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Abstract

Designing an incentive compatible auction that maximizes
expected revenue is a central problem in Auction Design.
Theoretical approaches to the problem have hit some limits
in the past decades and analytical solutions are known for
only a few simple settings. Building on the success of deep
learning, a new approach was recently proposed by Duet-
ting et al. (2019) in which the auction is modeled by a feed-
forward neural network and the design problem as a learn-
ing problem. However, the architectures used in that work
are general purpose and do not take advantage of any struc-
ture the solution might possess. For example, symmetric auc-
tions are known to be optimal in many settings of interest,
and near-optimal quite generally (Daskalakis and Weinberg
2012; Kothari et al. 2019a), yet previous architectures do not
recover this structure (even in settings where it is known to
exist). In this work, we construct a neural architecture that is
capable of perfectly recovering the optimal symmetric mech-
anism. We further demonstrate that permutation-equivariant
architectures are not only capable of recovering previous re-
sults, they also have better generalization properties.

1 Introduction

Designing truthful auctions is one of the core problems that
arise in economics. Concrete examples of auctions include
sales of treasury bills, art sales by Christie’s or Google Ads.
Following seminal work of Vickrey (Vickrey 1961) and My-
erson (Myerson 1981), auctions are typically studied in the
independent private valuations model: each bidder has a val-
uation function over items, and their payoff depends only on
the items they receive. Moreover, the auctioneer knows ag-
gregate information about the population that each bidder
comes from, modeled as a distribution over valuation func-
tions, but does not know precisely each bidder’s valuation.
Auction design is challenging since the valuations are pri-
vate and bidders need to be encouraged to report their valu-
ations truthfully. The auctioneer aims at designing an incen-
tive compatible auction that maximizes revenue.

While auction design has existed as a subfield of eco-
nomic theory for several decades, complete characteriza-
tions of the optimal auction only exist for a few settings.
Myerson resolved the optimal auction design problem when
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there is a single item for sale (Myerson 1981). However, the
problem is not completely understood even in the extremely
simple setting with just a single bidder and two items. While
there have been some partial characterizations (Manelli and
Vincent 2006, 2010; Pavlov 2011; Wang and Tang 2014;
Daskalakis, Deckelbaum, and Tzamos 2017), and algorith-
mic solutions with provable guarantees (Alaei 2011; Alaei
et al. 2012, 2013; Cai, Daskalakis, and Weinberg 2012a,b),
neither the analytic nor algorithmic approach currently ap-
pears tractable for seemingly small instances.

Another line of work to confront this theoretical hurdle
consists in building automated methods to find the optimal
auction. Early works (Conitzer and Sandholm 2002, 2004)
framed the problem as a linear program. However, this ap-
proach suffers from severe scalablility issues as the num-
ber of constraints and variables is exponential in the number
of bidders and items (Guo and Conitzer 2010). Later, Sand-
holm and Likhodedov (2015) designed algorithms to find the
optimal auction. While scalable, they are however limited to
specific classes of auctions known to be incentive compat-
ible. A more recent research direction consists in building
deep learning architectures that design auctions from sam-
ples of bidder valuations. Duetting et al. (2019) proposed
RegretNet, a feed-forward architecture to find near-optimal
results in several known multi-item settings and obtain new
mechanisms in unknown cases. This architecture however is
not data efficient and can require a large number of valua-
tion samples to learn an optimal auction in some cases. This
inefficiency is not specific to RegretNet but is characteristic
of neural network architectures that do not incorporate any
inductive bias.

In this paper, we build a deep learning architecture for
multi-bidder symmetric auctions. These are auctions which
are invariant to relabeling the items or bidders. More specif-
ically, such auctions are anonymous (in that they can be exe-
cuted without any information about the bidders, or labeling
them) and item-symmetric (in that it only matters what bids
are made for an item, and not its a priori label).

It is now well-known that when bidders come from the
same population that the optimal auction itself is anony-
mous. Similarly, if items are a priori indistinguishable (e.g.
different colors of the same car — individuals certainly
value a red vs. blue car differently, but there is nothing ob-
jectively more/less valuable about a red vs. blue car), the op-



timal auction is itself item-symmetric. In such settings, our
approach will approach the true optimum in a way which
retains this structure (see Contributions below). Even with-
out these conditions, the optimal auction is often symmet-
ric anyway: for example, “bundling together” (the auction
which allows bidders to pay a fixed price for all items, or re-
ceive nothing) is item-symmetric, and is often optimal even
when the items are a priori distinguishable.

