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Abstract. This paper describes a two-pronged approach to creating a
multimodal intelligent tutoring system (ITS) that leverages neural data
to inform the system about the student’s cognitive state. The ultimate
goal is to use fNIRS brain imaging to distinguish between proactive and
reactive control states during the use of a real-world learning environ-
ment. These states have direct relevance to learning and have been dif-
ficult to identify through typical data streams in ITSs. As a first step
towards identifying these states in the brain and understanding their
e↵ects on learning, we describe two preliminary studies: (1) we distin-
guished proactive and reactive control using fNIRS brain imaging in a
controlled continuous performance task and (2) we prompted students
to engage in either proactive or reactive control while using an ITS to
understand how the two modes a↵ect learning progress. We propose in-
tegrating the fNIRS datastream with the ITS to create a multimodal
system for detecting the user’s cognitive state and adapting the environ-
ment to promote better learning strategies.

Keywords: Intelligent tutoring systems · functional near-infrared spec-
troscopy · brain-computer interfaces.

1 Introduction

Intelligent tutoring systems (ITS) allow students to get personalized assistance
by collecting valuable information from their actions while learning. This infor-
mation includes how the students navigate through the system, the correctness
of their responses and the materials they struggle with [27]. This data is retrieved
from the logs that are generated when students interact with the system; how-
ever, these systems are not able to receive any input when students pause and do
not produce log events. The states that students experience at these times may
be indicative of beneficial behaviors such as self-monitoring and self-reflection or
harmful behaviors such as mind wandering or going o↵-task [19, 6]. We propose
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to introduce neural data as an additional input source for an ITS to fill in the
gaps of data during pauses.

Long pauses in ITS log data contain a rich and complex set of possible
cognitive activities that may or may not support the learning objectives of the
ITS task. Defining these cognitive states is important for building a clear model
of the students’ behavior. A key underlying process is the nature of cognitive
control during and immediately after these pauses. Cognitive control describes
the set of processes that coordinate thoughts and guide actions in support of
goal-directed behavior. Prior work investigated this kind of behavior in various
ways within ITS research from promoting self-regulated learning strategies [2,
5] to detecting and intervening to students zoning out [11]. Even though these
behaviors have been heavily studied, their underlying mechanism of cognitive
control has been less explored in this line of research.

Our research is built on the dual mechanism of control (DMC) framework
[7], which includes proactive and reactive control. Proactive control is the main-
tenance of task-relevant information for sustain periods and elicits an early se-
lection for the goal. An example of proactive control is making the goal to run
errands after work and scheduling the rest of the day to accomplish this goal.
Reactive control is the late-correction for a goal when stimuli in the environment
triggers a just-in-time response. For reactive control, one would make the goal
to run errands after work and then by the end of the day, realize they still need
to run errands and are perhaps out of time now. The balance between proactive
and reactive control can shift based on multiple factors and we hypothesize that
it will influence the e�ciency and accuracy of goal-directed behavior in learning
environments. We explore this hypothesis more in Section 3.

In this research, we bring a two-pronged approach to studying proactive and
reactive control modes in ITS use. First, we examined behavioral and neural
data from a simple continuous performance task that allows for identification of
periods of proactive and reactive control (Section 2). This line of work is aimed at
defining ground truth states of proactive and reactive control based on behavioral
data and capturing neural signatures associated with each control mode. Second,
we explored the manipulation of proactive and reactive control states during ITS
use through instruction of strategy for participants and measured performance
on the task in di↵erent control states (Section 3). While the results presented
in this paper are preliminary, they provide a foundation for future multimodal
intelligent tutoring systems using brain data. Our long term goals are to measure
cognitive control states in real-world ITS use through behavioral and neural data.

1.1 Multimodal approach to an intelligent tutoring system
Several techniques have been adopted to understand student behavior and needs
in addition to analyzing log data from ITSs. Many use additional modalities
such as audio, video, and/or sensor data. Eye tracking has been one of the most
popular technologies within this line of research. It has been used to detect the
lapses in students’ attention and reorient it on the learning activity [11], and to
predict both positive behaviors such as self-explanation [10] or negative behaviors
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such as mind-wandering [17, 18]. Other physiological sensors have been used to
identify student a↵ective states such as boredom, frustration, excitement, and
concentration [28, 4]. Researchers have also investigated collaborative processes
during learning using audio, video, and physiological measures [21, 12].

