
Domain Adaptation In Reinforcement Learning Via Latent Unified State
Representation

Jinwei Xing1, Takashi Nagata2, Kexin Chen1, Xinyun Zou2, Emre Neftci 1, 2 , Jeffrey L. Krichmar1, 2

1Department of Cognitive Sciences
2Department of Computer Science

University of California,Irvine, USA
{jinweix1,takashin,kexinc3,xinyunz5,eneftci,jkrichma}@uci.edu

Abstract

Despite the recent success of deep reinforcement learning
(RL), domain adaptation remains an open problem. Although
the generalization ability of RL agents is critical for the real-
world applicability of Deep RL, zero-shot policy transfer is
still a challenging problem since even minor visual changes
could make the trained agent completely fail in the new task.
To address this issue, we propose a two-stage RL agent that
first learns a latent unified state representation (LUSR) which
is consistent across multiple domains in the first stage, and
then do RL training in one source domain based on LUSR
in the second stage. The cross-domain consistency of LUSR
allows the policy acquired from the source domain to gener-
alize to other target domains without extra training. We first
demonstrate our approach in variants of CarRacing games
with customized manipulations, and then verify it in CARLA,
an autonomous driving simulator with more complex and
realistic visual observations. Our results show that this ap-
proach can achieve state-of-the-art domain adaptation perfor-
mance in related RL tasks and outperforms prior approaches
based on latent-representation based RL and image-to-image
translation.

Introduction
Deep reinforcement learning has been successful in a series
of control problems, such as Atari 2600 video games (Mnih
et al. 2013) and MuJoCo environments (Lillicrap et al.
2015). However, the advances of deep RL relies on a large
amount of interactions with the environment. In addition, the
policy tends to specialize to the training domain and fails to
generalize to new domains even when these two domains
are similar. It has been shown that slight visual changes on
pixel-based observations from Atari games could cause the
well trained policy totally break down (Gamrian and Gold-
berg 2019). These two limitations make deep reinforcement
learning algorithms inefficient when applied to sets of tasks.
As a result, efficient domain adaptation approaches are im-
portant for the applicability of Deep RL.

Although state-of-the-art methods have demonstrated
compelling performance in domain adaptation in RL, these
approaches all have their limitations. Domain randomization

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Tobin et al. 2017; Andrychowicz et al. 2020; Slaoui et al.
2020) relies on the availability of multiple source domains
for training and cannot be applied in one-to-many gener-
alization scenarios. Image-to-image translation approaches
(Pan et al. 2017; Tzeng et al. 2020; Gamrian and Goldberg
2019) need a computationally expensive generator model for
image translation. The extra burden on computation brought
by the generator model is impractical for real-time applica-
tions such as autonomous driving. Other approaches utilize
the latent embedding of encoder-decoder models to extract
internal state representation for better generalization (Hig-
gins et al. 2017). However, domain-specific variations are
also compressed into the latent embedding which could be
problematic for zero-shot policy transfer.

To solve the problem of domain adaptation across related
RL tasks and avoid limitations of prior methods, we pro-
pose to learn a latent unified state representation (LUSR)
for different domains and then train RL agents in the source
domain based on that. After the RL training, zero-shot pol-
icy transfer is evaluated in target domains. To learn LUSR,
we split the latent state representation into domain-general
embedding which contains information existing in all do-
mains and domain-specific embedding that compress do-
main specific information. LUSR is composed of domain-
general embedding only and thus is able to ignore domain-
specific variations and generalize across domains.

To empirically justify our approach, we conducted experi-
ments in two car driving tasks with different visual complex-
ity. We first applied our approach in CarRacing games with
analysis of final domain adaptation performance, domain
adaptation performance across the training period, gener-
alization to totally unseen domains and policy explanation
with saliency maps. Then we evaluated our approach in au-
tonomous driving tasks in CARLA simulator (Dosovitskiy
et al. 2017) with more challenging and realistic visual ob-
servations.

