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Abstract

Cooperation is often implicitly assumed when
learning from other agents. Cooperation implies
that the agent selecting the data, and the agent
learning from the data, have the same goal, that
the learner infer the intended hypothesis. Re-
cent models in human and machine learning have
demonstrated the possibility of cooperation. We
seek foundational theoretical results for coopera-
tive inference by Bayesian agents through sequen-
tial data. We develop novel approaches analyz-
ing consistency, rate of convergence and stabil-
ity of Sequential Cooperative Bayesian Inference
(SCBI). Our analysis of the effectiveness, sample
efficiency and robustness show that cooperation
is not only possible in specific instances but theo-
retically well-founded in general. We discuss im-
plications for human-human and human-machine
cooperation.

1. Introduction

Learning often occurs sequentially, as opposed to in batch,
and from data provided by other agents, as opposed to from
a fixed random sampling process. The canonical example
of sequential learning from an agent occurs in educational
contexts where the other agent is a teacher whose goal is to
help the learner. However, instances appear across a wide
range of contexts including informal learning, language,
and robotics. In contrast with typical contexts considered in
machine learning, it is reasonable to expect the cooperative
agent to adapt their sampling process after each trial, consis-
tent with the goal of helping the learner learn more quickly.
It is also reasonable to expect that learners, in dealing with
such cooperative agents, would know the other agent intends
to cooperate and incorporate that knowledge when updat-
ing their beliefs. In this paper, we analyze basic statistical
properties of such sequential cooperative inferences.
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Large behavioral and computational literatures highlight
the importance cooperation for learning. Across behavioral
sciences, cooperative information sharing is believed to be
a core feature of human cognition. Education, where a
teacher selects examples for a learner, is perhaps the most
obvious case. Other examples appear in linguistic prag-
matics (Frank & Goodman, 2012), in speech directed to
infants (Eaves Jr et al., 2016), and children’s learning from
demonstrations (Bonawitz et al., 2011). Indeed, theorists
have posited that the ability to select data for and learn
cooperatively from others explains humans’ ability to learn-
ing quickly in childhood and accumulate knowledge over
generations (Tomasello, 1999; Csibra & Gergely, 2009).

Across computational literatures, cooperative information
sharing is also believed to be central to human-machine inter-
action. Examples include pedagogic-pragmatic value align-
ment in robotics (Fisac et al., 2017), cooperative inverse
reinforcement learning (Hadfield-Menell et al., 2016), ma-
chine teaching (Zhu, 2013), and Bayesian teaching (Eaves Jr
et al., 2016) in machine learning, and Teaching dimension
in learning theory (Zilles et al., 2008; Doliwa et al., 2014).
Indeed, rather than building in knowledge or training on
massive amounts of data, cooperative learning from humans
is a strong candidate for advancing machine learning theory
and improving human-machine teaming more generally.

While behavioral and computational research makes clear
the importance of cooperation for learning, we lack mathe-
matical results that would establish statistical soundness. In
the development of probability theory, proofs of consistency
and rate of convergence were celebrated results that put
Bayesian inference on strong mathematical footing (Doob,
1949). Moreover, establishment of stability with respect
to mis-specification ensured that theoretical results could
apply despite the small differences between the model and
reality (Kadane et al., 1978; Berger et al., 1994). Proofs of
consistency, convergence, and stability ensure that intuitions
regarding probabilistic inference were formalized in ways
that satisfied basic desiderata.

Our goal is to provide a comparable foundation for sequen-
tial Cooperative Bayesian Inference as statistical inference
for understanding the strengths, limitations, and behavior of
cooperating agents. Grounded strongly in machine learning
(Murphy, 2012; Ghahramani, 2015) and human learning
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(Tenenbaum et al., 2011), we adopt a probabilistic approach.
We approach consistency, convergence, and stability using a
combination of new analytical and empirical methods. The
result will be a model agnostic understanding of whether and
under what conditions sequential cooperative interactions
result in effective and efficient learning.

Notations are introduced at the end of this section. Section 2
introduces the model of sequential cooperative Bayesian
inference (SCBI), and Bayesian inference (BI) as the com-
parison. Section 3 presents a new analysis approach which
we apply to understanding consistency of SCBI. Section 4
presents empirical results analyzing the sample efficiency
of SCBI versus BI, showing convergence of SCBI is consid-
erably faster. Section 5 presents the empirical results testing
robustness of SCBI to perturbations. Section 6 introduces
an application of SCBI in Grid world model. Section 7
describes our contributions in the context of related work,
and Section 8 discusses implications for machine learning
and human learning.

Preliminaries. Throughout this paper, for a vector 6, we
denote its i-th entry by 6; or 6(¢). Similarly, for a matrix
M, we denote the vector of i-th row by M(i,,)’ the vector
of j-th column by M(_;, and the entry of i-th row and j-th
column by M; ;y or simply M;;. Further, let r, ¢ be the
column vectors representing the row and column marginals
(sums along row/column) of M. Let e,, or simply e be the
vector of ones. The symbol A;.. (6, s) is used to denote the
normalization of a non-negative vector 6, i.e., e (0, 5) =

S

7 0 with s = 1 if absent. Similarly, the normalization of
matrices are denoted by .4¢, (M, 6), with “col” indicating
column normalization (for row normalization, write “row”
instead), and 6 denotes to which vector of sums the matrix
is normalized. The set of probability distributions on a finite
set X' is denoted by P(X), we do not distinguish it with
the simplex Al*!=1. The language of statistical models and
estimators follows the notations of the book (Miescke &
Liese, 2008).

2. The Construction

Teacher

H D

0o
Learner

Figure 1. Two agents and their knowledge before starting.

In this paper, we consider cooperative communication mod-
els with two agents, which we call a teacher and a learner.
Let H = {1,...,m} be the set of m hypotheses, i.e., con-
cepts to teach. The shared goal is for the learner to infer
the correct hypothesis i € H which is only known by the
teacher at the beginning. To facilitate learning, the teacher

passes one element from a finite data set D = {1,...,n}
sequentially. Each agent has knowledge about the relation
between H and D, in terms of a positive matrix whose
normalization can be treated as the likelihood matrix in a
Bayesian sense. Let T, L € Mat,, x., (RT) be the matrices
for teacher and learner, respectively.

In order to construct a Bayesian theory, the learner has
an initial prior 6, on H, which, along with posteriors
Ox(k > 1), are elements in P(H) = A™™ 1 = {0 €
R™ : 3~ 6(i) = 1}. Privately, the teacher knows the true
hypothesis h € H to teach. To measure how well a posterior
0 performs, we may view h as a distribution on 7, namely
§ =0, ¢ P(H), and calculate the L!-distance ||0y — §H1
on P(H) = Am~1 CR™.

We assume that H, D, T, L and 6, satisfy:
(i) There are no fewer data than hypotheses (n > m).

(ii) The hypotheses are distinguishable, i.e., there is no
A € Rsuch that T(_;) = AT (_; for any i # j, and so is L.

(iii) T is a scaled matrix of L, i.e., there exist invertible
diagonal matrices E; and E4 such that T = E; LE,. (Both
agents aware this assumption, though possibly neither know
the other’s matrix.)

(iv) 6y is known by the teacher.

Our model is constructed and studied under these assump-
tions (Sec. 3 and Sec. 4). We also studied stability under
violations of (iii) and (iv), where we assume that T and
teacher’s knowledge 6 about 6 is slightly different from
(some scaled matrix of) L and 6, (Sec. 5). Assumption
(iii) is a relaxation of the assumption of Bayesian inference
that T = L = M is the likelihood matrix. Practically, we
may achieve (iii) by adding to the common ground a shared
matrix M (e.g. joint distribution on D and ) and scaling it
to T and L. We may obtain M by taking the same ground
model or using the same statistical data (e.g. historical sta-
tistical records). In fact, with (iii), it does not affect the
process of inference whether M is accessible to agents.

In SCBI (see details in later this section), thanks to the
property that a matrix and its scaled matrices behave the
same in Sinkhorn scaling (Hershkowitz et al., 1988), the
pre-processings of T and of L lead to the same results under
(iii) and (iv). Thus assumption (iii) is equivalent to:

(iii’) T = L = M where M is a column-stochastic matrix.
We assume (iii*) is valid until we discuss stability.

In our setup, the teacher teaches in sequence. At each round
the teacher chooses a data point from D by sampling accord-
ing to a distribution. And the learner learns by maintaining
a posterior distribution on ‘H through Bayesian inference
with likelihood matrices not necessarily fixed.
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Formally, the teacher’s job is to select a sequence of data
(dr) ken by first constructing a sequence of random variables
(D) ken, then sampling each dj, as a realization of Dy. Each
dy, is given to the learner at round k. And the learner’s job
is to produce a sequence of posteriors (0y)reny on P(H).
To calculate 6y, learner can use the matrix L, the initial
prior 6y which is common knowledge, and the sequence of
data (d;);<x which is visible at round k. The learner find
each posterior by giving a function Sk ((d;)i<x; L, 6p) ' for
k > 0. We may further define Sy(2; L, 0g) = 6.

