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Abstract

Recent works (White et al., 2020a; Yan et al.,
2020) demonstrate the importance of architec-
ture encodings in Neural Architecture Search
(NAS). These encodings encode either structure
or computation information of the neural archi-
tectures. Compared to structure-aware encod-
ings, computation-aware encodings map archi-
tectures with similar accuracies to the same re-
gion, which improves the downstream architec-
ture search performance (Zhang et al., 2019;
White et al., 2020a). In this work, we intro-
duce a Computation-Aware Transformer-based
Encoding method called CATE. Different from
existing computation-aware encodings based on
fixed transformation (e.g. path encoding), CATE
employs a pairwise pre-training scheme to learn
computation-aware encodings using Transform-
ers with cross-attention. Such learned encodings
contain dense and contextualized computation in-
formation of neural architectures. We compare
CATE with eleven encodings under three ma-
jor encoding-dependent NAS subroutines in both
small and large search spaces. Our experiments
show that CATE is beneficial to the downstream
search, especially in the large search space. More-
over, the outside search space experiment demon-
strates its superior generalization ability beyond
the search space on which it was trained. Our code
is available at: https://github.com/MSU-MLSys-
Lab/CATE.

1. Introduction

Neural Architecture Search (NAS) has recently drawn con-
siderable attention (Elsken et al., 2019). While majority of
the prior work focuses on either constructing new search
spaces (Liu et al., 2018b; Radosavovic et al., 2020; Ru et al.,
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2020) or designing efficient architecture search and evalu-
ation methods (Luo et al., 2018b; Shi et al., 2020; White
et al., 2021), some of the most recent work (White et al.,
2020a; Yan et al., 2020) sheds light on the importance of ar-
chitecture encoding on the subroutines in the NAS pipeline
as well as on the overall performance of NAS.

While existing NAS methods use diverse architecture en-
coders such as LSTM (Zoph et al., 2018; Luo et al., 2018b),
SRM (Baker et al., 2018), MLP (Liu et al., 2018a; Wang
et al., 2020), GNN (Wen et al., 2020; Shi et al., 2020; Yan
et al., 2020) or adjacency matrix itself (Kandasamy et al.,
2018; Real et al., 2019; White et al., 2020b), these encoders
encode either structures (Luo et al., 2018b; Ying et al., 2019;
Wang et al., 2020; Wen et al., 2020; Shi et al., 2020; Yan
et al., 2020) or computations (Zhang et al., 2019; Ning
et al., 2020b; White et al., 2021) of the neural architectures.
Compared to structure-aware encodings, computation-aware
encodings are able to map architectures with different struc-
tures but similar accuracies to the same region. This advan-
tage contributes to a smooth encoding space with respect
to the actual architecture performance instead of structures,
which improves the efficiency of the downstream architec-
ture search (Zhang et al., 2019; 2020; White et al., 2020a).

We argue that current architecture encoders limit the power
of computation-aware architecture encoding for NAS. The
major limitations lie in their representation power and the
effectiveness of their pre-training objectives. Specifically,
(Zhang et al., 2019) uses shallow GRUs to encode computa-
tion, which is not sufficient to capture deep contextualized
computation information. Moreover, their decoder is trained
with the reconstruction loss via asynchronous message pass-
ing. This is very challenging in practice because directly
learning the generative model based on a single architecture
is not trivial. As a result, its pre-training is less effective
and the downstream NAS performance is not as competi-
tive as state-of-the-art structure-aware encoding methods.
(White et al., 2020a) proposes a computation-aware encod-
ing method based on a fixed transformation called path
encoding, which shows outstanding performance under the
predictor-based NAS subroutine. However, path encoding
scales exponentially without truncation and it inevitably
causes information loss with truncation. Moreover, path en-
coding exhibits worse generalization performance in outside
search space compared to the adjacency matrix encoding
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since it could not generalize to unseen paths that are not
included in the training search space.

In this work, we propose a new computation-aware neural
architecture encoding method named CATE (Computation-
Aware Transformer-based Encoding) that alleviates the lim-
itations of existing computation-aware encoding methods.
As shown in Figure 1, CATE takes paired computationally
similar architectures as its input. Similar to BERT, CATE
trains the Transformer-based model (Vaswani et al., 2017)
using the masked language modeling (MLM) objective (De-
vlin et al., 2019). Each input architecture pair is corrupted
by replacing a fraction of their operators with a special
mask token. The model is trained to predict those masked
operators from the corrupted architecture pair.