In comparison with other approaches, LUSR does not
need RL training in multiple source domains like domain
randomization and thus is applicable to a wider range of
tasks. In addition, LUSR does not need computationally
expensive generator models and can achieve better train-
ing efficiency compared with image-to-image translation ap-
proaches that operate in pixel-space. Finally, in contrast with

ar
X

iv
:2

10
2.

05
71

4v
2

 [c
s.L

G
]

3
Se

p
20

21

other approaches that use latent state representation, LUSR
filters out the factors of variation across domains and ensures
the latent state representation is unified across all domains.

Related Work
Related work either tried to tackle domain adaptation in RL
by directly generalizing the policy or learning generalized
state representations.

Domain randomization is the most popular approach to
directly learn a policy with generalization capability (Tobin
et al. 2017; Andrychowicz et al. 2020; Slaoui et al. 2020;
Laskin et al. 2020). By training on many source domains, the
RL agent learns to ignore irrelevant factors of variation and
attend to common features only. However, this approach re-
lies on the availability of multiple source domains for train-
ing and the complexity of this approach scales with the num-
ber of variations.

Instead of learning a policy with generalization capabil-
ity directly, other works focus on the generalization of state
representations. Some visual domain adaptation works use
image-to-image translation to map the pixel-based states in
the target domain to the paired states in the source domain
(Pan et al. 2017; Tzeng et al. 2020; Gamrian and Goldberg
2019). This is generally achieved via adversarial methods
such as Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014), and Unaligned GANs (Liu, Breuel, and
Kautz 2017; Zhu et al. 2017) in the case where image pairs
are lacking. While these methods provide promising results,
the image translation brings extra burden during inference
time which is impractical in real-time applications.

Other works take one step further and try to learn a gen-
eralized state representation by mapping pixel-based states
to a latent space (Higgins et al. 2017). For example, the
latent embedding of variational autoencoder (VAE) can be
used as an internal latent state representation in RL. We
call this method as VAE-Embedding. DARLA further ex-
tends the VAE to β-VAE to encourage the disentanglement
of the latent embedding and uses one internal layer of a pre-
trained Denoising AutoEncoder (DAE) (Vincent et al. 2010)
as the reconstruction target. Although disentanglement in la-
tent state representation makes it easier for RL agents to ig-
nore irrelevant domain-specific features, the policy transfer
performance is not guaranteed because domain-specific fea-
tures still reside in the latent state representation and their
contribution to the policy output cannot be generalized to
other domains. CURL extracts high-level features from raw
pixels using contrastive learning and greatly improves the
sample efficiency (Laskin, Srinivas, and Abbeel 2020).

In this work, we choose VAE-Embedding, DARLA,
CURL and CycleGAN-based image-to-image translation as
benchmarks. To make it more clear how LUSR differs from
them, we use Figure 1 to demonstrate their frameworks.

Domain Adaptation In Reinforcement
Learning

Reinforcement learning is an area that studies how agents
should take actions in an environment in order to maxi-
mize their cumulative rewards. The environment is typically

stated in the form of a Markov decision process (MDP),
which is expressed in terms of the tuple (S,A, T,R) where
S is the state space, A is the action space, T is the transition
function and R is the reward function. At each time step t
in the MDP, the agent takes an action at in the environment
based on current state st and receives a reward rt+1 and next
state st+1. The goal of the agent is to find a policy π(s) to
choose actions that maximize the discounted cumulative fu-
ture rewards rt+γrt+1+γ2rt+2+..., where γ is the discount
factor ranging from 0 to 1.

To formalize domain adaptation scenarios in the setting
of reinforcement learning, we define the source and target
domains as DS and DT . Each domain corresponds to a
MDP defined as tuple (S,A, T,R) and thus the MDPs in
the source domain DS and target domain DT are defined as
(SS , AS , TS , RS) and (ST , AT , TT , RT), respectively. The
source and target domains could have distinct state spaces
S, but their action spaces A should be the same and their
transition function T and reward function R should have
similarity because of the sharing internal dynamics. Namely,
we focus on policy transfers where TS ≈ TT , RS ≈ RT ,
AS = AT , but SS �= ST .