Within this work, we are interested in bringing in brain data to disambiguate
the learner cognitive states in the pauses between logged events during ITS use.
Previous research has shown that functional magnetic resonance imaging (fMRI)
can be used to detect deep processing while problem solving [3]. Other studies
have shown electroencephalogram (EEG) can be used to predict student perfor-
mance [9, 15], and also to understand student emotions and engagement [16, 25].
Based on prior work, brain sensing, collected through use of fMRI, can detect
more complex processing such as cognitive control states [8, 7]. Functional near-
infrared spectroscopy (fNIRS) is a brain sensing technique that works similarly
to fMRI and has been proven to work well in typical human-computer interac-
tion environments [24]. We argue that data collected through fNIRS combined
with the contextual information that log data provide will allow us to have a
deeper understanding of students’ cognitive states.

1.2 Functional near-infrared spectroscopy (fNIRS)

fNIRS is a brain-imaging tool that is safe, portable, easy to use, and quick to set
up. These characteristics have led to an increased adoption in human-computer
interaction research. It detects hemodynamic changes associated with neural
activity in the brain while performing tasks [24]. Because fNIRS enables brain
activity to be measured continuously during interactive computing tasks, it has
promise for understanding user experience with systems such as an ITS. The
fNIRS sensors are arranged on a mesh cap worn on the head and uses light to
detect the hemodynamic response, changes in blood oxygen over time resulting
in neural activity, from 1-3cm deep into the cortex [24]. The fNIRS signal reaches
its peak between 4 and 7 seconds after a stimulus. fNIRS has been shown to be
robust in typical human-computer interaction scenarios, including during typing,
mouse clicking [24], and verbalization [23]. Real-time fNIRS brain data has been
used to modulate interruptions [1] and enable attention-aware systems [22].

2 Preliminary study 1: cognitive control task

The purpose of this study was to explore the use of fNIRS to identify neural
patterns of activation associated with proactive and reactive control in a simple
continuous performance task. fMRI work shows that proactive control is associ-
ated with larger responses that establish goals and reactive control is associated
with larger responses to target stimuli. In the controlled task we used (Section
2.1), both modes of control may drive participant behavior and the shifts be-
tween proactive and reactive control states can be identified by the types of
errors that occur on particular trials. Our approach was to use these behavioral
markers as a ground truth for proactive and reactive control. To assess whether
fNIRS could identify patterns associated with each control state, we examined
neural activity during the time leading up to a relevant behavioral marker.
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2.1 Experimental task
The AX-continuous performance task (AX-CPT) presents a series of letters,
as shown in Figure 2. Participants make a key press response for every letter.
The letters appear in cue probe pairs; the first letter serves as a cue for the
second letter. The AX pair represents the target trial where a unique response
is made to the probe X, when it is preceded by cue A. All other cue probe pairs
represent non target trials and are responded to with a di↵erent key press. Thus,
for an appropriate response to the probe, the participants must maintain the cue
context (A or not A) throughout the inter-stimulus interval (ISI) [7].

Responses made on non target trials are particularly important for identifying
reactive and proactive control. Both AY (A cue is followed by a probe letter
that is anything other than X) and BX (the cue is not an A, but the probe is
an X) trials represent non target trials where probe response errors represent
false alarms [7]. AY errors suggest proactive control because the participant was
holding the A cue in mind and anticipating a target response, resulting in a
false alarm when the non target probe appeared. BX errors suggest reactive
control because the participant reacts to the X probe with the most common
response to that probe even though it is not relevant in the B cue [8]. We will use
these behavioral markers to examine fNIRS signals in preceding time windows
to identify brain activity that is indicative of proactive and reactive control.

Fig. 1: Example trial line for the AX-CPT paradigm. A single cross appeared for
500 ms before the cue, which appeared for 1000 ms. This was followed by three
crosses during the inter-stimulus interval of 2000 or 6000 ms before the probe,
which appeared for 500 ms. Participants had 1000ms to respond to the cue and
probe. An AY non target, BX non target, and AX target trial are shown.

2.2 Procedure
We recruited 23 participants (11 male) between 18 and 23 years old (M = 19.5,
SD = 1.4). Two participants’ data was removed due to large amounts of noise
across more than half of the fNIRS sensors. Participants were compensated with
either coursework credit or payment of $15.00. The experiment was performed
in a controlled laboratory environment with minimal distractions. The fNIRS
signals were recorded using a NIRx NIRSport2 fNIRS device with a sampling
rate of 8.7Hz [20]. The device was configured with a 21 channel design of the
prefrontal cortex using eight sensors and eight detectors (Fig. 2). Each sensor
and detector were approximately 3 cm apart, which allows measurement of 2-3
cm deep into an adult brain cortex [24].
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After reviewing and signing the informed consent, the fNIRS cap was placed
on the participant’s head. Participants gave verbal confirmation that the cap
was comfortable before proceeding. Participants began the full task once they
got each trial type correct two times in a row in a practice AX-CPT block.
Participants verbally told the researcher the AX-CPT rules to ensure that each
participant understood the AX-CPT task. Each participant saw a total of 320
cue-probe paired trials in the following amounts: 96 AX trials, 64 AY, BX, and
BY trials, and 32 “catch” trials. Catch trials did not require a response to the
probe and encourage proactive control. Between the cue and probe, half of the
trials had ISI of 2000ms and half had 6000ms. ISI timing was randomized and
the order was di↵erent for each participant.

