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optimization problems themselves, as are the weights in a

neural network trained by backpropagation. The difficulty

of interpreting a multi-agent system under a global optimiza-

tion problem is the computational difficulty of computing

Nash equilibrium (Daskalakis et al., 2009), even for general

two-player games (Chen et al., 2009).

To better understand the relationship between the society

and the agent, this paper makes four contributions, each at a

different level of abstraction. At the highest level, we define

the societal decision-making framework to relate the local

optimization problem of the agent to the global optimization

problem of the society in the following restricted setting.

Each agent is specialized to transform the environment from

one state to another. The agents bid in an auction at each

state and the auction winner transforms the state into an-

other state, which it sells to the agents at the next time-step,

thereby propagating a series of economic transactions. This

framework allows us to ask what are properties of the auc-

tion mechanism and of the society that enable the global

solution to a Markov decision process (MDP) that the so-

ciety solves to emerge implicitly as a consequence of the

agents optimizing their own independent auction utilities.

At the second level, we present a solution to this question by

introducing the cloned Vickrey society that guarantees that

the dominant strategy equilibrium of the agents coincides

with the optimal policy of the society. We prove this result

by leveraging the truthfulness property of the Vickrey auc-

tion (Vickrey, 1961) and showing that initializing redundant

agents makes the primitives’ economic transactions robust

against market bubbles and suboptimal equilibria.

At the third level, we propose a class of decentralized re-

inforcement learning algorithms for optimizing the MDP

objective of the society as an emergent consequence of the

agents’ optimizing their own auction utilities. These algo-

rithms treat the auction utility as optimization objectives

themselves, thereby learning a societal policy that is global

in space and time using only credit assignment for learnable

parameters that is local in space and time.

At the fourth level, we empirically investigate various im-

plementations of the cloned Vickrey society under our de-

centralized reinforcement learning algorithm and find that

a particular set of design choices, which we call the credit

conserving Vickrey implementation, yields both the best

performance at the societal and and agent level.

Finally, we demonstrate that the societal decision making

framework, along with its solution, the algorithm that learns

the solution, and the implementation of this algorithm, is a

broadly applicable perspective on self-organization to not

only standard reinforcement learning but also selecting op-

tions in semi-MDPs (Sutton et al., 1999) and composing

functions in dynamic computation graphs (Chang et al.,

2018). Moreover, we show evidence that the local credit as-

signment mechanisms of societal decision-making produce

more efficient learning than the global credit assignment

mechanisms of the monolithic framework.

2. Related Work

Describing an intelligent system as the product of interac-

tions among many individual agents dates as far back as

the Republic (Plato, 380 B.C.), in which Plato analyzes the

human mind via an analogy to a political state. This theme

continued into the early foundations of AI in the 1980s

and 1990s through cognitive models such as the Society of

Mind (Minsky, 1988) and Braitenberg vehicles (Braitenberg,

1986) and engineering successes in robotics (Brooks, 1991)

and in visual pattern recognition (Selfridge, 1988).

The closest works to ours were the algorithms developed

around that same time period that sought as we do to lever-

age a multi-agent society for achieving a global objective,

starting as early as the bucket brigade algorithm (Holland,

1985), in which agents bid in a first-price auction to operate

on the state and auction winners directly paid their bid to the

winners from the previous step. Prototypical self-referential

learning mechanisms (Schmidhuber, 1987) improved the

bucket brigade by imposing credit conservation in the eco-

nomic transactions. The neural bucket brigade (Schmidhu-

ber, 1989) adapted the bucket brigade to learning neural

network weights, where payoffs corresponded to weight

changes. Baum (1996) observed that the optimal choice for

an agent’s bid should be equivalent to the optimal Q-value

for executing that agent’s transformation and developed the

Hayek architecture for introducing new agents and remov-

ing agents that have gone broke. Kwee et al. (2001) added

external memory to the Hayek architecture.

However, to this date there has been no proof to the best of

our knowledge that the bid-updating schemes proposed in

these works simultaneously optimize a global objective of

the society in a decision-making context. Sutton (1988) pro-

vides a convergence proof for temporal difference methods

that share some properties with the bucket brigade credit

assignment scheme, but importantly does not take the com-

petition between the individual agents into account. But it

is precisely the competition among agents in multi-agent

learning that make their equilibria nontrivial to character-

ize (Mazumdar et al., 2019). Our work offers an alternative

auction mechanism for which we prove that the optimal

solution for the global objective does coincide with a Nash

equilibrium of the society. We follow similar motivations

to Balduzzi (2014), which investigates incentive mecha-

nisms for training a society of rational discrete-valued neu-

rons. In contrast to other works that decouple the computa-

tion graph (Srivastava et al., 2013; Goyal et al., 2019; Peng

et al., 2019; Pathak et al., 2019) but optimize a global ob-
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jective, our work considers optimizing local objectives only.

We consider economic transactions between time-steps, as

opposed to within a single time-step (Ohsawa et al., 2018).