Beyond their frequent optimality, such auctions are desir-
able objects of study even when they are suboptimal. For ex-
ample, seminal work of Hartline and Roughgarden which pi-
oneered the study of “simple vs. optimal auctions” analyzes
the approximation guarantees achievable by anonymous
auctions (Hartline and Roughgarden 2009), and exciting
recent work continues to improve these guarantees (Alaei
et al. 2015; Jin et al. 2019b,a). Similarly, Daskalakis and
Weinberg (2012) develop algorithms for item-symmetric in-
stances, and exciting recent work show how to leverage
item-symmetric to achieve near-optimal auctions in com-
pletely general settings (Kothari et al. 2019b). To summa-
rize: symmetric auctions are known to be optimal in many
settings of interest (even those which are not themselves
symmetric). Even in settings where they are not optimal,
they are known to yield near-optimal auctions. And even
when they are only approximately optimal, seminal work
has identified them as important objects of study owing to
their simplicity. In modern discussion of auctions, they are
also desirable due to fairness considerations.

While applying existing feed-forward architectures as Re-
gretNet to symmetric auctions is possible, we show in Sec-
tion 3 that RegretNet struggles to find symmetric auctions,
even when the optimum is symmetric. To be clear, the archi-
tecture’s performance is indeed quite close to optimal, but
the resulting auction is not “close to symmetric”. This paper
proposes an architecture that outputs a symmetric auction
symmetry by design.

Contributions

This paper identifies three drawbacks from using the Re-
gretNet architecture when learning with symmetric auctions.
First, RegretNet is incapable of finding symmetric auctions
when the optimal mechanism is known to be symmetric.
Second, RegretNet is sample inefficient, which is not sur-
prising since the architecture does not incorporate any in-
ductive bias. Third, RegretNet is incapable of generalizing
to settings with a different number of bidders of objects. In
fact, by construction, the solution found by RegretNet can
only be evaluated on settings with exactly the same number
of bidders and objects of the setting it was trained on.

We address these limitations by proposing a new ar-
chitecture EquivariantNet, that outputs symmetric auctions.
EquivariantNet is an adaption of the deep sets architecture
(Hartford et al. 2018) to symmetric auctions. This architec-
ture is parameter-efficient and is able to recover some of the
optimal results in the symmetric auctions literature. Our ap-
proach outlines three important benefits:

— Symmetry: our architecture outputs a symmetric auction
by design. It is immune to permutation-sensitivity as de-
fined in Section 3 which is related to fairness.

— Sample generalization: Because we use domain knowl-
edge, our architecture converges to the optimum with
fewer valuation samples.

— Out-of-setting generalization: Our architecture does not
require hard-coding the number of bidders or items dur-
ing training — training our architecture on instances with
n bidders and m items produces a well-defined auction
even for instances with n’ bidders and m/ items. Some-
what surprisingly, we show in 4 some examples where our
architecture trained on 1 bidder with 5 items generalizes
well even to 1 bidder and m items, for any m € {2,10}.

We highlight that the novelty of this paper is not to show
that a new architecture is a viable alternative to Regret-
Net. Instead we are solving three fundamental limitations we
identified for the RegretNet architecture. These three prob-
lems are not easy to solve in principle, it is surprising that
a change of architecture solves all of them in the context of
symmetric auctions. We would also like to emphasize that
both RegretNet and EquivariantNet are capable of learning
auction with near optimal revenue and negligible regret. It is
not possible to significantly outperform RegretNet on these
aspects. The way we improve over RegretNet is by having
better sample efficiency, out-of-setting generalization and by
ensuring that our solutions are exactly equivariant.

The paper decomposes as follows. Section 2 introduces
the standard notions of auction design. Section 3 presents
our permutation-equivariant architecture to encode symmet-
ric auctions. Finally, Section 4 presents numerical evidence
for the effectiveness of our approach.

