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Abstract

Linear contextual bandit is an important
class of sequential decision making problems
with a wide range of applications to recom-
mender systems, online advertising, health-
care, and many other machine learning re-
lated tasks. While there is a lot of prior
research, tight regret bounds of linear con-
textual bandit with infinite action sets re-
main open. In this paper, we address this
open problem by considering the linear con-
textual bandit with (changing) infinite ac-
tion sets. We prove a regret upper bound on
the order of O(

√
d2T log T )× poly(log log T )

where d is the domain dimension and T is
the time horizon. Our upper bound matches
the previous lower bound of Ω(

√
d2T log T )

in [Li et al., 2019] up to iterated logarithmic
terms.

1 Introduction

Linear contextual bandit is an important
class of sequential decision making problems
with an extensive history of research in both
machine learning and operations research
[Abbasi-Yadkori et al., 2011, Chu et al., 2011,
Auer, 2002, Rusmevichientong and Tsitsiklis, 2010,
Dani et al., 2008, Li et al., 2019]. In the linear con-
textual bandit problem, a player makes sequential
decisions over T time periods. At each time period t,
an action set Dt ⊆ Rd is provided; the player selects
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an action xt ∈ Dt, and subsequently receives a reward
rt parameterized as

rt = 〈xt, θ〉+ ξt,

where θ ∈ Rd, ‖θ‖2 ≤ 1 is a fixed but unknown pa-
rameter vector, and {ξt} are independent centered sub-
Gaussian noise variables with the variance proxy 1.
The performance is evaluated by the cumulative regret,
defined as

RT :=
T∑
t=1

sup
x∈Dt
〈x, θ〉 − 〈xt, θ〉.

The objective of this paper is to design an algorithm
that achieves the optimal expected regret under the
worst case, when the action sets {Dt} are infinite (i.e.,
|Dt| = ∞). In the next sections, we give a rigorous
definitions of policy and action domains studied in
this paper. We also discuss (informally) our main
results, and compare them with existing results in the
literature.

1.1 Definition of policy and action domains

Suppose that there are T time periods and the
problem dimension is d. A policy π can be
represented as π = (φ1, φ2, · · · , φT ) where φt :
(x1, y1, · · · , xt−1, yt−1, Dt) 7→ xt ∈ Dt is a random-
ized function that maps the data collected from prior
episodes {1, 2, · · · , t − 1} to an action xt ∈ Dt to be
selected at time period t. Note that future feasible sets
Dt+1, Dt+2 are not revealed to the policy π when it is
making an action decision at time t.

Let Sd :=
{
S : S is closed, S ⊆ {x ∈ Rd : ‖x‖2 ≤ 1}

}
be the set of all closed subsets of the unit d-dimensional
`2 ball. The domains D1, · · · , DT ∈ Sd are chosen arbi-
trarily, before any policy π is executed. We remark that
this setting is known in the literature as the “oblivious”
setting.
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1.2 Existing work and our results

A summary of our results as well as existing results
are given in Table 1. The regularity conditions that
‖θ‖2 ≤ 1 and Dt ⊆ {x ∈ Rd : ‖x‖2 ≤ 1} are imposed,
so that |E[rt]| = |〈xt, θ〉| ≤ 1 holds for all xt ∈ Dt.
Additionally, as suggested by the title, we consider the
infinite-armed case in which |Dt| = ∞ for all t. We
also impose the regularity condition that the action
sets Dt are closed, so that the supremum over the sets
can always be achieved by an action.

[Dani et al., 2008] derived an algorithm based on
confidence balls of prediction errors of θ, achiev-

ing a worst-case expected regret of O(
√
d2T log3 T ).

[Abbasi-Yadkori et al., 2011] further improved the

analysis and obtained O(
√
d2T log2 T ) regret. On the

lower bound side, [Dani et al., 2008] proved a regret

lower bound of Ω(
√
d2T ) for all policies, which was

later improved to Ω(
√
d2T log T ) by [Li et al., 2019]

as a direct corollary of regret lower bounds for finite-
armed linear contextual bandits. While [Li et al., 2019]
derived matching upper bounds for the finite-armed
case, their results and techniques cannot be directly
applied to the infinite-armed case even if computational
issues are disregarded, as covering nets of {Dt} up to
1/poly(T ) accuracy would incur additional logarithmic
terms in T .

In this paper, we prove the following main result:

Theorem 1 (Informal). There is a policy whose worst-
case expected regret is asymptotically upper bounded by
O(
√
d2T log T )× poly(log log T ).

