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Agent-based methods allow for defining simple rules that generate com-
plex group behaviors. The governing rules of such models are typically set a
priori and parameters are tuned from observed behavior trajectories. Instead
of making simplifying assumptions across all anticipated scenarios, inverse
reinforcement learning provides inference on the short-term (local) rules gov-
erning long term behavior policies by using properties of a Markov decision
process. We use the computationally efficient linearly-solvable Markov de-
cision process to learn the local rules governing collective movement for a
simulation of the self propelled-particle (SPP) model and a data application
for a captive guppy population. The estimation of the behavioral decision
costs is done in a Bayesian framework with basis function smoothing. We
recover the true costs in the SPP simulation and find the guppies value col-
lective movement more than targeted movement toward shelter.

1. Introduction. Understanding individual animal decision-making processes in social
groups is challenging. Traditionally, agent-based models (ABMs) of individual interactions
are used as building blocks for complex group dynamics (Vicsek et al., 1995; Couzin et al.,
2002; Scharf et al., 2016; McDermott, Wikle and Millspaugh, 2017; Scharf et al., 2018).
ABMs attempt to recreate what is observed in nature by defining a mechanistic model a pri-
ori. While the simple individual-based rules lead to complex group dynamics, ABMs suffer
from automatic behavior after reaching some equilibrium, challenges to incorporate interac-
tions with habitat, and no notion of memory (Ried, Müller and Briegel, 2019). The goal of
inverse modeling is to instead learn the underlying local rules from observations of sequential
behavior decisions (Lee et al., 2017; Kangasrääsiö and Kaski, 2018; Yamaguchi et al., 2018).

Parameters of ABMs in practice need to be tuned or learned by supervised learning (Ried,
Müller and Briegel, 2019; Wikle and Hooten, 2016; Hooten, Wikle and Schwob, 2020). A
recent alternative to supervised learning is reinforcement learning (RL). RL is goal-oriented
learning from continuous interaction between an agent and its environment (Sutton and Barto,
1998). That is, RL methods learn parameters controlling global behavior by trial and error
experiments within the defined environment and local rules. The agents learn preferences by
paying costs to (or receiving rewards from) the environment and choose optimal behavior by
minimizing the cumulative expected future costs (also referred to as “costs-to-go”). Similar to
difficulty in tuning ABMs, defining the cost function to produce desired long term behavior is
challenging (Ng and Russell, 2000; Finn, Levine and Abbeel, 2016; Arora and Doshi, 2018).

In systems where observations of behavior trajectories can be observed, inverse reinforce-
ment learning (IRL) methods aim to learn the state costs or costs-to-go that governed the
observed agents’ decisions. Ng and Russell (2000) introduced the first IRL algorithms in-
cluding dynamic programming, which solves a system of equations based on the state transi-
tion probabilities and a grid search method for exploring potential state costs that may have

Keywords and phrases: agent-based model, inverse optimal control, Markov decision process, variational ap-
proximation.
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generated observed trajectory samples. As surveyed by Arora and Doshi (2018), many more
methods have since been developed or adapted to address problems of meaningful size and
non-identifiability of the costs. The methods can be broadly categorized as maximum mar-
gin optimization (Ratliff, Bagnell and Zinkevich, 2006), entropy optimization (Ziebart et al.,
2008), Bayesian IRL (Ramachandran and Amir, 2007; Choi and Kim, 2011; Jin et al., 2017;
Šošić, Zoubir and Koeppl, 2017), and deep learning IRL (Wulfmeier, Ondruska and Posner,
2015), with the majority of the methods being applied to Markov decision processes (MDPs).
The benefit of Bayesian frameworks to address the non-identifiability of the IRL problem is
that they provide a distribution of costs that can generate the observed expert behavior.

