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A Higher-Order Singular Value Decomposition
Tensor Emulator for Spatiotemporal

Simulators
Giri Gopalan and Christopher K. Wikle

We introduce methodology to construct an emulator for environmental and ecolog-
ical spatiotemporal processes that uses the higher-order singular value decomposition
(HOSVD) as an extension of singular value decomposition (SVD) approaches to emu-
lation. Some important advantages of the method are that it allows for the use of a
combination of supervised learning methods (e.g., random forests and Gaussian process
regression) and also allows for the prediction of process values at spatial locations and
time points that were not used in the training sample. The method is demonstrated with
two applications: The first is a periodic solution to a shallow ice approximation partial
differential equation from glaciology, and second is an agent-based model of collec-
tive animal movement. In both cases, we demonstrate the value of combining different
machine learning models for accurate emulation. In addition, in the agent-based model
case we demonstrate the ability of the tensor emulator to successfully capture individual
behavior in space and time.We demonstrate via a real data example the ability to perform
Bayesian inference in order to learn parameters governing collective animal behavior.

Key Words: Agent-based model; Bayesian; Collective movement; Machine learning;
Surrogates; Tensor.

1. INTRODUCTION

Multivariate spatiotemporal processes are ubiquitous in agricultural, biological, and envi-
ronmental science.Modeling suchprocesses is complicated by complex dependencies across
processes, time, and space, as well as uncertainty in observations, process specification, and
parameters that are contained in the observation and process models. Since the mid-1990s,
Bayesian hierarchical models have been the primary tool to consider such processes in
statistics (1996). Although there are challenges to each component of such a model, for
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multivariate spatiotemporal processes, arguably the greatest challenge is the specification
of a model for the process that is rich enough, yet parsimonious enough, to capture realis-
tic behavior (e.g., nonlinear interactions, non-stationarity, non-separability, collectiveness,
etc.). One approach to this problem has been to specify mechanistically motivated dynami-
cal parameterizations within the hierarchical statistical framework (i.e., “physical-statistical
models,” Berliner 2003; Kuhnert 2014) such that they include the potential for knownmech-
anistic behavior (e.g., diffusion, advection, density-dependent growth, etc.; see Wikle and
Hooten 2010). In situations where one has a greater knowledge of the fundamental process
dynamics, it is often preferable to embed a “black box” dynamical model (simulator) within
a formal statistical framework, such as is done in the computer model calibration literature
(Kennedy and O’Hagan 2001). Examples of such black box simulators include partial dif-
ferential equation (PDE) models (Gopalan et al. 2019) or agent-based models (ABMs) that
have multiple individuals interacting across time and space (e.g., Fadikar et al. 2018).

The intersection of these approaches for the statistical modeling of complex dynami-
cal processes occurs when the black-box models are too expensive to implement within
statistical inference procedures (typically Bayesian), and one must build an emulator (i.e.,
surrogate statistical model) to represent the input–output relationships in the black-box
model. Essentially, the emulator is a function that mimics the output of the simulator but
is computationally less expensive to evaluate. Emulators are most often specified by Gaus-
sian processes (GPs), but nonlinear surrogate models can also be used (see the overview in
Gramacy 2020).

Although surrogate modeling in statistics is a mature and well-studied topic, there are
still challenges with respect to developing efficient surrogates for black-box models with
high-dimensional multivariate spatiotemporal output. Perhaps the most common approach
to dealing with spatiotemporal model output in the computer model calibration literature
has been to project the model output on a reduced rank set of basis functions as in principal
components analysis (PCA or singular value decomposition, SVD) (Higdon et al. 2008).
In this case, one typically models the lower-dimensional PC coefficients in terms of GPs.
However, different basis functions can be used (Salter et al. 2019) and one can also model
the relationship between the inputs and projection coefficients (right singular vectors) via
nonlinear functions in the mean. This is important because often the relationship between
the inputs and the right singular vectors is not smooth.

It is much less common to build surrogate models for multivariate or multi-state
spatiotemporal data. Leeds et al. (2014) considered a surrogate model for a multivari-
ate spatiotemporal process consisting of phytoplankton, sea surface temperature, and sea
level pressure. A more recent exception is Pratola and Chkrebtii (2018), who made use of
the so-called higher- order singular value decomposition (HOSVD) tensor analog of SVD
(De Lathauwer et al. 2000) to build a GP surrogate model for multi-state spatiotemporal
data. However, it is important to realize that input–output structure can be quite different
whether one considers space, time, multiple-processes, or parameters. As mentioned above,
it is quite possible that such relationships are not smooth and that in some cases it might be
better to model the relationships in the mean (first-order) and in other cases in the covari-
ance (second-order), as via a GP. Thus, we extend the first-order SVD modeling approach
to the HOSVD tensor framework. In essence, the proposed tensor-based method stores a



A Higher- Order Singular Value Decomposition Tensor…

tensor of simulator runs and performs a HOSVD; then, machine learning models are trained
to learn the analogs of right singular vectors. Importantly, we are free to select different
sub-emulators for space, time, processes, and parameters in this framework.

Our goal is to demonstrate this HOSVD approach for generating emulators for complex
input–output structures. Such an emulator can then be used either as a pure multivariate
spatiotemporal prediction model that uses only simulator runs for training, for model cal-
ibration given field data, or to perform inference on model parameters, depending on the
goals of the researcher. Thus, the contributions of this methodology are:

1. It provides for a combination of different supervised learning approaches (e.g., ran-
domforests (RFs) andGP regression) that canbeused to emulate the spatial, temporal,
and parameter components of the model output as obtained through the HOSVD.