Comparing with the lower bound Ω(
√
d2T log T ),

the upper bound in Theorem 1 is tight up to it-
erated logarithmic terms. Our results thus close
the O(

√
log T ) gap between the upper bound (in

[Abbasi-Yadkori et al., 2011]) and the lower bound in
infinite-armed linear contextual bandit. In addition,
the idea behind our varying confidence level (VCL)
UCB algorithm and a number of technical tools de-
veloped in the proof might also be useful for other
contextual bandit problems.

1.3 Proof techniques

Sharp tail bounds of self-normalized empiri-
cal processes. Due to the inherent statistical de-
pendency between the chosen actions {at} and noise
variables {ξt}, the estimation error of θ at each
time step cannot be analyzed using standard closed-
forms of linear regression estimators. The work of
[Abbasi-Yadkori et al., 2011] pioneered the use of self-
normalized empirical processes to understand the esti-
mation and prediction errors at each time step.

In this paper, we make use of sharp tail bounds on
the supremum of self-normalized empirical processes in
high-dimensional probability (Lemma 3). By exploiting
such tail bounds we have a much more refined control
of failure probabilities at each time step, which lays
the foundation of our improved regret analysis.

Varying confidence levels in UCB-type algo-
rithms. Most existing methods on linear contextual
bandit can be categorized as Upper-Confidence-Bound
(UCB) or Optimism-in-Face-of-Uncertainty (OFU)
type algorithms, which build confidence bands/balls
around unknown parameters at each time step and
then pick actions in the most optimistic way.

While most existing algorithms set constant confi-
dence levels (corresponding to failure probabilities at
each time), in this paper we consider varying con-
fidence levels (VCL), with higher failure probabili-
ties towards the end of the time horizon T . The
intuition is that later fails would incur much less
regret. Similar ideas were also employed in previ-
ous works [Audibert and Bubeck, 2009, Li et al., 2019,
Wang et al., 2018] to improve regret guarantees in ban-
dit problems.

2 Algorithm design and main results

Algorithm 1, named VCL-SupLinUCB, is the main al-
gorithm of this paper which combines the varying con-
fidence levels (VCL) design with the existing SupLin-
UCB algorithm [Auer, 2002, Chu et al., 2011]. The
basic idea of Algorithm 1 is to classify the time peri-
ods into different layers such that the chosen context
is statistically independent with the noise in the re-
ward distribution. Then the algorithm estimates θ̂ζ,t
for each layer ζ and eventually selects the arm with
largest upper confidence bound according to the rules
specified in Lines 7-12 in Algorithm 1. Those ideas
are similar to the previous SupLinUCB algorithm, and
the major difference between Algorithm 1 and previous
approaches is the varying confidence levels (reflected by
the inclusion of ωx,t in αx,t), which allows for sharper
regret bounds.

The following theorem is the main result of this paper:

Theorem 2. Suppose the universal constant C > 0 in
the input of Algorithm 1 is sufficiently large. Then there
exists constants C1, C2 > 0 that only depend on C such
that for all ‖θ‖2 ≤ 1 and {Dt ⊆ {x ∈ Rd : ‖x‖2 ≤ 1}},
the regret RT satisfies the following inequality for any
δ ∈ (0, 1),

E
[
max

{
RT − C1d

√
T log T log(1/δ) · log log(T/δ), 0

}]
≤ C2δd

√
T .
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Table 1: Summary of results. Both θ and {Dt} belong to the unit ball {x ∈ Rd : ‖x‖2 ≤ 1}, and |Dt| =∞ for all
t. Upper and lower bounds are for E[RT ] under the worst case. O(·) and Ω(·) notations hide universal constants
only, and poly(log log T ) means (log log T )O(1).

[Dani et al., 2008] [Abbasi-Yadkori et al., 2011] [Li et al., 2019] this paper

Upper bound O(
√
d2T log3 T ) O(

√
d2T log2 T ) N/A O(

√
d2T log T )×poly(log log T )

Lower bound Ω(
√
d2T ) N/A Ω(

√
d2T log T ) N/A

1: Input: ζ0 = dlog2(
√
T/d/δ)e, Time horizon T , confidence parameter δ, domain dimension d, universal

constant C ≥ 1;

2: Initialization: Xζ,0 = ∅, Λζ,0 = Id×d, λζ,0 = ~0d, θ̂ζ,0 = ~0d for ζ ≤ ζ0;
3: for t = 1, 2, · · · , T do
4: Observe Dt, and set ζ = 0 and Nζ,t = Dt;
5: while a choice xt has yet to be made do

6: Compute θ̂ζ,t = Λ−1
ζ,t−1λζ,t−1, and for every x ∈ Nζ,t, compute ωxζ,t =

√
x>Λ−1

ζ,t−1x,

αxζ,t =
√

max{1, ln[(T ln4 T ln2(1/δ))(ωxζ,t)
2/(dδ2)]} and $x

ζ,t = C ·
√
d · αxζ,tωxζ,t;

