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This work seeks to understand the emergent nature of mathematical activity mediated by
learners’ engagement with multiple artifacts. We explored the problem solving of two learners as
they aimed to make sense of fraction division by coordinating meanings across two artifacts, one
being a physical manipulative and the other a written expression of the standard algorithm. In
addressing the question, “How do learners make sense of and coordinate meanings across
multiple representations of mathematical ideas?” we took an enactivist perspective and used
tools of semiotics to analyze the ways they navigated the dissonance that arose as they sought to
achieve harmony in meanings across multiple representations of ideas. Our findings reveal the
value of such tool-mediated engagement as well as the complexity of problem solving more
broadly. Implications for learning mathematics with multiple artifacts are discussed.
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Hiebert and Grouws (2007) synthesized evidence from a number of studies to argue that the
conceptual learning of mathematics is associated with teachers’ and students’ “explicit attention
to the development of mathematical connections among ideas, facts, and procedures” (p. 391).
Much research has been done regarding the ways in which teachers can support students’
engagement with multiple representations. What is less well understood is the process by which
multiple representations of a concept can be leveraged and connected in order to contribute to
learners’ meanings of the referent of those representations.

Findings from an enactivist analysis of strategy development in mental mathematics contexts
suggest that the nature of the processes at play are dynamic, emergent, and contingent on “an
ongoing loop” (Proulx, 2013, p. 319) of interactions between the problem and the solver(s).
Since sense making results from problem solving, and since problem solving is dynamic,
emergent, and contingent (Proulx, 2013), it follows that sense making should be, as well.
Moreover, sense making is inextricably linked to the material and symbolic tools that mediate its
learning (Artigue, 2002; Verillon & Rabardel, 1995). Following this line of inquiry, we consider
what an enactivist analysis might reveal about the processes at play in mathematical meaning
making as it develops through the complex interplay of signs and meanings (Maffia and Maracci,
2019) associated with learners’ engagement with multiple representations. Thus, this work seeks
to address the following question: “How do learners make sense of and coordinate meanings
across multiple representations of mathematical ideas?”” We do so through an analysis of the
mathematical activity of two learners as they aim to make sense of fraction division mediated by
two representations: the flip-and-multiply algorithm for fraction division and a physical
manipulative designed for learners’ engagement with fraction concepts.

Theoretical Framework
This study is grounded in the enactivist theory of cognition, which asserts that: “1)
perception consists in perceptually guided action, and 2) cognitive structures emerge from the
recurrent sensorimotor patterns that enable action to be perceptually guided” (Varela, Rosch, &



Thompson, 1992, pp. 172-173). Thus, cognition, or active knowing, is not some “outward
manifestation of some inner workings” (Davis, 1995, p. 4), but rather a dynamically co-emergent
phenomena that arises and is brought forth (Maturana & Varela, 1987) through one’s goal-
directed, “embodied (enacted) understandings” (Davis, 1995, p. 4). In Davis’s (1995) adaptation
of Maturana and Varela’s (1987) words, “Knowing is doing is being” (p. 7).

By viewing knowing in the interactivity of learners, the enactivist perspective offers an
alternative to a view of knowledge as the static accumulation of facts and ideas that one may
select in response to a problem at hand. Instead, “to know is to respond adequately; it is a
situated doing that emerges through the interaction of the organism (e.g., a student, a researcher)
and [their] environment” (Maheux & Proulx, 2015, p. 212). But fit is more than that. We use
harmony to emphasize that fit is an internally “felt dimension of experience” (Petitmengin, 2017,
p. 144) that drives problem solving. This drive toward a harmony of goals and actions is
theoretically linked to the concepts of structural coupling and structural determinism.