Related work

Auction design and machine learning. Machine learning
and computational learning theory have been used in sev-
eral ways to design auctions from samples of bidder valua-
tions. Some works have focused sample complexity results
for designing optimal revenue-maximizing auctions. This
has been established in single-parameter settings (Dhang-
watnotai, Roughgarden, and Yan 2015; Cole and Rough-
garden 2014; Morgenstern and Roughgarden 2015; Med-
ina and Mohri 2014; Huang, Mansour, and Roughgarden
2018; Hartline and Taggart 2019; Gonczarowski and Nisan
2017; Guo, Huang, and Zhang 2019), multi-item auctions
(Dughmi, Han, and Nisan 2014; Gonczarowski and Wein-
berg 2018), combinatorial auctions (Balcan, Sandholm, and
Vitercik 2016; Morgenstern and Roughgarden 2016) and al-
location mechanisms (Narasimhan and Parkes 2016). Ma-
chine learning has also been used to optimize different as-
pects of mechanisms (Lahaie 2011; Diitting et al. 2015). All
these aforementioned differ from ours as we resort to deep
learning for finding optimal auctions.

Auction design and deep learning. While Duetting et al.
(2019) is the first paper to design auctions through deep
learning, several other paper followed-up this work. (Feng,
Narasimhan, and Parkes 2018) extended it to budget con-
strained bidders, (Golowich, Narasimhan, and Parkes 2018)
to the facility location problem. Tacchetti et al. (2019) built
architectures based on the Vickrey-Clarke-Groves auctions.



Recently, Shen, Tang, and Zuo (2019) and Duetting et al.
(2019) proposed architectures that exactly satisfy incen-
tive compatibility but are specific to single-bidder settings.
In this paper, we aim at multi-bidder settings and build
permutation-equivariant networks that return nearly incen-
tive compatibility symmetric auctions. Lastly, we would like
to mention that a concurrent work (Duetting et al. 2019) re-
ported in a recent version of their preprint achieving faster
training times by imposing similar symmetries in their archi-
tecture. However, they did not provide any details on their
approach nor exhibited their numerical performance.

2 Symmetries and learning problem in
auction design

We review the framework of auction design and the problem
of finding truthful mechanisms. We then present symmetric
auctions and similarly to Duetting et al. (2019), frame auc-
tion design as a learning problem.

Auction design and symmetries

Auction design. We consider the setting of additive auc-
tions with n bidders with N = {1,...,n} and m items
with M = {1,...,m}. Each bidder ¢ is has value v;; for
item j, and values the set S of items at ) | jes Vij- Such val-
uations are called additive, and are perhaps the most well-
studied valuations in multi-item auction design (Hart and
Nisan 2012, 2013; Li and Yao 2013; Babaioff et al. 2014;
Hart and Reny 2015; Daskalakis, Deckelbaum, and Tzamos
2017; Beyhaghi and Weinberg 2019).

The designer does not know the full valuation profile
V' = (vij)ien,jem, only the distribution from which they
are drawn. Specifically, the valuation vector of bidder 7 for
each of the m items ¥; = (v;1, . . . , Vi) is drawn from a dis-
tribution D; over R™ (V is then drawn from D := x;D;).
The designer asks the bidders to report their valuations (po-
tentially untruthfully), then decides on an allocation of items
to the bidders and charges a payment to them.

Definition 2.1 An auction is a pair (g,p) consisting of
a randomized allocation rule ¢ = (g1,...,9n) where
gi: R™™ — [0,1]™ such that for all V, and all j,
>:(9:(V)); < 1land payment rulesp = (p1, ..., pn) where
pZ: R7L><77L % R}() .

Given reported bids B = (b;;)ien je M, the auction com-
putes an allocation probability g(B) and payments p(B).
[9:(B)]; is the probability that bidder i received object j and
p;i(B) is the price bidder i has to pay to the mechanism. In
what follows, M denotes the class of all possible auctions.

Definition 2.2 The utility of bidder ¢ is defined by
ui(V;, B) = 370 [9:(B)]jvij — pi( B).

Bidders seek to maximize their utility and may report
bids that are different from their valuations. Let V_; be the
valuation profile without element ;, similarly for B_; and
D_; = Xj%;D;. We aim at auctions that invite bidders to
bid their true valuations through the notion of incentive com-
patibility.