Since (dg)ken is generated by a sequence of random vari-
ables (Dy)xen, the function Sy can be treated as a func-
tion taking (D;);<j as inputs and producing a random
variable © as output. We call the distribution of © by
pr € P(P(H)) = P(A™1). The Si’s as functions of
random variables are called estimators.

Being a special case of the above framework, Bayesian in-
ference dealing with sequential data is a well-studied model.
However, there is no cooperation in Bayesian inference
since the teaching distribution and learning likelihood are
constant on time (the teacher side is typically left implicit).
To introduce cooperation following cooperative inference
(Yang et al., 2018), we propose Sequential Cooperative
Bayesian Inference (SCBI), which is a sequential version of
the cooperative inference.

2.1. Sequential Cooperative Bayesian Inference

Sequential Cooperative Bayesian Inference (SCBI) assumes
that the two agents—a teacher and a learner—cooperate
to facilitate learning. Prior research has formalized this
cooperation (in a single-round game) as a system of two
interrelated equations in which the teacher’s choice of data
depends on the learner’s inference, and the learner’s infer-
ence depends on reasoning about the teacher’s choice. This
prior research into such Cooperative Inference has focused
on batch selection of data (Yang et al., 2018; Wang et al.,
2019a), and has been shown to be formally equivalent to
Sinkhorn scaling (Wang et al., 2019b). Following this prin-
ciple, we propose a new sequential setting in which the
teacher chooses data sequentially, and both agents update
the likelihood at each round to optimize learning.

Cooperative Inference. Let Pr,(h) be the learner’s prior
of hypothesis h € H, Pr,(d) be the teacher’s prior of select-
ing data d € D. Let Pr(d|h) be the teacher’s likelihood of
selecting d to convey h and P, (h|d) be the learner’s poste-
rior for  given d. Cooperative inference is then a system
of two equations shown below, with Pr(d) and Pr(h) the
normalizing constants:

d|h) Pr,(h)

Pu(h]d) = 22 o Pr(h|d) Pry(d)

- Prldlh) = S

. (D)

'we may omit L and (or) # when there is no ambiguity.

Algorithm 1 SCBI, without assumption (iii")
== Teacher’s Part: == R
Input: T € Mat,, x., (R1), 00, h € H, (0 = 55)
Output: Share (dy,ds, ... ) to learner
forall: > 1do

sample d; ~ e (T<”9“1> ; 1).

(-h)

0; < T<"0i(;i1,>i) estimation of learner’s posterior
end for
== Learner’s Part: ==
Input: L € Mat, ., (RT), 6, (dy,d2,...)
Output: (0,061,062, ...) posteriors
for all © 2( 19d0>

6‘i «~— L L(dil,,)
end for

Note: T{™0i-1) 1,("0i-1) are the M(®*~1) in the text.

It is shown (Wang et al., 2019a;b) that Eq. (1) can be solved
using Sinkhorn scaling, where (r, ¢)-Sinkhorn scaling of
a matrix M is simply the iterated alternation of row normal-
ization of M with respect to r and column normalization of
M with respect to c. The limit of such iterations exist if the
sums of elements in r and c are the same (Schneider, 1989).

Sequential Cooperation. SCBI allows multiple rounds of
teaching and requires each choice of data to be generated
based on cooperative inference, with the learner updating
their beliefs between each round. In each round, based on
the data being taught and the learner’s initial prior on H as
common knowledge, the teacher and learner update their
common likelihood matrix according to cooperative infer-
ence (using Sinkhorn scaling), then the data selection and
inference proceed based on the updated likelihood matrix.

Precisely, starting from learner’s prior Sy = 0y € A™ ™1,
let the data been taught up to round k be (dy, ..., di—1) and
the posterior of the learner after round £ —1 be 0,1 =
Sk—1(dy,...,dg—1;6p) € P(H), which is actually pre-
dictable for both agents (obvious for £ = 1 and induc-
tively correct for £ > 1 by later argument). To teach, the
teacher calculates the Sinkhorn scaling of M given the
uniform row sums r_; = e, = (1,1,...,1)" and col-
umn sums c;_1 = n;_1 (to make the sum of ry_; equal
that of c;_1, which guarantees the existence of the limit in
Sinkhorn scaling), denoted by M(¢+~1), The teacher’s data
selection is proportional to columns of M(¢+~1)_ Thus let
M, be the column normalization of Mfer-1) by e, i.e.,
M), = A (M{-1) e,,). Then the teacher defines Dy,
using distribution (M},)(_ ) on set D and samples dj, ~ Dy,
then passes dy, to the learner.

On learner’s side, the learner obtains the likelihood matrix
M, in the same way as above and applies normal Bayesian
inference with datum dj, past from the teacher. First, learner
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takes the prior to be the posterior of the last round, 6, =
%ck,l, then multiply it by the likelihood of selecting dj

— the row of M, corresponding to dj, which results ék =
(M4)(q,, diag(0x—1). Then the posterior 6 is obtained
by row normalizing 0. Inductively, in the next round, the
learner will start with 0, and ¢, = n#. The learner’s
calculation in round k can be simulated by the teacher, so
the teacher can predict 8y, which inductively shows the
assumption (teacher knows 6j,_1) in previous paragraph.

The calculation can be simplified. Consider that the
vector c;_1, being proportional to the prior, is used in
My = %ol(M<Ck71>7em) = M<Ck71> (diag(nak—l))_l7
then 0 = (M<°k*1> (diag(n&k,l))_ldiag(@k,l))

(dk,-)
= %M@’“’l()d_ ) Furthermore, since M(¢t-1) is row nor-

k>
malized to e,,, each row of it is a probability distribution

on H. Thus Sk(dl, . ,dk) = Gk = nék_l = M<c(kd>k RE 2

The simplified version of SCBI algorithm is given in Algo-
rithm 1.

2.2. Bayesian Inference: the Control

In order to test the performance of SCBI, we recall the
classical Bayesian inference (BI). In BI, a fixed likelihood
matrix M is used throughout the communication process.
Bayes’ rule requires M to be the conditional distribution on
the set of data given each hypothesis, thus M = T = L is
column-stochastic as in assumption (iii’).

For the teacher, given h € H, the teaching distribution is
the column vector P, = M(_ ;) € P(D). This defines
random variable Dj. Then the teacher selects data via i.i.d.
sampling according to Pj,. The random variables (Dy)x>1
are identical.

The learner first chooses a prior 6y € P(H) (6o So
is part of the model, usually the uniform distribution),
then uses Bayes’ rule with likelihood M to update the
posterior distribution repeatedly. Given taught datum d,
the map from the prior § to the posterior distribution
is denoted by By(0) = e (Mg, )diag(#),1). Thus
the learner’s estimation over H given a sequential data
(di,...,dy) can be written recursively by Sy = 6y, and
Sk(dl, “e ,dk) = Bdk (Skfl(dl, N ,dkfl)). Thus, by in-
duction, Sy (dy, . ..,d;) = (Bg, © Ba,_, o+ -0 Bg, )(So).

3. Consistency

We investigate the effectiveness of the estimators in both
BI and SCBI by testing their consistency: setting the true
hypothesis h € H, given (Dy), (Sk) and 6y, we examine
the convergence (using the L!-distance on P(#)) of the

2See Supplementary Material for detailed examples.

posterior sequence (O) = (Sk(D1,...,Dyg)) as sequence
of random variables and check whether the limit is 6 as a
constant random variable.

3.1. BI and KL Divergence

The consistency of BI has been well studied since Bernstein
and von Mises and Doob (Doob, 1949). In this section, we
state it in our situation and derive a formula for the rate
of convergence, as a baseline for the cooperative theory.
Derivations and proofs can be found in the Supplementary
Material.

Theorem 3.1. [(Miescke & Liese, 2008, Theorem 7.115)]
In BI, the sequence of posteriors (Sy,) is strongly consistent
atf = O, for each h € H, with arbitrary choice of an
interior point 0y € (P(H))° (i.e. Og(h) > 0 forall h € H)
as prior.

Remark 1. For a fixed true distribution 5, strong consistency
of (Sk)ken is defined to be: the sequence of posteriors
Oy given by the estimator Si, as a sequence of random
variables, converges to 0 (as a constant random variable) al-
most surely according to random variables (Dy, ) en that the
teacher samples from. If the convergence is in probability,
the sequence of estimators is said to be consistent.

Remark 2. Theorem 3.1 also assumes that hypotheses are
distinguishable (Section 2). In a general theory of statistical
models, 0 is not necessarily &, for some h € H. However,
in BI, it is critical to have 0 = Op, since BI with a general
b P(H) is almost never consistent or strongly consistent.

Consistency—independent of the choice of prior 6 interior
of P(H)—guarantees that Bl is always effective.

Rate of Convergence. After effectiveness, we provide the
efficiency of BI in terms of asymptotic rate of convergence.

Theorem 3.2. In B, with § = Op, for some h € H,
let @k(h)(Dl, e ,Dk) = Sk(h|D1, cey Dk) be the h-

component of posterior given D1, . .., Dy, as random vari-

1 (F
ables valued in D. Then z log <1_®k®(;()h)

a constant ming zp, {KL(M(ﬂh), M(ﬂh/))} almost surely.
Remark 3. We call miny, 25 {KL(M(_p),M(_x)} the

asymptotic rate of convergence (RoC) of BI, denoted by
RO (M h).