CATE differs from BERT (Devlin et al., 2019) in two as-
pects. First, each prediction in LMs has its inductive bias
given the contextual information from different positions.
This, however, is not the case in architecture representation
learning since the prediction distribution is uniform for any
valid graph, making it difficult to directly learn the genera-
tive model from a single architecture. Therefore, we propose
a pairwise pre-training scheme that encodes computationally
similar architecture pairs through two Transformers with
shared parameters. The two individual encodings are then
concatenated, and the concatenated encoding is fed into an-
other Transformer with a cross-attention encoder to encode
the joint information of the architecture pair. Second, the
fully-visible attention mask (Raffel et al., 2020) could not
be used for architecture representation learning because it
does not reflect the single-directional flow (e.g. directed,
acyclic, single-in-single-out) of neural architectures (Xie
et al., 2019a; You et al., 2020a). Therefore, instead of using
a bidirectional Transformer encoder as in BERT, we directly
use the adjacency matrix to compute the causal mask (Raffel
et al., 2020). The adjacency matrix is further augmented
with the Floyd algorithm (Floyd, 1962) to encode the long-
range dependency of different operations. Together with the
MLM objective, CATE is able to encode the computation
of architectures and learn dense and deep contextualized ar-
chitecture representations that contain both local and global
computation information in neural architectures. This is
important for architecture encodings to be generalized to
outside search space beyond the training search space.

We compare CATE with eleven structure-aware and
computation-aware architecture encoding methods under
three major encoding-dependent subroutines as well as eight
NAS algorithms on NAS-Bench-101 (Ying et al., 2019)
(small), NAS-Bench-301 (Siems et al., 2020) (large), and
an outside search space (White et al., 2020a) to evalu-
ate the effectiveness, scalability, and generalization abil-
ity of CATE. Our results show that CATE is beneficial
to the downstream architecture search, especially in the

large search space. Specifically, we found the strongest
NAS performance in all search spaces using CATE with a
Bayesian optimization-based predictor subroutine together
with a novel computation-aware search. Moreover, the out-
side search space experiment shows its superior general-
ization capability beyond the search space on which it was
trained. Finally, our ablation studies show that the quality
of CATE encodings and downstream NAS performance are
non-decreasingly improved with more training architecture
pairs, more cross-attention Transformer blocks and larger
dimension of the feed-forward layer.

2. Related Work

Neural Architecture Search (NAS). NAS has been started
with genetic algorithms (Miller et al., 1989; Kitano, 1990;
Stanley & Miikkulainen, 2002) and recently becomes pop-
ular when (Zoph & Le, 2017; Baker et al., 2017) gain sig-
nificant attention. Since then, various NAS methods have
been explored including sampling-based and gradient-based
methods. Representative sampling-based methods include
random search (Li & Talwalkar, 2019), evolutionary al-
gorithms (Real et al., 2019; Lu et al., 2020), local search
(Ottelander et al., 2020; White et al., 2020b), reinforcement
learning (Zoph et al., 2018; Tan et al., 2019), Bayesian opti-
mization (Kandasamy et al., 2018; Zhou et al., 2019), Monte
Carlo tree search (Negrinho & Gordon, 2017; Wang et al.,
2020) and Neural predictor (Baker et al., 2018; Liu et al.,
2018a; Wen et al., 2020; Tang et al., 2020; Ning et al., 2020a;
Luo et al., 2020; Shi et al., 2020; Yan et al., 2020; White
et al., 2021; Ru et al., 2021). Weight-sharing methods (Ben-
der et al., 2018; Pham et al., 2018) have become popular due
to their computation efficiency. Based on weight-sharing,
gradient-based methods are proposed to optimize the archi-
tecture selection with gradient decent (Luo et al., 2018b; Liu
et al., 2019a; Xie et al., 2019b; Dong & Yang, 2019; Yan
et al., 2019; You et al., 2020b; Peng et al., 2020; Zela et al.,
2020; Chen & Hsieh, 2020). For comprehensive surveys, we
suggest referring to (Elsken et al., 2019; Xie et al., 2020).

Neural Architecture Encoding. Majority of existing NAS
work use one-hot adjacency matrix to encode the structures
of neural architectures. However, adjacency matrix-based
encoding grows quadratically as the search space scales up.
(Ying et al., 2019) proposes categorical adjacency matrix-
based encoding to ensure fixed length encodings. They also
propose continuous adjacency matrix-based encoding that is
similar to DARTS (Liu et al., 2019a), where the architecture
is created by taking fixed number of edges with the highest
continuous values. However, this approach is not easily
applicable to some NAS algorithms such as regularized evo-
lution (Real et al., 2017) without major changes. Tabular
encoding in the form of ConfigSpace (Lindauer et al., 2019)
is often used for hyperparameter optimization (Li et al.,
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Figure 1. Overview of CATE. CATE takes computationally similar architecture pairs as the input. The model is trained to predict masked
operators given the pairwise computational information. Apart from the cross-attention blocks, the pretrained Transformer encoder is used
to extract architecture encodings for the downstream encoding-dependent NAS subroutines.