2. Parameters can be batched together in the tensor-decomposition, which is useful if
parameters are correlated a priori.

3. Surrogate model predictions can be made at locations different from the set of spatial
and temporal locations used in the training runs (in contrast tomany SVD approaches
for emulating high-dimensional output).

4. Multiple individuals in an ABM with spatiotemporal locations can be emulated effi-
ciently in space and time.

5. Computational savings are afforded by using a reduced rank tensor factorization
through the truncated HOSVD (De Lathauwer et al. 2000); a low-rank tensor factor-
ization is usually sufficient to capture much of the variation in simulator output, just
as a few principal components are usually sufficient to capture most of the variation
in lower-dimensional simulator output.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review aspects
of SVD emulation, and tensors. In Sect. 3, we introduce a statistical model in terms of the
HOSVD and describe the method for emulation based on this model. In Sect. 4, we provide
empirical results of the application of the tensor-basedmethod in two scenarios: (i) a periodic
solution to the shallow ice approximation from glaciology (Bueler et al. 2005), which is used
to demonstrate the advantage of predicting at locations not considered in the training, and
(ii) a simulation of an ABM for collective animal movement to illustrate that the emulator
can successfully capture the locations of multiple individuals moving collectively in space
and time. These examples demonstrate the tensor method’s ability to apply to predictions
off of a grid, flexibility in combining different unsupervised learning methods, and use in
Bayesian inference. We present a brief discussion and conclusion in Sect. 5.

2. SVD EMULATION AND TENSOR BACKGROUND

Before introducing the statistical model and associated methodology of the HOSVD
tensor-based emulator approach that is the subject of the paper, we provide a brief intro-
duction to emulators, a review of the approach from Higdon et al. (2008) and Hooten et al.
(2011), and an overview of tensors, as our approach builds on these methods.
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2.1. EMULATORS/SURROGATES

The use of emulators, or equivalently surrogatemodels, has appearedwidely in the uncer-
tainty quantification and computer experiments literature, as is detailed in Gramacy (2020).
Their principal use is to approximate computationally intensive functions at a reduced com-
putational cost. Very broadly, they can be categorized asmethods that use GPs, as in Gu et al.
(2018b) for instance, and polynomial basis (polynomial chaos) expansions, as in Sargsyan
(2016). In addition, others have considered surrogate models that are based on mechanistic
models (e.g., Leeds et al. 2014) and neural network models (e.g., Tripathy and Bilionis
2018). This is an active area of research. For example, Kasim et al. (2020) recently intro-
duced a method that uses a deep neural network that learns its own architecture for the
purposes of emulation. Below, we discuss in more detail emulators that are based on mod-
eling the right singular vectors in an SVD and come back to tensor-based emulators after a
brief introduction to tensor decomposition.

2.2. SVD EMULATORS

The proposed tensor-based emulator is an extension of SVD-based emulators. Here we
describe two approaches to SVD emulation—a GP (second-order) approach in Higdon
et al. (2008) and a random forest (first-order) approach in Hooten et al. (2011). Higdon et al.
(2008) construct Bayesian hierarchical models involving observational data in the manner
of Kennedy and O’Hagan (2001) in order to calibrate physically important parameters and
tomake predictions with uncertainties. Because the physics-based computer simulators they
employ are computationally expensive to evaluate, they use a basis of principal components
of simulator runs (derived with the SVD) and use GP prior distributions on the weights
associated with the linear combination of basis vectors derived from the SVD. Hooten
et al. (2011) utilize a similar SVD approach for constructing an emulator, except they relax
the constraint that the weights in the linear combination have GP prior distributions, and
consider instead other functional forms in the mean response, such as random forests. An
extension of this approach to the tensor case is one of the features of our methodology.

First, assume that computer simulator runs have been placed in a matrix, C , where each
column of C corresponds to a distinct computer simulator run. If there are N computer
simulator runs for distinct parameter values θ , with simulator output of dimension M , then
the matrix C is of dimension M by N . The first-order emulator relies on using the singular
value decomposition,C = UDVT,whereU ∈ R

M×M andV ∈ R
N×N are orthonormal and

D ∈ R
M×N is diagonal. In particular, a statistical model for the M-dimensional computer

simulator output, c, given a parameter, θ , is:

c = UDv(θ) + ε

for a residual term ε that has mean 0 and possibly non-diagonal covariance matrix �. A
multivariate normal random variable for ε is suggested, though is not necessary.

The central notion encapsulated by the abovemodel is that a vector of computer simulator
output can be approximately expressed as a linear combination of the columns of UD, and
the function v(θ) specifies the N coefficients of the linear combination for a particular value
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of θ ; as such, the function v(θ) has N -dimensional vector output. The approach of Hooten
et al. (2011) is to model v(θ) as g(θ ,β), where g is a nonlinear regression function that
involves β as tuning parameters and takes as input the parameter of inferential interest, θ .
Each component of the vector g(θ,β) uses a nonlinear regression model, as for instance
with a random forest: The training data come from the N input values of θ for the computer
simulator runs, and the outputs are the rows of VT. In contrast, Higdon et al. (2008) use a
prior distribution with 0 mean GPs in order to learn the coefficients for the singular vectors
along with other model parameters.