Take autonomous driving as an example, different do-
mains may correspond to different weather conditions. For
instance, the source domain is driving on a sunny day and
the target domain is driving on a rainy day. While state space
S (visual observations) could differ due to rain and different
lighting conditions, the action space A (throttle and steering)
remains the same. As for the transition function T and re-
ward function R, they should have similarity since the state
transition for both domains are governed by the traffic con-
dition and driving control while the reward function for both
domains are determined by the movement of the vehicle.

Methods

Our approach focuses on learning a latent unified state rep-
resentation (LUSR) for states from different domains in RL.
In this section, we first introduce the definition of LUSR and
then introduce how to learn it.

LUSR Definition

We first introduce two notions for state space in RL which
are the agent’s raw observation state space So and the
agent’s internal latent state space Sz . Raw observation states
so consists of a grid of pixels while each unit in the in-
ternal latent state sz represents a high level semantic fea-
ture. A mapping function F : So → Sz maps the obser-
vation state to the corresponding internal latent state. In our
work, high level semantic features in Sz are further divided
into domain-specific ones (such as weather conditions in the
driving task) and domain-general ones (such as vehicle dy-

namics). Here we denote Sz = (̂Sz, Sz) where ̂Sz repre-

sents domain-specific features and Sz represents domain-
general features. For state representation in source and target
domains, this is summarized as

(a) DARLA (b) CURL

(c) LUSR (ours) (d) CycleGAN Image Translation

Figure 1: Architectures of our method (LUSR) and other benchmarks (DARLA, CURL and CycleGAN based image-to-image
translation) used in this work for comparison. The architecture of VAE-Embedding could be considered as a special case of
DARLA that replaces β-VAE with VAE and avoids the usage of DAE. The learning of all these approaches could be divided
into two stages. The first stage is learning appropriate state representations that support domain adaptation in RL and the second
stage is doing RL training.

So
S �= So

T

Sz
S = (̂Sz

S , S
z
S); Sz

T = (̂Sz
T , S

z
T)

Sz
S = Sz

T ;
̂Sz
S �= ̂Sz

T

(1)

In our setting of domain adaptation, the transition func-
tion T and reward function R only depend on Sz which is
consistent across domains. Here we define the reward and
transition function that take so as input as Ro and T o while
the reward and transition function that take sz as input as Rz

and T z . Then, we have

T o
S �= T o

T ; Ro
S �= Ro

T

T z
S = T (Sz

S) = T (Sz
T) = T z

T

Rz
S = R(Sz

S) = R(Sz
T) = Rz

T

(2)

Since Sz is consistent across domains and the reward
structure (T and R) depend only on this representation (not

on ̂Sz), the RL agent taking Sz as input will be able to be
trained successfully and the trained agent also has the capa-
bility to adapt from the source domain to target domains. As
a result, the goal of our approach is learning the mapping
function F : So → Sz that maps raw observation states to
the latent unified state representation which we call LUSR.

Learning LUSR

In this work, we choose to learn the mapping function
F : So → Sz via Cycle-Consistent VAE (Jha et al. 2018)
which is a non-adversarial approach to disentangle domain-
general and domain-specific factors of variation. Similar to
VAE (Kingma and Welling 2013), Cycle-Consistent VAE is
also composed of an encoder and a decoder. However, the
output from the encoder is split into domain-general and
domain-specific embeddings. To learn the mapping function
F , a number of random observation states from a set of pre-
defined domains are first collected and then used as input
for Cycle-Consistent VAE model training. Once the model
is trained, the encoder is able to map observation states so

from any domain in the domain set to a latent state repre-
sentation composed of sz and ̂sz . As a result, we use the
trained encoder as our mapping function F and keep only
domain-general representation as LUSR.