2018; Falkner et al., 2018) and recently adopted by NAS-
Bench-301 (Siems et al., 2020) to represent architectures by
introducing categorical hyperparameters for each operation
along each potential edge. Recent NAS methods (Luo et al.,
2018a; Wang et al., 2020; Wen et al., 2020; Shi et al., 2020)
use adjacency matrix as the input to LSTM/MLP/GNN to
encode the structures of neural architectures in the latent
space. (Yan et al., 2020) validates that pre-training archi-
tecture representations without using accuracies can better
preserve the local structural relationship of neural architec-
tures in the latent space. (Wei et al., 2020b) proposes to
learn architecture representations using contrastive learning
to find low-dimensional embeddings. (Choi et al., 2021)
studies various locality-based self-supervised objectives on
the effect of architecture representations. One disadvantage
of these methods is that they rely on a prior where the edit
distance closeness between different architectures is a good
indicator of the relative performance; however, structure-
aware encodings may not be computationally unique unless
some certain graph hashing is applied (Ying et al., 2019;
Ning et al., 2020b). (White et al., 2021; Wei et al., 2020a)
use path encoding and its categorical and continuous vari-
ants, which encode computation of architectures so that
isomorphic cells are mapped to the same encoding. (Zhang
et al., 2019) uses GRU-based asynchronous message pass-

ing to encode computation of architectures and the model is
trained with the VAE loss. (Lukasik et al., 2021) proposes a
two-sided variational encoder-decoder GNN to learn smooth
embeddings in various NAS search spaces. CATE is inspired
by the advantage of computation encoding and addresses
the drawbacks of (Zhang et al., 2019; White et al., 2021).
Another line of work is based on the intrinsic properties of
the architectures. (Hesslow & Poli, 2021) generates archi-
tecture representations by using contrastive learning over
data Jacobian matrix values computed based on different ini-
tializations, and the generated embeddings are independent
of the parameterization of the search space.

Context Dependency. Our work is close to self-supervised
learning in language models (LMs) (Dong et al., 2019). In
particular, ELMo (Peters et al., 2018) uses two shallow uni-
directional LSTMs (Hochreiter & Schmidhuber, 1997) to
encode bidirectional text information, which is not sufficient
for modeling deep interactions between the two directions.
GPT-2 (Radford et al., 2019) proposes an autoregressive lan-
guage modeling method with Transformer (Vaswani et al.,
2017) to cover the left-to-right dependency and is further
generalized by XLNet (Yang et al., 2019) which encodes
bidirectional context. (Ro)BERT/BART/TS (Devlin et al.,
2019; Liu et al., 2019b; Lewis et al., 2020; Raffel et al.,
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2020) use bidirectional Transformer encoder to encode both
left and right context. In architecture representation learn-
ing, however, the attention mask in the encoder cannot be
used to attend to all the operators because it does not reflect
the single-directional flow of the computational graphs (Xie
et al., 2019a; You et al., 2020a).

3. CATE
3.1. Search Space

We restrict our search space to the cell-based architectures.
Following the configuration in (Ying et al., 2019), each cell
is a labeled directed acyclic graph (DAG) G = (V, £), with
V as a set of N nodes and € as a set of edges that connect
the nodes. Each node v; € V, i € [1, N] is associated with
an operation selected from a predefined set of V' operations,
and the edges between different nodes are represented as an
upper triangular binary adjacency matrix A € {0, 1}V*¥,

3.2. Computation-aware Neural Architecture Encoder

Our proposed computation-aware neural architecture en-
coder is built upon the Transformer encoder architecture
which consists of a semantic embedding layer and L Trans-
former blocks stacked on top. Given G, each operation v; is
first fed into a semantic embedding layer of size d.:

Emb, = Embedding(v;) (1)

The embedded vectors are then contextualized at different
levels of abstract. We denote the hidden state after [-th layer
as H' = [H!,...,HY] of size dj, where H' = T(H'"1)
and T is a transformer block containing nye.q heads. The
[-th Transformer block is calculated as:

Q. =H""'W,, K, =H"T'W,, V., =H"'W,, (2

QK|
Vdp
H' = concatenate(A' )AL, ... A ) 4)

Nhead

H' = ReLU(H'W, + b, )W, + by (5)

H. = softmax(

+ M)V, 3)

where the initial hidden state HY is Emb;, thus d. = d,.
Q. Ki, Vi stand for “Query", “Key" and “Value" in the
attention operation of the k-th head respectively. M is the
attention mask in the Transformer, where M; ; € {0, —co}
indicates whether operation j is a dependent operation of
operation i. W; € R%*x4ss and W, € R%7*% denote
the weights in the feed-forward layer.

Direct/Indirect Dependency Mask. A pair of nodes (op-
erations) within an architecture are dependent if there is
either a directed edge that directly connects them (local

Algorithm 1 Floyd Algorithm

1: Input: the node set V, the adjacent matrix A

22 A« A
: fork € Vdo
fori € Vdo

for j € Vdo
Ai, i = Ai,k

: Output: A

& A,

AN A

dependency) or a path made of a series of such edges that in-
directly connects them (long-range dependency). We create
dependency masks for such pairs of nodes for both direct
and indirect cases and use these dependency masks as the
attention masks in the Transformer. Specifically, the direct
dependency mask MPe¢t and the indirect dependency
mask M!7ect can be created as follows:

Direct _ ’ 2¥)
Mz’j { —0Q, lf Ai,] =0
o 0 if A . =1

Indirect __ ) e 2Y)
Ml’] { —0Q, lf Aiyj =0

where A is the adjacency matrix and A = Floyed(A) is
derived using Floyd algorithm in Algorithm 1.