> converges to

3.2. SCBI as a Markov Chain

From the proof of Theorem 3.1, the pivotal property is that
the variables D1, Do, ... are commutative in posteriors (the
variables can occur in any order without affecting the poste-
rior) thanks to commutativity of multiplication. However, in
SCBI, the commutativity does not hold, since the likelihood
matrix depends on previous outcome. Thus the method used
in BI analysis no longer works here.
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Because the likelihood matrix M, = M(¢*~1) depends on
the predecessive state only, the process is in fact Markov, we
may analyze the model as a Markov chain on the continuous
state space P(H).

To describe this process, let P(H) = A™~ be the space of
states, and let h € H be the true hypothesis to teach (@\ =
1), let learner’s prior be Sy = 0y € P(H), or say, the dis-
tribution of learner’s initial state is g = &g, € P(P(H)).

The operator V. In the Markov chain, in each round, the
transition operator maps the prior as a probability distri-
bution on state space P(H) = A™~! to the posterior as
another, i.e., U(h) : P(P(H)) — P(P(H)).

To make the formal definition of ¥(h) simpler, we need to
define some maps. Forany d € D, let T, : A™~1 — A1
be the map bringing the learner’s prior to posterior when
data d is chosen by the teacher, that is, Ty sends each nor-
malized vector 6 to Ty(0) = M%Zi) according to SCBL
Each Ty is a bijection based on the uniqueness of Sinkhorn
scaling limits of M, shown in (Hershkowitz et al., 1988).
Further, the map 7T} is continuous on A™~! and smooth
in its interior according to (Wang et al., 2019b). Con-
tinuity and smoothness of T,; make it natural to induce
a push-forward Tz, : P(A™"1) — P(A™"!) on Borel
measures. Explicitly, (7y. (1)) (E) = u(T; ' (E)) for each
Borel measure p € P(A™~1) and each Borel measurable
set E C A™~! Let 7 : P(H) — P(D) be the map of
teacher’s adjusting sample distribution based on the learner’s
prior, that is, given a learner’s prior # € A™~!, by defini-
tion of SCBI, the distribution of the teacher is adjusted

(n6)
to 7(6) = na(h’)l) = (nO(h))"H (T (0)(Rh),..., T (0)(h)).
Each component d of 7 is denoted by 74;. We can use 7 only
for 6y = &, in which case teacher can trace learner’s state.
Now we can define U (k) formally.

Definition 3.3. Given a fixed hypothesis h € H, or say
Sn € P(H), the operator ¥(h) : P(A™~ 1) — P(A™™1)
translating a prior as a Borel measure u to the posterior
distribution W(h)(u) according to one round of SCBI is
given below, for any Borel measurable set £ C A™ 1,

((h /Z” ;"

deD

d (Tax(p)) (0). ()

In our case, we start with a distribution 9 where 6 € P(H)
is the prior of the learner on the set of hypotheses. In each
round of inference, there are n different possibilities ac-
cording to the data taught. Thus in any finite round &, the
distribution of the posterior is the sum of at most n* atoms
(actually, we can prove n is exact). Thus in the following
discussions, we assume that p is atomic. The ¥ action on
an atomic distribution is determined by that of an atom:

n (no)

M
_ (1) 5
= E w0 (h (M<ne>)) 3

=1

W(h)(0)

Moreover, since the SCBI behavior depends only on the
prior (with fixed M and h) as a random variable, the same
operator W (h) applies to every round in SCBI. Thus we can
conclude that the following proposition is valid:

Proposition 3.4. Given h € H, let 0 = Op, the sequence
of estimators (Sk)ken in SCBI forms a time-homogeneous
Markov chain on state space P(H) with transition operator
U (h) characterized by Eq. (2) and Eq. (3).

Thanks to the fact that the SCBI is a time homogeneous
Markov process, we can further show the consistency.

Theorem 3.5 (Consistency). In SCBI, let M be a pos-
itive matrix. If the teacher is teaching one hypothesis
h (ie, 8 = 6, € P(H)), and the prior distribution
wo € P(A™™1Y) satisfies pog = 89, with Og(h) > 0, then
the estimator sequence (Sy) is consistent, for each h € H,
i.e., the posterior random variables (O)ren converge to
the constant random variable 0 in probability.

Remark 4. The assumption in Theorem 3.5 that 6y(h) > 0
is necessary in any type of Bayesian inference since it
is impossible to get the correct answer in posterior by
Bayes’ rule, if it is excluded in the prior at the beginning.
In practice, the prior distribution is usually chosen to be
1o = 8y with the uniform distribution vector in P(H), i.e.,
u=21(1,....,H)T e Am L

m
Rate of Convergence. Thanks to consistency, we can cal-
culate the asymptotic rate of convergence for SCBI.

Theorem 3.6. With matrix M, hypothesis h € H, and a
prior o = 6p, € P(A™1) same as in Theorem. 3.5, let
O denote a sample value of the posterior Oy, after k rounds
of SCBI, then

Jlim By, Elog (%)} —®(M;h) ()

(M- t ,
where R°(M; h) = minpp, KL ( LAy M(,,h/)) with
M = A(diag(M(_p))~"M). Thus we call R%>(M; h)

the asymptotic rate of convergence (RoC) of SCBI.

4. Sample Efficiency

In this section, we present some empirical results comparing
the sample efficiency of SCBI and BI.

4.1. Asymptotic RoC Comparison

We first compare the asymptotic rate of convergence (93°
for BI and R® for SCBI, see Theorems 3.2 and 3.6). The
matrix M is sampled through m i.i.d. uniform distributions
on A"~ 1 one for each column.

For each column-normalized matrix M, we compute
two variables to compare BI with SCBI: the probabil—

ity B := Pr (% Y ohen R(M;h) > + o hen R *(M ;h))
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and the expected value of averaged difference ¢ :=
E [ Yhen M h) = 537 cp RO(M: 1)].

Two-column Cases. Consider the case where M is of shape
n x 2 with the two columns sampled from A"~ ! uniformly
and independently, we simulated for n = 2,3, ..., 50 with

a size-10'° Monte Carlo method for each n to calculate 3
and €. The result is shown in Fig. 2(A)(B).

We can reduce the calculation of & to a numerical integral
€ = fanneIn (X1 %) dxdy — Inp — 2513

Since ‘P goes too close to 1 as the rank grows, we use
—In(1 —*B) to show the increasing in detail. *

More Columns of a Fixed Row Size. To verify the general
cases, we simulated )3 and € by Monte Carlo on matrices
of 10-row and various-column shapes, see Fig. 2(C)(D).
We sampled 108 different M of shape 10 x m for each
2 < m < 10. Empirical results show that ¢ decreases
slowly but ‘B3 still increase logistically as m grows.

Square Matrices. Fig. 2(E)(F) shows the square cases with
size from 2 to 50, simulated by size 108 Monte Carlo.

The empirical B is the mean of N (sample-size) i.i.d. vari-
ables valued 0 or 1, thus the standard deviation of a single
variable is smaller than 1. By Central Limit Theorem, the
standard deviation o() < N~/ (precision threshold).
So we draw lines y = N ~'/2 in each log-figure, but only in
one figure the line lies in the view area.

In all simulated cases, we observe that > 0 and 3 > 0.5,
indicating that SCBI converges faster than BI in most cases
and in average. It is also observed that SCBI behaves even
better as matrix size grows, especially when the teacher has
more choices on the data to be chosen (i.e., more rows).

4.2. Distribution of Inference Results

The promises of cooperation is that one may infer hypothe-
ses from small amounts of data. Hence, we compare SCBI
with BI after small, fixed numbers of rounds.

We sample matrices of shape 20 x 20 whose columns are
distributed evenly in A'® to demonstrate. Equivalently,
they are column-normalizations of the uniformly sampled
matrices whose sum of all entries is one.

Assume that the correct hypothesis to teach is h € P(H)
We first simulate a 5-round inference behavior, exploring all
possible ways that the teacher may teach, then calculate the
expectation and standard deviation of 6(h). With 300 matri-
ces sampled in the above way, Fig. 3 shows this comparison
between BI and SCBI.

3Details can be found in Supplementary Material.

“We guess an empirical formula —In(1 — ) ~ L In(z(z +
1)/(z — 1.5)) 4+ 0.1z — 0.3, see Supplementary Material.

Similarly, we extend the number of rounds to 30 by Monte
Carlo since an exact calculation on exhausting all possible
teaching paths becomes impossible. With sampling 500
matrices independently, we simulate a teacher teaches 2000
times to round 30 for each matrix, and the statistics are also
shown in Fig. 3. From Fig. 3, we observe that SCBI have
better expectation and less variance in the short run.

In conclusion, experiments indicate that SCBI is both more
efficient asymptotically, and in the short run.

5. Stability

In this section, we study the robustness of SCBI by setting
the initial conditions of teacher and learner different. This
could happen when agents do not have full access to their
partner’s exact state.