7: if ζ = ζ0 then
8: Find xt ∈ Nζ,t that maximizes min{1, x>it θ̂ζ,t +$x

ζ,t} and set ζt = ζ;

9: else if $x
ζ,t ≤ 2−ζ for all x ∈ Nζ,t then

10: Update Nζ+1,t = Nζ,t ∩ {x : x>θ̂ζ,t ≥ maxy∈Nζ,t y
>θ̂ζ,t − 21−ζ}, ζ ← ζ + 1;

11: else
12: Select any xt ∈ Nζ+1,t such that $x

ζ,t ≥ 2−ζ , and set ζt = ζ;
13: end if
14: end while
15: Select action xt and observe feedback rt = x>t θ + ξt;
16: Update: Xζt,t = Xζt,t−1 ∪ {xt}, Λζt,t = Λζt,t−1 + xtx

>
t , λζt,t = λζt,t−1 + rtxt, and Xζ′,t = Xζ′,t−1,

Λζ′,t = Λζ′,t−1, λζ′,t = λζ′,t−1 for any ζ ′ 6= ζt;
17: end for

Algorithm 1: The VCL-SupLinUCB algorithm

Theorem 2 implies the following two statements. In the
following, . means that the constants in the inequality
are omitted.

i. The expected regret E[RT ] . d
√
T log T log(1/δ) ·

log log(T/δ). In particular, if we take δ = Ω(1),
we have that E[RT ] . d

√
T log T · log log T .

ii. With probability at least 1 − δ, it holds
that RT . d

√
T log T log(1/δ) · log log(T/δ).

This is because, by Markov’s inequality,
Pr[RT − C1d

√
T log T log(1/δ) · log log(T/δ) >

C2d
√
T ] ≤ E[max{RT − C1d

√
T log T log(1/δ) ·

log log(T/δ), 0}]/(C2d
√
T ) ≤ δ.

While neither of the two statements implies each other,
we note that, if iterated logarithmic factor is left out,
statement ii) is stronger than the high probability
bound proved by [Abbasi-Yadkori et al., 2011], where
the regret is at most O(d

√
T log T log(T/δ)) with prob-

ability at least 1− δ.

The proof of Theorem 2 is stated in the next section.

3 Proof of Theorem 2

3.1 Uniform confidence region for θ̂ζ,t

We first present a lemma that upper bounds the errors
|〈x, θ̂ζ,t − θ〉| with high probability.

Lemma 3. For any t ∈ [T ], any layer ζ ∈
{0, 1, 2, . . . , ζ0}, and any γ ∈ (0, 1/2], with probabil-
ity 1− γ it holds that

sup
x∈Rd

(ωxζ,t)
−1
∣∣x>(θ̂ζ,t − θ)

∣∣ . √d+
√

ln(1/γ).

The proof of Lemma 3 can be roughly divided into
three steps. First, the closed-form expression of Ridge
regression to express θ̂ζ,t in terms of θ and ξ. At
the second step, a self-normalized empirical process is
derived by manipulating and normalizing the expression
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derived in the first step. Finally, sharp tail bounds of
sub-Gaussian processes are invoked to prove Lemma 3.

Proof of Lemma 3. Let

Tζ,t−1 := {τ : τ ≤ t− 1 and ζτ = ζ}

and let
nζ,t−1 := |Tζ,t−1|.

Note that we also have nζ,t−1 = |Xζ,t−1|.

Let Xζ,t−1 be a nζ,t−1×d matrix constructed by stack-
ing all x ∈ Xζ,t−1 together, i.e.,

Λζ,t−1 = X>ζ,t−1Xζ,t−1 + I.

Let Ξζ,t−1 be the nζ,t−1-dimensional vector that con-
tains all noises ξτ such that τ ∈ Tζ,t−1. We also let

rζ,t−1 = Xζ,t−1θ + Ξζ,t−1

be the nζ,t−1-dimensional vector by concatenating all
rewards for time periods τ ∈ Tζ,t−1.

Define also ‖x‖A :=
√
x>Ax for d-dimensional vectors

x and d× d positive-semidefinite matrices A. Then

θ̂ζ,t = (X>ζ,t−1Xζ,t−1 + I)−1X>ζ,t−1(Xζ,t−1θ + Ξζ,t−1)

= (I − Λ−1
ζ,t−1)θ + Λ−1

ζ,t−1X
>
ζ,t−1Ξζ,t−1.