Uni/Bidirectional Encoding. Finally, the final hidden vec-
tor HY;, is used as the unidirectional encoding for the archi-
tecture. We also considered encoding the architecture in a
bidirectional manner, where both the output node hidden
vector from the original DAG and the input node hidden
vector from the reversed one are extracted and then con-
catenated together. However, our experiments show that
bidirectional encoding performs worse than unidirectional
encoding. We include this result in Appendix A.

3.3. Pre-training CATE

Architecture Pair Sampling. We split the dataset into
95% training and 5% held-out test sets for our pairwise
pre-training. To ensure that it does not scale with quadratic
time complexity, we first sort the architectures based on
their computational attributes P (e.g. number of parame-
ters, FLOPs). We then employ a sliding window for each
architecture z* and its neighborhood 7(z%) = {y : |P(2%) —
P(y)| < 0}, where ¢ is a hyperparameter for the pairwise
computation constraint. Finally, we randomly select K dis-
tinct architectures Y = {y!,...,y5},2° ¢ Y)Y C r(z?)
within the neighborhood to compose K architecture pairs
{(z%,y1), ..., (2%, y¥)} for architecture z°.

Pairwise Pre-training with Cross-Attention. Once the
computationally similar architecture pair is composed, we
randomly select 20% operations from each architecture
within the pair for masking, where 80% of them are re-
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placed with a [M ASK] token and the remaining 20% are
replaced with a random token chosen from the predefined
operation set. We apply padding to architectures that have
nodes less than the maximum number of nodes N in one
batch to handle variable length inputs. The joint repre-
sentation H%, is derived by concatenating H% and HL
followed by the summation of the corresponding segment
embedding. Segment embedding acts as an identifier of
different architectures during pre-training. We set it to be
trainable and randomly initialized. The joint representation
H%(Y is then contextualized with another L.-layer Trans-
former with the cross-attention mask M, such that segments
from the two architectures can attend to each other given the
pairwise information. For example, given two architectures
X with three nodes and Y with four nodes in Figure 1, X
has access to the non-padded nodes of Y and itself, and
same for Y. The cross-attention dimension of the encoder
is denoted as d.. The joint representation of the last layer is
used for prediction. The model is trained by minimizing the
cross-entropy loss computed using the predicted operations
and the original operations.

3.4. Encoding-dependent NAS Subroutines

(White et al.,, 2020a) identifies three major encoding-
dependent subroutines included in existing NAS algorithms:
sample random architecture, perturb architecture, and train
predictor model. The sample random architecture subrou-
tine includes random search (Li & Talwalkar, 2019). The
perturb architecture subroutine includes regularized evolu-
tion (REA) (Real et al., 2019) and local search (LS) (White
et al., 2020b). The train predictor model subroutine in-
cludes neural predictor (Wen et al., 2020; Shi et al., 2020;
White et al., 2021), Bayesian optimization with Gaussian
process (GP) (Rasmussen & Williams, 2006), and Bayesian
optimization with neural networks (DNGO) (Snoek et al.,
2015) which is much faster to fit compared to GP and scales
linearly with large datasets rather than cubically.

Inspired by (Ottelander et al., 2020; White et al., 2020b),
we found that LS (perturb architecture) can be combined
with DNGO (train predictor model). We thus propose a
DNGO-based computation-aware search using CATE called
CATE-DNGO-LS. Specifically, we maintain a pool of sam-
pled architectures and take iterations to add new ones. In
each iteration, we pass all architecture encodings to the pre-
dictor trained 30 epochs with samples in the current pool.
We select new architectures with top-5 predicted accuracy
and add them to the pool. Assume there are M new architec-
tures which become the new top-5 in the updated pool. We
then select the nearest neighbors of the other (5-M) top-5
architectures in L2 distance in latent space and add them
to the pool. Hence, there will be 5 to 10 new architectures
added to the pool in each iteration. The search stops when
the number of samples reaches a pre-defined budget.

4. Experiments

We describe two NAS benchmarks used in our experiments.

NAS-Bench-101. The NAS-Bench-101 search space (Ying
et al., 2019) consists of 423, 624 architectures. Each archi-
tecture has its pre-computed validation and test accuracies
on CIFAR-10. The cell includes up to 7 nodes and at most 9
edges with the first node as input and the last node as output.
The intermediate nodes can be either 1x 1 convolution, 3x3
convolution, or 3x3 max pooling. We use the number of
network parameters as the computational attribute P for
architecture pair sampling. We set J to 2,000, 000 and K
to 2. The ablation studies on § and K are summarized in
Section 4.4. We split the dataset into 95% training and 5%
held-out test sets for pre-training.