Theory. In this section, we no longer have assumption
(iii). Let T and L be matrices of teacher and learner (not
necessarily have (iii)). Let 6 and 6} be elements in P(H)
representing the prior on hypotheses that the teacher and
learner use in the estimation of inference (teacher) and in
the actual inference (learner), i.e., ug = 690T and ué = 5%.
During the inference, let u and pF be the distribution of
posteriors of the teacher and the learner after round &, and
denote the corresponding random variables by 9,{ and 0,5,
for all positive k£ and oo, where oo represents the limit in
probability.

Let D be a random variable on D, we define an opera-
tor V& . P(P(H)) — P(P(H)) similar to the ¥ in

Section 3. Let Ta(f) = L{,”), then d(WE(u))(0) =

S P(D = d)d(Tapt) (0):
deD

Proposition 5.1. Given a sequence of identical independent
D-valued random variables (D;);>1 following the uniform
distribution. Let g € P(P(H)) be a prior distribution
on P(H), and ppy1 = \P%Hl(”k)’ then iy converges, in
probability, to ), 4, a;0; where a; = B, [0(i)].

Remark 5. This proposition helps accelerate the simulation,
that one may terminate the teaching process when 67 is
sufficiently close to §j, since Prop. 5.1 guarantees that the
expectation of the learner’s posterior on the true hypothesis
h at that time is close enough to the eventual probability of
getting 0, i.e. EOL (h) ~ EOL (h).

Definition 5.2. We call E0L (h) = kli_)n;o E,, (6(h)) the

successful rate of the inference given T, L, 61 and 6{. By
the setup in Section 2, the failure probability, 1 — E6L (h),

is 2|[EOL — 6,||,, half of the 1-distance on P(#).

Simulations with Perturbation on Priors. We simulated
the square cases of rank 3 and 4. We sample 5 matrices (IM
to M) of size 3 x 3, whose columns distribute uniformly
on P({dy,dz,d3}) = A2, and 5 priors (61 to 5) in P(H),
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Figure 2. Comparison of RoC between BI and SCBI. (A), (C), (E): the comparison on 3 in blue and on € in red. (B), (D), (F): plotting
—In(1 —P). (A), (B): two-column case, number of rows from 2 to 50. Monte Carlo of 101 samples for each point on figure. (C), (D):
10-row case, number of columns from 2 to 10. Monte Carlo of size 108. (E), (F): square case, number of rows from 2 to 50. Monte Carlo
of size 108, The horizontal line in (F) is the theoretical threshold of precision by central limit theorem. For n > 17, MC provides 8 = 1
(J° > MR for all samples). From the figures, except in (C) where € decays slowly when column number grows, the two values & and P
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Figure 3. Comparison between BI and SCBI on 20 x 20 matrices:
Top: 300 points (matrices) of round 5 accurate value. Bottom: 500
points of round 30 using Monte Carlo of size 2000. Left: compari-
son on expectations of learner’s posterior on h. Right: comparison
on the standard deviations. Orange line is the diagonal.

used as 6. Similarly, we sample 3 matrices (M, M} and
M},) of size 4 x 4, and 3 priors (0], 65, 6%) from A3 in the
same way as above. In both cases, we assume h =1 € ‘H
to be the true hypothesis to teach.

Our simulation is based on Monte Carlo method of 10*
teaching sequences (for each single point plotted) then use

Proposition 5.1 to calculate the successful rate of inference.
For 3 x 3 matrices, we perturb ) in two ways: (1) take 6
around A" distributed evenly on concentric circles, thus 630
points for each 90T are taken. In this area, there are 84 points
lying on 6 given directions (60° apart, see Supplementary
Material for figures). (2) sample 6§ evenly in the whole
simplex P(H) = A? (300 points for each §%). For 4 x 4
matrices, we perturb 6 in two ways: (1) along 15 randomly
chosen directions in A? evenly take 21 points on each di-
rection, and (2) sample 300 points evenly in A3. Then we
have the following figure samples (for figures demonstrating
the entire simulation, please see Supplementary Material).
From the figures we see: 1. left pictures indicate that the
learner’s expected posterior on A is roughly linear to per-
turbations along a line. 2. right pictures indicate that the
learner’s expected posterior on h is closely bounded by a
multiple of the learner’s prior on true h. Thus we have the
following conjecture:

Conjecture 5.3. Given L = T = M and 0}, let h be the
true hypothesis to teach. For any € > 0, let 0% be learner’s
prior with a distance to 0} less than e. Then the successful
rate for sufficiently many rounds is greater than 1 — Cl,
where C = GAOR
Simulations with Perturbation on Matrices. We now in-
vestigate robustness of SCBI to differences between agents’
matrices. Let T and L be stochastic, and let L be perturbed
from T. The simulations are performed on the matrices M
to M5 mentioned above with a fixed common prior 6.
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Figure 4. From left to right: (A). Rank 3, M3 and 0;, 6§ is perturbed along six directions. (B). Rank 3, M3 and 6, sample 6§ uniformly
in A2, (C). Rank 4, M} and 6}, along 15 different directions. (D). Rank 4, M} and 6}, sample 6 uniformly in A3,

Let all matrices mentioned be column-normalized (this does
not affect SCBI since cross-ratios and marginal conditions
determines the Sinkhorn scaling results), we call the column
determined by the true hypothesis A (the first column in our
simulation) the target column (“tr. h” on Fig. 5), the column
which 3% uses (argmin column) the relevant column (“rel.
h”) and the other column the irrelevant column (‘“irr. h”).
Let T be given, and let L be obtained from T by perturbing
along the relevant / irrelevant column.

Without loss of generality, we assume that only one column
of the learner’s matrix L is perturbed at a time as other
perturbations may be treated as compositions of such.

For each T and each column A/, we apply 330 pertur-
bations on concentric circles around T (the disc), 90
perturbations preserving the normalized-KL divergence
(KL(e/n, Mec(L(_ny/L(_1),1)) used in R*) from the tar-
get column and 50 linear interpolations with target column.
Each point in Fig. 5 is estimated using a size-10* Monte
Carlo method using Proposition 5.1. From the graphs, we
can see that the successful rate varies continuously on per-
turbations, slow on one direction (the yellow strip crossing
the center) and rapid on the perpendicular direction (color
changed to blue rapidly).

6. Grid World: an Application

Consider a 3 x 5 grid world with two possible terminal goals,
A and B, and a starting position S’ as shown below. Let the
reward at the terminal position h; be R. Assuming no step
costs, the value of a grid that distanced k from h; is then
R x +* (in the RL-sense), where y < 1 is the discount factor.

A B
)
S

= =

Suppose the structure of the world is accessible to both
agents whereas the true location of the goal A, is only known
to a teacher. The teacher performs a sequence of actions to
teach h; to a learner. At each round, there are three available
actions, left, up and right. After observing the teacher’s
actions, the learner updates their belief on h; accordingly.

We now compare BI and SCBI agents’ behaviours under

this grid world. In terms of previous notations, the hypoth-

esis set H = {A, B}, the data set D = {left, up, right}.

Let the learner’s prior over H be 6, = (0.5,0.5) and the

true hypothesis h; be A, then at each grid, agents’
B

left ’Y(k_l) ,Y(’C‘Fl)
(unnormalized) initial matrix M = w |+*70 4D
right  \ y(E+D) ~(k—=1)

Assume both BI teacher and SCBI teacher start with grid S.
Based on M, the BI teacher would choose equally be-
tween left and up, whereas the SCBI teacher is more
likely to choose left as the teacher’s likelihood matrix

( 2/(3+37%)  292/(3+3+7)
T = 1/3 1/3

292/(3+37%)  2/(3+397)

scaling on M, assigns higher probability for left. Hence,
comparing to the BI teacher who only aims for the final
goal, the SCBI teacher tends to cooperate with the learner
by selecting less ambiguous moves towards the goal. This
point is aligned with the core idea of many existing models
of cooperation in cognitive development (Jara-Ettinger et al.,
2016; Bridgers et al., in press), pragmatic reasoning (Frank
& Goodman, 2012; Goodman & Stuhlmiiller, 2013) and
robotics (Ho et al., 2016; Fisac et al., 2017).

, obtained from Sinkhorn

Moreover, even under the same teaching data, the SCBI
learner is more likely to infer h; than the BI learner. For
instance, given the teacher’s trajectory {left, up}, the left
plot in Fig. 6 shows the SCBI and BI learners’ posteriors
on the true hypothesis h;. Hence, comparing to the BI
learner who reads the teacher’s action literally, the SCBI
learner interprets teacher’s data corporately by updating
belief sequentially after each round.

Regarding the stability, consider the case where the learner’s
discount factor is either greater or less (with equal proba-
bility) than the teacher’s by 0.1. The right plot in Fig. 6
illustrates the expected difference between the learner’s pos-
terior on h, after observing a teacher’s trajectory of length
2 and the teacher’s estimation of it.