Subtracting one θ and left multiplying with (θ̂ζ,t −
θ)>Λζ,t−1 on both sides of the above identity, we obtain

‖θ̂ζ,t−θ‖2Λζ,t−1
= −(θ̂ζ,t−θ)>θ+(θ̂ζ,t−θ)>X>ζ,t−1Ξζ,t−1.

(1)
Note that

|(θ̂ζ,t − θ)>θ| ≤ ‖θ‖2‖θ̂ζ,t − θ‖2 ≤ ‖θ̂ζ,t − θ‖Λζ,t−1

because ‖θ‖2 ≤ 1 and Λζ,t−1 � I. Dividing both sides

of Eq. (1) by ‖θ̂ζ,t − θ‖Λζ,t−1
, we have

‖θ̂ζ,t − θ‖Λζ,t−1
≤ 1 + φ>X>ζ,t−1Ξζ,t−1,

where φ = (θ̂ζ,t − θ)/‖θ̂ζ,t − θ‖Λζ,t−1
. (2)

It is easy to verify that φ satisfies ‖φ‖Λζ,t−1
≤ 1. Con-

sider linear transforms x̃τ = Λ
−1/2
ζ,t−1xτ for all τ ∈ Tζ,t−1

and φ̃ = Λ
1/2
ζ,t−1φ. Then φ̃ satisfies ‖φ̃‖2 ≤ 1. Subse-

quently, Eq. (2) can be re-formulated as

‖θ̂ζ,t − θ‖Λζ,t−1
≤ 1 + sup

‖φ̃‖2≤1

Gφ̃, (3)

where Gφ̃ =
∑
τ∈Tζ,t−1

ξτ 〈x̃τ , φ̃〉.

We next show that G· is a sub-Gaussian pro-
cess with respect to ‖ · ‖2. Since {ξτ}τ∈Tζ,t−1

and {xτ}τ∈Tζ,t−1
are statistically indepen-

dent [Chu et al., 2011, Auer, 2002], we have
that {ξτ}τ∈Tζ,t−1

and {x̃τ}τ∈Tζ,t−1
are statis-

tically independent. Therefore, for any φ, φ′,
Gφ − Gφ′ =

∑
τ∈Tζ,t−1

ξτ 〈x̃τ , φ − φ′〉 is a centered
sub-Gaussian random variable with variance proxy∑

τ∈Tζ,t−1

|〈x̃τ , φ− φ′〉|2

= (φ− φ′)>
( ∑
τ∈Tζ,t−1

x̃τ x̃
>
τ

)
(φ− φ′)

= (φ− φ′)>Λ
−1/2
ζ,t−1

( ∑
τ∈Tζ,t−1

xτx
>
τ

)
Λ
−1/2
ζ,t−1(φ− φ′)

≤ ‖φ− φ′‖22.

Subsequently, invoking Lemma 10, we have with prob-
ability 1− γ that

‖θ̂ζ,t − θ‖Λζ,t−1

.1 +

∫ ∞
0

√
lnN({x ∈ Rd : ‖x‖2 ≤ 1}; ‖ · ‖2, ε)dε

+
√

ln(1/γ)

.1 +

∫ 2

0

√
d ln(1/ε)dε+

√
ln(1/γ) .

√
d+

√
ln(1/γ).

Finally, Lemma 3 is proved by the Cauchy-Schwarz
inequality:∣∣x>(θ̂ζ,t − θ)

∣∣ ≤ ‖x‖Λ−1
ζ,t−1
‖θ̂ζ,t − θ‖Λζ,t−1

≤ ωxζ,t‖θ̂ζ,t − θ‖Λζ,t−1
, ∀x ∈ Rd,

which is to be demonstrated.

In this paper, we only use the following weaker version
of Lemma 3.

Corollary 4. For any t ∈ [T ], any layer ζ ∈
{0, 1, 2, . . . , ζ0}, and any γ ∈ (0, 1/2], with probabil-
ity 1− γ it holds that

sup
x∈Rd

(ωxζ,t)
−1
∣∣x>(θ̂ζ,t − θ)

∣∣ .√d · ln(1/γ).

3.2 Regret upper bound at a single time step

For each time t, we first bound the expected error of
the estimation of any arm that lies out of its confidence
band using the sharp bound we obtained in Corollary
4.

Lemma 5. There exists a sufficiently large univer-
sal constant C > 0 such that for each layer ζ ∈
{0, 1, 2, . . . , ζ0}, for each time t ∈ [T ], and for any
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δ ∈ (0, 1/2], it holds that

E
[

max
x∈Dt

{
1
[∣∣∣x>(θ̂ζ,t − θ)

∣∣∣ ≥ C√d · αxζ,t · ωxζ,t]
·
∣∣∣x>(θ̂ζ,t − θ)

∣∣∣}] . δd/
√
T ln2 T . (4)

To prove Lemma 5, we adopt a novel argument that
partitions the action set according to the geometric
scale of the confidence levels of the actions. Using
Corollary 4, for each partition, we derive a uniform
error bound for the expected reward of the actions in
the partition with empirical estimate θ̂ζ,t. Since we
have no control on the index of the partition that the
maximizer x∗ belongs to, we finally employ a union
bound argument to combine the error bounds for every
partition and complete the proof.