Structural coupling is the process associated with the Darwinian concept of co-evolution,
whereby an organism and its environment co-adapt through recursive and repeated inter-actions
(Maturana & Varela, 1987). As they do so, the organism and environment experience mutual
structural changes so that the fit between them is dynamic. Moreover, this fit is contingent upon
unique histories of recurrent interactions and structural changes (Maturana 1988, as cited in Reid
& Mgombelo, 2015, p. 175) that are determined by the organism’s own structure, a phenomenon
referred to as structural determinism (Maturana & Varela, 1987). Proulx’s (2013) analysis of
students’ emergent problem-solving activity is committed to this concept as it assumes that a
problem solver’s strategies are determined by the solver’s own way of making sense.

We take this enactivist perspective on mathematical activity as knowing-in-action to
investigate the emergent problem solving of two learners as they aim to understand fraction
division by finding harmony in meanings across what for them are recurring and competing
interpretations in the various elements of two artifacts: 1) the flip-and-multiply algorithm for
fraction division, and 2) a manipulative that one of them designed for engagement with fraction
concepts. Maffia and Maracci’s (2019) concept of semiotic interference is used to analyze these
dynamic, emergent, and contingent (Proulx, 2013) interactions with the two artifacts. This
concept, framed within the Theory of Semiotic Mediation (Bartolini Bussi & Mariotti 2008)
relies on Peirce’s (1998) triad of sign relations to analyze how meanings emerge from the
translation of personalized signs into new signs and eventually into generalized mathematical
signs.

According to Peirce, a sign is a triadic relationship among a representamen (the perceivable
part of a sign), an object (what the sign stands for), and an interpretant, which Presmeg (2006)
describes as follows: the “interpretant involves meaning making: it is the result of trying to make
sense of the relationship... [between] the object and the representamen” (p. 170, emphasis
added). Thus, semiotic interference becomes useful for analyzing the process of meaning making
across multiple artifacts whenever “the interpretant of a sign whose object belongs to the context
of [one] artifact is translated by a student in a new sign whose object belongs to the context of
another artifact” (p. 3-58). That is, as the two learners aim to “make meaning” by negotiating
their interpretations of signs across the orange and the algorithm, each of the artifacts affords
them with differing semiotic potentials (Bartolini Bussi & Mariotti, 2008) for the emergence of a
relationship between the personal use of the artifact and mathematical meanings associated with
the artifact and its use. Semiotic interference provides a window into their chaining of signs
(Presmeg, 2006; Bartolini Bussi & Mariotti, 2008) as they negotiate these interpretations in order



to converge upon a meaning for fraction division. In this sense, meaning making is understood as
emergent phenomena arising from this “complex interplay of signs” (Maffia & Maracci, 2019, p.
3-57). We thus frame the activity of problem solving from an enactivist perspective and leverage
tools of semiotics to depict the evolution of meaning making to better understand how learners
make meaning through the coordination of multiple representations of mathematical ideas.

As a critical point of clarification, “representation” in the Peircean sense is a thing perceived
by a learner, and that is the meaning we will be using throughout the remainder of this paper.
What the field of mathematics education terms a “representation” (e.g., tables, graphs, symbolic
expressions) is what we will refer to as an “artifact.”

Methodology

This project is part of a larger study that aims to test and refine the hypothesis that a
pedagogically genuine, open-ended, and iterative design experience centered on the Making
(Halverson & Sheridan, 2014) of a physical manipulative for mathematics learning would be
formative for the development of practicing and prospective mathematics teachers’ (PMTs’)
inquiry-oriented pedagogy. Data collection for this study took place across several semesters of a
graduate-level mathematics course for PMTs at a mid-sized university in the northeastern United
States. For the project reported here, we took a revelatory case study approach (Yin, 2014) in
order to determine what an enactivist perspective might reveal about the phenomena involved in
the problem-solving activity of “Dolly” and “Lyle” (both pseudonyms).

Dolly was a participant in this larger study; she is a participant-researcher on this project. She
calls the tool she designed a “fraction orange” (Figure 1, left), and in designing it, she aimed to
create a tool with affordances for the exploration of fraction concepts. The orange is a sphere
partitioned into two hemispheres; one hemisphere is further partitioned into fourths, eighths, and
sixteenths of the whole; the other into sixths and eighteenths.