Computational cost reduction stems from using less than N columns of UD, in the way
that only a few principal components are used in a principal components analysis. The first
few columns of UD are usually sufficient to capture most of the variation of the simulator
output (in previous examples, r = 3was sufficient to capturemore than 99%of the variation).
This leads to a reduced computational cost for a few reasons: If the first r columns (< N )
of UD are used, then v(θ) is r -dimensional, so only r machine learning models are needed
for v(θ), reducing the time needed to evaluate v(θ) and compute UDv(θ).

2.3. TENSOR BACKGROUND

A real-valued tensor is a multidimensional array of real numbers, just as a matrix is a
real-valued two-dimensional array of real numbers. In this subsection, our intention is to
provide a brief review of aspects of tensors that will enable the reader to understand the
tensor emulator that we utilize in Sect. 3. A comprehensive reference for tensors is Kolda
and Bader (2009).

We focus on the HOSVD since it is arguably the most natural extension of the SVD.
Assume that X is a K -tensor with dimensions n1, n2, . . . , nK . The higher order singular
value decomposition of X , or HOSVD(X), decomposes X as Z × U1 × U2 × · · · × UK .
The properties of the decomposition are:

• Z, referred to as the core tensor, is a completely orthogonal tensor whose dimen-
sionality is the same as the dimensionality of X . Being completely orthogonal means
that any two sub-tensors along the same coordinate have a 0 inner product; the inner
product between real-valued tensors multiplies coordinates of the same type and then
sums the resultant products.

• U1, . . . ,UK are matrices with dimensions n1 by n1, n2 by n2, . . ., and nK by nK ,
respectively. Additionally, U1, . . . ,UK are orthogonal, analogous to the usual SVD.

In order to interpret the tensor decomposition discussed previously, one must understand
tensor-matrix multiplication, which is described in terms of the familiar matrix-vector mul-
tiplication operation. If Z can be thought of as n2×n3×· · ·×nK length n1 column vectors;
then Z × U1 is an n1 by n2…by nK tensor where each column vector of length n1 in Z,
denoted as z ∈ R

n1×1, is replaced with U1z. Successive multiplication with U2, . . . ,UK

proceeds in the same manner.
The specific use of tensors for surrogate modeling appears in the statistics literature in

Pratola and Chkrebtii (2018). Building off of this work, the method presented in Sect. 3
allows for spatiotemporal predictions that are off of the “grid” of observation locations and
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also allows for the flexibility to use a combination of different supervised learning methods,
in addition to GPs. Additionally, a regularized regression approach for a low-rank tensor
approximation appears in Chevreuil et al. (2015) and a low-rank polynomial tensor basis
expansion appears in Konakli and Sudret (2016); in contrast, the methodology presented
here uses the truncated HOSVD (De Lathauwer et al. 2000) with a combination of existing
supervised learning methodology (i.e., GP regression and RFs).

3. HOSVD TENSOR EMULATION

In this section, we develop a statistical emulator by using the HOSVD. An important
advantage of this approach is being able to emulate each component of a multidimensional
spatiotemporal input–output space as well as model parameters by including separate sur-
rogate models in each dimension. Additionally, an important aspect is the selection of
different machine-learning models for the different tensor components, which is explained
in Sect. 3.3.

3.1. MODEL FORMULATION

Without loss of generality, assume we seek to emulate a nonlinear function f (x, y, t, θ1,
. . . , θp), where (x, y, t) are spatiotemporal coordinates and (θ1, . . . , θp) are parameters,
compactly referred to as θ . The parameters can be either vector or scalar quantities. Assume
one has evaluated f for all combinations of M x-coordinates, N y-coordinates, T t-
coordinates, P1 values of θ1, P2 values of θ2, . . . , Pp values of θp. (So M × N × · · · × Pp

evaluations of the function f .) These evaluations (e.g., computer simulator runs) can be
stored in anM by N by T by P1 …by Pp-dimensional tensor, X , where the i, j, k, l1, . . . , l p
cell of the tensor stores the function evaluation under the i th x coordinate, j th y coordinate,
kth t coordinate, l1th parameter value of θ1,…, to l pth parameter value of θp.

It is important to note that there are multiple variations possible for the initial function
evaluations of f . For example, the x-coordinates, y-coordinates, and t-coordinates can be
considered jointly (e.g., as (x, y) tuples or (x, y, t) tuples). Furthermore, an additional spatial
dimension can be considered (i.e., (x, y, z)) if desired. Additionally, scalar parameters θi

and θ j can be considered jointly as (θi , θ j ) tuples. Such an approach is illustrated in the first
example of Sect. 4, where (x, y) tuples and amplitude and period parameters are sampled
jointly. The initial values chosen to populate X may vary from application to application; for
instance, a predefined lattice of (x, y) coordinates may be used in the context of a numerical
PDE solver. In the absence of prior distributions from which to sample parameters, we
suggest using a latin hypercube design or some hybrid variant due to its prevalence in the
computer experiments literature (Gramacy 2020).

Another important variation is a scenario where one is emulating a spatiotemporal ABM,
where, without loss of generality, the function f has both x positions ( fx ) and y positions
( fy). In that scenario, fx and fy take the form fx (i, t, θ1, . . . , θp) and fy(i, t, θ1, . . . , θp),
where i indexes over the agents, t stands for time, and θ1, . . . , θp represent the parameters.
Tensor emulators are then constructed separately for both fx (the x values of the trajectories)
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and fy (the y values of the trajectories). An example of this variation is illustrated in the
second application. The tensor-based methodology proceeds in the same essential manner
as follows.