Proof of Lemma 5. For each layer ζ and for each time t,
consider a partition of Dt, namely {Aκζ,t}κ∈{1,2,3,...,K},
where K = dlog2(T 2/δ2)e+ 1, and we define

Aκζ,t =

{
{x ∈ Dt : ωxζ,t ∈ (2−κ, 2−κ+1]} when κ < K

{x ∈ Dt : ωxζ,t ∈ (0, 2−κ+1]} when κ = K

For each κ, we let

mκ
ζ,t = sup

i∈Aκζ,t

{∣∣∣x>it(θ̂ζ,t − θ)∣∣∣}

be the maximum estimation error for the context vec-
tors in Aκζ,t and next we first provide bounds on mκ

ζ,t.
By Corollary 4, there exists a universal constant C,
such that for all β ≥

√
ln 2, we have that

Pr
[
mκ
ζ,t ≥ C · 2−κ

√
d · β

]
= Pr

[
mκ
ζ,t ≥ (C/2) · 2−κ+1

√
d · β

]
≤ Pr

[
∃i ∈ Aκζ,t :

∣∣∣x>it(θ̂ζ,t − θ)∣∣∣ ≥ (C/2) · ωiζ,t
√
d · β

]
≤ e−β

2

.

Now we let

ακt =

√
max{1, ln[T ln4 T ln2(1/δ) · 2−2κ/(dδ2)]},

and use 1[·] to denote the indicator function. For each

κ, it holds that

E
[
1
[
mκ
ζ,t ≥ C · 2−κ

√
d · ακt

]
·mκ

ζ,t

]
≤ Pr

[
mκ
ζ,t ≥ C · 2−κ

√
d · ακt

]
·
(
C · 2−κ

√
d · ακt

)
+

∫ +∞

C·2−κ
√
d·ακt

Pr[mκ
ζ,t ≥ z]dz

≤ exp
(
−(ακt )2

)
· C · 2−κ

√
d · ακt

+ C · 2−κ
√
d ·
∫ ∞
ακt

e−β
2

dβ

. exp
(
−(ακt )2

)
· 2−κ

√
d · ακt . (5)

We now upper bound Eq. (5) by considering the fol-
lowing two cases.

In the first case, when ακt = 1, we have that

T ln4 T ln2(1/δ) · 2−2κ/(dδ2) ≤ e,

which means that,

2−κ .
√
dδ2/(T ln4 T ln2(1/δ)).

Therefore, Eq. (5) is upper bounded by

e−1 · 2−κ
√
d . δd/

√
T ln4 T ln2(1/δ).

In the second case, when α > 1, we have that

T ln4 T ln2(1/δ) · 2−2κ/(dδ2) = exp((ακt )2)

and therefore

2−κ = δ

√
d/(T ln4 T ln2(1/δ)) · exp((ακt )2/2).

We can upper bound Eq. (5) by

exp
(
−(ακt )2(1− 1/2)

)
· δ
√
d/(T ln4 T ln2(1/δ)) ·

√
d · ακt

. δd/

√
T ln4 T ln2(1/δ).

Summarizing the two cases, we have

E
[
1
[
mκ
ζ,t ≥ C · 2−κ

√
d · ακt

]
mκ
ζ,t

]
. δd/

√
T ln4 T ln2(1/δ). (6)

We now work with the Left-Hand Side of Eq. (4). Let
x∗ be the maximizer in the LHS of Eq. (4), and let κ∗

be the index of the partition such that x∗ ∈ Aκ∗ζ,t. We
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have

E
[
1
[∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣ ≥ C√d · αx∗ζ,tωx∗ζ,t]
×
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣]
≤ E

[
1 [κ∗ = K] ·

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣]

+ E
[
1 [κ∗ < K]× 1

[∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣ ≥

C
√
d · αx

∗

ζ,tω
x∗

ζ,t

]
×
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣] . (7)

We first focus on the first term in the Right-Hand Side
of Eq. (7). When κ∗ = K, we have ωx

∗

ζ,t ≤ 2/(T/δ)2.
Therefore,

Pr

[
κ∗ = K and

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣ ≥ δ/√T ln4 T ln2(1/δ)