Figure 1: The Orange and the Algorithm

The manipulative Dolly created and the thirteen-minute problem-solving interview she
conducted with Lyle are artifacts of her participation in the larger study. They also constitute the
data for this case study. Three researchers on this project, including Dolly, enacted
interpretations of data both individually and in collaborative dialogue. Dolly’s role as both
participant and researcher offers validation by permitting a strengthening of the interrelationship
between a research context and its participants.

We undertook the analysis by transcribing the recorded video and analyzing the “verbal
utterances through line-by-line analysis of the transcripts; stud[ying] body language and
intonation by viewing video tapes...; and inferr[ing] mathematical forms and objects from the
participants’ actions, utterances and notations” (Simmt, 2000, p. 154). Specifically, we focused
our analysis on the particular interactions where Dolly and Lyle aimed to coordinate meanings
for fraction division in the manipulative and in an algorithm that presumably substantiates those
meanings (Malafouris, 2013). As we take our learners’ activity to be driven by an evolutionary
imperative to maintain harmony through their problem solving, we used the enactivist concepts
of structural coupling and structural determinism to analyze these inter-actions. And in order to



analyze their emergent and recursive processes of meaning making across multiple
representations, we employed Peirce’s (1998) triad of sign relations and Maffia and Maracci’s
(2019) concept of semiotic interference to refine the analysis.

Results

Given the duration and non-linearity of Dolly and Lyle’s problem solving, space constraints
only permit us to share selected excerpts uniquely revealed by enactivist and semiotic lenses that
elucidate critical moments in their emergent mathematical activity. As a note for the reader,
Dolly and Lyle only make use of the hemisphere of the Fraction Orange that is partitioned into
fourths, eighths, and sixteenths. In our analysis of their activity, unless otherwise indicated, all
fraction pieces are named as Dolly and Lyle do, that is, as if that hemisphere of the orange is the
whole.
Embarking on a path of problem solving

We set the stage for the presentation of these findings at the beginning of Dolly’s interview

with Lyle. Dolly poses the problem, 2 + %4, on paper alongside her fraction orange. Lyle chooses

the pen and paper, performs the flip-and-multiply algorithm: % + % = % X % = % = %, and declares

his answer to be 2. We interpret this application of the standard algorithm as a structurally
determined action informed by a lived history of structural coupling with traditional school
mathematics, where a knowing of fraction division as the execution of an algorithm and the
answer it yields was deemed good enough to “survive.” It constituted what Lyle needed to do to
achieve harmony within his mathematics learning environment.

Next, Dolly directs Lyle’s attention to the orange and asks, “Can you show me with this?”
With two artifacts affording them differing semiotic potentials, both Dolly and Lyle set off to
navigate a complicated interplay of signs literally at (their) hand. As we will observe, they
experience semiotic interference (i.e., meaning making through the enchaining of these signs) as
they pursue a non-linear path of problem-solving activity punctuated by moments of what we
refer to as either harmony’, a pleasing fit, or dissonance, a displeasing conflict or lack of fit. The
cognitive/affective underpinnings of these terms is intentional, because cognition from an
enactivist perspective is synonymous with effective action.

First dissonance

This exchange captures the first moment of dissonance as Lyle responds to the task Dolly
posed to him and as the two learners realize that their understandings of fraction division do not
harmonize across the two artifacts.

Lyle: A half divided by a quarter... <removes what he considers to be a half piece> a half
divided by a quarter <points to the fourth pieces inside of the half> is four.

Dolly: <pointing to the algorithm and the answer on the page> But that’s not what you got.

Lyle: Uh oh. <Lyle pulls out the fourth pieces from the half pieces and looks back and forth
between the paper and the orange. His gaze then shifts more rapidly between the two

' We use the word harmony in a sense similar to Mariotti and Montone’s (2020) concept of synergy, to denote “the
emergence of a phenomenon of semiotic interference [that] fosters the evolution of signs in an effective semiotic
chain,” which is an indication of a “deepening and weaving [of] the semiotic web” of mathematical meaning (p.
113).



artifacts, and the timbre of concern in his voice grows as he continues.> Uh oh. A half
divided by a quarter. Why doesn’t that work?

