Ω ⊂ Rn+m be open, convex and such that Ωx is connected for all x.

Proposition 33. Let F ⊂ J2(Rn) be a primitive subequation. Let f : Ω → R be
F#P-subharmonic, and suppose that for some σ, κ1, κ2 > 0 the function

f(x, y) +
κ1

2
‖x‖2 − σ

2
‖y‖2 is convex and (5.1)

and for each fixed x the function

y 7→ f(x, y)− κ2

2
‖y‖2 is concave (5.2)

and that γ(x) = argminf (x) is single valued. Then

g(x) := inf
y∈Ωx

f(x, y)

is F -subharmonic.

Proof. By hypothesis

g(x) = f(x, γ(x)).

Now g is κ-semiconvex (Lemma 11) so by Alexandrov’s Theorem (Theorem 17) g
is twice differentiable almost everywhere. Furthermore (5.1) allows us to invoke
our results on the argmin function, so by Corollary 8 γ is differentiable almost
everywhere. Let x0 be a point where g is twice differentiable and γ is differentiable,
and we will show

J2
x0
g = (g(x0),∇g|x0

,Hessx0
(g)) ∈ Fx0

. (5.3)

By the Almost Everywhere Theorem (Theorem 29) this implies that g is F -subharmonic.
Actually we will show that for any ε > 0 it holds that

(g(x0),∇g|x0 ,Hessx0(g) + ε Idn) ∈ Fx0 . (5.4)

Letting ε→ 0 and using that Fx0
is closed yields (5.3).

To this end set y0 := γ(x0) and

Γ := Dγ|x0
∈ Hom(Rn,Rm)
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and d(x, y) be the vertical distance between (x, y) ∈ Rn × Rm and the tangent to
the graph of γ at (x0, y0), so

d(x, y) := ‖y − y0 − Γ(x− x0)‖ for (x, y) ∈ Rn × Rm.

Consider the quadratic

q(x, y) = g(x0)+∇g|x0
.(x−x0)+

1

2
(x−x0)t Hessx0

(g)(x−x0)+
ε

2
‖x−x0‖2+κ2d(x, y)2

for (x, y) ∈ Rn × Rm. By construction

q(x0, y0) = g(x0) = f(x0, γ(x0)) = f(x0, y0),

and in Lemma 34 below we show that q ≥ f sufficiently near (x0, y0). Hence (x0, y0)
is an upper contact point for f and

J2
(x0,y0)(q) =

(
q(x0, y0),∇q|(x0,y0 ,Hess(x0,y0(q)

)
(5.5)

=

(
f(x0, y0),

(
∇g|x0

0

)
,

(
Hessx0

(g) + ε Idn +2κ2ΓtΓ −2κ2Γt

−2κ2Γ 2κ2 Idm

))
(5.6)

is an upper-contact jet of f at (x0, y0). So as f is F#P-subharmonic we have

J2
(x0,y0)(q) ∈ (F#P)(x0,y0).

And from the definition of i∗Γ,

i∗Γ(J2
(x0,y0)(q)) = Hessx0

(g) + ε Idn

which must lie in Fx0 . This gives (5.4) and completes the proof. �

Lemma 34. With the notation as in the proof of Theorem 33 we have

q(x, y) ≥ f(x, y) for (x, y) sufficiently near (x0, y0). (5.7)

Proof. Fix ε′ > 0 small enough so ε′ + κ2ε
′2 < ε/2. That Γ = Dγ|x0

means there is
a δ > 0 such that for all ‖x− x0‖ < δ

‖γ(x)− y0 − Γ(x− x0)‖ ≤ ε′‖x− x0‖.

Shrinking δ is necessary, the definition of g being twice differentiable at x0 means
(3.8) that for ‖x− x0‖ < δ we also have

|g(x)− g(x0)−∇g|x0 .(x− x0)− 1

2
(x− x0)t Hessx0 g(x− x0)| ≤ ε′‖x− x0‖2.