]
≤ Pr

[
(ωx

∗

ζ,t)
−1
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣ > T 1.5/(2δ ln2 T ln(1/δ))
]

. δ3 · exp(−T ),

where the last inequality is due to Corollary 4 and for
T &

√
d. Therefore, we have

E
[
1 [κ∗ = K]

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣] . δ/

√
T ln4 T ln2(1/δ)

+ E
[
1
[
κ∗ = K and

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣

> δ/

√
T ln4 T ln2(1/δ)

]
·
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣]
≤ δ/

√
T ln4 T ln2(1/δ)

+
{

Pr
[
κ∗ = K and

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣

> δ/

√
T ln4 T ln2(1/δ)

]
· E
[∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣2]}1/2

. δ/

√
T ln4 T ln2(1/δ), (8)

where the second inequality due to Cauchy-Schwartz,
and the last inequality is because of

E
[∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣2] ≤ E
[∥∥∥θ̂ζ,t − θ∥∥∥2

2

]
≤ E

[(∥∥∥θ̂ζ,t∥∥∥
2

+ 1
)2
]
. T 2.

Now we work with the second term in the Right-Hand
Side of Eq. (7). When κ∗ < K, we have 2−κ

∗
< ωx

∗

ζ,t

and ακ
∗

t ≤ αx
∗

ζ,t, and therefore

1
[
κ∗ < K,

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣ ≥ C√d · αx∗ζ,t · ωx∗ζ,t]

×
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣
≤ 1

[∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣ ≥ C√d · αx∗ζ,t · 2−κ∗]

·
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣
≤ 1

[
mκ∗

t ≥ C
√
d · αx

∗

ζ,t · 2−κ
∗
]
·mκ∗

t

≤
K−1∑
κ=1

1
[
mκ
t ≥ C

√
d · αx

∗

ζ,t · 2−κ
∗
]
·mκ

ζ,t. (9)

Taking expectation and invoking Eq. (6), we have

E
[
1
[
κ∗ < K,

∣∣∣(x∗)>(θ̂ζ,t − θ)
∣∣∣ ≥ C√d · αx∗ζ,t · ωx∗ζ,t]

·
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣]
≤
K−1∑
κ=1

E
[
1
[
mκ
t ≥ C

√
d · αx

∗

ζ,t · 2−κ
∗
]
·mκ

ζ,t

]
. δd/

√
T ln2 T . (10)

Combining Eq. (7), Eq. (8), and Eq. (10), we have

E
[
1
[∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣ ≥ C√d · αx∗ζ,t · ωx∗ζ,t]
×
∣∣∣(x∗)>(θ̂ζ,t − θ)

∣∣∣] . δd/
√
T ln2 T ,

which is to be demonstrated.

For any layer ζ ∈ {0, 1, 2, . . . , ζ0} and any time period
t ∈ [T ], we define

mζ,t := max
x∈Nζ,t

{x>θ}, and mζ,t := min
x∈Nζ,t

{x>θ}

as the largest and smallest mean reward for actions in
the action subset Nζ,t. For convenience, we also define

mζ0+1,t := mζ0,t, and mζ0+1,t := mζ0,t.

Note that maxx∈Dt{x>θ} = m0,t and x>t θ ≥ mζt,t

(due to xt ∈ Nζt,t), we have that the regret incurred at
time t is

max
x∈Dt
{x>θ} − x>t θ ≤

(
(m0,t −mζt,t) + (mζt,t −mζt,t)

)
≤ (mζt,t −mζt,t) +

ζt∑
ζ=1

(mζ−1,t −mζ,t). (11)

In the following lemma, we provide upper bounds for
the expressions in the Right-Hand Side of Eq. (11). In-
tuitively, the following lemma states that the expected
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maximum rewards between adjacent layers are close to
each other, and the expected differences between any
pair of actions inside any layer are small and exponen-
tially decreasing as the layer increases.

Lemma 6. For all t and ζ = 0, 1, · · · , ζ0, it holds that

E [max{mζ,t −mζ+1,t, 0}] . δd/
√
T ln2 T ; (12)

E
[
max{mζ,t −mζ,t − 23−ζ , 0} · 1{ζ ≤ ζt}

]
. δd/

√
T ln2 T . (13)

Proof. We first prove Eq. (12). Let

y∗t := arg max
y∈Nζ,t

{y>θ}

and
z∗t := arg max

z∈Nζ,t
{z>θ̂ζ,t}.

