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Abstract—While convolutional neural networks have firmly
established themselves as the superior steganography detectors,
little human-interpretable feedback to the steganographer as to
how the network reaches its decision has so far been obtained
from trained models. The folklore has it that, unlike rich models,
which rely on global statistics, CNNs can leverage spatially
localized signals. In this paper, we adapt existing attribution
tools, such as Integrated Gradients and Last Activation Maps,
to show that CNNs can indeed find overwhelming evidence for
steganography from a few highly localized embedding artifacts.
We look at the nature of these artifacts via case studies of both
modern content-adaptive and older steganographic algorithms.
The main culprit is linked to “content creating changes” when
the magnitude of a DCT coefficient is increased (Jsteg, —-F5),
which can be especially detectable for high frequency DCT
modes that were originally zeros (J-MiPOD). In contrast, J-
UNIWARD introduces the smallest number of locally detectable
embedding artifacts among all tested algorithms. Moreover, we
find examples of inhibition that facilitate distinguishing between
the selection channels of stego algorithms in a multi-class detector.
The authors believe that identifying and characterizing local
embedding artifacts provides useful feedback for future design
of steganographic schemes.

Index Terms—Steganalysis, CNN, LDEA, explainable machine
learning

I. INTRODUCTION

Recently, steganalysis has undergone an explosive develop-
ment due to employment of deep convolutional neural net-
works (CNNs) [1]. Major improvements in detection accuracy
have been achieved for all embedding algorithms and both
domains. Immediately, speculations appeared about why these
detectors perform so much better than classifiers trained on
high-dimensional rich media models. The usual explanation is
the network’s ability to jointly optimize the image represen-
tation (“feature formation™) as well as the classifier. Indeed,
to keep the dimensionality of co-occurrences from which rich
models are built reasonably low, noise residuals need to be
harshly truncated and quantized. Furthermore, training on large
datasets becomes computationally infeasible even with low-
complexity classifiers [2], [3].

There is one more fundamental difference between CNN
detectors and rich models. The latter are by their construc-
tion macroscopic quantities of local statistics collected in
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a global fashion from the entire image. Rich models are
essentially collections of histograms. This limits them to
being predominantly “integrators” of local embedding traces
across the image that achieve non-trivial detection power by
leveraging some form of the Central Limit Theorem (CLT). In
contrast, CNNs do not natively form histograms, and instead
process the outputs of convolutions or “noise residuals” in a
different fashion that is believed to allow both integration as
well as detection of localized embedding traces. To the best
knowledge of the authors, however, no study has been put
forward that would present evidence for this claim.

Aided with visualization tools, we argue that CNN detectors
leverage Locally Detectable Embedding Artifacts (LDEAs)
in their decision making. Leaving a few stego blocks with
LDEAs in the stego image is enough for a reliable detection
even with other CNN architectures. In contrast, rich models
are not necessarily able to correctly classify all stego images
with LDEAs. By taking a closer look at modern content-
adaptive algorithms J-MiPOD [4] and J-UNIWARD [5], and
older embedding schemes (F5 [6], —F5 [7], and Jsteg), we
discover that LDEAs are mostly associated with content-
creating changes when the magnitude of a DCT coefficient is
increased and, especially when a high-frequency cover DCT
equal to 0 is changed to a non-zero value. Additionally, we
argue that LDEAs and inhibition play a role when training
a multi-class detector to distinguish between selection chan-
nels of different embedding algorithms. Our findings provide
valuable qualitative and human interpretable feedback to the
steganographer that could be taken into consideration for
design of future stego algorithms.

In the next section, we describe the datasets and detectors
employed in our experiments. Section III describes visualiza-
tion tools used in this work. LDEAs are defined in Section IV,
which contains case studies involving JPEG steganographic
algorithms. In Section V, we study a multi-class CNN dis-
tinguishing between bUERD, J-UNIWARD, and covers to
demonstrate that it uses inhibitory response with LDEAs on
the image boundary. Section VI concludes the paper.

II. EXPERIMENTAL SETTING

A. Datasets and detectors

We use the ALASKA II 256 x 256 dataset [8], which
contains 3x25,000 cover images compressed with quality



factors 75, 90, and 95. The covers were randomly divided into
three sets with 322,000, 3x 1,000, and 3x2,000 images for
training, validation, and testing, respectively. The images were
embedded only in the luminance channel Y. The findings of
this paper are consistent when using the 256x256 grayscale
BOSSbase+BOWS2 cover dataset but we do not report on
them due to space constraint.