NAS-Bench-301. NAS-Bench-301 (Siems et al., 2020) is a
new surrogate benchmark on the DARTS (Liu et al., 2019a)
search space that is much larger than NAS-Bench-101. It
was created by fully training 60, 000 architectures that is
stratified by the NAS methods' with a good coverage and
then fitting a surrogate model that can estimate the accuracy
(with noise) at epoch 100 and the training time for any of the
remaining 1018 architectures. To convert the DARTS search
space into one with the same input format as NAS-Bench-
101, we add a summation node to make nodes represent op-
erations and edges represent data flow. Following (Liu et al.,
2018a), we use the same cell for both normal and reduc-
tion cell, allowing roughly 10° DAGs without considering
graph isomorphism. More details about the DARTS/NAS-
Bench-301 and a cell transformation example are included
in Appendix D. We randomly sample 1, 000, 000 architec-
tures in this search space, and use the same data split used in
NAS-Bench-101 for pre-training. We use network FLOPs
as the computational attribute P for architecture pair sam-
pling. We set § to 5,000,000 and K to 1. Since some NAS
methods we compare against use the same GIN (Xu et al.,
2019) surrogate model used in NAS-Bench-301, to ensure
fair comparison, we thus followed (Siems et al., 2020) to use
XGB-v1.0 and LGB-runtime-v1.0 which utilizes gradient
boosted trees (Chen & Guestrin, 2016; Ke et al., 2017) as
the regression model.

Model and Training. We use a L = 12 layer Transformer
encoder and a L, = 24 layer cross-attention Transformer
encoder, each has 8 attention heads. The hidden state size is
dp, = d. = 64 for all the encoders. The hidden dimension
is dyy = 64 for all the feed-forward layers. We employ
AdamW (Loshchilov & Hutter, 2019) as our optimizer. The
initial learning rate is le-3. The momentum parameters are
set to 0.9 and 0.999. The weight decay is 0.01 for regular
layer and O for dropout and layer normalization. We trained

"'We suggest referring to C.2 in (Siems et al., 2020) for a
detailed description on the data collection.
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Figure 2. Comparison between CATE and other architecture encoding schemes under different subroutines on NAS-Bench-101: sample
random architecture (top left), perturb architecture (top middle, top right), and train predictor model (bottom left, bottom middle, bottom
right). It reports the test error of 200 independent runs given 150 queried architectures.

our model with batch size of 1024 on NVIDIA Quadro
RTX 8000 GPUs. It takes around 4GB GPU memory for
NAS-Bench-101 and 9GB GPU memory for NAS-Bench-
301. The validation loss converges well after 10 epochs of
pretraining, which takes 1.2 hours on NAS-Bench-101 and
7.5 hours on NAS-Bench-301.

4.1. Comparison with Different Encoding Schemes

In our first experiment, we compare CATE with eleven
architecture encoding schemes under three major encoding-
dependent subroutines described in Section 3.4 on NAS-
Bench-101. These encoding schemes include (1-3) one-
hot/categorical/continuous adjacency matrix encoding (Ying
et al., 2019), (4-6) one-hot/categorical/continuous path en-
coding and (7-9) their corresponding truncated counterparts
(White et al., 2021), (10) D-VAE (Zhang et al., 2019), and
(11) arch2vec (Yan et al., 2020). For continuous encod-
ings, we use L2 distance as the distance metric. To examine
the effectiveness of the encoding schemes themselves, we
compare different encoding schemes under the same search
subroutine.

Figure 2 illustrates our results. For each subroutine, we show
the top-five best-performing encoding schemes. Overall,
despite there is no overall best encoding, we found that

CATE is among the top five across all the subroutines.

Specifically, for sample random architecture subroutine, ran-
dom search using adjacency matrix encoding performs the
best. The random search using continuous encodings per-
forms slightly worse than the adjacency encodings possibly
due to the discretization loss from vector space into a fixed
number of bins of same size before the random sampling.

For perturb architecture subroutine, CATE is on par with or
outperforms adjacency encoding and path encoding because
it is pre-trained to preserve strong computation locality in-
formation. This advantage allows the evolution or local
search to find architectures with similar performance in lo-
cal neighborhood more easily. Interestingly, we observe
very small deviation using local search with CATE. This
indicates that it always converges to some certain local min-
imums across different initial seeds. Since NAS-Bench-101
already exhibits locality in edit distance, encoding compu-
tation makes architectures even closer in terms of accuracy
and thus benefits the local search.

For train predictor model subroutine, we have four observa-
tions: 1) Adjacency matrix encodings perform less effective
with neural predictor and DNGO. It is possibly that edit dis-
tance cannot fully reflect the closeness of architectures w.r.t
their actual performance. 2) Path encoding performs well
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Figure 3. Comparison between CATE and SOTA NAS methods on NAS-Bench-101 (left) and NAS-Bench-301 (right). It reports the test
error of 200 independent runs. The error bars denote the variance of the test error. The number of queried architectures is set to 150 for

NAS-Bench-101 and 100 for NAS-Bench-301.

with neural predictor but worse than other encodings with
Bayesian optimization. 3) D-VAE and arch2vec, two en-
codings learned via variational autoencoding, perform well
only with some certain NAS methods. It could be attributed
to their challenging training objective which easily leads to
overfitting. 4) CATE is competitive with neural predictor
and outperforms all the other encodings with Bayesian opti-
mization. This is because neighboring computation-aware
encodings correspond with similar accuracies. Moreover,
the training objective in CATE is more efficient compared
to the standard VAE loss (Kingma & Welling, 2014) used
by D-VAE and arch2vec.