Let Z × U1 × U2 × · · · × U p+3 be the HOSVD of X . The statistical model for an
evaluation of f at (x∗, y∗, t∗, θ∗1, . . . , θ∗p) is:

f (x∗, y∗, t∗, θ∗1, . . . , θ∗p) = Z × u1(x∗) × u2(y∗) × u3(t∗) × · · · × up+3(θ∗p) + ε,

for a residual term ε where E[ε] = 0 and u1, . . . , up+3 are nonlinear, vector-valued func-
tions. That is, the functions u1 through up+3 behave like the function v from the SVD
approach described in Sect. 2.2. In particular, u1(.) : R → R

1×M , u2(.) : R → R
1×N , and

so on. The most basic model assumes that the error term ε is independent and identically
Gaussian, though that is not a necessary requirement. For instance, Gopalan et al. (2019)
consider a multivariate random walk with spatiotemporal correlation.

3.2. MODEL IMPLEMENTATION

Our purpose in this section is to describe in detail how to construct an emulator (i.e., how
to obtain an estimator f̂ ) using the HOSVD components of the tensor simulator runs.

3.3. EMULATOR CONSTRUCTION

Assume that X is a tensor of function evaluations as in the previous section, with
HOSVD that is given by Z × U1 × U2 × U3 × · · · × U p+3 for core tensor Z and
matrices U1 through U p+3. The methodology presented is to develop estimators for func-
tions u1, . . . , up+3; these are denoted as û1, . . . , ûp+3. Then, the estimated value for
f (x∗, y∗, t∗, θ∗1, . . . , θ∗p) is

f̂ (x∗, y∗, t∗, θ∗1, . . . , θ∗p) = Z × û1(x∗) × û2(y∗) × û3(t∗) × · · · × ûp+3(θ∗p).

First, consider the functionu1(x),whichwhenexpanded as avector is (u11(x), . . . , u1M (x)),
an element ofR1×M . Specifically, û11(x) is obtained by using a standard supervised learning
approach, such as GP regression or a random forest. The training data for learning u11 are
the M values of x (i.e., the features) and the first column of U1 (i.e., the responses). The
training data for learning u12 are the M values of x and the second column of U1 and so on,
up to u1M , which uses the M th column of U1. The same estimation procedure is applied
for û1, û2, . . ., and ûp+3.

An important aspect of the above procedure is the selection of the machine learning mod-
els for learning the u functions.While in practice thismust be achievedwith experimentation
in a real-data scenario (as in the application examples that follow), one reason why this is
potentially advantageous is because not all components of the u functions are going to be
very smooth (i.e., continuously differentiable), so considering alternate machine learning
models besides a GP regression is sensible. (An example is presented in the supplementary
figures.)
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The package rTensor (Li et al. 2018) provides an option for a reduced rank tensor fac-
torization through the truncated HOSVD (De Lathauwer et al. 2000). A reduced rank
factorization does not completely recover the input tensor, X , but it approximates X as
Z×V 1 ×V 2 ×V 3 × · · ·×V p+3 where the number of columns (i.e., ranks) of V 1, V 2,…,
V p+3 are no more than M , N , T, . . . , Pp, respectively. The number of rows, however,
remain to be M , N , T, . . . , Pp of V 1, V 2, V 3, . . . , V p+3, respectively. The core tensor
Z has dimensions equal to the column numbers of V 1, V 2,…, V p+3, respectively. Using
the low-rank approximation is computationally advantageous for the same reason that one
uses only the top few of the columns of UD for emulation in the first-order SVD case; the
number of machine learning models needed is reduced based on the rank, which in turn
speeds up the emulator evaluation and tensor-matrix multiplication.

3.4. SELECTION OF RANKS

The starting point of the procedure outlined above is to take the HOSVD decomposition
of the tensor of simulator runs (X), for which it may be computationally beneficial to use a
low-rank representation via the truncated HOSVD. Here we provide guidance for selecting
the ranks for the truncated HOSVD in a principled manner, if the user chooses to use a low-
rank approximation. The method iteratively performs rank selection via SVD scree plots
for each mode of the tensor after tensor unfolding. Specifically, the suggested method is as
follows:

1. For each mode of the tensor X , unfold the tensor. For example, if the tensor has
dimensions n1, n2, n3, and n4, unfolding the tensor by the first mode yields a matrix
with n1 rows and n2n3n4 columns, where row i groups all of the tensor elements
where the first mode is i (of n1). The tensor unfolding operation, along with a com-
putational implementation, is described in Li et al. (2018).

2. For each mode of X , take the SVD of the unfolded and centered tensor and use a
standard procedure to determine the total number of singular vectors to keep. (As
is usual, centering refers to ensuring column sample means are 0.) Specifically, we
use a scree plot of singular values along with a comparison to singular values of a
randomized matrix (each column shuffled) to determine a singular value threshold
for calculating the total number of singular vectors to keep, as suggested in Chapter
14 of Hastie et al. (2009) for PCA.

3. For each mode, set the rank in the truncated HOSVD to the number of retained
singular vectors from the previous step, except adding 1 to account for the mean that
is subtracted when centering the data.

To check the quality of the low rank tensor decomposition that is found with the previous
steps, we suggest calculating the proportion of variance explained by the low rank decom-
position with the familiar formula:

1 − RSS/T SS,
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where RSS stands for residual sum of squares and TSS stands for total sum of squares.
Here, RSS is the square of the Frobenius norm of the residual tensor, and TSS is the squared
Frobenius norm of the training tensor minus the grand mean. That is – let X be the training
tensor as usual, and let R be the low rank approximation via the truncated HOSVD. Finally,
let Xc be the tensor formed by subtracting every element of X by X̄ , a scalar that is the
mean of all elements of X (i.e., the grand mean). Then

RSS = ||X − R||F 2,

T SS = ||Xc||F 2,

where the subscript F denotes the Frobenius norm. The proportion of variance explained by
the low-rank approximation is more interpretable than the Frobenius norm of the residual.