EfficientNet B4 [9] was pre-trained on ImageNet [10] and
refined for steganalysis in the JPEG domain [11], [12] with
the same training schedule as in Section 4.2 in [12]. No
modifications were done to the EfficientNet B4 architecture
besides changing the original Fully Connected (FC) layer to
a binary classification FC or a three-class FC in Section V.
We also use the SRNet [13] trained without pair constraint as
in [11] and DCTR [14] with FLD ensemble [3].

III. TooLBOX
A. Integrated Gradients

Integrated Gradient (IG) [15] is a technique for computing
a map describing the importance of each pixel when facing a
stego image. The soft output of a CNN is a function f : RY —
R, N = 256 x 256, whose domain are 256 x 256 images. The
cover, stego, and the baseline image are denoted, respectively,
¢, s, and b. The IG algorithm is a pixel attribution function:
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where df /ds € RY is the gradient of f w.r.t. to the input s, ®
denotes element-wise multiplication, and ¢ € R™. This algo-
rithm belongs to path methods [16] and satisfies some desir-
able properties, such as, but not limited to, linearity, symmetry
preserving, and completeness Z;)V:l Op(fy8,0) = f(s)—f(b).
It accumulates the gradients on convex combinations of the
baseline b and the input s. This accumulation encapsulates
how the network’s output evolves from f(b) to f(s). The
multiplication by s—b comes from the fact that the derivative is
taken with respect to the path (o)) = b+ «a(s—b). In practice,
this multiplication can be omitted as we do in Section V. The
choice of b will be discussed in Section III-Al. The integral
is approximated using a Riemman sum with 100 steps and the
gradient is evaluated using pytorch’s automatic differentiation.
We use the implementation available in the Captum library.'

The map ¢(f,s,b), which has the same shape as the input
of the CNN, 256 x 256, is then averaged over 8 X 8 non-
overlapping blocks along the spatial dimensions to obtain
a 256/8 x 256/8 block importance map .(f,s,b), r =
1,...,32 x 32.

1) Choice of the baseline: Top k insertion test: While the
IG algorithm can use an arbitrary baseline, the cover version
of the stego image is the most appropriate baseline because it
relates to the concept of missingness [17]. The cover represents
exactly the missing signal of interest, the stego noise. Note that
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Figure 1. 1TP* rate for covers t¢F with top k inserted stego blocks
determined using IG with different baselines: cover, random uniform, and
zero. EfficientNet B4 trained for 0.5 bpnzac J-MiPOD.

when using the cover image c as a baseline, the difference from
the baseline in the IG algorithm are the stego changes s — ¢
in the spatial domain. Since the cumulative gradients (1) are
modulated by the stego changes, ¢(f,s,c) and ¥(f,s,c) are
zero for pixels and blocks without any changes.

We now compare three choices for the baseline to show
that the cover baseline is a suitable choice: cover, zero, and a
random image with each pixel sampled independently from a
uniform distribution on [0, 1). For each cover-stego (c, s) pair
from the test set, we compute ¥(f,s,b) and identify “top”
k blocks with the largest v that contain at least one stego
change. Then, we generate from the cover c a new “stego”
image, Tc”, by only keeping the embedding changes in the
top k blocks (blocks with maximal attribution ). The +TpF
rate is the percentage of *c¥ images in the test set predicted as
stego using a decision threshold set for 10% False Alarm (FA)
rate. Figure 1 shows the T TP* for EfficientNet B4 trained on
0.5 bpnzac J-MiPOD and three types of baseline images as a
function of k. The cover image is clearly the best baseline for
identifying the blocks that most increase the confidence of the
network.

Note that even though *cF are not necessarily samples of
stego images (even with a lower payload), they are natural
looking images, unlike insertion/ablation evaluations done
in the explainable ML literature (c.f. [17]), where inser-
tion/ablation tests are done by blurring/dropping areas of the
image. This makes the inputs used in the top k insertion test
fairly close to the original training distribution.