2.3 Brain data results

The brain signals were divided into windows beginning one second before cue
onset and lasting 18 seconds to allow the 4-7 second hemodynamic response
from both cue and probe to peak. All analyses were conducted on change in
oxygenated hemoglobin levels from an average of the first 8 frames of the window.
To identify sensor locations in the brain that are relevant to the AX-CPT task, we
took the average signal across all trials for each sensor and selected those sensors
that showed a clear peak in the time period‘ following both cue and probe. To
further consider the di↵erences between proactive and reactive control, we used
the key behavioral markers of error trials on AY and BX trials, respectively.
Our data set contained 48 AY errors and 102 BX errors across all participants.
We selected trials within a five trial window leading up to each error response
that also had a 6 second ISI where the temporal separation between cue and
probe allowed ample time for the hemodynamic response function to peak. We
averaged the signal for trials leading up to AY and BX errors and analyzed the
di↵erence between the trial types.

Trials leading up to an AY error should show a peak following the cue, but
not the probe; whereas trials leading up to a BX error should show a peak to
the probe, but not the cue. Our initial results show that one sensor located
in the right dorsolateral prefrontal cortex (rDLPFC) had this pattern, distin-
guishing between the two trials types (Figure 2). These patterns align with
prior block-wise fMRI data patterns [8] associated with conditions conducive to
proactive and reactive control. Here, we demonstrate that these states can also
be distinguished in neural data from a string of trials within the same block
where fluctuations between proactive and reactive control state occur naturally.
By successfully identifying this dissociation between the two states with fNIRS
data, future work can use these states to inform decisions made by an ITS.

By reducing and expanding the number of trials leading up to an AY or
BX error response, we could define the time prior to an error response that
the participant is in a particular cognitive control mode. Additionally, after
ascertaining the period in which a cognitive control state is most evident, we
will confirm that the dissociation between the two cognitive states seen in the
rDLPFC is significant through mixed-e↵ects linear modeling.
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Fig. 2: Left: fNIRS sensor positions. S signifies light sources and D signifies
detectors. Right: Hemodynamic response functions, measured in oxygenated
hemoglobin, show distinct patterns for trials leading up to AY errors (red) associ-
ated with proactive control and trials leading up to BX errors (black) associated
with reactive control. Solid line indicates the cue response period and dashed line
indicates the probe response period. This sensor was located above rDLPFC.

3 Preliminary study 2: intelligent tutoring system
In Section 2, we showed that we could identify proactive and reactive control
using fNIRS in an abstract task. Within this section we aim to understand
if proactive and reactive control can be induced during problem solving and
if using one of these modes of cognitive control a↵ects learning. In order to
achieve this goal, we designed an experiment using ASSISTments [14] without
integrating the neural data at this time. ASSISTments is an online tutoring tool
that allows students to get help and feedback while also providing assessment
data to teachers. ASSISTments provides a flexible environment to create problem
sets with predefined hints and feedback for students.

3.1 Task Design

We created a problem set that consists of nine probability problems. The prob-
lems were covering three topics (basic probability, addition rule for probability of
non-mutually exclusive events, and multiplication rule for probability of depen-
dent events). All of the problems were divided into three to four substeps in order
to create a goal maintenance scenario similar to [7]. When the participant was
presented with a problem for the first time, they saw the full problem; however,
they were not expected to solve it at first. The participant was only asked to rate
their confidence level in solving the particular problem. After rating their confi-
dence, the participant sees the first step to solve the problem. After completing
each step, participants were given the next step until they reached the last one
which would lead them to the solution of the problem. Within this scenario, one
can think of the initial step as the time that the participant extracts the goal of
the problem. How participants solved the substeps allows us to observe if they
could maintain that goal in presence of other cognitively demanding events.

Participants were randomly assigned to one of the two cognitive control
modes. With these conditions, we manipulated how participants approached the
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substeps of the problems. In the proactive condition, participants were prompted
to think about how the substep they were solving was related to the goal of the
full problem that they saw. In the reactive condition, the prompt in the substep
instructed the participant to focus on the current substep. With these prompts,
we hypothesized that proactive or reactive control [13] can be induced within
a learning task as participants in the proactive condition would be practicing
active goal maintenance while the participants in the reactive condition would
only focus on the current step. This exact experiment design was used in an ear-
lier thinkaloud study [26]. We replicated this experiment design excluding the
thinkaloud protocol to get more accurate behavioral data.