4. EXAMPLES

We consider two examples to demonstrate some of the advantages of the HOSVD tensor
emulator. Specifically, in Sect. 4.1 we consider an emulator for a periodic exact solution
to the shallow ice approximation partial differential equation (SIA PDE) from Bueler et al.
(2005), and in Sect. 4.2 we consider an emulator for an ABM simulation of collective
animal movement. Both examples show the advantages of considering different surrogates
for spatial components and parameters. In addition, the SIAPDE example demonstrates how
our emulator approach can generate spatial predictions at spatial locations and time points
that were not observed, and the collective movement ABM example demonstrates that our
approach can reasonably emulate the locations in space and time of multiple individuals.
Both experiments make use of the rTensor (Li et al. 2018) R package to find the HOSVD
and to perform tensor matrix multiplication.

4.1. OSCILLATING GLACIER EXAMPLE

The SIA PDE is a commonly used mathematical model that describes the time evolution
of glacier thickness in glaciers that are shallow; e.g., see Aðalgeirsdóttir (2003), Flowers
et al. (2005), Jarosch et al. (2013), Guan et al. (2016),Werder et al. (2020). Themain physical
principle utilized in this model is mass conservation, and the shallowness approximation
allows one to ignore stress terms in formulating the PDEs.

Here we use a HOSVD tensor-based emulator for a periodic solution to the SIA PDE
described in Bueler et al. (2005). The periodic solution is a dome that oscillates according
to a particular period and amplitude. This periodic function is used in Gopalan et al. (2019)
and is repeated here for completeness:

H(r, t) = Hs(r) + P(r, t),

P(r, t) = Cp sin(2π t/Tp) cos
2
[
π(r − 0.6L)

.6L

]
; if 0.3L < r < .9L ,

P(r, t) = 0; if 0 ≤ r ≤ 0.3L or if r ≥ 0.9L .
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In this formulation, H stands for glacier thickness and is a function of distance from the
origin, r , and time, t ; in particular, this is a radially symmetric solution. The term Hs ( Eq. 21
of Bueler et al. (2005)) corresponds to a static profile that is added to a time-varying periodic
function, P , that has an amplitude Cp and period Tp. Here, L refers to the length of the
glacier profile. Overall, the solution looks like a domewith a periodic oscillation in thickness
within the domain 0.3L < r < .9L . The parameters that we focus on for this example are
Cp, the amplitude of the periodic perturbation, and Tp, the period of the perturbation. For
more details of this model and the periodic solution, see Bueler et al. (2005).

4.1.1. Glacier Example Experimental Design

To demonstrate the HOSVD tensor emulator for the glacier dynamics problem, we con-
sider the following experiment. For s = 10, 20, 30:

1. s2 2-tuples of (x, y) are drawnusing latin hypercube samplingon the range−5×105m
to 5 × 105m for the x and y location values.

2. s values of t are sampled uniformly from 0 to 10000 years.

3. s2 2-tuples of (period, amplitude) are drawn using latin hypercube sampling on the
range (1000 to 5000) years for period and (100 to 400) meters for amplitude.

4. For each combination (x, y), (period, amplitude), and t , the glacier thickness func-
tion that is to be emulated is evaluated and the result is stored in a tensor, X . The
dimensions of the tensor are s2 by s by s2, so there are s5 total elements in the tensor.

5. The methodology from Sect. 3 is applied to the tensor X . The combinations of
machine learning models tried are all random forests for the spatial, temporal, and
parameter components, all GPs andRFs for the parameter component, but GPs for the
spatial and temporal components. We implemented these machine learning models
with the kernlab R package (Karatzoglou et al. 2004)) and the randomForest R
package (Liaw and Wiener 2002).

6. The predictive accuracy of the emulator is assessed by calculating the mean absolute
relative error on a test set. Absolute relative error is |(Htrue − Hpred)/Htrue|. The
test set is randomly selected with the same design steps as above, and a test set of size
100 is used; because the test (x, y) and t values are not necessarily the same as the
training (x, y) and t values, this example illustrates the capability of the tensor-based
method to emulate locations and times that were not in the training sample.

Note that since (x, y) and (period, amplitude) are considered jointly, we end up with only
three U matrices, U1,U2,U3, where U1 corresponds to (x, y), U2 corresponds to t , and
U3 corresponds to (period, amplitude). Additionally, we used the truncated HOSVD from
rTensor and the rank selection procedure detailed in Section 3.4. The supplementary figures
show the scree plots used for determining ranks, and the proportion of variance explained
by the low rank approximation is .99.
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4.1.2. Glacier Example Results

The results of the previously described experiment are illustrated in Fig. 1. The x-axis
of this plot represents a comparison of the mean absolute relative error over all sizes, which
indicates that the absolute relative error decreases as the size of the training tensor increases.
In addition, this plot shows that theHOSVDapproach that considersmixedmachine learning
models yields the smallest error. Specifically, the emulator that included a GP surrogate for
(x, y), GP surrogate for t , and random forest surrogate for (period, amplitude) performed
better than pure random forest or GP approaches in terms of error. Additionally, we repeated
the experimental design ten times in order to assess the variability in the predictions with
respect to the initial input (x, y), t , and (period, amplitude) values. Boxplots comparing the
absolute relative errors are shown in Fig. 2, again showing that for this example, the mixture
of machine learning surrogates tends to perform best. In addition, a comparison of the actual
and emulated values of glacial thickness using themixture ofmachine learningmodels tensor
emulator is shown in Fig. 3. This shows that there is generally a good agreement between
the actual thickness and predicted thickness across thickness values, with smallest errors
towards the higher glacier thickness values; one possible explanation for this behavior is
that the magnitude of periodic movement for this particular example is largest within the
interior of the glacier, at lower thickness values.