Cycle-Consistent VAE is based on the idea of cycle con-
sistency whose intuition is that two well trained forward
and reverse transformations composed together in any or-
der should approximate an identity function. For example,
in the VAE, the encoder is a forward transformation that
converts an input image to a latent vector while the decoder
is the reverse transformation that converts the latent vec-
tor back to a reconstructed image. Here we define the for-
ward cycle as: Dec(Enc(so)) = so′ and the reverse cycle

as Enc(Dec(̂sz, sz)) = (̂sz′, sz′). As indicated by the cy-

cle consistency, so′ should be close to so and also (̂sz′, sz′)
should be close to (̂sz, sz).

In the forward cycle of Cycle-Consistent VAE, for two
observation states so1, so2 from the same domain, Enc(so1) =
̂sz1, s

z
1 and Enc(so2) = ̂sz2, s

z
2. Since both originate from the

same domain and ̂sz contains only domain-specific informa-

tion, swapping ̂sz1 and ̂sz2 should have no effect on the recon-

struction loss which means we should get Dec(̂sz2, s
z
1) ≈ so1

and Dec(̂sz1, s
z
2) ≈ so2. This operation ensures that domain-

specific information and domain-general information are
compressed into ̂sz and sz separately.

In the reverse cycle, a randomly sampled sz is passed
through the decoder in combination with two domain-

specific embeddings ̂sz1 and ̂sz2 to obtain two reconstructed
images so1′ and so2′. Since both so1′ and so2′ are generated
based on the same sz , their corresponding domain-general
latent embedding sz1′ and sz2′ should also be the same.

As a result, the objective for Cycle-Consistent VAE to
minimize is

Lcyclic = Lforward + Lreverse (3)

where

Lforward =− Eqφ(sz, ̂sz|so)[log pθ(s
o|sz, ̂sz∗)]

+KL(qφ(sz|so)||p(sz))
Lreverse =Esz∼p(sz)[||qφ(pθ(sz, ̂sz1))− qφ(pθ(sz, ̂sz2))||1]
Lforward here is a modified variational upper-bound and

Lreverse is the loss for cycle consistency. qφ and pθ are pa-
rameterized functions of the encoder and decoder. We define
qφ as qφ that only keeps the domain general embedding as

output. The latent embedding sz is composed of sz and ̂sz

which are domain-general and domain-specific latent em-

beddings corresponding to observation state so. ̂sz∗ repre-
sents any random domain-specific embedding from the same

domain while ̂sz1 and ̂sz2 are two different domain-specific
embeddings.

Experiments
We first apply our approach to a set of CarRacing variants
which allows manual manipulations of the visual observa-
tions. This flexibility allows us to analyze the influence of
different categories of variations on the performance of do-
main adaptation in RL. After that, our approach is applied
in autonomous driving tasks in the CARLA simulator in
which the observational states are much more complicated
and helps us to evaluate the ability of our approach to scale
up to more challenging tasks.

CarRacing
We first apply our approach on variants of CarRacing game
which is a continuous control task to learn to drive from pix-
els. As shown in Figure 2, we divide all variants into three
categories: source domain, seen target domains and unseen
target domains. We first collect random observation states

Figure 2: Variants of CarRacing games. A. The original ver-
sion of CarRacing game which is set as the source domain.
B. The seen target domains of CarRacing games whose ob-
servation states are collected for learning LUSR. C. The
unseen target domains of CarRacing games. These two do-
mains are never exposed to the agent, not only during RL
training but also during latent state representation learning.

from the source domain and seen target domains to learn the
mapping function F which maps raw observation states to
LUSR. In each domain, we collect 100k images and thus
have 500k images in total (one source domain and four seen
domains). The collected images are used as the dataset to
train a Cycle-Consistent VAE model whose encoder is the
mapping function F we need. After that, we train the RL
agent in the source domain with LUSR for 10 millions steps
via Proximal Policy Optimization (PPO) (Schulman et al.
2017) algorithm. In this work, we use Ray RLlib (Liang et al.
2018) and RLCodebase (Xing 2020) for the PPO implemen-
tation. After the RL training, we test the RL agent’s perfor-
mance of adapting to the seen target domains and unseen
target domains.