Definition 2.3 An auction (g, p) is dominant strategy incen-
tive compatible (DSIC) if each bidder’s utility is maximized
by reporting truthfully no matter what the other bidders re-
port. For every bidder i, valuation v; € D;, bidb;" € D; and
bids B_; € D_;, (s, (Ui, B_;)) = (0, (b, B—y)).

Additionally, we aim at auctions where each bidder re-
ceives a non-negative utility.

Definition 2.4 An auction is individually rational (IR) if for
allie N, v; € D;and B_; € D_;,

In a DSIC auction, the bidders have the incentive to truth-
fully report their valuations and therefore, the revenue on
valuation profile V' is defined as Y-, p;(V). Optimal auc-
tion design aims at finding a DSIC auction that maximizes
the expected revenue rev := Ey.p[> 1, pi(V)].

Linear program. We frame the problem of optimal auc-
tion design as an optimization problem where we seek an
auction that minimizes the negated expected revenue among
all IR and DSIC auctions. Since there is no known character-
ization of DSIC mechanisms in the multi-bidder setting, we
resort to the relaxed notion of ex-post regret. It measures the
extent to which an auction violates DSIC, for each bidder.

Definition 2.5 The ex-post regret for a bidder i is the max-
imum increase in his utility when considering all his pos-
sible bids and fixing the bids of others. For a valuation
profile V, the ex-post regret for a bidder i is rgt;(V) =
maxg, erm W; (Ti; (Ui, Vo)) — wi(U; (U5, V_;)). In partic-
ular, DSIC is equivalent to

rgt;(V) =0, Vi € N. Io

Therefore, by setting (IC) and (IR) as constraints, find-
ing an optimal auction is equivalent to the following linear
program

(grglgM Evep [; pi(V) such that
(LP)
rgt;(V) =0 Vi e N, VYV € D,
ul(ﬁl, (171, Bfl)) >0, Vi € ]\77 U; € Di, B_,eD_;

Symmetric auctions. (LP) is intractable due to the expo-
nential number of constraints. However, in the setting of
symmetric auctions, it is possible to reduce the search space
of the problem as shown in 2.1. We first define the notions
of bidder- and item-symmetries.

Definition 2.6 The  valuation  distribution D s
bidder-symmetric if for any permutation of the
bidders ¢,: N = N, the permuted distribution
ow = Dcpb(l) X e X Dcpb(n) satifies: ow =D.

Bidder-symmetry intuitively means that the bidders are a
priori indistinguishable (although individual bidders will be
different). This holds for instance in auctions where the iden-

tity of the bidders is anonymous, or if D; = D; for all ¢, j
(bidders are i.i.d.).



Definition 2.7 Bidder i’s valuation distribution D; is item-
symmetric if for any items x1, . .., x,, and any permutation
o M = M, Di(Zp,1)s- -+ Ty ) = Dile1, . 1),

Intuitively, item-symmetry means that the items are also
indistinguishable but not identical. It holds when the distri-
butions over the items are i.i.d. but this is not a necessary
condition. Indeed, the distribution {(a,b,c) € U(0,1)®3 :
a+ b+ ¢ =1} is notiid. but is item-symmetric.

Definition 2.8 An auction is symmetric if its valuation dis-
tributions are bidder- and item-symmetric.

We now define the notion of permutation-equivariance
that is important in symmetric auctions.

Definition 2.9 The functions g and p are permutation-
equivariant if for any two permutation matrices 11, €
{0,1}*™ and 1I,, € {0,1}"™™, and any valuation
matrix 'V, we have g(I1, VII,,) = I,g¢(V)I,, and
p(Hn VHm) = an(v)-

Theorem 2.1 When the auction is symmetric, there exists
an optimal solution to (LP) that is permutation-equivariant.

Theorem 2.1 is originally proved in Daskalakis and Wein-
berg (2012) and its proof is reminded in Appendix B for
completeness. It encourages to reduce the search space in LP
by only optimizing over permutation-equivariant allocations
and payments. We implement this idea in Section 3 where
we build equivariant neural network architectures. Before,
we frame auction design as a learning problem.