B. Last activation

In addition to IG, we use a gradient-free localization tech-
nique which we call “last activation.” We essentially disable
the last global pooling of a CNN and use the FC layer weights
and bias as a 1 x1 convolution to obtain a 16 x 16 matrix for the
SRNet and 8 x 8 matrix for the EfficientNet B4 (for an input
of shape 256 x 256). Then, we only keep the positive values in
this matrix (positive logits of the stego class) and nullify the
rest (rectification) to obtain a visualizable activation map. For
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Figure 2. Last activation (left) and IG block importance map (right) of
EfficientNet B4 for image 27938.jpg‘ embedded with J-MiPOD (top) and
J-UNIWARD (bottom). Note that both images are detected as stego with
Dstego = 0.99 by EfficientNet B4.

example, Figure 2 shows the last activation of EfficientNet B4
for a J-MiPOD and J-UNIWARD image and the corresponding
IG block importance maps. The figure will be commented
upon in more detail in Section IV-D.

IV. LOCALLY DETECTABLE EMBEDDING ARTIFACTS
LDEAS

In this section, we define the concept of a Locally De-
tectable Embedding Artifact (LDEA) and use the tools ex-
plained above to analyze how CNNs detect selected modern
content-adaptive and old steganographic methods. Three mod-
ern stego methods are included in the study: J-UNIWARD [5],
J-MiPOD, and bUERD [18]. The last is a version of the UERD
algorithm as implemented during ALASKA II. Among older
embedding paradigms, we selected F5 [6], —F5 [7] which
reverses the embedding operation of F5 to increasing the
absolute value of DCT coefficients instead of decreasing as
in F5, and Jsteg [19]. For modern stego schemes, the payload
was fixed at 0.5 bpnzac, while for older schemes it was scaled
down to avoid perfect detection by modern steganalyzers.
The relative payloads « (in bpnzac) for —F5 and Jsteg were
set to induce the same number of embedding changes m =
NOACHz_l(a_ps) which happens when ajge, = 2H2_1(Oé_]:5),
where Hs is the binary entropy. The payloads are given in
Table 1.

A. LDEAs from the top k insertion test

Figure 1 shows that for J-MiPOD, a sizable portion of stego
images can be detected as stego with only a few inserted 8 x 8
blocks with stego changes. This is rather surprising because
such images have a very small change rate, yet can be detected
as stego with high confidence. We say that these images have
LDEAs.

Payload P

MD5 wAUC
(bpnzac)

J-MiPOD 0.5 1938  .3837 .9349
J-MiPOD 0.2 3452 7033 .8067
J-UNIWARD 0.5 1967 4220 9304
J-UNIWARD 0.2 3606 7658 7792
F5 0.2 1835 4292 9292
—F5 0.05 .0866  .1248 .9827
Jsteg 0.0112 13152207 .9595

Table T

DETECTION PERFORMANCE OF EFFICIENTNET B4 FOR STEGO SCHEMES
USED IN THIS PAPER AND A MIXTURE OF QFSs OF 75, 90, AND 95.
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Figure 3. EfficientNet B4’s T TP¥ rate as a function of top k inserted stego
blocks for various stego schemes.

Figure 3 shows the insertion profiles of the same top k
insertion test for more embedding schemes with payloads
and performance measures shown in Table I. Notice that
different embedding schemes have different top k insertion
profiles. Also note that the location of such LDEAs in the
stego images depends on the actual realization of embedding
changes. Different realizations of stego changes for the exact
same payload might lead to different LDEAs depending on
which DCT coefficients are changed.

The figure also clearly shows that, despite the small payload,
Jsteg and —F5 introduce very influential LDEAs as a large
percentage of stego images can be identified as stego with
only a few blocks with the highest attribution. In contrast,
J-UNIWARD and F5 introduce comparatively fewer LDEAs
than J-MiPOD. This suggests that for these two algorithms the
detector is more an integrator rather than relying on LDEAs.

Conversely, in Figure 4 we show that reverting the changes
in the top k blocks and keeping the rest of the stego image
intact (i.e. top k canceling instead of insertion) turns the
predicted stegos into missed detection. Note that the trends
are complementary to those observed for the top k insertion
test. The decision threshold was set for 90% True Positive rate.