With the ability of inducing manual manipulations over
the observation states, we design two types of variations.
The first type is color change including changing the back-
ground color, the car color and the road color. For example,
the background color in all target domains is different from
that in the source domain. Another type of variation is in-
ducing patterns. For example, we induce a red blob at a fixed
position in the fourth game of seen target domains (B4). In
summary, compared with the source domain A1, seen target
domains B1 and B2 have color changes while B3 and B4

have both color changes and new patterns. For unseen tar-
get domains, C1 combines all variations introduced in seen
target domains and C2 uses a totally new background color.

Autonomous Driving In CARLA
Although CarRacing games are suitable to study the domain
adaptation problem of RL agents, the observation states are
relatively simple compared to real world observations dur-
ing driving. To further evaluate the performance of our ap-
proach, we applied it in a much more challenging task: au-
tonomous driving in the CARLA simulator. In this exper-
iment, we first choose a start point and an end point in the
map of town07 for the driving task. To go from the start point
to the destination, the vehicle must go through a curvy road
and avoid collisions and lane crossings. The action space

Figure 3: Experiment of the driving task in CARLA simula-
tor. Examples of the driver view (observation states) under
three different weather conditions: evening, clear noon and
hard rain from left to right.

is composed of two continuous values for driving control
(throttle and steering). At each step, the driving control is
applied on the vehicle for 0.1 simulation second. We use im-
ages captured by a camera attached to the front end of the RL
agent vehicle along with the current speed as the observation
states. Each episode terminates if the vehicle collides, runs
out of the lane, reaches the destination, or reaches the max-
imum episode timesteps (800 in this experiment). To make
the CARLA simulator compatible with RL training, we use
a gym wrapper of CARLA in the experiment (Chen, Yuan,
and Tomizuka 2019).

To study domain adaptation, we test the model under dif-
ferent weather conditions and times of day. Specifically, the
RL agent is first trained in the late evening and then tested
in the weather of clear noon and hard rain. Examples of the
driver view under these conditions are shown in Figure 3.

Since CARLA aims to provide realistic simulations of ur-
ban driving, the observation states in this driving task are
much more complex and challenging for domain adaptation
compared to states in CarRacing games. Besides that, the
complexity of environment dynamics also makes the simu-
lation of CARLA slower compared to CarRacing games. As
a result, we set the number of PPO training steps in this ex-
periment as 50k. This further requires the RL agent to have
a high training efficiency to achieve good performance with
limited number of interactions with the environment.

Results and Discussion
In this section, we introduce the results of our approach in
two experiments along with other benchmarks.

CarRacing
LUSR Demonstration We first demonstrate the effective-
ness of LUSR. In our approach, the latent embedding is split
into domain-general embedding sz and domain-specific em-
bedding ̂sz . To verify that these two embeddings are well
disentangled, we first select random images from the source
domain and seen target domains and then extract their la-

tent embeddings. For example, we get ̂sz1 and sz1 for im-

age so1, and ̂sz2 and sz2 for image so2. If we feed the decoder

with a latent embedding composed of ̂sz1 and sz2, the recon-
structed image so′ should have visual features from both
so1 and o

2. Furthermore, the shared features between so′ and

Figure 4: Results of Cycle-Consistent VAE. The first row are
four random images from the source domain and the second
row are four random images from four seen target domains
respectively. The last row are reconstructed images that take
̂sz from the first row and sz from the second row.

so1 should be domain-specific while the shared features be-
tween so′ and so2 should be domain-general. As shown in

Figure 4, the third row of images are generated with ̂sz from
the first row and sz from the second row. As a result, their
domain-specific features (color and patterns) are the same
as the first row of images while the domain-general features
(road shape) are the same as images in the second row.