Auction design as a learning problem

Similarly to Duetting et al. (2019), we formulate auction de-
sign as a learning problem. We learn a parametric set of
auctions (g%, p") where w € R? parameters and d € N.
Directly solving (LP) is challenging in practice. Indeed, the
auctioneer must have access to the bidder valuations which
are unavailable to her. Since she has access to the valuation
distribution, we relax (LP) and replace the IC constraint for
all V' € D by the expected constraint Ey..p[rgt;(V)] = 0
for all © € N.. In practice, the expectation terms are com-
puted by sampling L bidder valuation profiles drawn i.i.d.
from D. The empirical ex-post regret for bidder 7 is

rgt(w) = (R)
=57 max w0 @, V) —w (@ @7, v D)),
where " (4, B) := 27" [9"(B)]vij — py’(B) is the util-

ity of bidder ¢ under the parametric set of auctions (g, p*).
Therefore, the learning formulation of (LP) is

L n
) 1 w . —~
min, — > > pr (V) st rgt(w) =0,  (LP)
weRs (=1 i=1

Duetting et al. (2019) justified the validity of this reduc-

tion from (LP) to (LP) by showing that the gap between the
expected regret and the empirical regret is small as the num-
ber of samples increases. Additionally to being DSIC, the
auction must satisfy IR. The learning problem (@) does not
ensure this but we will show how to include this requirement
in the architecture in Section 3.

3 Permutation-equivariant neural network
architecture

We first show that fully connected architectures as Regret-
Net (Duetting et al. 2019) may struggle to find a symmetric
solution in auctions where the optimal solution is known to
be symmetric. We then describe our neural network architec-
ture, EquivariantNet that learns symmetric auctions. Equiv-
ariantNet is build using exchangeable matrix layers (Hart-
ford et al. 2018).

Feed-forward nets and permutation-equivariance

In the following experiments we use the RegretNet architec-
ture with the exact same training procedure and parameters
as found in Duetting et al. (2019).

Permutation-sensitivity. Given L bidders valuation sam-
ples {BW, ... . B} € R™™, we generate for each

bid matrix B all its possible permutations Bl('f)l'[ =

I1,, B1L,,, where II,, € {0,1}"*" and II,,, € {0, 1}™*™
are permutation matrices. We then compute the revenue for
each one of these bid matrices and obtain a revenue ma-
trix R € R™™*L_ Finally, we compute hg € RL where
[th‘ = maX;e[n!m!] Rij - minie[nym!} Rij. The distribu-
tion given by the entries of hy is a measure of how close the
auction is to permutation-equivariance. A symmetric mech-
anism satisfies hg = (0,...,0) . Our numerical investiga-
tion considers the following auction settings:

(I) One bidder, two items. The item values are drawn from
U[0,1]. Optimal revenue: 0.55 (Manelli and Vincent 2006).

(I) Four bidders, five items. Item values are drawn inde-
pendently from /[0, 1].

500K samples 1 Bidder, 2 Objects
1750
1500

5K samples 1 Bidder, 2 Objects
800

2 1250 2600
© 1000 ]
c c
400
g 750 g
ggg 200
| | P N 0 | [T T ———

Discrepancy Discrepancy

(a) (b)

Discrepency: 4 Bidders,5 Objects Potential Loss in Revenue

S
s £8
36
26 g
2 E
£ g
2 | 52
[}
0 ||| ||||I|| ..... . 20
0.0 0.1 02 03 04 05 = 1 2 3 4 5
Discrepancy Number of Bidders
(©) (d)

Figure 1: (a)-(b): Distribution hr when varying the number
of training samples (a) 500 000 (b) 5000 samples. (c): His-
togram of the distribution h g for setting (II). (d): Maximum
revenue loss as a function of n for setting (II1,,).

Figure 1 (a)-(b) presents the distribution of A of the op-
timal auction learned for setting (I) when varying the num-
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ber of samples L. When L is large, the distribution is almost
concentrated at zero and therefore the network is almost able
to recover the permutation-equivariant solution. When L is
small, h g is less concentrated around zero and therefore, the
solution obtained is non permutation-equivariant.