If y∗t ∈ Nζ+1,t, then mζ,t = mζ+1,t because Nζ+1,t ⊆
Nζ,t. On the other hand, if y∗t /∈ Nζ+1,t, note that

z∗t ∈ Nζ+1,t because z∗t maximizes z>θ̂ζ,t in Nζ,t. Sum-
marizing both cases of y∗t ∈ Nζ+1,t (in which mζ+1,t =
mζ,t) and y∗t /∈ Nζ+1,t (in which mζ+1,t ≥ (z∗t )>θ as
z∗t ∈ Nζ+1,t), we have

mζ,t −mζ+1,t ≤ 1{y∗t /∈ Nζ+1,t} · (y∗t − z∗t )>θ. (14)

For any ζ, t and y ∈ Nζ,t, define

Eyζ,t := {|y>(θ̂ζ,t − θ)| ≤ $y
ζ,t}

as the success event in which the estimation error of
y>θ̂ζ,t for y>θ is within the confidence interval $y

ζ,t.
By definition,

(y∗t )>θ ≤ (y∗t )>θ̂ζ,t +$
y∗t
ζ,t + 1{¬Ey

∗
t

ζ,t} ·
∣∣(y∗t )>(θ̂ζ,t − θ)

∣∣;
(15)

(z∗t )>θ ≥ (z∗t )>θ̂ζ,t −$
z∗t
ζ,t − 1{¬Ez

∗
t

ζ,t} ·
∣∣(z∗t )>(θ̂ζ,t − θ)

∣∣.
(16)

Also, conditioned on the event y∗t /∈ Nζ+1,t, the proce-
dure of Algorithm 1 implies

(y∗t )>θ̂ζ,t < (z∗t )>θ̂ζ,t − 21−ζ . (17)

Subtracting Eq. (16) from Eq. (15) and considering
Eq. (17), we have

(y∗t − z∗t )>θ

≤$y∗t
ζ,t +$

z∗t
ζ,t − 21−ζ +

∑
x∈{y∗t ,z∗t }

1{¬Exζ,t} ·
∣∣x>(θ̂ζ,t − θ)

∣∣
≤

∑
x∈{y∗t ,z∗t }

1{¬Exζ,t} ·
∣∣x>(θ̂ζ,t − θ)

∣∣, (18)

where the last inequality holds because $x
ζ,t ≤ 2−ζ

for all x ∈ Nζ,t, if the algorithm is executed to level

ζ + 1. Combining Eqs. (14,18) and Lemma 5, taking
expectations, we obtain

E [max{mζ,t −mζ+1,t, 0}]

≤ E
[
1{y∗t /∈ Nζ+1,t} ·

(
1{¬Ey

∗
t

ζ,t}
∣∣(y∗t )>(θ̂ζ,t − θ)

∣∣
+1{¬Ez

∗
t

ζ,t}
∣∣(z∗t )>(θ̂ζ,t − θ)

∣∣)]
≤ E

[
1{¬Ey

∗
t

ζ,t}
∣∣(y∗t )>(θ̂ζ,t − θ)

∣∣]
+ E

[
1{¬Ez

∗
t

ζ,t}
∣∣(z∗t )>(θ̂ζ,t − θ)

∣∣]
. δd/

√
T ln2 T .

Now we focus on Eq. (13). We only need to prove the
equation for ζ > 0 since it is trivially true for ζ = 0.
Let

w∗t := arg min
w∈Nζ,t

{w>θ}.

Clearly, we have that

mζ,t −mζ,t = (y∗t − w∗t )>θ.

Similar to Eqs. (15,16), we can establish that

(y∗t )>θ ≤ (y∗t )>θ̂ζ−1,t +$
y∗t
ζ−1,t

+ 1{¬Ey
∗
t

ζ−1,t} ·
∣∣(y∗t )>(θ̂ζ−1,t − θ)

∣∣; (19)

(w∗t )>θ ≥ (w∗t )>θ̂ζ−1,t −$
w∗t
ζ−1,t

− 1{¬Ew
∗
t

ζ−1,t} ·
∣∣(w∗t )>(θ̂ζ−1,t − θ)

∣∣. (20)

In addition, because both y∗t and w∗t belong to Nζ,t ⊆
Nζ−1,t, the second step of Algorithm 1 implies that
conditional on ζ ≤ ζt,

(y∗t )>θ̂ζ−1,t ≤ (w∗t )>θ̂ζ−1,t − 21−(ζ−1)

≤ (w∗t )>θ̂ζ−1,t − 22−ζ , (21)

and

$
y∗t
ζ−1,t ≤ 2−(ζ−1), $

w∗t
ζ−1,t ≤ 2−(ζ−1). (22)

Subtracting Eq. (19) from Eq. (20) and applying
Eqs. (21,22), we get for any ζ ≤ ζt,

mζ,t −mζ,t = (y∗t − w∗t )

≤ 22−ζ + 2 · 2−(ζ−1) + 1{¬Ey
∗
t

ζ−1,t} ·
∣∣(y∗t )>(θ̂ζ−1,t − θ)