Many of the aformentioned methods parameterize the likelihood by the immediate state
costs, because the state cost function is a concise description of the task (Ng and Rus-
sell, 2000; Ramachandran and Amir, 2007). A computational challenge associated with
parametrizing the likelihood by the costs is the necessity to solve the forward MDP each
iteration. This is especially challenging in multiagent MDPs, which describe collective ani-
mal movement based on calculations of distance between agents that control an agent’s state
or perception of the environment. An alternative class of MDP, the linearly-solvable MDP
(LMDP) introduced by Todorov (2009), is linear in its solution for the optimal policy and
thus, less computationally costly for forward modeling. The LMDP is defined by a set of
passive dynamics that describe an agent’s state transitions in the absence of state costs or en-
vironmental feedback and then the optimal state transitions minimize costs-to-go. Moreover,
IRL for LMDPs does not require the forward solution for each iteration as there is a linear
relationship between the costs-to-go and immediate costs. Therefore, inference about imme-
diate state costs can be obtained by transformation of the estimated costs-to-go. As a special
case, Dvijotham and Todorov (2010) showed that maximum entropy IRL is the solution to a
LMDP with uniform passive dynamics. Kohjima, Matsubayashi and Sawada (2017) proposed
a Bayesian IRL method for learning state values for LMDPs using variational approximation.

As argued by Ried, Müller and Briegel (2019), an MDP (or LMDP) for collective animal
movement is a better model for the system than traditional self-propelled particle models
(Vicsek et al., 1995). The MDP incorporates the internal processes of an animal by modeling
the behavior as perception (state space), planning (state values), and action (see Hooten,
Scharf and Morales (2019) for related individual-level models). Furthermore, the behavior
is governed by feedback from the environment (which includes other agents) rather than
assuming automatic interaction rules. Few applied examples of IRL for collective animal
movement exist in the literature. Exceptions include the application of maximum entropy
IRL to flocking pigeons of Pinsler et al. (2018) and Bayesian policy estimation of the self-
propelled particle (SPP) and Ising models (Šošić et al., 2017).

We present the first application of IRL for collective animal movement using Bayesian
learning of state costs-to-go for an LMDP. As an extension of Kohjima, Matsubayashi and
Sawada (2017), we reduce the dimension of the state space with basis function approxima-
tion, compare variational approximation to MCMC sampling, and consider the multiagent
LMDP. We first demonstrate the modeling framework for a simulation of the Vicsek et al.
(1995) SPP model to illustrate the mechanisms of the LMDP framework in Section 3. In Sec-
tion 4, we use the new methodology to estimate state costs-to-go for collective movement of
guppies (Poecilia reticulata) in a tank to infer trade offs between targeted motion and group
cohesion. Finally, we discuss the findings and direction for future work in Section 5.

2. IRL Methodology.

2.1. LMDP. We focus on the discrete state space LMDP defined by the tuple (S, P̄, γ,R)
where S = {1, ..., J} is a finite set of states, γ ∈ [0,1] is a discount factor,R : S→R is a state
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cost function, and P̄ is a J ×J transition probability matrix with elements p̄ij for i= 1, ..., J
and j = 1, ..., J corresponding to the transition from state i to state j under no control (e.g.,
passive dynamics). We denote an observation from the set of states as s ∈ {1, ..., J} and the
state cost at state i as ri for i= 1, ..., J (see Appendix A for a notational reference).

The policy (e.g., how to choose the next state) of an LMDP is defined by continuous
controls, u = {uij ∈R;∀i, j = 1, ..., J}, such that the controlled dynamics are expressed as:

(1) p(st = j|st−1 = i) = pij(uij)≡ p̄ijexp(uij),

and the controls are defined to be 0 when the passive transition probability is 0 (i.e., if p̄ij = 0,
then uij = 0). The controls, uij , are interpretable as the cost the agent is willing to pay to go
against the passive dynamics (Todorov, 2009). For a given policy, the joint costs of the state
and control, l(i,u), are:

(2) l(i,u) = ri +KL(pi(u)||p̄i),
where ri is the immediate state cost for states i= 1, ..., J and KL(·) is the Kullback-Leibler
(KL) divergence between the controlled transition probability, pi(u) = (pi1(ui1), ..., piJ(uiJ))′,
and passive transition probabilities, p̄i = (p̄i1, ..., p̄iJ)′. The KL divergence penalty requires
the agent to “pay” a larger price for behavior that deviates from the passive dynamics
(Todorov, 2007).