As the problem’s dimensions increase, this lack of
permutation-invariance becomes more dramatic. Figure 1 (c)
shows h g for the optimal auction mechanism learned for set-
ting (I) when trained with 5 - 10° samples. Contrary to (I),
almost no entry of hp is located around zero, they are con-
centrated around between 0.1 and 0.4 i.e. between 3.8% and
15% of the estimated optimal revenue.

Exploitability. To highlight how important equivariant so-
lutions are, we analyze the worst-revenue loss that the auc-
tioneer can incur when the bidders act adversarially. Indeed,
since different permutations can result in different revenues
for the auction, cooperative bidders could pick among the
n! possible permutations of their labels the one that min-
imized the revenue of the mechanism and present them-
selves in that order. Instead of getting a revenue of R,,; =
Ev~p [y i, pi(V)], the auctioneer would get a revenue of
Radv = Eyp [ming, {3, pi(I1,V)}]. The percentage

L. Ropt—Raaw
of revenue loss is given by [ = 100 X p;{%d We com-
op

pute [ in in the following family of settings:

(II1,,) n additive bidders and ten item where the item val-
ues are drawn from ¢[0, 1].

In Figure 1(d) we plot [(n), the loss in revenue as a func-
tion of n. As n increases, I(n) becomes more substantial
getting over the 8% with only n = 6 bidders.

While it is unlikely that all the bidders will collide and
exploit the bidding mechanism in real life, these investiga-
tions of permutation sensitivity and exploitability give us
a sense of how far the solutions found by RegretNet are
from being bidder-symmetric. The underlying real problem
with non bidder-symmetric solution has to do with fairness.
RegretNet finds mechanisms that do not treat all bidders
equally. Their row number in the bid matrix matters, two
bidders with the same bids will not get the same treatment.
If the mechanism is equivariant however, all bidders will be
treated equally by design, there are no biases or special treat-
ments. Aiming for symmetric auctions is important and to
this end, we design a permutation-equivariant architecture.

Architecture for symmetric auctions
(EquivariantNet)
Our input is a bid matrix B = (b;;) € R™ ™ drawn
from a bidder-symmetric and item-symmetric distribution.
We aim at learning a randomized allocation neural net-
work g¥: R™™ — [0,1]"*™ and a payment network
: R™*™ — RY,. The symmetries of the distribution
from which B is drawn and Theorem 2.1 motivates us to
model g% and p" as permutation-equivariant functions. To
this end, we use exchangeable matrix layers (Hartford et al.
2018) and their definition and properties are reminded in Ap-
pendix A. We now describe the three modules of the alloca-
tion and payment networks Figure 2.

The first network outputs a vector ¢ (B) € [0, 1]™ such
that entry ¢’ (B) is the probability that item j is allocated to
any of the n bidders. The architecture consists of three mod-
ules. The first one is a deep permutation-equivariant network
with tanh activation functions. The output of that module is
a matrix ) € R™*™. The second module transforms () into
a vector R™ by taking the average over the rows of (). We
finally apply the sigmoid function to the result to ensure that
q“(B) € [0, 1]™. This architecture ensures that ¢*'(B) is in-
variant with respect to bidder permutations and equivariant
with respect to items permutations.

The second network outputs a matrix h(B) [0, 1]>m
where 1} is the probability that item j is allocated to bid-
der 14 cond1t10ned on item j being allocated. The archi-
tecture consists of a deep permutation-equivariant network
with tanh activation functions followed by softmax activa-
tion function so that i | h{%(B) = 1. This architecture
ensures that ¢* equivariant with respect to object and bidder
permutations.

By combining the outputs of ¢* and h"’, we compute the
allocation function ¢g*: R"*™ — [0, 1]™*™ where g;,(B)
is the probability that the allocated item j is given to bidder
1. Indeed, using conditional probabilities, we have g;%(B) =

g’ (B)hi(B). g* is a permutation-equivariant function.

The third network outputs a vector p(B) € R%, where p;’
is the fraction of bidder’s ¢ utility that she has to pay to the
mechanism. Given the allocation function g*, bidder ¢ has
to pay an amount p; = p;(B) ZT:l 9;5(B)Bi;. Individual
rationality is ensured by having p; € [0, 1]. The architecture
of p" is almost similar to the one of ¢*. Instead of averag-
ing over the rows of the matrix output by the permutation-
equivariant architecture, we average over the columns.