Consider now a point (x, y) with ‖x− x0‖ < δ and ‖y − y0‖ < δ. Then

‖y − γ(x)‖ ≤ ‖y − y0 − Γ(x− x0)‖+ ‖y0 + Γ(x− x0)− γ(x)‖ (5.8)

≤ d(x, y) + ε′‖x− x0‖. (5.9)

So

‖y − γ(x)‖2 ≤ 2ε′2‖x− x0‖2 + 2d(x, y)2.

Now we use (in an essential way) hypothesis (5.2). Since γ(x) is the minimum of
the function y′ 7→ f(x, y′) (5.2) implies

f(x, y) ≤ f(x, γ(x)) +
κ2

2
‖y − γ(x)‖2.
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Thus

f(x, y) ≤ g(x) + κ2(ε′2‖x− x0‖2 + d(x, y)2)

≤ g(x0) +∇g|x0
(x− x0) +

1

2
(x− x0)t Hessx0

g(x− x0)

+ (κ2ε
′2 + ε′)‖x− x0‖2 + κ2d(x, y)2

≤ q(x, y)

as required. �

Proof of Theorem 2. Let f : X × R → R be locally semiconcave, bounded from
below and F#P-subharmonic. We are to show that g(x) := infy f(x, y) is F -
subharmonic.

We first claim that without loss of generality we may assume in addition that
for each x it holds that argminf (x) is non-empty and single valued. To prove this,
for j ≥ 1 let

fj(x, y) = f(x, y) +
1

j
‖y‖2.

As F depends only on the Hessian part, fj is still F#P-subharmonic, and is still
bounded from below and semiconcave. Moreover since f is bounded from below, for
each fixed x the function y 7→ f(x, y) is strictly convex and tends to infinity as |y|
tends to infinity, implying that it has a unique global minimum. By assumption the
theorem applies to fj meaning that letting gj(x) := infy fj(x, y) the function gj is
F -subharmonic. But gj ↘ g pointwise as j →∞, and thus g will be F -subharmonic
as well, proving the claim.

So from now on assume that γ(x) = argminf (x) is single valued. Fix x0 ∈ Rn.
As γ is continuous, there exist small balls x0 ∈ U ⊂ X and γ(x0) ∈ V ⊂ Rm such
that γ(U) ⊂ V and f is semiconcave on U × V . For ε > 0 consider the function

fε(x, y) := f ε,p(x, y) +
ε

2
‖y‖2 = sup

z∈U
{f(z, y)− 1

2ε
‖z − x‖2}+

ε

2
‖y‖2.

We claim that for ε sufficiently small the following all hold:

(i) fε(x, y) + 1
2ε‖x‖

2 − ε
2‖y‖

2 is convex.
(ii) fε is F#P-subharmonic on U ′ × V for some smaller ball x0 ∈ U ′ ⊂ U .

(iii) f ε ↘ f pointwise on U × V as ε→ 0+.
(iv) There is a κ2 > 0 such that for each x ∈ U the function y 7→ fε(x, y)− κ2

2 ‖y‖
2

is concave.

Items (i,ii,iii) follow from Lemma 31 (we have used here the hypothesis that F
depends only on the Hessian part so adding a multiple of ‖y‖2 preserves the property
of being F#P-subharmonic by Lemma 24). The statement (iv) follows from Lemma
32 (observing that the addition of ε

2‖y‖
2 to the partial sup-convolution only means

we may need to increase the value of κ2)
Thus we are in a position to apply Proposition 33 to fε to conclude that if

gε(x) := inf
y∈V

fε(x, y)

then gε is F -subharmonic on U ′. But by (iii) if x ∈ U ′ then

gε(x)↘ inf
y∈V

f(x, y) = f(x, γ(x)) = g(x) as ε→ 0+
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and hence g is also F -subharmonic on U ′. Since x0 was arbitrary we conclude g is
F -subharmonic on all of Rn as required. �

Appendix A. The Implicit Function Theorem for Lipschitz Functions

The following version of the Implicit function theorem is taken from [27, Theorem
5.1], and we include a proof for convenience.