As discussed in Sec 4.1, showing in Fig. 2, as the board
gets wider and the number of possible goals gets more
(i.e. the number of hypotheses increases), the gap between
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represented by crosses on figures which are not the center of disc) and whereas their colors depict the successful rate of inference. Left
two figures are perturbations on the irrelevant column. Right two figures are perturbations on the relevant column.
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Figure 6. The top plot demonstrates that both BI and SCBI con-
verge to the true hypothesis with SCBI having higher sample
efficiency. The bottom plot shows that both BI and SCBI agents
are robust to perturbations with SCBI relatively less stable.

posteriors of SCBI and BI learners will increase whereas the
expected difference between agents for the same magnitude
of perturbation will decrease. Thus, this example illustrates
the consistency, sample efficiency, and stability of SCBI
versus BI.

7. Related Work

Literatures on Bayesian teaching (Eaves & Shafto, 2016;
Eaves Jr et al., 2016), Rational Speech act theory (Frank
& Goodman, 2012; Goodman & Stuhlmiiller, 2013), and
machine teaching (Zhu, 2015; 2013) consider the problem
of selecting examples that improve a learner’s chances of

inferring a concept. These literatures differ in that they
consider the single step, rather than sequential problem,
that they do not formalize learners who reason about the
teacher’s selection process, and that they models without a
mathematical analysis.

The literature on pedagogical reasoning in human learning
(Shafto & Goodman, 2008; Shafto et al., 2012; 2014) and co-
operative inference (Yang et al., 2018; Wang et al., 2019a;b)
in machine learning formalize full recursive reasoning from
the perspectives of both the teacher and the learner. These
only consider the problem of a single interaction between
the teacher and learner.

The literature on curriculum learning considers sequential
interactions with a learner by a teacher in which the teacher
presents data in an ordered sequence (Bengio et al., 2009),
and traces back to various literatures on human and animal
learning (Skinner, 1958; Elman, 1993). Curriculum learn-
ing involves one of a number of methods for optimizing the
sequence of data presented to the learner, most commonly
starting with easier / simpler examples first and gradually
moving toward more complex or less typical examples. Cur-
riculum learning considers only problems where the teacher
optimizes the sequence of examples, where the learner does
not reason about the teaching.

8. Conclusions

Cooperation is central to learning in humans and machines.
We set out to provide a mathematical foundation for se-
quential cooperative Bayesian inference (SCBI). We pre-
sented new analytic results demonstrating the consistency
and asymptotic rate of convergence of SCBI. Empirically,
we demonstrated the sample efficiency and stability to per-
turbations as compared to Bayesian inference, and illus-
trated with a simple reinforcement learning problem. We
therefore provide strong evidence that SCBI satisfies basic
desiderata. Future work will aim to provide mathematical
proofs of the empirically observed efficiency and stability.
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A. Proof of Consistency Theorems
A.1. Proof of Theorem A.1

Theorem A.1. [Theorem 3.1,(Miescke & Liese, 2008, The-
orem 7.115)] In BI, the sequence of posteriors (Sg) is
strongly consistent at 0= Op, for each h € H, with arbitrary
choice of an interior point 0y € (P(H))° (i.e. 8o(h) > 0
forall h € H) as prior.

Proof. We follow the same line as discussed right after this
theorem in the paper. Let 6y = (6(1),00(2),...,00(n)) be
the original prior, and let 8 = (0x(1),0%(2),...,0k(m))
be the posterior after having k data points dy, ds, . .., dg.
Then for | < k and h € H, the posterior 6;(i) =
(Aec(diag(M(q,, 1)61—-1)) (i) by Bayes’ rule. In other
words,

_ My lfe-1)(@)]
doie M, 3 [0a-1)(5)]

This is a recursive formula, so we may move forward to
calculate ;(¢) from a smaller round index 6 (i) with ¢ < I:

0u(i) o)

[Hls:t M(ds,i)} O—1)(4)

0,(4) = Z;n:l [Hi:tM(dsvj)} 9(75_1)(]').

This recursion stops at prior 6y, so we have an explicit
expression of :

{Hle M(ds,i)] 0o (7)
it [Hle M(ds,j)] 0o(j)

01 (i) = ©)

It can be seen that for each hypothesis ¢, the denominator of
the k-th posterior on 7 are the same, so we have

[Hi:l M(ds,z')} 0o(1)
== . 7
{HSZl M(ds,h)} o (h)

O (1)
Ox(h)

So we define a(d) to be the frequency of the occurrence
of data d in the first k rounds of a episode. And then

O (4) 0o(2) - Mai)
% (wh)) e (%(h)) "o ul@s (M(d,m ) '
®)
Since we know that the data (d;) in the model is sampled
following the i.i.d. with distribution M(f’ h) then for a fixed
k, auy () follows the multinomial distribution with parameter
M(,,h) .

By the strong law of large numbers, O"‘k(i) — M) almost

surely as k — oo. Thus, when we rewrite the sample values

to random variable version,
1 Gk(i)> - <M(d i))
—lo — M log | ———=
kO (@)k(h) ; (40798 \ Mgy

That is,

(©))

1 Oui
- log ( G:éh))) — —KL (M_p), M) as. (10)

By the assumption in Section 2 of the paper that M has dis-
tinct columns, the KL divergence between the i-th column
and the A-th column is strictly positive, thus almost surely,
log < — —00, or equivalently,

6u(h) d > 0u(h)
any ¢ # h.

Therefore, 0, = (0x(1),0k(2),...,0k(m)) — J;, almost

~

surely, equivalently, BI at 6 is strongly consistent. O

— 0, for

A.2. Proof of Theorem 3.2
Theorem A.2 (Theorem 3.2). In BI, with 0= Oy, for some

h € H, let @k(h)(Dl, Ceey Dk) = Sk(h|D17 . ,Dk) be

the h-component of posterior given D1,...,Dy as ran-
1 Or(h

dom variables valued in D. Then T log (%)

converges to a constant mingsp, {KL(M(ﬂh), M(ﬂh/))}
almost surely.

Proof. Follow the previous proof. First recall that

1 O (1
2 log (@:((;L))) — —KL(M(_x), M(_;)) almost surely.
Let n = argmin,, {KL(M(_n),M(_;))}, then ©(n)
decays slowest among {©(7) : i # h} almost surely.

Therefore, for the sample values 6} ’s, asymptotically,

PR

01 (h) Ou(h) |~k O (h)
So when we are taking limits £ — oo, with probability one,

we have

1
— < 1 —
KL(M(i,h), M(fﬂl)) =~ khm 10g

! {19,@(;1)]

Ok (h)
1

< I — _ _
< khﬁngo KL(M(ﬂh),M(w)) + ’ log(m — 1)

= 7KL(M(,,h)a M(,,n))' (11)

O

A.3. Proof of Theorem 3.5

To prove Theorem A.3, we need the following lemmas.

L, {%(n)] S%lOg [Hk(h)} <110g {(m—l)@k(n)

|
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Lemma A.3.1. Given a fixed hypothesis h € H, for any
€ PA™),

E.(8(h)) < By (0(h)).

equality happens when M(Tzz{)h) = M(yg)h) for any 1, j and

12)

p-almost everywhere for x € A™ =1,

Remark 6. This lemma shows that the expectation of 6(h),
in each round is increasing, thus the sequence obtained from
all the rounds has an limit since the sequence is monotonic
and upper bounded by 1. To prove the theorem we, then just
need to show the limit is 1.

Proof. We start from the right hand side of Eq. 12. Let A
denote A™~! for short.

Ew(n)(u) (0(h))
- /A O(h)d(¥ (R)(1))(0)

In the calculation, the bijectivity of Ty and the formula
(Tas (1)) (E) = u(T; ' (E)) is used (and will be used repet-
itively later).

Consider that by definition of the bijection T, the sum
Soi_1Ta(0)(h) = nB(h) (T, is the d-th row of Sinkhorn
scaling by column sums n6). Thus

_ [ X TaO)(R)?
X ZZ:le(a)(h)

/ (it Tal0)(1)”
~ ] X TuO) ()

Ew () (0(h)) du(0)

\%

1(6)

S Ta(0)(W)dp(0)

d=1

6(h)du(6)

S|

n

D\D\ >

= EM(G(h»v (13)

where S Tu(O)(R)? > (S, Ta(@)()” by

Cauchy-Schwarz inequality, with equality achieved if and
only if T,;(8)(h) is constant on d. Therefore, the equal-
ity of Eq. (13) is achieved when M”é;")h) is constant on d,
pi-almost everywhere for x € A™1,

O

Oh)=1-----------®-------- Fo---
€
O(h)=b---------f--\------ Yoo
Lemma A.3.4
Ohy=a---F---------------\-----
Lemma A.3.2
O(h) =0 - .

Figure 7. Sketch of A™™!, for a general 0, its y-coordinate is
O(h). The levels are compatible with proof of Theorem A.3.
Lemma A.3.2 and Lemma A.3.4 are located where they contribute
to prove the vanishing of measure in the limit.

The following lemmas helps showing that the measure p,
of the complement of a neighborhood of §, € P(H) has
limit 0.

Lemma A.3.2. Given M, h € H and prior jig € P(A™1)
satisfying assumptions, we have

(14)

forany k > 0 and any h' # h.

Proof. 1t suffices to prove the k = 1 case for a general p
(then we have the rest by induction).
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15)

O

Lemma A.3.3. The operator W(h) preserves convex
combinations of probability measures, i.e., for positive
, ap with 22:1 a; = 1 and probability measures
M1y 2y -y K,

! !
h) (Z aiﬂi) = Zai‘lf h
im1 i=1

ai,ag, ...