4.2. Comparison with Different NAS Methods

In our second experiment, we compare the neural architec-
ture search performance based on CATE encodings with
state-of-the-art NAS algorithms on NAS-Bench-101 and
NAS-Bench-301. Existing NAS algorithms contain one
or more encoding-dependent subroutines. We consider six
NAS algorithms that contain one encoding-dependent sub-
routine: random search (RS) (Li & Talwalkar, 2019) (sam-
ple random arch.), regularized evolution (REA) (Real et al.,
2019) (perturb arch.), local search (LS) (White et al., 2020b)
(perturb arch.), DNGO (Snoek et al., 2015) (train predictor),
BOHAMIANN (Springenberg et al., 2016) (train predictor),
arch2vec-DNGO (Yan et al., 2020) (train predictor), and
two NAS algorithms that contain more than one encoding-
dependent subroutine: BOGCN (Shi et al., 2020) (perturb
arch., train predictor) and BANANAS (White et al., 2021)
(sample random arch., perturb arch., train predictor). We
compare these eight existing NAS algorithms with CATE-
DNGQO: a NAS algorithm based on CATE encodings with
the DNGO subroutine (train predictor), and CATE-DNGO-

NAS methods NAS-Bench-101 NAS-Bench-301
Prev. SOTA (White et al., 2021) 5.92 5.35
CATE-DNGO-LS (ours) 5.88 5.28

Table 1. Comparison between CATE and state-of-the-arts: Final
test error [%] given 150 queried architectures on NAS-Bench-101
and 100 queried architectures on NAS-Bench-301. The result is
averaged over 200 independent runs.

LS: a NAS algorithm based on CATE encodings with the
combination of DNGO and LS subroutines (train predictor,
perturb arch.) as described in Section 3.4.

Figure 3 and Table 1 summarize our results. We have three
major findings from Figure 3: 1) Architecture encoding mat-
ters especially in the large search space. The right plot shows
that CATE-DNGO and CATE-DNGO-LS in DARTS search
space not only converge faster but also lead to better final
search performance given the same budgets. 2) Local search
(LS) is a strong baseline in both small and large search
spaces. As mentioned in Section 4.1, performing LS using
CATE leads to better results compared to other encodings. 3)
NAS algorithms that use more than one encoding-dependent
subroutine in general perform better than NAS algorithms
with just one subroutine. Specifically, BOGCN and BA-
NANAS that have multiple subroutines perform better than
the single-subroutine NAS algorithms such as REA, DNGO,
and BOHAMIANN. Moreover, CATE-DNGO-LS leads to
the best performing result in both NAS-Bench-101 and NAS-
Bench-301 search spaces. Meanwhile, the improvement of
CATE-DNGO-LS versus CATE-DNGO shrinks in larger
search space, indicating that the larger search space is more
challenging to encode.
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Figure 4. Top: Best found cell from CATE-DNGO-LS given the
budget of 100 samples. Bottom: Best found cell from CATE-
DNGO-LS given the budget of 300 samples.

NAS-Bench-301 uses a surrogate model trained on 60k
architectures to predict the performance of all the other
architectures in the DARTS search space. The performance
of the other architectures, however, can be inaccurate. Given
that, we further validate the effectiveness of CATE-DNGO-
LS in the actual DARTS search space by training the queried
architectures from scratch. We set the budget to 100 and 300
queries, separately. Each queried architecture is trained for
50 epochs with a batch size of 96, using 32 initial channels
and 8 cell layers. The average validation error of the last 5
epochs is computed as the label. These values are chosen
to be close to the proxy model used in DARTS. It takes
about 3.3 GPU days to finish the search with 100 quries and
10.3 GPU days with 300 queries. See Figure 4 for the best
found cells. To ensure fair comparison, we compare CATE-
DNGO-LS to methods (Liu et al., 2019a; Li & Talwalkar,
2019; Yan et al., 2020; White et al., 2021) that use the
common test evaluation script which is to train for 600
epochs with cutout and auxiliary tower.

Table 2 summarizes our results. As shown, CATE-DNGO-
LS (small budget) achieves competitive performance (2.55%
avg. test error) with much less search cost and CATE-
DNGO-LS (large budget) achieves superior performance
(2.46% avg. test error) with similar search cost compared
to other sampling-based search methods (Yan et al., 2020;
White et al., 2021) in the actual DARTS search space. This
is consistent with our observation in NAS-Bench-301. We
report the transfer learning results on ImageNet (Deng et al.,
2009) in Table 3.

4.3. Generalization to Outside Search Space

In our third experiment, inspired by (White et al., 2020a),
we evaluate the generalization ability of CATE beyond the
search space on which it was trained. The training search

NAS Methods Avg. Test Error Params Search Cost
(%) (M) (GPU days)
RS (Li & Talwalkar, 2019) 329 +£0.15 3.2 4
DARTS (Liu et al., 2019a) 2.76 + 0.09 33 4
BANANAS (White et al., 2021) 2.67 £0.07 3.6 11.8
arch2vec-BO (Yan et al., 2020) 2.56 +0.05 3.6 9.2
CATE-DNGO-LS (small budget) 2.55£0.08 35 33
CATE-DNGO-LS (large budget) 2.46 £ 0.05 4.1 10.3

Table 2. NAS results in DARTS search space using CIFAR-10.