Theorem 35 (Lipschitz Implicit Function Theorem). Let U1 ⊂ Rr and U2 ⊂ Rs
be open and

J : U1 × U2 → Rs

be Lipschitz with the property that there is a K > 0 such that

‖J(p, y1)− J(p, y2)‖ ≥ K‖y1 − y2‖ for all (p, y1), (p, y2) ∈ U1 × U2.

Suppose a ∈ U1, b ∈ U2 is such that

J(a, b) = 0.

There there exists an open a ∈ V ⊂ U1 and a Lipschitz map

φ : V → U2

such that φ(a) = b and

J(p, φ(p)) = 0 for all p ∈ V. (A.1)

Proof. For small ε > 0 (to be determined) let

Ĵ : U1 × U2 → Rr+s be Ĵ(p, y) = (p, εJ(p, y))

which is Lipschitz as J is assumed to be Lipschitz. We claim that as long as ε is
sufficiently small, Ĵ is bi-Lipschitz, i.e. there is a C > 0 such that

‖Ĵ(p1, y1)− Ĵ(p2, y2)‖ ≥ C‖(p1, y1)− (p2, y2)‖ (A.2)

for all (pi, yi) ∈ U1 × U2.
To see this, say J has Lipschitz constant M and let (pi, yi) ∈ U1 × U2. Then

K2‖y1 − y2‖2 ≤ ‖J(p1, y1)− J(p1, y2)‖2

≤ 2(‖J(p1, y1)− J(p2, y2)‖2 + ‖J(p2, y2)− J(p1, y2)‖2)

≤ 2‖J(p1, y1)− J(p2, y2)‖2 + 2M2‖p2 − p1‖2.

Multiplying by ε2/2 and rearranging gives

K2ε2

2
‖y1 − y2‖2 + (1− ε2M2)‖p1 − p2‖2 ≤ ε2‖J(p1, y1)− J(p2, y2)‖2 + ‖p1 − p2‖2

= ‖Ĵ(p1, y1)− Ĵ(p2, y2)‖2.

So if we take ε small enough so 1− ε2M2 ≥ K2ε2

2 =: C2 then

‖Ĵ(p1, y1)− Ĵ(p2, y2)‖2 ≥ C2(‖y1 − y2‖2 + ‖p1 − p2‖2) = C2‖(p1, y1)− (p2, y2)‖2

as claimed in (A.2).

In particular Ĵ is continuous and injective. Thus by Brouwer’s Invariance of
Domain Theorem [4, Corollary 19.8], Ĵ is an open map. So V := Ĵ(U1×U2) ⊂ Rr+s
is open and Ĵ : U1 × U2 → V is a continuous bijection with continuous inverse
Ĵ−1 : V → U1 × U2. In fact as Ĵ is bi-Lipschitz, we get that Ĵ−1 is Lipschitz.
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Denote by π1 : Rr × Rs → Rr and π2 : Rr × Rs → Rs the projections, and let
B be a small ball around a so that B ⊂ U1 and B × {0} ⊂ Ĵ(π−1

2 (U2)). Define
φ : B → U1 ⊂ Rr by

φ(p) = π2Ĵ
−1(p, 0).

Then φ is Lipschitz and Ĵ−1(a, 0) = (a, b) gives φ(a) = b. Moreover if p ∈ V then

(p, 0) = Ĵ Ĵ−1(p, 0) = J(π1Ĵ
−1(p, 0), π2Ĵ

−1(p, 0))

= J(π1Ĵ
−1(p, 0), φ(p)) = (π1Ĵ

−1(p, 0), εJ(π1Ĵ
−1(p, 0), φ(p)).

Thus

p = π1Ĵ
−1(p, 0)

and

0 = εJ(π1Ĵ
−1(p, 0), φ(p)) = εJ(p, φ(p))

proving (A.1)
�
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