Domain Adaptation After Training After the RL train-
ing in the source domain, we evaluate the domain adaptation
performance of our approach and other benchmarks in both
seen target domains and unseen target domains (see table 1).
The result shows that RL agents trained with LUSR are able
to generalize to all target domains almost without perfor-
mance loss and achieve best scores in most target domains.
For DARLA, the choice of parameter β strongly affects the
adaptation performance. Furthermore, it generalizes better
in target domains with only color variations and could fail
to adapt to domains with new patterns. VAE-Embedding has
notable performance loss for all target domains. CURL has
the worst transfer performance among all approaches and
completely fails in most domains. Finally, CycleGAN can
also adapt to all target domains without performance loss.
However, the final scores are not comparable to other ap-
proaches that use latent embeddings as input for RL train-
ing.

Domain Adaptation During Training Besides the do-
main adaptation performance after training, we’re also in-
terested in the adaptation performance during the training
period. Since the RL agent will be more and more determin-
istic in action selection during the training, the domain adap-
tation performance could also be affected. As a result, we
evaluate the model adaptation performance every 1 million
frames of training for all approaches. Our result shows that
both LUSR and CycleGAN have consistent adaptation per-

Approach Source Domain Seen Target Domains Unseen Target Domains
CarRacing A1

Score
CarRacing B1
Score(Ratio)

CarRacing B2
Score(Ratio)

CarRacing B3
Score(Ratio)

CarRacing B4
Score(Ratio)

CarRacing C1
Score(Ratio)

CarRfacing C2
Score(Ratio)

LUSR 805.13 803.52 (1.00) 807.37 (1.00) 803.11 (1.00) 781.94 (0.97) 678.7 (0.84) 800.56 (0.99)
DARLA(β = 10) 845.87 645.81 (0.76) 250.85 (0.30) -72.99 (-0.09) -62.96 (-0.07) -65.72 (-0.08) 631.09 (0.75)
DARLA(β = 30) 851.48 834.99 (0.98) 819.05 (0.96) -60.76 (-0.07) -73.18 (-0.09) -72.55 (-0.09) 806.76 (0.95)
DARLA(β = 100) 778.78 704.27 (0.90) 207.9 (0.27) 451.81 (0.58) 27.77 (0.04) 182.35 (0.23) 539.63 (0.69)
VAE-Embedding 816.74 616.89 (0.76) 282.71 (0.35) 484.57 (0.59) 223.88 (0.27) 332.58 (0.41) 595.42 (0.73)

CURL 748.58 560.23(0.75) -44.24(-0.06) -55.29(-0.07) -32.45(-0.04) -113.13(-0.15) -69.23(-0.09)
CycleGAN 709.12 707.64 (1.00) 704.33 (0.99) 713.86 (1.01) 711.85 (1.00) 715.43(1.01) 671.67(0.96)

Table 1: Domain adaptation performance of LUSR and benchmarks in CarRacing games. We train 3 models for each approach
and evaluate each model for 100 episodes in each domain after training. The average final score of 3 models are reported in
the table for each approach. We also report the ratio of scores achieved in target domains to the score achieved in the source
domain to demonstrate the policy transfer performance.

Approach Source Domain Target Domains
CARLA (Evening) CARLA (Clear Noon) CARLA (Hard Rain)
Score Steps Score Steps Score Steps

LUSR 1125.06 469.1 1175.61 565.3 1270.32 515.6
DARLA 841.59 342.0 194.41 134.2 187.97 119.9

VAE-Embedding 1113.90 384.9 674.42 744.2 846.14 527.4
CURL 1112.42 521.2 44.34 42.4 73.63 60.2

CycleGAN 333.57 175.1 333.88 174.9 332.71 163.6

Table 2: Domain adaptation performance of LUSR and benchmarks in CARLA autonomous driving tasks. We train 3 models
for each approach and choose the best model for evaluation. Each model is evaluated for 10 episodes. The average score and
time steps spent in each episode are reported in the table.

Figure 5: Domain adaptation performance during training in
CarRacing comparing LUSR to other benchmarks.

formance during the whole training period while the adap-
tation performance of DARLA and VAE-Embedding gradu-
ally decrease (see Figure 5). This demonstrates that domain-
specific features do contribute to the RL policy output if they
are included in the latent state representation and their influ-
ence will be more and more problematic as RL training goes
on.