Proof. By definition, for any measurable set £ in Borel o
algebra 2L,

n

() (1) (E) = / S (T (0))d(Tae (1)) 6).

Eg=1

where every summand commutes with convex combination.
O

Lemma A.3.4. Given M, h, and pg satisfying the assump-
tions, then forany 0 < a < b < 1,

Jim k({0 € A™ i a <0(h) <b}) =0 (16)

Proof. We first show a property of y on the set Ay, p) 1=
{0 e Am=1:a <0(h) <b}.

For any p1 supported on Ay, 3 (that is, p1(Aq5) = 1), there
is a positive number ¢, such that

Egz () (0(h)) —EL(0(h)) > €o. (17)

According to the calculation in Lemma A.3.1, especially the
first step of Eq. (13),

B2 (n) () (0(h))
D=1 Td(e)(h)Qd

S ) W)©)
A/ 2O S Ty T 00O
n L Tu(T.(0))(h)?
- [3n0) szs_l de(m((e))))((;) dute)  08)
Thus
Eg2(hyu) (0(h)) —Eu(0(h))
WS TU(TL(0))(h)?
- / 3 (0)=! — 0(h)du(6) (19)
AT S (L))

To show the claim, it suffices to find a positive
lower bound of the integrand of Eq. (19), J(¢) :=
n > a1 Ta(Te(0))(h)?
Yoo Te(0) =5 —0(h),forall0 € Ay, 4.
' iy Ta(Te (@) (1) !
Moreover, since A[, p is compact, we just need to show
7(9) > 0on A[a,b]~

With Cauchy-Schwarz inequality used in Lemma A.3.1, we
know

LS T ()
SURDBEUL S . RO

>3 (o) (ZTd(Tew))(h)) —0(h)

= > 1 0y - oin)
e=1
> T, (0)(h)  6(h)
— 0(h) —6(h) =0 (20)

J(60) vanishes if and only if both line 2 and line 5 has equal-
ity, and we will discuss why these can not happen simulta-
neously.
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The equality in line 5 requires that 7. (0)(h) are identical
for all e € D, or more precisely, the vector M<"9>h =
te,, has identical components. Further if equality in line
2 holds, the terms Ty (7. (6))(h) are the same for all d €
D. That is, by condition Y ._, T.(0)(h) = n#(h) and
S 1 Ta(Te(8))(h) = nT.(0)(h), 3(F) vanishes if and
only if T4(T.(0))(h) = Te(0)(h) = 0(h) forall d,e € D.

We analyze the Sinkhorn scaled matrices in detail: Let
M* = M be the scaled matrix whose e-th row is
T.(0), and let M(©) = M("7=(?) pe the scaled matrix
whose d-th row is T;(T.(#)). Since M* and each M(¢)
has the same h-th column, there are diagonal matrices
DE — diag(z nM{,, (e, ”M<e 2 M n)

( ,1) ’ Zz 1 (i, 2) B Z;Lzl MZiJl)
such that M(®) = M*D(e). Since M* and all M(®) are
row-normalized to e (i.e., their row sums are 1), we have

the following equations from the row sums:

M*
ZM ”) -1 Q1)
RV TN Z M

ZJ)

for all d, e € D representing the d-th row-sum of M(®).

Then we calculate (n — 1) 337, S(e,e) — >, 6(d,e).
On the right hand side, since &(d, e) = 1 for every d, e, we
have

(n—1))_&(e,e)—Y_&(d,e) = (n—

d#e

Dn—(n?-n) = 0.

Meanwhile,

— ZG(d, e)

e=1 d#e
m n n
=> = (ZmAM%m
=t ; M, ) \e=t
= oM ML,
d#e
m n
=> <Z<M( )~ M) )
Jj=1 Z M*ij d<e
=1
- 0 (22)

Therefore, M( = M( )for any d, e, and j. Therefore,
the rows of M* are 1dentlcal so the columns of M* are
all parallel (or say, collinear as vectors, i.e. one is a scalar-
multiple of the other) to each other.

By Sinkhorn scaling theory (Fienberg et al., 1970), the cross-
ratios are invariant. Since M is a positive matrix and has
distinct (non-parallel) columns, the 2 x 2 cross-ratios are

not identically 1, however, M* — a scaled matrix of M —
has cross ratios identically 1. Therefore our assumption that
J(6) = 0 cannot happen, and by compactness of Ay, ;) and
continuity of J(6), we can conclude that J(6) has a lower
bound €y > 0 on A, 5.

Therefore,

Eaeny o (0(h)) — E,(8(R)
~ [ 36)au(0)

A

> /ﬁodﬂ(e)

A
= Gou(A) = €. (23)

Thus we prove the property Eq. (17).
We prove the lemma by contradiction:

Suppose the limit does not exist or the limit is nonzero. In
either case, there exists a positive real number € > 0, such
that there are infinitely many integers, or say a sequence
(k;) such that

e ({a < (k) < B}) > e

We may assume k; contains no consecutive elements, i.e.,
ki+1 — k; > 1for all ¢, otherwise, we can always find a sub-
sequence satisfying this (for example, choose the sequence
of all odd or even k;’s, at least one of them is infinite, so we
have a sequence).

For a p-measurable set E, let u|g be the restriction of
1 on E, which can be treated as a measure on A by
setting the measure of the complement £ zero (but the
measure of A is no longer 1). We scale it to i|g
(u(E))~ 1| g to make it a probability measure, then j,, =
e, (Do) [ A + [0 = iy (Afa,u)] 1ok
Thus according to Lemma A.3.3,
Eg2(n) () (0(R))

i

= Nki(A[a b])E\IIQ(h) (i, \A )(e(h))
+(1 - ki(A[a-b ))E\Ilz(h)(#ki‘(A—A[a7b]))(e(h))

—Ala,p])"

> ks (Apap) By 1, ,, (0(R)) + €0)
( Hk; (A[a,b )) Hk \(A NS b])(e(h))
> eeo+Eg, (0(h)) (24)

By Lemma A.3.1, we can see that E#kﬂ[ﬂ(h)] >
E,, [(h)], and there is a sequence (k;) such that
E,, 0] > E, [0(h)] + ee. Thus E, s [6(h)] >

Hi,+2 .
E, [0(h)] + icoe, so lim E, [0(h)] = oo.
k—o00 k

Ko
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However, 6(h) < 1, we have E,, (6(h)) < 1 for all k,
which is a contradiction. Therefore, we know that Eq. (16)
holds. O

Theorem A.3 (Theorem 3.5). In SCBI, let M be a pos-
itive matrix. If the teacher is teaching one hypothesis
h (ie, 8 = 6, € P(H)), and the prior distribution
wo € P(A™™Y) satisfies o = 89, with Op(h) > 0, then
the estimator sequence (Sk) is consistent, for each h € H,
i.e., the posterior random variables (O)ren converge to

the constant random variable 0 in probability.

Some notions used in the proof are visualized in Fig. 7.

Proof. Let Zy be a random variable with sample space
A™~! such that the Law(Zy) = po. This is the initial
state in SCBI. The posteriors in the following rounds are
determined by the sequence of data taught by teacher, which
makes the posteriors random variables as well. Let Zj, be the
random variable representing the posterior after k-rounds
of SCBI, the law of Zj is given by Law(Zy) = pup =
[W(h)]* (110) according to the definition of W ().

The consistency mentioned in the theorem is equivalent to
that the sequence (Zy) converges to Z with Law(Z) = 1
in probability where 7i = §j.

We prove the theorem by contradiction. Suppose Zj — Z
in probability is not valid, i.e., there exists € > 0 such that

~

klim Pr(d(Zy, Z) > ¢€) (25)

does not exist or the limit is positive, where the metric d
on A™~1 is the Euclidean distance inherited from R™. In
either case, there is a real number C' > 0 such that

Pr(d(Zy,Z) > €) > C (26)
for a subsequence (Z/) of (Zy).

L 1-0(h)| _ 1—60(h) o
Let R = E,, { 9(,5) } = 90(0,5) Jleta = W;CH and

b=1—e. By Lemma A.3.4, there exists N > 0 such that
forall k > N,

ik (Apap) < C/2.

Therefore, for all the terms in (k') satisfying ¥’ > N,
pr ({0 : 8(h) < a}) > C/2. Furthermore,

1-6(h
= /{6:9(h)<a} { 0(h) )} Ay 6)
. [i-e]C
e
- 2RC> 13. 27)

However, by Lemma A.3.2,
_ &, th&i ]
g

h'#h

= R, (28)

which is a contradiction. Therefore,

~

lim Pr(d(Zy, Z) > €) = 0. (29)

k—o0

And the sequence of SCBI estimators is consistent at 9.