In analyzing this excerpt, we first point out that we are able to observe Lyle’s embodied
knowings of mathematics precisely because those actions are his knowings. They are not
inferences of a priori knowledge possessed internally; they are only “discovered in action”
(Malafouris, 2013, p. 174). In our observations of his interactions with the orange — selecting,
removing, gesturing, and communicating about pieces — we can see that the tool mediates new
affordances for Lyle’s actions. In this first moment, these new affordances evoke an emergent
sense of dissonance, which is evident in Lyle’s puzzled utterances and frantic glances — somatic
markers (Damasio, 1996, as cited in Brown & Coles, 2011) of his negative affective response to
seemingly conflicting interpretations of the same mathematical idea. We take these actions to
indicate that his knowing of fraction division as expressed through the algorithm is discordant
with his knowing of fractions and division as he perceives them in the fraction orange. This
experience of semiotic interference between the two representamens (the orange and the
algorithm) catalyzes an embodied drive to find harmonized meaning between them, an essential
motivation for their problem solving.

The messiness of multiple representations

This next exchange features an extended moment of semiotic interference that is a
particularly complicated one for Lyle and that we suggest speaks more broadly to the complexity
that is characteristic of meaning making through the connections of multiple representations
(Lesh et al., 1987; Hiebert & Grouws, 2007). Dolly and Lyle, motivated by a desire of sense
making, strive for harmony in meanings between the orange and the algorithm as they evaluate
the expression, 72 + Y.

Dolly: Here’s our half. <She picks up the half piece and confidently places it next to the
algorithm on paper. Lyle points to the piece and looks back to the paper> And how
many quarters go into a half?

Lyle: <Looking at the orange> Two. <shifting his attention to the paper> Four. <shifting his
attention back to the orange, and then again back to the paper> Is that half of a quarter,
though? It’s half <pointing to the %> on the paper in the expression, “/> ~ "> of a
quarter. <pointing to the % on the paper> It’s not half of a whole thing. <4s he says,
“whole thing,” he circles the “4” of the‘—i in the flip-and-multiply part of the equation on
his paper.>

Dolly: It’s a quarter of a half, right? <Lyle looks at the orange, back at the paper, and back at
the orange>

Lyle: <with uncertainty> Yeah?

Dolly: How many quarters of a half are there? <pauses and laughs> Why is this so hard?

Through Dolly and Lyle’s varied interpretations of both fractions and fraction division in
relation to the orange and the algorithm, we observe expressions of semiotic interference.
Through their words and gestures, we see Dolly begin by enacting her knowing (interpretant) of
“a half” (object) in the orange (representamen) and physically placing the piece on the paper, as
if to propose a common meaning between the two by creating a physical bridge between the
piece of the orange and the symbolic form of the fraction on paper. She interprets the posed
problem, 2 + 4, as “How many quarters go into a half?” — an interpretation that is for Dolly both
meaningful and actionable. Lyle, referencing the orange and evoking his own meanings of both
one quarter and one half, determines that two quarter pieces fit into a half piece and (correctly)



answers, “2.” Immediately thereafter, however, he shifts his attention to the algorithm on the
page, and possibly seeing %, he changes his answer to “4.” Doing so provokes dissonance in the

pair’s meaning-making process, since the outcomes of what Lyle had enacted with the orange
did not match what he had enacted with the algorithm. We conjecture that this shift from “2” to
“4” was provoked by Lyle’s prior knowing of fraction division as the execution of an algorithm,
and as a result, he seems to privilege the algorithm over the orange as an anchor of certainty
against which his own reasoning is measured.

Next, Lyle aims to resolve the dissonance he experienced as he produced two different
solutions to the posed problem. Turning back to the dividend (!2) and quotient (%4) in the
problem, he seems set on finding a harmonious interpretation of the “whole thing” (object)
across both artifacts and wonders yet again just what /2 + %4 means.