3. Preliminaries

To set up a framework for societal decision-making, we

relate Markov decision processes (MDP) and auctions un-

der a unifying language. We define an environment as a

tuple that specifies an input space, an output space, and

additional parameters for specifying an objective. An agent

is a function that maps the input space to the output space.

An objective is a functional that maps the learner to a real

number. Given an environment and objective, the problem

the agent solves is to maximize the value of the objective.

In the MDP environment, the input space is the state space

S and the output space is the action space A. The agent is a

policy π : S → A. The transition function T : S ×A → S ,

the reward function r : S × A → R, and discount fac-

tor γ are additional parameters that specify the objective:

the return J(π) = Eτ∼pπ(τ)

[
∑T

t=0 γ
tr (st, at)

]

, where

pπ(τ) = p(s0)
∏T

t=0 π(at|st)
∏T−1
t=0 T (st+1|st, at). The

agent solves the problem of finding π∗ = argmaxπ J(π).
For any state s, the optimal action for maximizing J(π)
is π∗(s) = argmaxaQ

∗(s, a), where the optimal Q

function Q∗(s, a) is recursively defined as Q∗(s, a) =
Es′∼T (s,a) [r(s, a) + γmaxa′ Q

∗(s′, a′)|s, a].

In the auction environments we consider, the input space is

a single auction item s and the output space is the bidding

space B. Instead of a single agent, each of N agents ψ1:N

compete to bid for the auction item via its bidding policy

ψi : {s} → B. Let b be the vector of bids produced by

ψ1:N . The vector vs of each agent’s valuations for auc-

tion item s and the auction mechanism – allocation rule

X : BN → [0, 1]N and pricing rule P : BN → R
N
≥0 – are

additional parameters that specify each agent’s objective:

the utility U is(ψ
1:N ) = v

i
s ·X

i(b)− P i(b), where Xi(b)
is the proportion of s allocated to i, and P i(b) is the scalar

price i pays. Each agent i independently solves the problem

of finding ψi∗ = argmaxψi U is(ψ
1:N ). The independent

optimization of objectives distinguishes a multi-agent prob-

lem from a single-agent one and makes multi-agent prob-

lems generally difficult to analyze when an agent’s optimal

policy depends on the strategies of other agents.

However, if an auction is dominant strategy incentive com-

patible (DSIC), bidding one’s own valuation is optimal, inde-

pendent of other players’ bidding strategies. That is, truthful

bidding is the unique dominant strategy. Notably, the Vick-

rey auction (Vickrey, 1961), which sets P i(b) to be the

second highest bid maxj 6=i b
j and Xi(b) = 1 if i wins and

0 and 0 respectively if i loses, is DSIC, which means the

dominant strategy equilibrium occurs when every agent bids

truthfully, making the Vickrey auction straightforward to

analyze. Another attractive property of the Vickrey auction

is that the dominant strategy equilibrium automatically max-

imizes the social welfare
∑N

i=1 v
i ·Xi(b) (Roughgarden,

2016), which selects the bidder with the highest valuation as

winner. The existence of dominant strategies in the Vickrey

auction removes the need for agents to recursively model

others, giving the Vickrey auction the practical benefit of

running in linear time (Roughgarden, 2016).

4. Societal Decision-Making

The perspective of this paper is that a society of agents can

be abstracted as an agent that itself solves an optimization

problem at a global level as an emergent consequence of

the optimization problems its constituent agents solve at

the local level. To make this abstraction precise, we now

introduce the societal decision-making framework for an-

alyzing and developing algorithms that relate the global

decision problem of a society to the local decision problems

of its constituent agents. We use primitive and society to

distinguish between the agents at the local and global levels,

respectively, which we define in the context of their local

and global environments and objectives:

Definition 4.1. A primitive ω is a tuple (ψ, φT ) of a bidding

policy ψ : S → B and transformation φT : S → S .

Definition 4.2. A society Ω is a set of primitives ω1:N .

The global environment is an MDP that we call the global

MDP, with state space S and discrete action space A =
{1, ..., N} that indexes the primitives ω1:N . The local envi-

ronment is an auction that we call the local auction with

auction item s ∈ S and bidding space B = [0,∞).

The connection between the local and global environments

is as follows. Each state in the global MDP is an auction

item for a different local auction. The winning primitive

ω̂ of the auction at state s transforms s into the next state

s′ of the global MDP using its transformation φT , param-

eterized by the global MDP’s transition function T . For

each primitive i at each state s, its local objective is the util-

ity U is(ψ
1:N ). Its local problem is to maximize U is(ψ

1:N ).
The global objective is the return J(πΩ) in the global MDP

of the global policy πΩ. The global problem for the soci-

ety is to maximize J(πΩ). We define the optimal societal Q

function Q∗
Ω(s, ω) as the expected return received from ω

invoking its transformation φT on s and the society activat-

ing primitives optimally with respect to J(πΩ) afterward.