The state costs-to-go, vi, for i= 1, ..., J , are the discounted sum of future expected costs
incurred from beginning in state i:

(3) vi = l(i,u) +E[γ

T∑
t=1

l(j,u)],

where the expectation is with respect to the controlled transitions (1). The value of T de-
termines whether the problem has finite- or infinite-horizon (e.g., T <∞ or T =∞). A
finite-horizon LMDP can be modeled as an infinite-horizon LMDP by assuming the agent
remains in the final observed state and incurs no future costs (Todorov, 2007). Costs-to-go
can also be interpreted as relative time to goal completion where a smaller cost-to-go indi-
cates that the agent can reach a desirable state more quickly by transitioning to that state than
transitioning to a state with a higher cost-to-go. Based on the definition, there is a recursive
relationship between the cost-to-go functions such that (Sutton and Barto, 1998; Todorov,
2009):

(4) vi = l(i,u) +E[γvj ].

The forward problem of the LMDP is an optimization problem for the set of controls that
minimize the cost-to-go and can be expressed by the Bellman optimality equation (e.g., Bell-
man, 1957) for the state costs-to-go, vi, for i= 1, ..., J :

(5) vi = min
u

l(i,u) + γ
∑
∀j∈S

pij(uij)vj

 ,

where the summation is over the reachable states j ∈ S as determined by the policy pij(uij)
for all j ∈ S (i.e., the expectation in (3) is now expressed as the sum over the discrete dis-
tribution defined by (1)). The computational advantage of the LMDP for RL is the Bellman
optimality can be solved analytically using the method of Lagrange multipliers for the opti-
mal transition probabilities (Todorov, 2009):

(6) p∗(st = j|st−1 = i) =
p̄ijexp(−γvj)∑J
k=1 p̄ikexp(−γvk)

.

By substituting equation (6) into the Bellman optimality (5) and exponentiating, the optimal
costs-to-go are a solution to an eigenvector problem that is obtained using a power iteration
method (Todorov, 2009), which we demonstrate in Section 3.
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2.2. Inverse Reinforcement Learning (IRL). Assume we observe a collection of se-
quences of optimal behavioral state trajectories,D = {D1, ...,DN}, andDn = {sn0, ..., snT },
where snt is the observed state for individual n, for n = 1, ...,N , and time point t, for
t = 0,1, ..., T . Then, the observed state transitions are summarized into frequencies, yij =∑N

n=1

∑T
t=1 I(snt = j|sn(t−1) = i). We assume that each individual operates according to

an LMDP with identical parameters (S, P̄, γ,R), but that the state costs, R, and therefore,
costs-to-go, v, are unknown. The likelihood of D is:

(7)

P (D|P̄,v) =

N∏
n=1

T∏
t=1

J∏
i=1

J∏
j=1

p∗(snt = j|sn(t−1) = i),

=

J∏
i=1

J∏
j=1

(
p̄ijexp(−γvj)∑
k p̄ikexp(−γvk)

)yij
,

for all individuals n= 1, ...,N , times points t= 1, ..., T , transitions from state i ∈ S to state
j ∈ S and the second equality is based on the optimal transitions (6). We express the costs-
to-go vector, v = (v1, ..., vJ)′, as a linear combination of features in the J × nb matrix X
with unknown weights β (e.g., v = Xβ). We estimate the weights in a Bayesian framework
by assuming the following hierarchical prior:

(8)
β ∼N

(
0,

1

τ
Inb

)
,

τ ∼Gamma(0.1,0.1),

where 0 is an nb-dimensional vector of zeroes and the parameters are estimated using MCMC
sampling and variational approximation with the statistical platform STAN using the R pack-
age rstan (Carpenter et al., 2017; Stan Development Team, 2020). For the MCMC sampling,
we used the Hamiltonian Monte Carlo with no-U-turn sampler (e.g., Hoffman and Gelman,
2014), which is the default algorithm in STAN. For variational inference, STAN assumes
a Gaussian approximating distribution on a transformation of the parameters to a continu-
ous domain (Kucukelbir et al., 2015). We provide brief definitions of the algorithms and the
STAN code in an online supplement. Note that the costs-to-go are only estimable up to a
constant due to the exponential in (7) and therefore all resulting mean costs-to-go functions
are shifted to have a minimum value of 0, which typically corresponds to a terminal state or
a state in which an agent incurs no cost indefinitely (Todorov, 2009).

