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Abstract

In this paper we study the uncapacitated facility location problem in the model
of differential privacy (DP) with uniform facility cost. Specifically, we first show
that, under the hierarchically well-separated tree (HST) metrics and the super-set
output setting that was introduced in [8], there is an ε-DP algorithm that achieves
an O( 1

ε ) (expected multiplicative) approximation ratio; this implies an O( logn
ε )

approximation ratio for the general metric case, where n is the size of the input
metric. These bounds improve the best-known results given by [8]. In particular,
our approximation ratio for HST-metrics is independent of n, and the ratio for
general metrics is independent of the aspect ratio of the input metric.
On the negative side, we show that the approximation ratio of any ε-DP algorithm
is lower bounded by Ω( 1√

ε
), even for instances on HST metrics with uniform

facility cost, under the super-set output setting. The lower bound shows that the
dependence of the approximation ratio for HST metrics on ε can not be removed or
greatly improved. Our novel methods and techniques for both the upper and lower
bound may find additional applications.

1 Introduction
The facility location problem is one of the most fundamental problems in combinatorial optimization
and has a wide range of applications such as plant or warehouse location problems and network design
problems, also it is closely related to clustering problems such as k-median, where one typically
seeks to partition a set of data points, which themselves find applications in data mining, machine
learning, and bioinformatics [1, 13, 4]. Due to its versatility, the problem has been studied by both
operations research and computer science communities [20, 19, 16, 15, 1, 13, 4]. Formally, it can be
defined as following.
Definition 1 (Uniform Facility Location Problem (Uniform-FL)). The input to the Uniform Facility
Location (Uniform-FL) problem is a tuple (V, d, f, ~N), where (V, d) is a n-point discrete metric,
f ∈ R≥0 is the facility cost, and ~N = (Nv)v∈V ∈ ZV≥0 gives the number of clients in each location
v ∈ V . The goal of the problem is to find a set of facility locations S ⊆ V which minimize the
following, where d(v, S) = mins∈S d(v, s),

min
S⊆V

costd(S; ~N) := |S| · f +
∑
v∈V

Nvd(v, S). (1)

The first term of (1) is called the facility cost and the second term is called the connection cost.
∗Authors are alphabetically ordered.
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Throughout the paper, we shall simply use UFL to refer to Uniform-FL. Although the problem has
been studied quite well in recent years, there is some privacy issue on the locations of the clients.
Consider the following scenario: One client may get worried that the other clients may be able
to obtain some information on her location by colluding and exchanging their information. As a
commonly-accepted approach for preserving privacy, Differential Privacy (DP) [5] provides provable
protection against identification and is resilient to arbitrary auxiliary information that might be
available to attackers.

However, under the ε-DP model, Gupta et al. [8] recently showed that it is impossible to achieve a
useful multiplicative approximation ratio of the facility location problem. Specifically, they showed
that any 1-DP algorithm for UFL under general metric that outputs the set of open facilities must
have a (multiplicative) approximation ratio of Ω(

√
n) which negatively shows that UFL in DP model

is useless. Thus one needs to consider some relaxed settings in order to address the issue.

In the same paper [8] the authors showed that, under the following setting, an O( log2 n log2 ∆
ε )

approximation ratio under the ε-DP model is possible, where ∆ = maxu,v∈V d(u, v) is the diameter
of the input metric. In the setting, the output is a set R ⊆ V , which is a super-set of the set of open
facilities. Then every client sees the output R and chooses to connect to its nearest facility in R. The
the actual set S of open facilities, is the facilities in R with at least one connecting client. Thus, in
this model, a client will only know its own service facility, instead of the set of open facilities.
We call this setting the super-set output setting. Roughly speaking, under the ε-DP model, one can
not well distinguish between if there is 0 or 1 client at some location v. If v is far away from all the
other locations, then having one client at v will force the algorithm to open v and thus will reveal
information about the existence of the client at v. This is how the lower bound in [8] was established.
By using the super-set output setting, the algorithm can always output v and thus does not reveal
much information about the client. If there is no client at v then v will not be open.
In this paper we further study the UFL problem in the ε-DP model with the super-set output setting
by [8] we address the following questions.

For the UFL problem under the ε-DP model and the super-set output setting, can
we do better than the results in [8] in terms of the approximation ratio? Also, what
is the lower bound of the approximation ratio in the same setting?

We make progresses on both problems. Our contributions can be summarized as the followings.
• We show that under the so called Hierarchical-Well-Separated-Tree (HST) metrics, there is an

algorithm that achieves O( 1
ε ) approximation ratio. By using the classic FRT tree embedding

technique of [6], we can achieve O( logn
ε ) approximation ratio for any metrics, under the ε-DP

model and the super-set output setting. These factors respectively improve upon a factor of
O(log n log2 ∆) in [8] for HST and general metrics. Thus, for HST-metrics, our approximation
only depends on ε. For general metrics, our result removed the poly-logarithmic dependence on ∆
in [8].
• On the negative side, we show that the approximation ratio under ε-DP model is lower bounded

by Ω( 1√
ε
) even if the metric is a star (which is a special case of a HST). This shows that the

dependence on ε is unavoidable and can not been improved greatly.

Related Work The work which is the most related to this paper is [8], where the author first studied
the problem. Nissim et al. [18] study an abstract mechanism design model where DP is used to design
approximately optimal mechanism, and they use facility location as one of their key examples. The
UFL problem has close connection to k-median clustering and submodular optimization, whose DP
versions have been studied before such as [17, 3, 7, 8, 2]. However, their methods cannot be used in
our problem. There are many papers study other combinatorial optimization problems in DP model
such as [9, 10, 11, 12, 8]. Finally, we remark that the setting we considered in the paper is closely
related to the Joint Differential Privacy Model that was introduced in [14]. We leave the details to the
full version of the paper.