Saliency Map Saliency map is an approach to visualize
and understand the behavior of RL agents. In this work, we
also use saliency maps (Greydanus et al. 2018) to visualize
how RL agents trained with different methods attend to the
observation states (see Figure 6). The result shows that RL
agent trained with LUSR has more centralized attention and
mainly attends to the center of the road. In comparison, the
saliency maps generated by other approaches are much more

Figure 6: Examples of saliency maps generated by RL
agents trained via DARLA, LUSR, VAE-Embedding, CURL
and CycleGAN. The RL agent trained with LUSR has the
most centralized attention and mainly attends to the center
of the road.

diffused and attend more to the edges between road and
grass rather than road itself. Although it also makes sense
to learn to drive based on the edges, the contrast between
them could also change when the color of grass changes and
thus brings more challenges in generalization. This may ex-
plain why LUSR has better generalization performance than
other benchmarks.

Autonomous Driving In CARLA
We further apply our approach in the autonomous driving
task in CARLA simulator whose observation states are more
complicated and thus increase the difficulty of RL training
and generalization.

LUSR Demonstration We also demonstrate the disentan-
glement of domain-specific embedding and domain-general

(a)

(b)

(c)

Figure 7: Demonstration of the disentanglement of domain-general embedding and domain-specific embedding in related
CARLA driving tasks. a. The workflow of generating paired observational states and extracting latent embeddings. b,c. t-SNE
plot of the domain-general and domain-specific embeddings from three CARLA driving tasks.

embedding for images in CARLA simulator (see Figure 7).
We first collect paired observation images from three tasks
by placing the vehicle at the same starting point in the map
and taking same actions in the driving. After collecting im-
ages, we extract their latent domain-general and domain-
specific embeddings via a trained encoder and show their t-
SNE plots in Figure 7b and 7c. It shows that domain-general
embeddings from different tasks do have close similarities
while domain-specific embeddings from different tasks are
well clustered separately. The result demonstrates the disen-
tanglement of domain-general and domain specific embed-
dings for images in CARLA driving tasks and thus supports
the feasibility of LUSR in more challenging scenarios.

Domain Adaptation Performance For domain adapta-
tion in CARLA autonomous driving tasks (see Table 2), RL
agents trained with LUSR is able to achieve zero-shot pol-
icy transfer without performance loss for both two target do-
mains. It also achieves best scores in all domains compared
with other approaches which shows the training efficiency
of LUSR.

Different from in CarRacing games, DARLA fails to
adapt the trained policy in two target domains in CARLA
autonomous driving tasks. This may be due to DARLA in-
creasing the disentanglement of the latent embedding at the
sacrifice of information accuracy. For complicated observa-
tion states like images in CARLA, it’s much more difficult
to achieve good disentanglement of each latent unit and the
problem of information loss in the latent embedding is more
serious. This causes the quality of the latent embedding
in DARLA to be worse than LUSR and VAE-Embedding.
This argument is supported by the results that higher β in
DARLA leads to worse RL training performance.

VAE-Embedding achieves similar training performance
in the source domain as LUSR while its adaptation perfor-

mance in target domains is worse. Besides that, its driving
behavior in target domains is very different from the behav-
ior in the source domain. When adapting to target domains,
the RL agent drives much slower and frequently reaches the
time limit of each episode. As shown in table 2, compared
to the result in the source domain, RL agents trained with
VAE-Embedding receive lower scores while spending more
time steps in each episode when driving in target domains.

Although CURL achieves comparable training perfor-
mance in the source domain as other approaches, it com-
pletely fails to generalize to the two target domains in
CARLA. To understand the reason, we conducted a tSNE
analysis for CURL. The result reveals clusters based on do-
main labels. We believe the reason is that domain specific
features are very useful in learning to assign low similarities
for two states from different domains during CURL training
and thus much domain specific information resides in the
embedding of CURL. This prevents generalization across
domains.

CycleGAN is also able to generalize to target domains
well. However, it relies on pixel-wise input and the training
efficiency is limited compared with other approaches that
utilize internal latent state representation.