B. Do Rich Models catch LDEAs?

Next, we contrast CNNs and rich models to find out whether
rich models can detect LDEAs with any level of confidence.
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Figure 4. EfficientNet B4’s TTP¥ rate as a function of top k deleted stego
blocks for various stego schemes.
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Figure 5. ROC curve of DCTR+FLD ensemble and EfficientNet B4 for
J-MiPOD 0.5 bpnzac. Images with strong LDEAs found using IG and
EfficientNet B4 are represented by red dots.

To this end, we define the concept of a “strong LDEA” to
eliminate cases when the cover image already had a score
close to the decision threshold. We consider k = 1 and adjust
the threshold for ¢! to have a 1% FA rate while keeping
the thresholds for FAs at 10% as before. For example, for J-
MiPOD at 0.5 bpnzac, images with a strong LDEA must have
f(Ftet) > 0.89 and f(c) < 0.55.

Images with strong LDEAs are usually located at the left-
most side of the ROC curve for EfficientNet as shown in
Figure 5, which shows the images with strong LDEAs as red
dots. While they are easy to detect by a CNN even when the
only changes made in the image are in one block, in contrast,
for DCTR+FLD ensemble, LDEAs are not particularly easy
to detect as stego images as shown in Figure 5, where the red
dots are scattered rather randomly on the ROC curve. Rich
models (DCTR in this case) do not catch LDEAs because of
their inability to utilize localized artifacts.

C. Case study 1: J-MiPOD

Figure 4 and the previous sections discussed the existence of
LDEAs introduced by J-MiPOD, which provide overwhelming
evidence to a CNN detector to predict the stego class. Figure 6
shows some examples of LDEAs that are visually identifiable.
To further understand the nature of the LDEAs, in Figure 7
we show the average changes of DCT coefficients in each
mode computed over test images containing strong LDEAs.
It shows that LDEA blocks have (i) a larger change rate than
the average 8 x 8 block of J-MiPOD (ii) more changes in high
frequency DCT coefficients. These coefficients are usually
zeros in covers, and changing them to +1 creates unnatural
artifacts. Figure 8 shows that, indeed, the LDEA blocks of J-
MiPOD have many more changes in zero coefficients than
on average. The distribution for J-UNIWARD is given for
reference.

Additionally, LDEAs transfer between different architec-
tures. For J-MiPOD 0.5 bpnzac 82% of SRNet’s images with
LDEAs are shared with EfficientNet. Reverting the changes
in top 3 influential blocks leads to a substantial increase in
Missed Detection (from .3883 to .4975 in terms of MDS5 as
seen in Figure 4) for EfficientNet B4, while the DCTR+FLD
ensemble missed detection stays mainly unaffected (from
.6963 to .6831 in terms of MD5). Moreover, retraining SRNet
on a new dataset where the top 3 influential blocks (computed
using B4) have been reverted in all images does not bridge
that gap and still produces a significantly worse detector (from
4097 to .4878 in terms of MDS5).

D. Case study 2: J-UNIWARD

Figure 4 shows that J-UNIWARD introduces significantly
fewer LDEAs than J-MiPOD even though their detectability
is very similar (Table I). In fact, Figure 2 already shows an
interesting difference between the two embedding schemes
when looking at their last activation map: J-UNIWARD images
tend to activate the majority of the map, whereas J-MiPOD
images activate a highly localized area. The ranges of IG
block attributions also differ with J-UNIWARD exhibiting a
rather spatially uniform attribution map unlike J-MiPOD. This
seems to indicate that the network is an “integrator” for most J-
UNIWARD images, while it also utilizes localized information
for J-MiPOD.

To confirm this conjecture, for each image we count the
number of elements in the last activation map that exceed a
threshold set as 3x the average of the last activation map
(as we try to identify “large logit cells” or spikes in the
map). Figure 9 shows the histograms of these counts across
6,000 test images. For J-UNIWARD, these large logit cells
are almost non-existent, while for J-MiPOD and especially J-
MiPOD images with strong LDEA blocks many last activation
maps are comprised of such spikes.