3.2 Procedure

We recruited 29 participants (5 male) between 18 and 22 years old (M = 19.8, SD
= 1.13). The participants were recruited through emails that are sent to student
mailing lists and announcements on online student bullet-in boards in a univer-
sity in the Northeastern US. The inclusion criterion was not having completed
more than two university level math courses. After providing informed consent,
participants were introduced to ASSISTments and given time to practice an-
swering problems. Then, they took a pre-test that had six probability problems
on ASSISTments. After the pre-test, they solved another practice problem to
get used to step by step problem solving and using proactive or reactive control
based on the condition they were assigned to. After the practice, they engaged
in problem solving activity while also using proactive or reactive control as the
way they were shown during the practice. Participants took a post-test that is
isomorphic to the pre-test after solving problems on ASSISTments. Participants
answered a demographic questionnaire at the end of the study. This study was
run completely online due to the COVID-19 outbreak. We communicated with
the participants using Zoom. We asked participants to turn their camera o↵ to
protect their identities. We asked them to share their screen to be able to watch
and record their actions during the study. 1 participant was excluded as they
scored 100% on the pre-test.

3.3 Results

Prior work [26] has shown success in inducing proactive and reactive control
during problem solving when using thinkalouds. They found participants in the
proactive condition made significantly more statements that include the goal of
the problems. Without the thinkaloud protocol, one indicator that the partici-
pants behaved as expected is the average time spent on the problem steps. We
hypothesized that the participants in the proactive condition should spend more
time on the problem steps because they need to think about how the current
problem step they are solving helps them reach the goal of the main problem.
Figure 3 pictures the average time spent on the problem steps by condition for
both studies. We conducted a two sample t-test to determine if participants in
the proactive condition spent more time on the problem steps because of their
reflection. Results supported our hypothesis. We found that the participants
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Fig. 3: Average time spent on problem steps by conditions (in seconds). Error
bars represent the standard error of the means

in the proactive condition spent significantly more time on the problem steps
(t(24.05) = 2.36, p < .05). We confirmed that this manipulation of cognitive
control was still e↵ective without the thinkaloud protocol. In order to see if us-
ing one mode of cognitive control had any e↵ects on learning, we conducted a
repeated measures ANOVA with condition as the between-group variable and
the tests as the within-group variable. We found the main e↵ect of test was sig-
nificant (F (1, 26) = 51.33, p < .001) meaning that participants improved from
pre to post test. However, results showed no significant interaction between the
condition and test (F (1, 26) = 1.45, p > .05) indicating no significant di↵erence
in learning gain (post - pre) between proactive (M = 0.24, SD = 0.23) and
reactive (M = 0.33, SD = 0.19) modes.

4 Discussion
We have presented preliminary results on a two-pronged approach that is at-
tempting to provide ground truth data on di↵erent modes of cognitive control
based on the DMC framework [7] and induce these modes in a realistic learning
environment for potential benefits during learning. We first showed that we can
identify proactive and reactive modes of cognitive control using fNIRS with a
similar methodology as [8], who identified these states with fMRI. We identified
the rDLPFC as a region of interest in detecting these cognitive states. Further
analysis is needed to understand if there are additional regions of interest that
can detect only one of the cognitive control modes. In theory, if there is a region
that is highly active in the brain for only proactive control, then it can be used
as a confirmation when activation for proactive control is seen in the rDLPFC.

Next, we showed that those two modes can be induced in students during
more realistic ITS use replicating the experiment design described in [26]. We
showed that the cognitive control manipulation was still successful without hav-
ing participants think out loud. We detected no significant di↵erences in the pre-
and post-tests between students who engaged in proactive and reactive control.
This could be due to the order and di�culty levels of the presented problems.
Participants may have improved because they had a better understanding of
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the problem types after seeing each three times, and that may be why we did
not see any di↵erence between proactive and reactive control. Using proactive
or reactive control can still be beneficial in di↵erent levels of challenge. We will
modify the experimental design to test it once more.

We propose integrating the fNIRS datastream with the ITS to create a mul-
timodal system for detecting the user’s cognitive state and adapting the environ-
ment to promote better learning strategies. Our approach can impact a broad
range of ITSs, which are collectively used by thousands of students. Interventions
within tutoring systems can meet an individual student’s needs better through
modeling cognitive states and their underlying mechanisms. To do so, we will
integrate fNIRS into the ITS task that promotes proactive and reactive control
in participants. This would confirm that the neural regions of interest identified
in the AX-CPT transfers to using an ITS.
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