Conclusion
In this work, we propose to disentangle domain-general em-
bedding and domain-specific embedding in the latent state
representation of RL and theoretically formalize it in the sce-
nario of domain adaptation. We propose LUSR which uti-
lizes the domain-general latent embedding as state represen-
tation and prove its efficiency in two RL tasks with different
visual complexity. As a result, our work enhances the appli-
cability of Deep RL to real-world tasks that need both good
domain adaptation performance and high training efficiency.

Acknowledgments
This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) via Air Force Research
Laboratory (AFRL) Contract No. FA8750-18-C-0103 (Life-
long Learning Machines: L2M). Authors are also thankful
to computing resources provided by CHASE-CI under NSF
Grant CNS-1730158.

References
Andrychowicz, O. M.; Baker, B.; Chociej, M.; Jozefowicz,
R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Pow-
ell, G.; Ray, A.; et al. 2020. Learning dexterous in-hand ma-
nipulation. The International Journal of Robotics Research
39(1): 3–20.

Chen, J.; Yuan, B.; and Tomizuka, M. 2019. Model-free
deep reinforcement learning for urban autonomous driving.
In 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), 2765–2771. IEEE.

Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An Open Urban Driving Simula-
tor. In Proceedings of the 1st Annual Conference on Robot
Learning, 1–16.

Gamrian, S.; and Goldberg, Y. 2019. Transfer learning
for related reinforcement learning tasks via image-to-image
translation. In International Conference on Machine Learn-
ing, 2063–2072.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.

Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2018. Vi-
sualizing and understanding atari agents. In International
Conference on Machine Learning, 1792–1801.

Higgins, I.; Pal, A.; Rusu, A. A.; Matthey, L.; Burgess, C. P.;
Pritzel, A.; Botvinick, M.; Blundell, C.; and Lerchner, A.
2017. Darla: Improving zero-shot transfer in reinforcement
learning. arXiv preprint arXiv:1707.08475 .

Jha, A. H.; Anand, S.; Singh, M.; and Veeravasarapu,
V. 2018. Disentangling factors of variation with cycle-
consistent variational auto-encoders. In European Confer-
ence on Computer Vision, 829–845. Springer.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114 .

Laskin, M.; Lee, K.; Stooke, A.; Pinto, L.; Abbeel, P.; and
Srinivas, A. 2020. Reinforcement Learning with Augmented
Data. arXiv preprint arXiv:2004.14990 .

Laskin, M.; Srinivas, A.; and Abbeel, P. 2020. Curl:
Contrastive unsupervised representations for reinforcement
learning. In International Conference on Machine Learning,
5639–5650. PMLR.

Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J.; Jordan, M.; and Stoica, I. 2018.
RLlib: Abstractions for distributed reinforcement learning.

In International Conference on Machine Learning, 3053–
3062.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 .

Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
image-to-image translation networks. In Advances in neural
information processing systems, 700–708.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

Pan, X.; You, Y.; Wang, Z.; and Lu, C. 2017. Virtual to
real reinforcement learning for autonomous driving. arXiv
preprint arXiv:1704.03952 .

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .

Slaoui, R. B.; Clements, W. R.; Foerster, J. N.; and Toth,
S. 2020. Robust Domain Randomization for Reinforce-
ment Learning. URL https://openreview.net/forum?id=
H1xSOTVtvH.

Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 23–30. IEEE.

Tzeng, E.; Devin, C.; Hoffman, J.; Finn, C.; Abbeel, P.;
Levine, S.; Saenko, K.; and Darrell, T. 2020. Adapting
deep visuomotor representations with weak pairwise con-
straints. In Algorithmic Foundations of Robotics XII, 688–
703. Springer.

Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol,
P.-A.; and Bottou, L. 2010. Stacked denoising autoencoders:
Learning useful representations in a deep network with a
local denoising criterion. Journal of machine learning re-
search 11(12).

Xing, J. 2020. RLCodebase: PyTorch Codebase For Deep
Reinforcement Learning Algorithms. https://github.com/
KarlXing/RLCodebase.

Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.