3. SPP LMDP. We illustrate the LMDP for collective movement using the Vicsek et al.
(1995) SPP model. We consider the dynamics of the SPP model for agent n = 1, ...,N as
defined by Šošić et al. (2017) for the direction θnt and location (xnt, ynt) as:

(9)

θn(t+1) = 〈θnt〉ρ + εnt, εnt ∼N(0, σ2),

xn(t+1) = xnt + vnt · cos(θnt),

yn(t+1) = ynt + vnt · sin(θnt),

where the agent heads in the mean direction, 〈θnt〉ρ, of other agents including itself within
radius ρ with a speed of vnt. The local misalignment of an agent is the difference between the
mean neighborhood direction and the agent’s direction, 〈θnt〉ρ − θnt. Šošić et al. (2017) for-
mulated the SPP model as an MDP with 13 discrete actions corresponding to turning angles,
φ ∈ [−60◦,−50◦, ...,60◦] and a discrete state space defined by a grid of local misalignment
values. The local misalignment grid was defined by J = 36 equally sized bins of 10 degrees
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with centers s = (±180◦,−170◦, ...,170◦)′. An agent of the SPP MDP chooses a turning an-
gle, φnt, given the observation of local misalignment bin, snt. The distribution of the next
direction given the turning angle is θn(t+1)|φnt ∼ N(θnt + φnt, σ

2). The optimal policy cor-
responds to choosing the turning angle that minimizes the current local misalignment. In our
simulation, we assume a constant velocity of 1, fixed interaction radius ρ= 0.1, and turning
angle standard deviation of 10 degrees (i.e., σ = 10◦) and embed the MDP of Šošić et al.
(2017) into the LMDP framework as outlined by Todorov (2007). All angular differences
were calculated with the two argument arc-tangent function.

We defined the state cost function, R, as:

(10) ri =


0 if |si| ≤ 5◦

2.5 if |si| ≤ 15◦

4 if |si| ≤ 25◦

5 otherwise

,

where si is the center of the local misalignment bin i= 1, ..., J . The costs were chosen based
on the results of Šošić et al. (2017) and were constrained in magnitude such that exp(−ri)
was not numerically 0 (Todorov, 2009).

We assumed agents synchronously chose their next state. The turning angle was therefore
equivalent to the change in state (i.e., the difference in states was the difference in directions);
this implied a continuous transition distribution for the next state given the turning angle,
sn(t+1)|φnt ∼ N(snt + φnt, σ

2), which can be discretized to provide a transition probability
function over the discrete grid defined by s. The LMDP passive state transition probabilities
were constructed by summing over the conditional transition probabilities given the discrete
turning angles, φ ∈ [−60◦,−50◦, ...,60◦], of the MDP. Therefore the passive dynamics be-
tween the discrete grid cell centers si and sj are a discretization of a mixture of normal
distribution functions:

(11) p̄(sj |si)∝
∑

φ∈[−60◦,−50◦,...,60◦]

Φ

(
sj − si − φ+ 5◦

10◦

)
−Φ

(
sj − si − φ− 5◦

10◦

)
,

where Φ is the standard normal cumulative distribution function and the discretization length
5◦ was determined by the half-length of the state grid cells. The passive dynamics were
then normalized to have row sums equal to one (i.e.,

∑
j∈S p̄(sj |si) = 1). Lastly, as stated in

Section 2.1, the true costs-to-go can be calculated as the solution an eigenproblem. The SPP
LMDP setup defines an infinite-horizon problem without an absorbing state (i.e., p̄ii 6= 1 for
any i= 1, ..., J ) so we choose to consider the average cost LMDP defined by the following
system of equations:

(12) z =
1

λ
diag(exp(−r))P̄z,

where z = exp(−v) is a J -dimensional vector referred to as the desirability function,
diag(exp(−r)) is a J × J diagonal matrix with the state costs, r = (r1, ..., rJ), on the main
diagonal, P̄ is the J ×J passive transition probability matrix, λ is the principal eigenvalue of
[diag(exp(−r))P̄] and −log(λ) corresponds to the average cost of each time step (see sup-
plementary information in Todorov, 2009). The scaling by the largest eigenvalue allows for
numerical stability in estimation. The system of equations is solved by initializing the vector
z to all ones, z = 1, and repeatedly multiplying by [ 1λdiag(exp(−r))P̄] until convergence.
This method is referred to as Z-iteration in the LMDP literature (Todorov, 2009). When ap-
plied to the SPP example here, the true cost-to-go function is symmetric about 0◦ with larger
relative differences between states near 0◦ than states with local misalignment greater in ab-
solute value than 25◦ (Figure 1). Because the states with local misalignment values greater in
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absolute value than 25◦ have the same immediate cost (10), the differences are related to the
average number of time steps it takes an agent to be able to turn toward the group as defined
by the passive dynamics; the passive dynamics do not allow an agent to turn more than 90◦

in one step.
We simulated from the calculated optimal policy with 200 agents for 100 time points and

calculated the state transition frequencies using the following algorithm:

1. Initialize (xn0, yn0, θn0) and calculate local misalignment to determine grid cell sn0 for
n= 1, ...,200.

2. Repeat the following for t= 1, ...,100 synchronously for n= 1, ...,200:
a) Sample next local misalignment from p∗(·|sn(t−1) = i).
b) Calculate turning angle, φnt as difference between θn(t−1) and 2a.
c) Update location (xnt, ynt) according to (9), θnt = θn(t−1) + φnt, and local misalign-

ment snt.

We estimated the costs-to-go with full MCMC sampling and variational approximation
for comparison. Additionally, we estimated the costs-to-go for each state separately, (e.g.,
X = I), and with Gaussian basis functions with centers on every other grid cell to reduce the
state dimension by a factor of 2.

From Figure 1, it is evident that all modeling scenarios estimated the relative true costs-to-
go and the estimates from MCMC sampling capture more uncertainty than those from vari-
ational approximation. It appears the uncertainty of the estimates increases with an increase
in local misalignment and the difference is more apparent for the variational approximation.
This pattern generally reflects the amount of data; there were more transitions to states with
smaller local misalignment. Furthermore, there were no transitions to states in grid cells cen-
tered on −170◦,−150◦,170◦,±180◦ misalignment.

MCMC Variational Bayes

−100 0 100 −100 0 100
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Yes
No

FIG 1. Estimated cost-to-go function for a Vicsek et al. (1995) SPP model using LMDP IRL for Bayesian MCMC
sampling and variational approximation under known passive dynamics. The models either used Gaussian basis
functions (dashed lines) or independent state parameters (solid lines). The shaded regions correspond to the 95%
C.I. The black open circles is the true cost-to-go function calculated from equation (12). The mean and true
cost-to-go functions were shifted to have minimum 0.
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The LMDP framework for IRL allows for efficient estimation of the state costs ri from the
estimation of the cost-to-go by rearranging (12):

(13) ri = log(λ) + vi + log

∑
j

p̄ijexp(−vj)

 ,

for i = 1, ..., J . Figure 2 shows that the estimated costs from the mean cost-to-go functions
in Figure 1 generally match the arbitrary state costs defined in (10).

MCMC Variational Bayes

−100 0 100 −100 0 100

0

5

10

15

Local Misalignment

C
os
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FIG 2. Estimated state costs for a Vicsek et al. (1995) SPP model using LMDP IRL for Bayesian MCMC sampling
and variational approximation under known passive dynamics. The models either used Gaussian basis functions
(dashed lines) or independent state parameters (solid lines). The black open circles are the true state costs from
(10).

For the MCMC estimation with bisquare basis functions, there is an increase in cost-to-
go and uncertainty at the boundaries. The obvious spike at 180◦ is the cost-to-go for the
state defined by local misalignment less than −175◦ and greater than 175◦. The Gaussian
basis functions were not defined on a circle, but rather the continuous real line and could be
contributing to the lack of smoothness near the boundary. Additionally, some flexibility is
lost in estimation by reducing the dimensionality of the state space with the basis functions.