Optimization and training

The optimization and training procedure of EquivariantNet
is similar to Duetting et al. (2019). For this reason, we briefly
mention the outline of this procedure and remind the details
in Appendix C. We apply the augmented Lagrangian method

to (R). The Lagrangian with a quadratic penalty is:
Lp(w; >‘) =

——ZZ (v +Z)\ rgt,(w g (Z 7‘/g\tl(w)>

¢=11ieN i€EN i€EN

where A € R" is a vector of Lagrange multipliers and
p > 0 is a fixed parameter controlling the weight of the
quadratic penalty. The solver alternates between the updates
on model parameters and Lagrange multipliers: w™" &
argmaxwﬁp(w"ld, )\old) and )\?,ew — A;}ld+p@l(wnequ)

4 Experimental Results

We first show the effectiveness of EquivariantNet in sym-
metric and asymmetric auctions. We then highlight its
sample-efficiency and ability to extrapolate to other settings.

Evaluation. In addition to the revenue of the learned auc-
tion, we also evaluate the empirical average regret over bid-
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Figure 3: Train/test revenue (a) and regret (b) as a function of
epochs for setting (I) for EquivariantNet. The revenue con-
verges to the theoretical optimum (0.55) and the regret con-
verges to 0. EquivariantNet recovers the optimal mechanism.

—

ders r/g\t = % > rgt;. We evaluate these terms by run-
ning gradient ascent on v} with a step-size of 0.001 for
{300,500} iterations (we test {100,300} different random
initial v} and report the one achieves the largest regret).

Known optimal solution. We consider single bidder multi-
item auctions where the optimal auction is known to be
symmetric. This includes independent private value auctions
such as (I) but, surprisingly, some item-asymmetric auc-
tion such as (IV) have also an optimal symmetric solution:
(IV) One bidder and two items where the item values are
independently drawn according to the probability densities
fi(r) =5/(1+x)%and f2(y) = 6/(1 + ). Optimal solu-
tion in Daskalakis, Deckelbaum, and Tzamos (2017).

The first two lines in Table 1 report the revenue and regret
of the learned mechanism for settings (I) and (IV). The rev-
enue is very close to the optimal one, and the regret is neg-
ligible. The learned auction may achieve a revenue slightly
above the optimal incentive compatible auction. This is pos-
sible because although small, the regret is non-zero.

Figure 3(a)-(b) presents a plot of revenue and regret as a
function of training epochs for the setting (I). We can see
that the revenue converges to the theoretical optimum while
the regret converges to zero on both the training and testing
set. EquivariantNet recovered the optimal mechanism.

Dist. rev rgt OPT
@ 0.551 0.00013  0.550

avy) 0.173 0.00003 0.1706
V) 03873 0.001 0.860

Table 1: Test revenue and regret found by EquivariantNet
for settings (I), (IV) and (V). For seeting (V) OPT is the op-
timal revenue from VVCA and AMAyy, families of auc-
tions (Sandholm and Likhodedov 2015). For settings (I) and
(IV), OPT is the theoretical optimal revenue.

Unknown optimal solution. Our architecture is also able
to recover a permutation-equivariant solution in settings for
which the optimum is not known analytically such as:

(V) Two additive bidders and two items where bidders
draw their value for each item from /[0, 1].

We compare our solution to the optimal auctions from the
VVCA and AMAy, 1, families of incentive compatible auc-
tions (Sandholm and Likhodedov 2015). The last line of Ta-
ble 1 summarizes our results. We can see that EquivariantNet
finds auctions that are competitive with previous methods.