Finally, for an assessment of how the HOSVD tensor-based emulator compares to simply
using a standard off-the-shelf supervised learning approach, we compared the absolute
relative errors of a GP regression (kernlab R package (Karatzoglou et al. 2004)) and a

Figure 1. Comparison of tensor size andmean absolute relative error, for s = 10, 20, and 30 (see Section 4.1.1)—
generally, the error decreases with a larger tensor and also is smallest with a combination of machine learning
models.
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Figure 2. Comparison of mean absolute relative error for a pure random forest, pure GP, and a GP for (x, y, t)
and random forest for (period, amplitude). The mixture of machine learning models generally performs the best.

Figure 3. Comparison of emulated and actual glacial thickness values, using the tensor-based emulator approach
with a mixture of machine learning models.
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random forest (randomForest R package (Liaw and Wiener 2002)). In each of these cases,
we did not consider a tensor decomposition. Specifically, 104 5-tuples of (x, y, t , period,
amplitude) values were sampled with a latin hypercube design to create the training dataset.
In all cases, the errorswere larger than using the tensor decomposition; specifically, a random
forest produced a mean of 0.0488 absolute relative error (SD: 0.0015), and a GP produced a
mean of 0.0387 absolute relative error (SD: 0.000604). Additionally, training data of at least
2 × 104 training examples resulted in a memory error, suggesting that the tensor emulator
method is a more memory efficient procedure.

4.2. COLLECTIVE ANIMAL MOVEMENT ABM SIMULATION

This example considers a collective animalmovementABMbased on a simplified version
of the model in Couzin et al. (2002) in which the animals (agents) can exhibit a variety of
realistic behaviors such as grouping and repulsion. We first describe the agent-based model
for collective behavior, followed by the associated tensor-based emulator, and conclude with
an example of using this emulator to learn collective behavior on a real-world dataset within
a Bayesian inferential paradigm.

4.2.1. Collective Movement Agent-Based Model Simulator

Assume we have observed location vectors at time t = 1, . . . , T for the i th individual
(i = 1, . . . , N ), denoted by si,t = (xi,t , yi,t )′. Our basic model decomposes movement into
a unit direction vector and scalar speed for each individual at each discrete time. Specifically,
we model the evolution of an agent’s location by

si,t = si,t−1 + di,tvi,t + ηi,t , ηi,t ∼ N (0, σ 2
η I2),

where di,t is the unit direction vector, which is a deterministic (black box) function of the
most recent past location of all agents and associated parameters (see below), and vi,t is
the speed of the agent. In this formulation there is a stochastic component to the location
update represented by the ηi,t error term. For the simple example presented here, we further
assume that the speed is constant for all agents across time, vi,t = v, and the primary focus
is on the unit direction vector, di,t .

Couzin et al. (2002) note that an important consideration for animal movement is that the
animals do not collide (or, rather, that they have some desired personal space). In addition,
animals may favor orientation and attraction to other animals within their perception. That
is, there is an intermediate zone beyond the no-collision zone in which animals seek to orient
with each other (move in the same direction), and beyond this zone they are attracted to
other animals. In the simple implementation presented here, we consider a no-collision zone
and an orientation zone and assume that individual animals outside of these zones continue
moving in the direction they were going at the previous time.

Let δi, j = ||s j,t−1 − si,t−1|| be the Euclidean distance between agent i and agent j at
time t − 1. Then, we define the deterministic function for the (un-normalized) direction
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vector for the i th agent at time t by one of the following:

d̃i,t =

⎧⎪⎨
⎪⎩

−∑
j∈Nα,−i

s j,t−1−si,t−1
δi, j , if ∃ j 
= i : δi, j < α∑

j∈Nα,ρo,i

d j,t−1
||d j,t−1|| α ≤ δi, j ≤ ρo

di,t−1 δi, j > ρo,

where α is the no-collision radius, ρo is the orientation zone radius, Nα,−i corresponds to
all neighbors of i (not including the i th individual) within a distance α of si,t−1, andNα,ρo,i

corresponds to the set of neighbors of i within the distance (α, ρo] of the i th individual
(including the i th individual). Thus, the first term corresponds to the no-collision term
and applies if any individual agent is within a distance of α of the i th individual. The
second term corresponds to orientation with individuals in a zone between (α, ρo] of the i th
individual (assuming the first condition does not hold). If neither of these conditions hold,
the i th individual keeps the same direction as before (the third term). Lastly, we convert this
direction vector to a unit vector

di,t = d̃i,t

||d̃i,t ||
.

In the simulations considered here, we fixed the no-collision radius (α) and the location
variance (σ 2

η ) and focus on the speed (v) and radius of orientation (ρo), which are the primary
drivers of collective behavior.

4.2.2. Tensor-Based Emulator

We train a tensor-based emulator in the following manner:

1. 25 values of v are sampled uniformly in the range [.1,1], and 25 values of ρo are
sampled uniformly in the range [5,50]. The parameter α is fixed at .5 and σ 2

η is fixed
at .025.