O

A.4. Proof of Theorem 3.6

Theorem A.4 (Theorem 3.6). With matrix M, hypothesis
h € H, and a prior py = 89, € P(A™™1) same as in
Theorem. A.3, let 0y, denote a sample value of the posterior
Oy after k rounds of SCBI, then

. 1 ek(h) _mS .

where R*(M; h) := minjj, KL <M?,,h)7 M%,,h')) with

M = A(diag(M(_p)""M). Thus we call 5*(M; h)
the asymptotic rate of convergence (RoC) of SCBL

Proof. We treat 6, as random variables, then

b ) - o ]

where

Wl = B, [KL (e, A ))]

We can get it from the following calculation (A represents
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the simplex A™~1):
9k+1(h')]>
E log | ———
“’““( g {9k+1(h)

- b

gmﬂdwﬂw>

o

A

— [ otox | 53| aCri (o
A d=1

N 10 [T

/
_Zi%@W%%P@W)()}

= n(h) nb(h’) Ta(6)(h)
+tog | 20 Y 0
_ / KL (L/V(M%efh)) A M) din

o)

Next, we show

Ox(h')\ _ ¢ f
lim E#k o ( .y = KL (M!, M ,), (32)

and then by a similar argument in the proof of Theorem A.2,
we can show the result in this theorem.

To show Eq. (32), we can make use of Eq. (31). By show-
ing that W,?/ converges to —KL (M% h) M?,,h’))’ we can
Ox(h')
Ok (h)
on the first k-terms, converges to —KL (M?ﬂh), M?,,h’))
as well.

conclude that Euk A lo ( ) , as the average of (Wih/)

To prove this, we need the following result from direct
calculation:

Lemma A.4.1. Given an X 2 positive matrix [a, b] with
columns as n-vectors a = (a1,as,...,a,) and b =
(b1,boy ... by) T with >0 a; = >Oi by = 1, consider

bi
the 2 x 2 cross-ratios: C; :== CR(1,2;1,i) = alb ,

a;01

KL(a,b) =log (31, a;C;) — >, a;log C;. With fixed
C; € (0,00) fori =1,2,...,

n, KL(a, b) is continuous
and bounded about a € A"~ 1,

Proof of Lemma A.4.1. The formula of KL(a,b) is from
direct calculation.

The KL-divergence is continuous and bounded since by the
formula, every part is continuous and bounded given the
restrictions on a and C;. L]

Now we continue to prove Theorem A.4:

By continuity of the KL-divergence given fixed cross-ratios,
for any € > 0, we find a number § > 0 such that for any
6 € A" with§(h) > 1 -4,

3
(33)
Further, according to Theorem A.3, and the boundedness
from Lemma A.4.1, we can find a number N > 0, such
that for any k > N, we have ui ({0 : 0(h) <1-6}) < C
where C' satisfies

¢ sup {KL(HedMTY), MM} < 50 34

ocA™mL

‘KL(J‘%C(MM >) /Vvec(M<( 9>/))> KL<M( .h)? ?7,}1’))

<

The expectation W,f/ can be split into two parts, W,:‘, =

—Ws — W, where
Ws = KL(/VveC(M<(7?Z)),,meC( (}i,))) duk(9), (35
6(h)>1—6
and
We = KL (e M), Mee M), ) dun(0). G6)
0(h)<1—35
Similarly, since pg 1is a probability measure,

KL (M?ﬂh), M’éﬂh,o — K- + K. where

K= / KL(M< ,L),Mgﬂh,)) dun(0), (37
0(h)>1-5
and
Ke= [ KL(ME, .M, ) dun(0).  (38)
o) <16

Then we have

<|Ks =W |+ [Wol + |K<|. (39)

}/
Wi + KL (M) M)

The choice of § can make a good estimate of the integral on
6(h) >1—24.

K =W |
€
< —(1-
< f1-0)
€
=. 40
< 3 (40)

For the other two terms, directly from condition Eq. (34),
we have |[K .| < §and |[IW.| < £, and hence | K> — W |+
K|+ W<l < 4
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R/ g §
Therefore, ;' converges to —KL (M(ﬂ ny M h,)).

O

A.5. An Example on a 2 by 2 Matrix
Let H = {hy,h2}, D = {d;,ds2}, and the shared joint

h1 ho
. . . d 0.3 0.3
distribution be M’P = 4} (0.1 0.3). Further assume

that the learner has uniform prior on H, i.e. Sy = 0y =
(0.5,0.5) and the true hypothesis given to the teachers is
h1. Inround 1, the BI teacher will sample a data from D
(83 5), which s
obtained by column normalizing M7 . On the contrast, the
SCBI teacher will form his likelihood matrix by first doing
(r1, c1)-Sinkhorn scaling on M, then column normalization
if needed, where r; = (1,1) and ¢; = (1, 1) based on the

uniform priors. The resulting limit matrix (with precision

of three decimals) is M} = (8:@22 8:2?2), which is already

according to the first column of M =

column normalized. Hence the SCBI teacher will teach
according to the first column of the M; = Mj. Suppose
that d; is sampled by both teachers. The posterior for the
BI learner is S?(d;) = (0.6, 0.4) (normalizing the first row
of M). The posterior for the SCBI learner is S5(d;) =
(0.643,0.366) (the first row of M).

Similarly, in round 2, the SCBI teacher would update his
likelihood matrix by first doing (r2, c2)-Sinkhorn scaling
on My, where ro = (1,1) and co = (0.643,0.366) x
2 = (1.268,0.732). The resulting limit matrix is M3} =

(0(575518 0524492). Then through column normalizing M3, a

updated likelihood matrix My = (Oo»éf 0.33

The SCBI teacher will teach according to the first column of
the My. Whereas the BI teacher will again sample another
data according to the the first column of M. Suppose that dy
is sampled for both teachers. The posteriors for B and SCBI
learners are S5(dy,d;) = (0.692,0.308) and S5 (d1,d1) =
(0.758, 0.242) respectively.

Although same teaching points are assumed, the SCBI
learner’s posterior on the true hypothesis h; is higher than
the BI learner in both rounds. Moreover, notice that the KL
divergence between hy and h is increasing as the likelihood
matrix is updating through the SCBI. This will eventually
lead much faster convergence for the SCBI learner.

B. Calculations about Sample Efficiency

Here we compute the expectation € mentioned in Sec. 4.1
of the paper, for matrices of size n x 2.

We first calculate the average of RoC for a particular matrix

0.67) is obtained.

M. For simplicity, let x = M(_qy and y = M(_»).

M
%
g
=

h
(KL(M(_1), M(_2)) + KL(M(_2), M(_1)))

NN~ N

- (KL(X7 Y) + KL(YaX))

= % (Z(Xl —yi)(lnx; — lnyi)> : (4D

i=1

To calculate that for SCBI, denote x/y = A,ec(v) the
normalization of vector v withv; = x; /y;.

1 2
5 2 KM h)

h=1
1 e e
o () e ()
2 [ n x/y )+ n y/x
5D S) E T D o
= - |- —2Inn—In—+1In —=
2 |n= Vi i
—ln&—&—ln Yi
X; — Xj
j=1
1 n . n
" Sl am YY) - @2
HIRA=RE =1 %

The simulation of ‘B is based on the above calculations. For
¢, the above expressions can be further simplified.

Given M = (x,y) uniformly distributed in (A"~1)2, with
measure v ®v where v is the measure of uniform probability
distribution on A™~!, we can calculate the expected value,

2
E [; > R(M; h)]
h=1

:%/Z(Xi
(

—yi)(lnx; — Iny;)dv(x)dv(y)

An—l)zizl
= n/x1 Inx;dr(x) — n /X1 Iny;dv(x)dv(y)
An—1 (An—1)2

1
n/ z(n—1)(1 —2)" ?Inzdr +
C

)
1,01

n// z(n—1)2(1 —2)" (1 — y)" % Inydady
0Jo

- n-t (43)
n
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Here we use the fact that

dx = (n —1)(1 —a)" 2

{0eAn—1:0(h)=a}

Furthermore, since integral on (A™~1)? with measure v @ v
is symmetric on x and y, we have

=~ X n—1
¢ = / In (Z yi> dv(x)dv(y) —lnn — - (44)
(An—1)2 i=1

In general, we calculate the integral in Eq. (44) by Monte
Carlo method since other numerical integral methods we
tried becomes slow dramatically as n grows. In particu-
lar, when n = 2, an expression related to the dilogarithm
Lis can be obtained (can be easily checked in Wolfram
software).

e Empirical data

(x(x +1)

Xt ) +0.1x-03

6] X A guess: %In

—=In(1-p)

w
L

0 10 20 30 40 50
Number of rows: n

Figure 8. A guess of the B values for each n together with empiri-
cal data

And we have an empirical formula to describe the relation
between 3 and n, shown in Fig. 8:

r— 1.5
— 1 _ —0.12+0.3 45
Bn,2) Hix(x—k 1)6 (45)

C. Theory and Empirical Data on Stability
C.1. Proof of Proposition 5.1

Proposition C.1 (Proposition 5.1). Given a sequence of
identical independent D-valued random variables (D;);>1
following uniform distribution. Let g € P(A™™1) be a
prior distribution on A™ ™, and pi11 = \Ilgk (k), then
Wi converges, in probability, to Zie?—t a;0;, where a; =
Ey, [00).

To show the above proposition, we need the following
lemma:

Lemma C.1.1. Given the conditions in Proposition C.1,
then for any k € Nand h € H,

By (0(h)) = By (6(R))- (46)

Proof. 1t suffices to show E,, ., (0(h)) = E,, (6(h)) for
any k.