In our interpretation, Lyle’s actions are directed at finding harmony across three instances of
dissonance: 1) His expression, “Is that half of a quarter, though?”’ [emphasis added] corresponds
to a (mis)interpretation of fraction division as one fractional part of another; 2) Lyle’s ongoing
endeavor to identify the whole in his interpretations of fractions — including the utterance, “It’s
not half of a whole thing” as he repeatedly circles the “4” on the paper — is an indication that he
has yet to settle on what that whole is; and 3) His contemplative circling of the “4” could indicate
that the number is a perceived point of both importance and confusion resulting from the actions
of the flip-and-multiply algorithm. Dolly’s utterance, “Why is this so hard?” is an expression of
the messiness of engagement with multiple representations and what it feels like for her and Lyle
to find themselves amidst spirals of semiotic interference across different artifacts (the orange,
the algorithm), their wonderings about objects (e.g., What is a whole? What is division? What is
4/17?), and the relationships between artifacts and objects across signs (e.g., What is the whole
across these different representations?, What does %2 + %4, mean, and how does it relate to an
enactment of “How many quarters go into a half?”” with the orange?).

A crowning achievement

In this next excerpt, we present what appears to be a crowning achievement for Dolly and
Lyle in their search for harmony in meanings for fraction division mediated by two artifacts. By
enchaining signs across pieces of the orange and elements of the algorithm, more specifically by
translating interpretations of parts of the orange to interpretations of quantities in the algorithm
(i.e., 4/2 and 2 /1), they have just made sense of those quantities. Next, they engaged in similar
sense making in order to find interpretations for the ’2 and " in the posed problem, % + Va.

Dolly: <referring to the expression, %> + %> We wanna take a half of one and divide it by a
quarter of one, right?

Lyle: Yes.

Dolly: Take a half of one and divide — oh, that’s what it is!

Lyle: 1t’s 2.

Dolly: We wanna take this <points to the half piece of the orange> and see how many of
those <now pointing to quarter piece> fit in there <points to the half piece again. Then,
with confidence:> And that’s why our answer is 2.

Lyle: Yes.

Dolly: There’s still two halves in a whole, ‘cuz this <the expression, 7> = %> 1s in regards to
a whole. <rephrasing> This is in regards to 1. So a half of 1 divided by a quarter of 1 is

2, because 2 quarters fit into 1 half. Or <returning to the expression, g = %> 4 quarters fit
into 2 halves.



Lyle: Yeah.

In this excerpt, we observe the meaning Dolly makes of the expression, /2 + Y4, by
enchaining interpretations of /2 and 7 in light of the measurement meaning of division she and

Lyle enacted earlier, as well as the meanings they enacted forg and % in the algorithm. Next, Lyle
re-enacts the interpretation for himself.

Figures 2a - 2e: Lyle re-enacts Dolly’s understanding of “4/2 = 2/1.”

Lyle: <pointing to /> on the page:> So this is half of a whole <now pointing to ’ on the
page.> and this is a quarter of a whole. <Next, he turns his attention to the orange
(Figure 2a) and points to the half piece resting on the paper. He mutters quietly as if he’s
reassuring himself:> Half of a whole. <Next, he takes his pencil and points to each
quarter piece in a sweeping motion of the pencil across each piece:> Quarter of a whole
<Then, pointing to the two quarter pieces, he continues:> is 2. <Thus, he appears to be
establishing that the number of quarter pieces he’s identified — 2 — is the answer to the
posed problem, 7> =+ Y;>.

Dolly: <pointing to the 2 quarter pieces> Y eah, ‘cause there’s two quarters of a whole.

Lyle: Yeah, that makes sense.

Dolly: ‘Cause there’s two of these <She pulls out the quarter pieces and sets them next to the
half piece (Figure 2b).> for every one of these <she says as she touches the half piece>.

Lyle: <with a sigh, perhaps of relief> Yes.

Dolly: Or there’s four of these. <She takes the quarter pieces out of the other half piece. >

Lyle: <points to the half piece and extends Dolly’s thinking (Figure 2c)>: For two of those.