∣∣
+ 1{¬Ew

∗
t

ζ−1,t} ·
∣∣(w∗t )>(θ̂ζ−1,t − θ)

∣∣
= 23−ζ + 1{¬Ey

∗
t

ζ−1,t} ·
∣∣(y∗t )>(θ̂ζ−1,t − θ)

∣∣
+ 1{¬Ew

∗
t

ζ−1,t} ·
∣∣(w∗t )>(θ̂ζ−1,t − θ)

∣∣.
Therefore, since the right hand-side of the above in-
equality is non-negative, we have

E
[
max{mζ,t −mζ,t − 23−ζ , 0} · 1{ζ ≤ ζt}

]
≤ E

[
1{¬Ey

∗
t

ζ−1,t} ×
∣∣(y∗t )>(θ̂ζ−1,t − θ)

∣∣
+1{¬Ew

∗
t

ζ−1,t} ·
∣∣(w∗t )>(θ̂ζ−1,t − θ)

∣∣] .
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We finally apply Lemma 5 and prove Eq. (13).

3.3 The elliptical potential lemma, and
putting everything together

Lemma 7. If the parameter C in Algorithm 1 is a
large enough universal constant, then we have

E

[
max

{
RT − 8 ·

T∑
t=1

$xt
ζt,t
, 0

}]
. δd

√
T . (23)

Note that instead of a high probability bound, which is
usual in the previous analysis (e.g., [Dani et al., 2008,
Abbasi-Yadkori et al., 2011]), our upper bound is in an
expectation form. This crucially helps us to avoid the
extra log T factor due to the union bound argument.

Proof of Lemma 7. Since

RT =
T∑
t=1

(max
x∈Dt
{x>θ} − x>t θ),

by Eq. (11) we have

RT ≤
T∑
t=1

(
(m0,t −mζt,t) + (mζt,t −mζt,t)

)
. (24)

By Eq. (13) in Lemma 6, we have that for any time t,

E
[
max{mζt,t −mζt,t,−23−ζt , 0}

]
≤

ζ0∑
ζ=0

E
[
max{mζ,t −mζ,t − 23−ζ , 0} · 1{ζ ≤ ζt}

]
. δd/

√
T ,

Together with Eq. (12) in Lemma 6, we have that

E
[
max{(m0,t −mζt,t) + (mζt,t −mζt,t)− 23−ζt , 0}

]
≤

ζ0∑
ζ=0

E [max{mζ,t −mζ+1,t, 0}]

+ E
[
max{mζt,t −mζt,t,−23−ζt , 0}

]
. δd/

√
T .

(25)

Summing up (25) for all t ∈ [T ] and together with (24),
we have that

E

[
max

{
RT −

T∑
t=1

23−ζt , 0

}]
. δd

√
T . (26)

Note that $xt
ζ,t ≥ 2−ζt − δ

√
d/T by the first and the

third cases of the if-elseif-else loop of Algorithm 1.
Therefore, Eq. (26) implies the lemma statement.

Below we state a version of the celebrated elliptical
potential lemma, key to many existing analysis of
linearly parameterized bandit problems [Auer, 2002,
Filippi et al., 2010, Abbasi-Yadkori et al., 2011,
Chu et al., 2011, Li et al., 2017].

Lemma 8 ([Abbasi-Yadkori et al., 2011]). Let U0 = I
and Ut = Ut−1 + yty

>
t for t ≥ 1. For any vectors

y1, y2, . . . , yT , it holds that

T∑
t=1

y>t U
−1
t−1yt ≤ 2 ln(det(UT )).

Using Lemma 8, we prove the following Lemma 9. The
proof Lemma 9 follows the similar lines of Lemma
6 in [Li et al., 2019] and we defer it to Appendix B.
At a high level, the proof exploits the power of vari-
ated confidence levels (i.e., the specially designed αiζ,t
quantity in Algorithm 1) and relies on an applica-
tion of Jensen’s inequality to the concave function

f(τ) =
√
τ ln((T ln4 T ln2(1/δ))τ/(dδ2)), as well as the

commonly used f(τ) =
√
τ .

Lemma 9. It holds that∑
t

$xt
ζt,t

. d
√
T log T log(1/δ) · log log(T/δ).

Combining Lemma 7 and Lemma 9, we prove Theo-
rem 2.

4 Conclusions

In this paper we study the linearly parameterized con-
textual bandit problem and develop algorithms that
achieve minimax-optimal regret up to iterated loga-
rithmic terms. Future directions include generalizing
the proposed approach to contextual bandits with gen-
eralized linear models, as well as other variants of
contextual bandit problems.
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