BnO00) = [ 000a0mk1)(0)

= Z Dk(d)/

deD am-t

= [ S O mame)

deD

Ta(6)(h)dp (6)

:/Wﬂmwmhmwm»

O

Proof of Proposition C.1. We first show the following re-
sult:

For any € > 0, let
Ac={0eA™ 1 03i)<1—¢Vi=12...,m},

then lim pi(A:) =0.
k—o0

We prove this by contradiction. Suppose the limit does not
exist or is not 0, then there is a positive number C' and a
subsequence (pr, )ien such that g, (A.) > C for all 4.

We define a linear functional . (n) := E,f(6), where
f(0) =110 — u||3 withu = © the center of A™ L.
m

By definition, for a random variable following uniform dis-
tribution on D, £ (¥ (1)) = E, (Equn f(Ta(6))).

Consider that f is a strictly convex function, by Jensen’s
inequality, Eqp f(T4(0)) > f(Ea~pTu(0)) = f(0), with
equality if and only if T4(0) = 6 for all d € D, equivalently
by the assumptions on matrix L, § = d;, for some h € H.
(This is because we assume L have distinct columns, thus
not all 2-by-2 cross-ratios are 1, for any pair of columns.
however, after Ty all 2-by-2 cross-ratios are 1, indicating
the existence of degeneration on every pair of columns. This
can only happen when 0 = §;, for some h € H.)

Thus for any § € A, Equpf(Tu(d)) > f(6). As A,
is compact, there is a lower bound B > 0, such that
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Eapf(T4(0)) — f(8) > Bforall € A.. Thus

Lk

Am=1\A,

>

Am-T\A,
= "S/p(:uki

for all i € N and simply 2 (p+1) > £ (uy) for general k.

Therefore, £ (j11;) is unbounded as k — oo since there is at

H—l)

E%uﬂEWWMm+/Ew@ﬂEWWMm

)+ BC

€

least a BC > 0 increment at each k;.

However, by definition, f is bounded by m since \/m is the
diameter of A™~! under 2-norm, thus . (1) < m.

Such a contradiction shows that the opposite of our assump-

tion, lim pup(Ae) = 0, is valid.
k—o0

Consider that € is arbitrary, and in Lemma C.1.1 we show

ﬂmwh+/f@m%+30
A

that I£,,, 6(h) is invariant, thus py, approaches ., a;d;
with a; = E,, (i) in probability.

C.2. Empirical Data for Stability: Perturbation on

Prior

We sample 5 matrices of size 3 x 3, each of them are column-
normalized, and their columns are sampled independently

and uniformly on A?, listed below:

M,

M,

M3

M,

0.6559
= 0.1680
0.1760

0.2461
= 0.6785
0.0754

0.7286
= 0.0739
0.1974

0.4745
= 0.2898
0.2357

0.2207
= 0.3828
0.3965

0.5505
0.3359
0.1136

0.6600
0.0655
0.2746

0.1937
0.4786
0.3277

0.2024
0.7499
0.0477

0.5466
0.3807
0.0727

0.7310
0.0403
0.2287

0.4310
0.2325
0.3365

0.7620
0.1999
0.0382

0.5946
0.1313
0.2741

0.1605
0.5697
0.2698

(47)

And the 5 sampled priors are:

6, = (0.3333,0.3333,0.3333) "
6, = (0.1937,0.4291,0.3771)"
05 = (0.4544,0.0814,0.4641)"
0, = (0.5955,0.2995,0.1051)"
05 = (0.4771,0.0593,0.4636) " (48)

These names (including the rank 4 samples below) are over-
riding the previously defined identical symbols in this part
and in the corresponding subsection in the main paper. In
the 4 x 4 cases, we sample 3 matrices in the same way as in
3 x 3 case.

0.3916 0.2306 0.0460 0.0404
0.1408 0.6350 0.2139 0.2310

!

M, 0.2375 0.0275 0.1667 0.2412
0.2301 0.1068 0.5734 0.4874
0.3744 0.6892 0.0112 0.3200

M. — 0.3204 0.2320 0.4498 0.3530

L=

0.0291 0.0688 0.3865 0.0653
0.2761 0.0100 0.1526 0.2618

0.2885 0.0873 0.2319 0.1009
;L 0.0653 0.2239 0.0575 0.2584
M; = 0.5934 0.3276 0.2283 0.3925 “49)

0.0529 0.3612 0.4823 0.2482

And 3 corresponding priors are sampled:

9, = (0.2500,0.2500,0.2500,0.2500) "
0, = (0.1789,0.3664,0.2915,0.1632) "
0, = (0.4460,0.4676,0.0821,0.0043) "  (50)

The value we use to test the effectiveness of perturbed
SCBI is called the successful rate, which is E [0% (h)] =
E,r [0(h)] where h is the true hypothesis that the teacher
teaches (Definition 5.2). Successful rate is well defined,
i.e. the limit exists, according to the convergences in prob-
ability (Theorem A.3 and Proposition C.1) with an e dis-
cussion based on them. To find the successful rate, we use
Monte-Carlo method on 10* teaching sequences, and use
Proposition C.1 to accelerate the simulation.

We can estimate an upper bound of the standard deviation
(precision) of the empirical successful rate calculated based
on Proposition C.1. The successful rate of a single teaching
sequence is between 0 and 1, thus with a standard deviation
smaller than 1. So the standard deviation of the empirical
successful rate is bounded by (N)~'/2 where N is the num-
ber of sample sequences. Actually the precision is much
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Figure 9. Successful rate of SCBI perturbed on prior. Each entry
corresponds to a pair M and #%. The first row shows for each
prior 67, the position it locates in A? and the range of 6% in the
simulation. The 5 rows below are the zoom-in version of the
shaded area in each case, whose color at each point represents the
successful rate when 6 locates at that point.

smaller since the successful rate for a single sequence is
much more stable.

Our first simulation is shown in Fig. 9, where we take 6}
evenly on a series of concentric circles centered at ] . There
are 14 such circles with radius 0.005 to 0.07. On the i-th
layer (smallest circle is the first layer) we take 6¢ many
points evenly separated, the upper right figure in Fig. 10
shows how the points are taken in detail.

Thus we have 6 groups of points each distributed along a
ray. We plot the successful rate versus the distance from the
center along each ray in Fig. 10 for all the 25 combinations
of M and 7.

To have a similar directional data for matrices of size 4 x 4,
we take a sample of 15 directions in R? (showing in Fig. 11
in spherical coordinates centered at (1/4,1/4,1/4,1/4)T,
with (1,0,0,0) " as ¢ = 0 axis and (0,1,0,0) " on the half-
plane given by § = 0) and simulate the perturbations of
0L in A3 along the 15 directions. On each ray, we take
20 evenly placed 6% with distance to the center ¢ from
0.005 to 0.100. Then we plot the successful rate versus the
distance in Fig. 11 for all 9 cases as before.

Remark 7. This part provides evidences of linear influence
of the perturbation distance on the successful rate along a
fixed direction.

Next we explore the global behavior of perturbations on
prior. Here we sample for each combination of M and 67 a
set of 300 points for 6% evenly distributed in A3.

In Fig. 12, we plot the successful rate versus the value of
0L (h), for all 25 situations.

We plot in Fig. 13 the distance to center as x-coordinates,
for 9 situations with matrices of size 4 x 4.

In this part, we observe that there is a lower bound of the
successful rate which depends linearly on the distance to
center, with slope bounded by 9%%) (Conjecture 5.3).

0

C.3. Empirical Data for Stability: Perturbation on
Matrix

Fig. 14 shows the behavior of perturbations on all sampled
3 x 3 matrices in Section 5. Perturbations are taken only
along the relevant column / irrelevant column, since a pertur-
bation on the target column is equivalent of the combination
of a perturbation on other two columns (they have the same
set of Cross-ratios, which determines the SCBI behavior).
The cycle path in each plot is the equi-normalized-KL path,
with any point on the path having the same normalized-KL
to the target column as that of the original matrix T.

These graphs should not be confused with the ones occur
in the prior perturbed part, as we are plotting each column
of the matrix here (the simplex is actually P(D)), while we
were plotting the priors in previous discussion (the simplex
is P(H)).
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Figure 10. Upper-Left: the six rays at the center 6;. Upper-Right: zoom-in figure of the six rays in general. Lower: Successful rate versus
distance to center along 6 rays. Fig. 5 in the main paper contains the Row 3 Column 1 picture of the lower one (with a different y-scale).
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Figure 11. Upper: the sampled directions in spherical coordinates. Lower: Successful rate versus distance to center, along 15 rays, for all
the 9 cases of matrices of size 4 X 4. The plot at Row 1 Column 1 appears in Fig. 5 of the main file.
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Figure 14. Perturbations on matrix L. First column: Perturbations on the irrelevant column of L. Second column: zoom-in of the first row.
Third column: Perturbations on the relevant column of L. Last column: zoom-in of the third column. The scales of color in the zoomed

figures are different from that of the original ones. Fig. 6 in the main paper is the third row here.