4. Guppy Application. We used the data available from Bode et al. (2012) on an ex-
periment involving a captive population of guppies (Poecilia reticulata). Groups of 10 same
sex guppies were filmed from above in a square tank with one corner containing gravel and
shade, which is defined by a point. The shaded corner provided shelter and is hypothesized
to be attractive to the guppies. The guppies were released in the tank in the opposite corner.
The data consist of movement trajectories truncated to the time points when all individuals
were moving until one guppy reached the shaded target area. There were 26 experiments with
14 experiments consisting of all males and 12 of all females. We used trajectories from all
experiments to estimate the cost-to-go functions.

We defined an LMDP for the guppy trajectories with a discrete state space of local mis-
alignment and target misalignment. Local misalignment was defined as in Section 3 and target
misalignment was defined as the difference between the current heading and the direction to
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the target point. We rescaled all pixel locations to the unit square and calculated the local
misalignment between an individual and all other individuals. The assumption of interaction
with all other agents is reasonable as the movement was bounded and there were no visual
obstructions outside the target area (Bode et al., 2012). The two misalignment states were
discretized using the same J = 36 bins of length 10◦ as in the previous section resulting
in a discretized grid of 36 × 36 states. We assume a fixed discount factor of 1 (i.e., all fu-
ture costs/rewards are not discounted). Across the 26 experiments, there were 7,816 unique
state transitions. Estimation of parameters in the guppy application was done by variational
approximation due to the size of the state space.

For the first set of estimated costs-to-go, we assumed the passive dynamics to be discrete
uniform, (e.g., p̄ij ∝ 1 for all i, j = 1, ..., J ). The features, X, considered were the identity
matrix and 819 multiresolution bisquare basis functions generated uniformly within the grid-
ded state space by the R package FRK (Zammit-Mangion, 2020) referred to as “Identity” and
“Bisquare” respectively in Figure 3) . The results shown in Figure 3 show a similar pattern
among feature matrices with the bisquare basis functions providing more smoothing across
the state space. In general, the results suggest the guppies perceived less cost for aligning
with other guppies as the low costs-to-go in yellow are concentrated around 0◦ and there is
more flexibility in target alignment as the low costs-to-go have more spread along the target
misalignment axis. When comparing the two feature matrices, there is more contrast between
the estimated cost-to-go functions that is likely attributable to the dimension reduction and
creation of basis functions in the continuous domain rather than circular.

Identity Bisquare
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v

FIG 3. Variational posterior mean costs-to-go for the guppy experiments for a gridded state space of target and
local misalignment across two sets of features: full (identity matrix) and bisquare basis functions. The passive
dynamics are assumed to be discrete uniform and the mean estimated costs have been shifted to have a minimum
of 0. The yellow indicates states with lower costs-to-go and therefore states to which the guppies choose to
transition.

To assess the sensitivity to the assumed passive dynamics, we estimated the costs-to-go
under a set of passive dynamics corresponding to an independent, normal random walk on
the gridded state space with standard deviation 90◦. The standard deviation was chosen to be
large enough to ensure all non-zero transition probabilities used all of the observed data. The
variational posterior mean and standard deviation for the costs-to-go are shown in Figure 4.
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Comparing to the previously estimated states, the variational posterior mean cost-to-go func-
tions are similar. The variational posterior standard deviations reflect the pattern of observed
frequencies with states more frequently observed having smaller uncertainty.

In Figures 3 and 4, the diagonal pattern can be attributed to the corners appearing far
when plotted in the 2-D plane, but are close together in circular space so they have similar
costs-to-go.
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FIG 4. Variational posterior mean costs-to-go (left panel) and standard deviations (right panel) for the guppy
experiments for a gridded state space of target and local misalignment with passive dynamics assumed to be a
normal random walk and bisquare basis functions. The mean estimated costs-to-go have been shifted to have a
minimum of 0. The yellow indicates states with lower costs-to-go and therefore states to which the guppies choose
to transition.