NAS Methods Params Mult-Adds  Top-1 Test Error
(M) (M) (%)
SNAS (Xie et al., 2019b) 43 522 27.3
DARTS (Liu et al., 2019a) 4.7 574 26.7
BayesNAS (Zhou et al., 2019) 4.0 440 26.5
arch2vec-BO (Yan et al., 2020) 5.2 580 25.5
BANANAS (ours) 5.1 576 26.3
CATE-DNGO-LS (small budget) 5.0 556 26.1
CATE-DNGO-LS (large budget) 5.8 642 25.0

Table 3. Transfer learning results on ImageNet.

space is designed as a subset of NAS-Bench-101, where
each included architecture has 2 to 6 nodes and 1 to 7
edges. The test search space is disjointed from the training
search space and includes architectures with 6 nodes and 7
to 9 edges. There are 10, 026 and 60, 669 non-isomorphic
graphs in the training and test space respectively. The CATE
encodings are pre-trained using the training space and are
used to conduct architecture search in the test space. We
compare CATE with the adjacency matrix encoding because
it was shown in (White et al., 2020a) to have the best gener-
alization capability compared to other encodings. A simple
2-layer MLP with hidden size 128 is used as the neural
predictor for both encodings.

Figure 5 shows the validation error curve of the test search
space given the number of 150 sample budget across 500
independent runs. As shown, CATE outperforms adjacency
matrix encoding by a large margin. This indicates that
CATE can better contextualize the computation information
compared to fixed encodings, which generalizes better when
adapting to outside search space. Moreover, the padding
scheme in our encoder allows us to handle architectures
with different numbers of nodes.

4.4. Ablation Studies

Finally, we conduct ablation studies on different hyperpa-
rameters involved in CATE. We use CATE-DNGO as the
NAS method and report the final NAS test error [%] given
150 queried architectures on NAS-Bench-101. The result is
averaged over 200 independent runs.

Architecture Pair Sampling Hyperparameters. We plot
the histogram of model parameters on NAS-Bench-101
in Figure 6. As shown, the architectures are neither nor-
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Figure 5. Performance on the out-of-training search space. It re-
ports the validation error of 500 independent runs.

5 K 1 2 4 8
1x10° | 602 | 595 | 599 | 5.95
2x10% | 6.02 | 594 | 6.04 | 596
4x10% | 594 | 603 | 6.05 | 599
8x 10% | 6.05 | 6.04 | 6.11 | 6.04

Table 4. Effects of § and K on architecture pair sampling.

mally nor uniformly distributed in this search space in terms
of model parameters. This motivates us to use a sliding
window-based architecture pair selection to avoid the un-
balanced sampling as proposed in Section 3.3. The choice
of 6 and K and their effects on the downstream NAS are
summarized in Table 4. We found that strong computation
locality (i.e. small §) usually leads to better results. The
choice of neighborhood size K does not have a significant
effect on NAS performance. Therefore, we choose small
K for faster pretraining. For NAS-Bench-301, we use the
FLOPs as the computational attributes P and observe the
same trend as in NAS-Bench-101 on the selection of § and
K. We report the results in Appendix B.

Transformer Hyperparameters. We studied the effect of
the number of cross-attention Transformer blocks L. and the
hidden dimension of the feed-forward layer d¢¢ on CATE.
We fix § and K for pre-training as mentioned in Section
4. The downstream NAS result is summarized in Table
5. It shows that larger L. and dys usually lead to better
NAS performance, which indicates that deep contextualized
representations are beneficial to downstream NAS.

L
c 6 12 24
drr
64 607 | 599 | 595
128 6.01 | 594 | 595
256 597 | 594 | 5.94

Table 5. Effects of L. and dy s on pretraining CATE.
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Figure 6. Histogram of model parameters on NAS-Bench-101.

Choice of Mask Type. We studied pretraining CATE with
direct/indirect dependency mask and summarize its down-
stream NAS results in Table 6. CATE trained with indirect
dependency mask outperforms the direct one in both bench-
marks, indicating that capturing long-range dependency
helps preserve computation information in the encodings.

Mask type NAS-Bench-101 NAS-Bench-301
Direct 6.03 5.35
Indirect 5.94 5.30

Table 6. Direct/Indirect dependency mask selection.

5. Conclusion

In this paper, we presented CATE, a new computation-aware
architecture encoding method based on Transformers. Un-
like encodings with fixed transformations, we show that
the computation information of neural architectures can be
contextualized through a pairwise learning scheme trained
with MLM. Our experimental results show its effectiveness
and scalability along with three major encoding-dependent
NAS subroutines in both small and large search spaces. We
also show its superior generalization capability outside the
training search space. We anticipate that the methods pre-
sented in this work can be extended to encode even larger
search spaces (e.g. TUNAS (Bender et al., 2020)) to study
the effectiveness of different downstream NAS algorithms.
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A. Uni/Bidirectional Encoding

As mentioned in Section 3.2, we also considered encoding
the architecture in a bidirectional manner where both the
output node hidden vector from the original DAG and the
input node hidden vector from the reversed one are extracted
and then concatenated together. Note that d,. in the cross-
attention Transformer encoder will be doubled due to the
concatenation. We compare the results of unidirectional and
bidirectional encodings in Table 7. As shown, bidirectional
encoding does not necessarily improve the results. There-
fore, we keep unidirectional encoding in other experiments
due to its simplicity and better performance.