E. Case study 3: Jsteg

Figure 4 shows that Jsteg introduces many LDEAs, which
is not surprising since Jsteg is not content adaptive and highly
likely to produce detectable artifacts. On average, the top 1



Figure 6. Example of visible local traces of J-MiPOD. The center 8 X 8 block is the top 1 influential block using IG. Left to right images: ‘05626.jpg*,

‘47211 jpg*, ‘48020.jpg‘, and ‘55961.jpg‘.
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Figure 7. Average changes per mode for LDEA blocks (left) and over all
blocks (right) computed over test images containing strong LDEAs for J-
MiPOD.
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Figure 8. Histogram of the ratio of changes on zero coefficients w.r.t. all
changes for J-UNIWARD and J-MiPOD. Rug plot data points correspond to
the same ratio computed only on strong LDEA 8 x 8 blocks of J-MiPOD.

influential blocks of Jsteg have 98.01% of changes increasing
the absolute value of the DCT coefficients, whereas on average
across all blocks Jsteg increases the absolute value of DCT
coefficients with a rate of only 65.06%. Increasing the absolute
value increases the block variance, which makes it easier to
detect in a smooth area.
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Figure 9. Normalized histogram of the number of large logit cells of the last
activation map of EfficientNet B4 for J-UNIWARD, J-MiPOD, and J-MiPOD
with strong LDEAs.

FE Case study 4: F5, —F5

Figure 4 shows that F5 introduces very few LDEAs. Unlike
other schemes, F5 only decreases the absolute value of DCT
coefficients. For —F5, the LDEAs count is the largest. The
culprit is the embedding operation of increasing the absolute
value of DCT coefficients as it adds artificial content to 8 x 8
DCT blocks. This is further confirmed by comparing —F5 with
Jsteg with payload scaled to have the same number of changes
as —F5. While Jsteg’s curve is lower than —F5 for £ > 1, both
have the same number of strong LDEAs (for k£ = 1).

V. MULTI-CLASS DETECTORS AND STEGO INHIBITION

In this section, we briefly study a multi-class CNN detector
that uses inhibition to distinguish between embedding algo-
rithms. To this end, we purposely selected two embedding al-
gorithms with very different selection channels: J-UNIWARD
and bUERD, which is a version of UERD that was used in the
ALASKA 1I competition. An implementation mistake made
bUERD’s selection channel anomalous with the embedding
changes concentrated around the image boundary in most
stego images. A network able to see LDEAs should discover
this flaw and exploit it for detection.

Our multi-class detector was the EfficientNet B4 trained
using multi-class cross-entropy loss. In this section, we drop
the modulation by s — b in Eq. 1 since we are interested in
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Figure 10. Attribution maps for image ‘43201.jpg‘ from the ALASKA II dataset embedded with J-UNIWARD and bUERD from the multi-class, and binary
J-UNIWARD EfficientNet B4 (from left to right). Notice the anti-correlated attributions in the right boundary of both images from the multi class attributions,
which are not visible in the binary attributions. The figure shows only the 90% largest attributions for each map in absolute value for visual clarity.

blocks with changes by both bUERD and J-UNIWARD not
only a by one of them at a time.

Given a J-UNIWARD image, the stego attribution is typi-
cally high in blocks with complex content, while an inhibitory
attribution at the image boundary. For the bUERD version of
the same image, the attributions at the image boundary are of-
ten anti-correlated with the attributions from the J-UNIWARD
image. We call this phenomenon “stego inhibition” as the CNN
uses artifact traces from all stego schemes it was trained on.
Another intuitive explanation of stego inhibition is when the
CNN predicts “this is a J-UNIWARD image and not bUERD”
using inhibition of bUERD artifacts. An example of this is
shown in Figure 10. We compare this to a known phenomenon
in computer vision and neurology where neurons explicitly
inhibit against features that do not make sense in certain spatial
areas. In this case, the stego noise at the image boundary
is representative of bUERD, and does not make sense for
images other than bUERD (provided the boundary does not
contain complex content). Also notice in Figure 10 that the
attribution of the J-UNIWARD image from both the binary and
multi-class detectors have strong similarities (outside the right
boundary), which means that both detectors have converged
to detecting similar patterns.

VI. CONCLUSIONS

Using attribution tools, we provide evidence for the popular
belief that CNNs reach their decision by detecting local
embedding artifacts. By analyzing modern content-adaptive
schemes and older embedding paradigms, we characterize
these artifacts and show that they are mostly associated
with high frequency content-creating changes. CNNs ability
to leverage localized signals plays a role in distinguishing
between selection channels of different embedding algorithms
when training a multi-class detector.

This work was supported by NSF grant No. 2028119.
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