The marginal costs-to-go based on the estimates in Figure 4 are shown in Figure 5, where
the costs-to-go are calculated as the mean across all values of the other state variable and
shifted to have a minimum of 0. There is evidence of collective alignment as shown in the
local misalignment costs-to-go function due to the minimum cost occurring at 0◦ with gradual
increase as misalignment increases in absolute value. Furthermore, the guppies appear to
perceive local misalignments from −15◦ to 45◦ as equally optimal, which can be contrasted
with the sharp dip in cost-to-go for 0◦ local misalignment in the SPP simulation Figure 1.
The dip in the target misalignment cost-to-go function corresponds to the grid cells defined
by −55◦ to −45◦ and −45◦ to −35◦, suggesting it is less costly to approach the upper corner
with the target 55◦ to 35◦ to the right. From inspection of the observed data shown in Figure
6, it appears many of the guppies moved across the tank to the left first, which would require
a right turn to decrease the target misalignment. A symmetry constraint could be applied to
the costs-to-go by considering the absolute target alignment if it were assumed to be equally
costly to approach from the right or left.

5. Discussion. Collective motion from generative local interaction rules limit possible
behavior, but the (L)MDP framework extends the definition of the agent to include perception
and internal processes (Ried, Müller and Briegel, 2019). By estimating the state costs-to-go
or value functions, system specific local rules can be estimated.

Our analysis of the captive guppy populations confirms previous works that find evidence
of social interactions between individuals (Bode et al., 2012; Russell, Hanks and Haran,
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FIG 5. Marginal costs-to-go of target and local misalignment for the guppy experiments for a gridded state space
of target and local misalignment with passive dynamics assumed to be a normal random walk and bisquare basis
functions. The mean estimated costs have been shifted to have a minimum of 0. The lower costs-to-go increase
the probability of transitioning into that state.
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FIG 6. Trajectories of all 26 experiments of groups of 10 guppies in a tank. The target is located at the point
marked “T.” The different colors represent the different individuals.

2016; McDermott, Wikle and Millspaugh, 2017). However, instead of defining a set of be-
havioral rules a priori, we estimated the decision-making mechanisms. Our results suggested
the captive guppies value collective movement more than targeted movement toward shel-
ter. Furthermore, the behavioral mechanisms determined by the cost-to-go functions were
non-linear and non-symmetric.
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Inference is constrained to relative differences in costs-to-go. This is similar to the estima-
tion of relative selection probabilities in animal resource selection modeling (Hooten et al.,
2017, 2020) and therefore IRL can still provide useful inference. However, the SPP simu-
lation demonstrated the ability to recover the magnitude of the true state costs despite the
inability to estimate the true magnitude of the cost-to-go function.

It may be possible to improve the inference for the guppy data by relaxing the assumptions,
estimating passive dynamics, and expanding the state space to include other features. We
tested sensitivity of inference to choice of passive dynamics with two simple models. We did
not detect a substantial difference, but for full quantification of uncertainty, joint estimation
of passive dynamics could be considered. In future work, estimation of the passive dynamics
parameters such as the random walk variance may be helpful. Additionally, the state space
could include features based on physical distance to assess hypotheses about zonal collective
movement which is a primary feature of collective movement ABMs (e.g., Couzin et al.,
2002).

In the SPP simulation and guppy application, we assumed a discount factor of 1 which
may be realistic for trajectories from such a short time frame. For observations spanning
longer periods of time, it would be more realistic to assume there is some “forgetting” of past
states which would correspond to a discount factor less than 1. Additionally, the discount
factor can also be interpreted as the degree to which agents behave optimally (Choi and Kim,
2014). It might be expected that observations from animals in the wild are subject to more
stochasticity than experimental settings and therefore do not always behave optimally.

APPENDIX A: LMDP NOTATION

The following is a table of LMDP notation used throughout the manuscript in order of
appearance:

Symbol Definition
S Discrete state space with values {1, ..., J} and observations are

denoted as s
P̄ J × J passive transition probability matrix
p̄ij An element of P̄; passive transition probability from state i to state j
γ Discount factor in [0,1]

R State cost function with values denoted ri for i ∈ S
u Continous controls which define the policy (1)
uij An element of u
pij(uij) Controlled transitions or policy defined by continuous controls and

passive dynamics (1)
p∗(st = j|si = i) Same as pij(uij)
l(·,u) State and control cost function; it is the sum of the state cost R and

KL divergence between passive and controlled transition probabilities
(2)

v Cost-to-go function or the expected discounted future state control
costs (3) with values denoted by vi for i ∈ S
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SUPPLEMENTARY MATERIAL
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variational approximation algorithms and STAN model code.
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