2. For each combination of v and ρo, and for each time point, the simulator is evaluated
for both the x position and y position of the 20 animals. The results of the x positions
are stored in a 20 by 101 by 32 by 32 tensor, X ; likewise, the results of the y positions
are stored in a 20 by 101 by 32 by 32 tensor, Y . The coordinates of these tensors are
individual index, time index, v parameter, and ρo parameter.

3. A tensor emulator is derived using the methodology from Sect. 3. In particular,
HOSV D(X) = Z × U1 × U2 × U3 × U4, and the predicted x positions for the
20 animals over the 101 times points for parameters v∗ and ρo∗ is then Z × U1 ×
U2 × û3(v∗)× û4(ρo∗), where û3(.) and û4(.) are functions learned with a machine
learning model (see Sect. 3.3). As in the previous experiment, we considered random
forests and GPs, using the default implementations from Liaw and Wiener (2002)
and Karatzoglou et al. (2004), respectively. The y positions are emulated with the
same procedure, starting with the tensor Y .
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Two test cases are considered to assess the emulator output for the x and y trajectories.
For Case 1, we let v = .5 and ρo = 35, which forces the animals to move together
in a northeast direction given the high degree of collectiveness implied by the larger ρo

parameter. For test Case 2, we let v = .5 and ρo = 5, which implies less collectiveness due
to the smaller ρo parameter, and two groups of animals move in opposite directions. In our
assessment of the emulator approaches, we plot the trajectories over time and compare to
the original simulated trajectories. Additionally, we compare the simulated and emulated
trajectories withmeasures of collective animal behavior to gain amore nuanced comparison.
Specifically, the two quantitative measures used to compare simulated and emulated animal
movements through time are the troop spread and troop elongation metrics (Strandburg-
Peshkin et al. 2017). Troop spread measures how spread apart the group is over time, and
troop elongation measures how ellipsoidal the group is over time.

Figure 4 shows a comparison between the simulated and emulated trajectories for test
Case 1. We can see that the animals move in a collective group and that the emulated
trajectories are quite similar to the true trajectories. This is further demonstrated in Fig. 5,
which shows a closematch for both troop spread and troop elongation betweenboth emulated
trajectories and the actual, simulated trajectories.We also compare two emulator approaches
with this example. The first is a pure RF for all components, and the second is a multi-model
emulator with a RF for the y positions, but a mix of RF for the ρ0 component and GP for
the v component of the x positions. That is, the function û3(v) is learned with a GP and
û4(ρo) is learned with RF regression (for the x positions); we do not restrict these functions
to be learned with the same machine learning approach (i.e., RF). Both the location plots
in Fig. 4 and comparison of troop spread and troop elongation metrics in Fig. 5 show that
there is generally close agreement between both emulator approaches and the simulated
trajectories.

In Case 2, simple visual inspection of both emulator trajectories in Fig. 6makes it difficult
to conclude which emulator (i.e, pure RF or combined RF/GP) emulates the true trajectories
closest. However, comparisons of troop spread and troop elongation in Fig. 7 generally show
that the combined RF/GP emulator better captures the simulator than the pure RF surrogate
emulator, further illustrating the potential utility of a combined RF/GP approach over using
a single machine learning model.

Additionally, we use Case 1 and Case 2 to make a comparison to a widely-used GP
emulator, ppgasp from the RobustGaSP R package (Gu et al. 2018a). Specifically, for
both synthetic test cases we calculate the mean distances between the emulated trajectories
and the simulated trajectories for all of the animals and over all time points, and refer to this
as mean error. It appears that the tensor emulator is more accurate in both Case 1 and Case
2, though with most improvement in Case 2. However, ppgasp has a much faster emulator
evaluation time in both test cases. These results are summarized in Table 1. A faster compute
time for emulator evaluation could be achieved with a lower rank HOSVD decomposition,
though that would likely come with some accuracy trade-off. Additionally, an important
consideration is that output is restricted to be on a temporal grid for all of the animals for
the sake of comparison, though in contrast to ppgasp, the HOSVD emulator handles the
scenario where time is not assumed to be on a discrete grid.
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Figure 4. Comparison of simulated (triangles) and emulated trajectories for test Case 1, with the pure RF emulator
on the left (circles) and the combinedmodel(RF+GP for x positions) emulator on the right (crosses). Both emulator
approaches appear to match the simulated positions.
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Figure 5. Case 1 comparison of troop spread and troop elongation metrics amongst the simulator, pure RF
emulator, and multi-model emulator. There is close agreement for both emulators with the simulated trajectories.

4.2.3. Bayesian Learning with the Tensor-Based Emulator

In order to test the emulator on real data in a Bayesian inferential setting, we used the
emulator version of our simplified animal movement ABM on guppy (Poecilia reticulata)
data; specifically, experiment fm7 from Bode et al. (2012). These data come from an exper-
iment using a captive population of guppies. In this experiment, groups of ten guppies of
the same sex were filmed from above in a square tank in which one corner contained gravel
and shade, which is presumed to be attractive to the guppies because it provides shelter. The
guppies were released in the tank in the opposite (lower-right) corner. The data consist of
movement trajectories truncated to the time points when all individuals were moving until
one guppy reached the shaded target area.