Dolly: <revoicing Lyle> For two of those. <As she speaks, she aligns all of the quarter pieces
as well as the second half piece on the page (Figures 2d and 2e).>

As if to establish his own meanings for fraction division and its coherence in representations
across artifacts as Dolly has just done, Lyle uses the pencil in his hand to re-enact a physical
bridge between the elements of the problem (72 + %) and the pieces of the orange. He utters
“half of a whole” as he points to the 2 on paper, and “quarter of a whole” as he points to the 7.
Then he repeats these phrases on the other side of the bridge he’s establishing: “half of a whole”
as he points to the half piece, and “quarter of a whole” as he points to the quarter piece. We
interpret this activity as a matching of his interpretation of half of a whole and quarter of a whole
in the symbolic representations (‘2 and Y4, respectively) to the representations he’s identified in
the orange (the half piece and the quarter piece, respectively). These embodied epistemic actions
seem to reify the harmony that has finally emerged from recursive interactions that culminate in
an enchaining of signs signifying the sense he and Dolly have made. This reification can be
viewed as a newly coupled structure of fraction division for Dolly and Lyle, one that offers a
stark contrast to the structurally determined response to fraction division that they enacted at the
outset of their problem-solving activity. That is, rather than performing a rote algorithmic



process as fraction division, they actually come to do (be/know) fraction division and enchain
multiple mathematical signs in order to do so.

Concluding Discussion

This work set out to address the question, “How do learners make sense of and
coordinate meanings across multiple representations of mathematical ideas?” We did so by
analyzing Dolly and Lyle’s sense making of fraction division through the complex interplay of
signs and meanings that emerged from their engagement with multiple representations. In
particular, we analyzed problem-solving interactions that were driven by an imperative to make
sense of the complicated ideas of fraction division mediated by both an algorithm and a
“Fraction Orange” manipulative. The course of their moment-to-moment activity beckoned us to
leverage an enactivist framework for its stance on interactions as knowing, and for its
appreciation of the doing of mathematics as a recursive, nonlinear, unfolding, embodied activity
influenced by a system’s lived history and its ongoing strive for fit.

In analyzing the iterative cycles of harmony and dissonance experienced by Dolly and Lyle,
the analytic concepts of structural coupling, structural determinism, semiotic interference, and fit
enabled us to discern valuable insights into learners’ activity as they navigated multiple
representations of mathematical ideas. In particular, structural coupling and determinism enabled
a particular focus on the co-constitution that takes place between the individual and their
environment through dialectic interactions that result in action-as-knowing. Dolly and Lyle’s
structural couplings with traditional school mathematics became apparent to us as they navigated
felt experiences of harmony and dissonance throughout their drive for fit. For quite a while, they
struggled to establish and maintain coherence in meanings across representamens (artifacts,
symbols), objects (mathematical ideas), and interpretants (their own meanings of relationships
between artifacts and ideas) at hand. Eventually, their dissonance gave way as they established
harmony by enchaining meanings across signs through interactions with multiple representations
of the complex network of mathematical ideas involved in fraction division. Ultimately, this
harmony made way for deep (and felt) ways of doing/knowing mathematics.

The implications of this finding for practice are in recommendations for pedagogical and
material resources that enable, support, and honor this sort of loosely structured problem-solving
activity to occur in mathematics classrooms. On this point, we wish to re-emphasize that it was
this activity that was fundamental to Dolly and Lyle’s learning and not their assimilation of a
path constructed by others. As Proulx (2013) reminds us, students’ paths of problem solving
emerge in interactions with the environment and are contingent on their particular mathematical
structures and interactions. “Average” paths and tools presumed viable for sense making simply
cannot be determined a priori. Rather, tools should be provided that are responsive to students’
creative and agentive efforts at sense making as they lay down their own path while walking
(Varela, 1987). And it is only in such walking that learners can define and refine their own
authoring of mathematical ideas and meanings, and find confidence as a mathematical doer with
membership in a classroom community.
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