Encoding NAS-Bench-101 NAS-Bench-301
Unidirectional 5.88 5.28
Bidirectional 5.89 5.30

Table 7. Unidirectional encoding vs. bidirectional encoding. We
report the final NAS test error [%] given 150 queried architectures
on NAS-Bench-101 and 100 queried architectures on NAS-Bench-
301. The result is averaged over 200 independent runs.

B. Architecture Pair Sampling
Hyperparameters

As mentioned in Section 4.4, we randomly sample
1,000,000 architectures in NAS-Bench-301 for pretraining.
We use the same proxy model configuration (i.e. 100 train-
ing epochs, 32 initial channels, 8 cell layers) as used in
NAS-Bench-301 to compute the model FLOPs. We plot the
histogram of model FLOPs of the sampled architectures in
Figure 7. Given that, we experiment different § and K and
summarize the downstream NAS results in Table 8. Similar
to our reported results on NAS-Bench-101, we find that
strong locality leads to better results.

Histogram for model FLOPs on NASBench-301
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Figure 7. Histogram of model FLOPs on the sampled 1, 000, 000
architectures of NAS-Bench-301.

s K 1 2 4 8

5 x 10° 528 | 529 | 530 | 5.30
1x 107 530 | 528 | 5.29 5.31
2 x 107 530 | 530 | 5.31 5.32

Table 8. Effects of 6 and K on architecture pair sampling on NAS-
Bench-301. We report the final NAS test error [%] given 100
queried architectures on NAS-Bench-301. The result is averaged
over 200 independent runs.

Corruption Rate NAS-Bench-101 NAS-Bench-301

15% 5.89 5.28
20% 5.88 5.28
30% 5.93 5.29

Table 9. NAS results under different corruption rates.

C. Corruption Rate

By default, we randomly select 20% operations from each
architecture within the pair for masking in the pairwise pre-
training. We also experimented corruption rates of 15%
and 30%. As shown in Table 9, overall, we find that the
corruption rate has a limited effect on the NAS performance.
Note that the number of nodes in our search space is much
smaller compared to the number of tokens in the sequence
modeling tasks. Given that, using larger corruption rate may
slow down the training convergence and result in degraded
performance. Based on these results, we use 20% corruption
rate for other experiments.

D. NAS-Bench-301 Benchmark

NAS-Bench-301 (Siems et al., 2020) is the first surrogate
NAS benchmark to cover the large-scale DARTS search
space (Liu et al., 2019a). The DARTS search space consists
of two cells: a convolutional cell and a reduction cell, each
with six nodes. For each cell, the first two nodes are the
outputs from the previous two cells. The next four nodes
contain two edges as input, creating a DAG. In total, there
are roughly 10'® DAGs without considering graph isomor-
phism, which is a much larger search space compared to
NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201
(Dong & Yang, 2020).

NAS-Bench-301 is fully trained on around 60k architec-
tures collected by unbiased architecture sampling using
random search as well as biased and dense architecture
sampling in high-performance regions using different NAS
methods and training hyperparameters (including training
time, number of parameters, and number of multiply-adds).
It trains various regression models such as Random Forest
(RF) (Breiman, 2001), Support Vector Regression (SVR)
(Drucker et al., 1997), Graph Isomorphism Network (GIN)
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Figure 8. A cell transformation example in DARTS search space. The top panel shows the cell. The bottom-left and bottom-right panels
show its corresponding adjacency matrix and operation matrix respectively.

(Xu et al., 2019) and Tree-based gradient boosting model
(e.g. XGBoost (XGB) (Chen & Guestrin, 2016), LGBoost
(LGB) (Ke et al., 2017)) to predict the accuracies of un-
seen architectures. The three best-performing models (GIN,
XGB, LGB) are used to predict the search trajectories in the
benchmark APIL

D.1. Cell Transformation

To transform the DARTS search space into one with the
same input format as NAS-Bench-101, we additionally add
a summation node to make nodes to represent operations
and edges to represent data flow. For example, if there is an
edge from node A to node B with operation O, we create an
additional node P, remove the edge (A, B), and add 2 edges
(A, P) and (P, B). The operation on node P is set to be O.
Given that, a 15 x 15 upper-triangular binary matrix is used
to encode edges and a 15 x 11 operation matrix is used to
encode operations with the order of {cg_s, cx—1, 3 X 3 max-
pool, 3 x 3 average-pool, skip connect, 3 x 3 separable
conv, 5 x 5 separable conv, 3 x 3 dilated conv, 5 x 5 dilated
conv, sum, ci}. Following NAS-Bench-301 (Siems et al.,
2020), we do not include zero operator. Following (Liu
et al., 2018a), we use the same cell for both normal and
reduction cells. An example of cell transformation is shown
in Figure 8.