Since all decisions made at the societal level are an emergent

consequence of decisions made at the primitive level, the

societal decision-making framework is a self-organization

perspective on a broad range of sequential decision prob-

lems. If each transformation φT specifies a literal action,

then societal decision-making is a decentralized re-framing
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of standard reinforcement learning (RL). Societal decision-

making also encompasses the decision problem of choosing

φT s as options in semi-MDPs (Sutton et al., 1999) as well as

choosing φT s as functions in a computation graph (Chang

et al., 2018; Rosenbaum et al., 2017; Alet et al., 2018).

We are interested in auction mechanisms and learning algo-

rithms for optimizing the global objective as an emergent

consequence of optimizing the local objectives. Translating

problems from one level of abstraction to another would

provide a recipe for engineering a multi-agent system to

achieve a desired global outcome and permit theoretical

expectations on the nature of the equilibrium of the soci-

ety, while giving us free choice on the architectures and

learning algorithms of the primitive agents. To this end, we

next present an auction mechanism for which the dominant

strategy equilibrium of the primitives coincides with the

optimal policy of the society, which we develop into a class

of decentralized RL algorithms in later sections.

5. Mechanism Design for the Society

We first observe that to produce the optimal global policy,

the optimal bidding strategy for each primitive at each local

auction must be to bid their societal Q-value. By defining

each primitive’s valuation of a state as its optimal societal Q-

value at that state, we show that the Vickrey auction ensures

the dominant strategy equilibrium profile of the primitives

coincides with the optimal global policy. Then we show that

a market economy perspective on societal decision-making

overcomes the need to assume knowledge of optimal Q-

values, although weakens the dominant strategy equilibrium

to a Nash equilibrium. Lastly, we explain that adding redun-

dant primitives to the society mitigates market bubbles by

enforcing credit conservation. Proofs are in the Appendix.

5.1. Optimal Bidding

We state what was observed informally in (Baum, 1996):

Proposition 5.1. Assume at each state s the local auction al-

locates Xi(b) = 1 if i wins and Xi(b) = 0 if i loses. Then

all primitives ωi bidding their optimal societal Q-values

Q∗
Ω(s, ω

i) collectively induce an optimal global policy.

This proposition makes the problem of self-organization

concrete: getting the optimal behavior in the global MDP

to emerge from the optimal behavior in the local auctions

can be reduced to incentivizing the primitives to bid their

optimal societal Q-value at every state.

5.2. Dominant Strategies for Optimal Bidding

To incentivize the primitives to bid optimally, we propose to

define the primitives’ valuations vis for each state s as their

optimal societal Q-values Q∗
Ω(s, ω

i) and use the Vickrey

auction mechanism for each local auction.

Theorem 5.2. If the valuations v
i
s for each state s are

the optimal societal Q-values Q∗
Ω(s, ω

i), then the society’s

optimal global policy coincides with the primitives’ unique

dominant strategy equilibrium under the Vickrey mechanism.

Then, the utilityU is(ψ
1:N ) at each state s that induces the op-

timal global policy, which we refer equivalently as Û is(ω
1:N )

for the winning primitive ω̂i and U js (ω
1:N ) for losing prim-

itives ωj , is given by

Û is(ω
1:N ) = Q∗

Ω(s, ω̂
i)−max

j 6=i
b
j
s (1)

and by U js (ω
1:N ) = 0 for losing primitives.

5.3. Economic Transactions for Propagating Q∗
Ω

We have so far defined optimal bidding with respect to soci-

etal decision-making and characterized the utilities as func-

tions of Q∗
Ω for which such bidding is a dominant strategy.

We now propose to redefine the utilities without knowledge

of Q∗
Ω by viewing the society as a market economy.

Monolithic frameworks for solving MDPs, such as directly

optimizing the policy J(π) with policy gradient methods,

are analogous to command-economies, in which all pro-

duction – the transformation of past states st into future

states st+1 – and wealth distribution – the credit assignment

of reward signals to parameters – derive directly from single

central authority – the MDP objective. In contrast, under

the societal decision-making framework, the optimal global

policy does not derive directly from the MDP objective, but

rather emerges implicitly as the equilibrium of the primitives

optimizing their own local objectives. We thus redefine the

valuations vis following the analogy of a market economy,

in which production and wealth distribution are governed

by the economic transactions between the primitives.

Specifically, we couple the local auctions at consecutive

time-steps in the same game by defining the valuation v
i
st

of

primitive ω̂i for winning the auction item st as the revenue

it can receive in the auction at the next time-step by selling

the product st+1 of executing its transformation φiT on st.

This compensation comes as the environment reward plus

the (discounted) winning bid at the next time-step:

Û ist(ω
1:N )

︸ ︷︷ ︸

utility

= r(st, ω̂
i) + γ ·max

k
b
k
st+1

︸ ︷︷ ︸

revenue, or valuation v
i
st

−max
j 6=i

b
j
st

︸ ︷︷ ︸

price

. (2)

Analogous to a market economy, the revenue ω̂i receives for

producing st+1 from st depends on the price the winning

primitive ω̂k at t + 1 is willing to bid for st+1. In turn,

ω̂k sells st+2 to the winning primitive at t + 2, and so on.

Ultimately currency is grounded in the reward. Wealth is

distributed based on what future primitives decide to bid for
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