Non-symmetric optimal solution. When the auction is
non symmetric, modeling the solution with permutation-
equivariant solutions can in principle lead arbitrarily bad
results. Nonetheless, in many cases, equivariant solutions
can approximate non equivariant optimal solution very well.
Here we show that EquivariantNet is capable of returning
satisfactory results in asymmetric auctions. (VI) is a setting
where there may not be permutation-equivariant solutions.
(VI) Two bidders, two items. The item values are indepen-
dently drawn according to the probability densities f1(x) =
A te M7 and fo(y) = Ay te 2, where Aj, Ay > 0.
Table 2 shows the revenue and regret of the final auctions
learned for setting (VI). When A; = Ao, the auction is sym-
metric, the revenue of the learned auction is very close to
the optimal revenue, with negligible regret. As we increase
the gap between \; and A5, the asymmetry becomes dom-



EquivariantNet RegretNet

Ao rev rgt revry rgty

0.01 037 0.0006 039 0.0003
0.1 041 0.0004 041 0.0007
1 0.86 0.0005 0.84 0.0012
10 398 0.0081 396 0.0056

Table 2: Test revenue/regret for setting (VI) when varying
A2 (A1 = 1). revp and rgtp are computed with RegretNet.

Generalization with 20 samples

- Training Loss RegretNet
0.75
0.50 Test Loss RegretNet

: Training Loss Equivariant Net
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Figure 4: Train and test losses (the Lagrangian) for setting
(V) with 20 training samples. RegretNet and EquivariantNet
both achieve small losses on the training set, only Equivari-
antNet is generalizes to the testing set.

inant and the optimal auction does not satisfy permutation-
equivariance. We remark that our architecture does output a
solution with near-optimal revenue and small regret.

Sample-efficiency. Our permutation-equivariant architec-
ture exhibits solid generalization properties when compared
to the feed-forward architecture RegretNet. When enough
data is available at training, both architectures generalize
well to unseen data and the gap between the training and test
losses goes to zero. However, when fewer training samples
are available, our equivariant architecture generalizes while
RegretNet struggles to. This may be explained by the induc-
tive bias in our architecture. We demonstrate this for auction
(V) with a training set of 20 samples and plot the training
and test losses as a function of time (measures in epochs)
for both architectures in Figure 4.

QOut-of-setting generalization. The number of parameters
in our permutation-equivariant architecture is independent
from the input’s size. Given an architecture that was trained
on samples of size (n, m), it is possible to evaluate it on sam-
ples of any size (n’, m’) (More details in Appendix A). This
evaluation is not well defined for feed-forward architectures
where the dimension of the weights depends on the input
size. We use this advantage to check whether models trained
in a fixed setting perform well in totally different ones.

(«) Train an equivariant architecture on 1 bidder, 5 items
and test it on 1 bidder, n items for n = 2 - - - 10. All the items
values are sampled independently from /[0, 1].
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Figure 5:Generalization revenue of EquivariantNet in exper-
iment («) and (3). Each baseline point is computed using a
RegretNet architecture trained from scratch.

() Train an equivariant architecture on 2 bidders, 3 ob-
jects and test it on 2 bidders, n objects for n = 2---6. All
the items values are sampled independently from ¢/[0, 1].

Figure 5 (a)-(b) reports the test revenue that we get for dif-
ferent values of n in («) and () and compares it to the em-
pirical optimal revenue. Surprisingly, our model does gener-
alize well. It is worth mentioning that knowing how to solve
a larger problem such as 1 x 5 does not automatically result
in a capacity to solve a smaller one such as 1 x 2; the gen-
eralization does happen on both ends. Our approach looks
promising regarding out of setting generalization. It gener-
alizes well when the number of objects varies and the num-
ber of bidders remain constants. However, generalization to
settings where the number of bidders varies is more difficult
due to the complex interactions between bidders. We do not
observe good generalization with our current method.

Conclusion

We explored the effect of adding domain knowledge in
neural network architectures for auction design. We built
a permutation-equivariant architecture to design symmetric
auctions and highlighted its multiple advantages. It recovers
several known optimal results and provides competitive re-
sults in asymmetric auctions. Compared to fully connected
architectures, it is more sample efficient and is able to gen-
eralize to settings it was not trained on.

Our architecture presents some limitations. It assumes
that all the bidders and items are permutation-equivariant.
However, in some real-world auctions, the item/bidder-
symmetry only holds for a group of bidders/items. More ad-
vanced architectures such as Equivariant Graph Networks
(Maron et al. 2018) may solve this issue. Another limitation
is that we only consider additive valuations. An interesting
direction would be to extend our approach to other settings
as unit-demand or combinatorial auctions.
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