In particular, we assume the following data model for the guppy trajectories:

Oitx = f̂x (i, t, v, ρ0) + εi t x , εi t x ∼ i id N (0, σ 2
x )

Oity = f̂ y(i, t, v, ρ0) + εi t y, εi t y ∼ i id N (0, σ 2
y ),

where Oitx and Oity are observed x and y locations for the i th guppy at time t ,
respectively, and f̂x and f̂ y are tensor emulators constructed in the same manner as
the previous section (trained with runs from the animal movement simulator described
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Figure 6. Comparison of simulated (triangles) and emulated trajectories for test Case 2, with the pure RF emulator
on the left (circles) and the combined model(RF+GP for x positions) emulator on the right (crosses); the tensor
emulator matches the animal trajectories closely. Visually, it is clear that neither emulator matches the simulator
as closely as in Case 1, though it is still a good match in terms of capturing the essential collective behavior.
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Figure 7. Case 2 comparison of troop spread and troop elongation metrics amongst the simulator, pure RF
emulator, and multi-model emulator. The troop spread and troop elongation profiles are best represented by the
multi-model emulator.

Table 1. Comparison of run-time and accuracy of the ppgasp and HOSVD emulators on two synthetic ABM test
cases. Run-times are listed for evaluation of emulator

Case Emulator Mean Error Run-time

1 HOSVD 1.678 0.245
1 ppgasp 2.762 0.0072
2 HOSVD 5.969 0.2423
2 ppgasp 22.33 0.0077

Units m s

previously). Additionally, we assume the following prior distributions on parameters:
ρo ∼ Uniform(5, 60), v ∼ Uniform(1, 5), σ 2

x ∼ InverseGamma(shape=3, scale=4), and
σ 2
y ∼ InverseGamma(shape=3, scale=4).
We implement a Gibbs sampler for sampling from the posterior using inverse-gamma

draws (due to conjugacy) for σ 2
x and σ 2

y and grid sampling steps for ρo and v. Traceplots,
given in the supplementary materials, show good mixing, and the resultant posterior dis-
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Figure 8. Posterior densities for both ρo and v are illustrated, which are inferred using guppy data (fm7) from
Bode et al. (2012). The posterior for both parameters concentrates in a much more narrow range than the uniform
prior, suggesting Bayesian learning.

tributions for ρo and v are illustrated in Fig. 8. The relatively narrow regions where mass
concentrates (in comparison with the uniform priors) suggests that there is definite Bayesian
learning of these parameters, though since this is real data, there are no ground-truth param-
eters to compare to. However, the posterior mean of the ρo orientation distance parameter
suggests that there is a substantial amount of collective behavior by these guppies in this
experiment. A plot of the simulated trajectory in comparison with the emulated trajectory
(using the posterior mean of ρo and v) is included in Fig. 9 and indicates overall agreement
in the patterns of collective behavior.

5. CONCLUSION

The objective of this paper has been to introduce a method to construct an emulator for
a complex spatiotemporal function (e.g., computer simulator) using tensor decomposition
with potentially different surrogate models for each tensor dimension. In particular, the
method is essentially a variant of a SVD-based emulator approach (Higdon et al. 2008) that
uses the HOSVD instead of an SVD. The distinguishing features of the tensor-based method
for emulation are:

• The method can predict the function output at spatial locations and time points not
considered in the training sample, in contrast to many existing emulator methods.

• A variety of supervised learning approaches (e.g., GP regression and random forests)
can be combined for the spatial, temporal, and parameter components. This allows
greater flexibility and the ability to combine the strengths (and disadvantages) of
different machine learning approaches in constructing an emulator, i.e., a “mix and
match” approach.
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Figure 9. Simulated trajectories for guppy data (fm7 from Bode et al. (2012)) using posterior means of ρ0 and
v compared to the real data, which indicate a similar pattern in collective behavior. The triangles are the actual
trajectories, and the crosses are the simulated trajectories using the posterior means of parameters.

• Themethod can provide efficient emulation of the spatiotemporal locations ofmultiple
individuals in an ABM.

• Byusing a reduced rank tensor factorizationwith the truncatedHOSVD(DeLathauwer
et al. 2000), computational savings are achieved.

The method has been demonstrated via application in two scenarios: a periodic solution
to a shallow ice approximation partial differential equation from glaciology and a collec-
tive animal movement ABM simulator. In both scenarios, combining supervised learning
approaches yields an accurate emulator, demonstrating the advantage of model flexibility
when different machine learning approaches are combined. It is conceivable the same results
will hold for more complex supervised learning methods such as deep learning; in fact, an
advantage of the proposed approach is that it can handle the use of a variety of machine
learning models, and so is adaptable to the rapid advances being made in the field. While
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we conducted some preliminary experiments using the neuralnetwork R package with
default options, the results were generally poorer than the randomForest and kernlab
defaults for random forests and GP regression; presumably more advanced neural network
architectureswill showneural networks to bemuchmore competitive.An additional strength
of the methodology presented is that it has been implemented with R packages available on
the Comprehensive R Archive Network (CRAN), so a tensor-based emulator can be directly
included in an application without much difficulty, for instance in a spatiotemporal Bayesian
hierarchical model as in Gopalan et al. (2019). This was illustrated in the collective animal
movement example with an experiment that documented the movement of guppies in a tank.
The Bayesian implementation with the tensor-based emulator suggested that the guppies
exhibit a high-degree of collectiveness in this experiment. While we have not covered emu-
lator uncertainty in this treatment, we believe the literature on model discrepancy (Kennedy
and O’Hagan 2001; Brynjarsdóttir and O’Hagan 2014; Gopalan et al. 2019) can be used to
construct hierarchical models involving an emulator that accounts for emulator uncertainty
and inaccuracy.
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