2 Preliminaries
Given a data universe V and a dataset D = {v1, · · · , vN} ∈ V N where each record vi belongs to
an individual i whom we refer as a client in this paper. Let A : V N 7→ S be an algorithm on D and
produce an output in S . Let D−i denote the dataset D without entry of the i-th client. Also (v′i, D−i)
denote the dataset by adding v′i to D−i.
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Definition 2 (Differential Privacy [5]). A randomized algorithm A is ε-differentially private (DP) if
for any client i ∈ [N ], any two possible data entries vi, v′i ∈ V , any dataset D−i ∈ V N−1 and for all
events T ⊆ S in the output space of A, we have Pr[A(vi, D−i) ∈ T ] ≤ eε Pr[A(v′i, D−i) ∈ T ].

For the UFL problem, instead of using a set D of clients as input, it is more convenient for us to use a
vector ~N = (Nv)v∈V ∈ ZV≥0, where Nv indicates the number of clients at location v. Then the ε-DP
requires that for any input vectors ~N and ~N ′ with | ~N − ~N ′|1 = 1 and any event T ⊆ S , we have
Pr[A( ~N) ∈ T ] ≤ eε Pr[A( ~N ′) ∈ T ].

In the super-set output setting for the UFL problem, the output of an algorithm is a set R ⊆ V of
potential open facilities. Then, every client, or equivalently, every location v with Nv ≥ 1, will be
connected to the nearest location inR under some given metric (in our algorithm, we use the HST tree
metric). Then the actual set S of open facilities is the set of locations in R with at least 1 connected
client. Notice that the connection cost of S will be the same as that of R; but the facility cost might
be much smaller than that of R. This is why the super-set output setting may help in getting good
approximation ratios.

Throughout the paper, approximation ratio of an algorithm A is the expected multiplicative
approximation ratio, which is the expected cost of the solution given by the algorithm, divided
by the cost of the optimum solution, i.e., Ecostd(A( ~N); ~N)

minS⊆V costd(S; ~N)
, where the expectation is over the

randomness of A.

Organization In Section 3, we show how to reduce UFL on general metrics to that on HST
metrics, while losing a factor of O(log n) in the approximation ratio. In Section 4, we give our ε-DP
O(1/ε)-approximation for UFL under the super-set output setting. Finally in Section 5, we prove our
Ω(1/

√
ε)-lower bound on the approximation ratio for the same setting. All missing proofs will be

deferred to the full version of the paper.

3 Reducing General Metrics to Hierarchically Well-Separated Tree Metrics
The classic result of Fakcharoenphol, Rao and Talwar (FRT) [6] shows that any metric on n points
can be embedded into a distribution of metrics induced by hierarchically well-separated trees with
distortion O(log n). As in [8], this tree-embedding result is our starting point for our DP algorithm
for uniform UFL. To apply the technique, we first define what is a hierarchically well-separated tree.
Definition 3. For any real number λ > 1, an integer L ≥ 1, a λ-Hierarchically Well-Separated tree
(λ-HST) of depth L is an edge-weighted rooted tree T satisfying the following properties:

(3a) Every root-to-leaf path in T has exactly L edges.

(3b) If we define the level of a vertex v in T to be L minus the number of edges in the unique
root-to-v path in T , then an edge between two vertices of level ` and `+ 1 has weight λ`.

Given a λ-HST T , we shall always use VT to denote its vertex set. For a vertex v ∈ VT , we let `T (v)
denote the level of v using the definition in (3b). Thus, the root r of T has level `T (r) = L and every
leaf v ∈ T has level `T (v) = 0. For every u, v ∈ VT , define dT (u, v) be the total weight of edges in
the unique path from u to v in T . So (VT , dT ) is a metric. With the definitions, we have:
Fact 4. Let u ∈ VT be a non-leaf of T and v 6= u be a descendant of u, then

λ`T (u)−1 ≤ dT (u, v) ≤ λ`T (u)−1
λ−1 ≤ λ`T (u)

λ−1 .

We say a metric (V, d) is a λ-HST metric for some λ > 1 if there exists a λ-HST T with leaves being
V such that (V, d) ≡ (V, dT |V ), where dT |V is the function dT restricted to pairs in V . Throughout
the paper, we guarantee that if a metric is a λ-HST metric, the correspondent λ-HST T is given. We
give the formal description of the FRT result as well how to apply it to reduce UFL on general metrics
to that on O(1)-HST metrics in the full version of the paper.

Specifically, we shall prove the following theorem:
Theorem 5. Let λ > 1 be any absolute constant. If there exists an efficient ε-DP αtree(n, ε)-
approximation algorithm A for UFL on λ-HST’s under the super-set output setting, then there exists
an efficient ε-DP O(log n) · αtree(n, ε)-approximation algorithm for UFL on general metrics under
the same setting.
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In Section 4, we shall show that it is possible to make αtree(n, ε) = O(1/ε):
Theorem 6. For every small enough absolute constant λ > 1, there is an efficient ε-DP O(1/ε)-
approximation algorithm for UFL on λ-HST metrics under the super-set output setting.

Combining Theorems 5 and 6 will give our main theorem.

Theorem 7 (Main Theorem). Given any UFL tuple (V, d, f, ~N) where |V | = n and ε > 0, there
is an efficient ε-DP algorithm A in the super-set output setting achieving an approximation ratio of
O( logn

ε ).

4 ε-DP Algorithm with O(1/ε) Approximation Ratio for HST Metrics
In this section, we prove Theorem 6. Let λ ∈ (1, 2) be any absolute constant and let η =

√
λ. We

prove the theorem for this fixed λ. So we are given a λ-HST T with leaves being V . Our goal is to
design an ε-DP

(
αtree = O(1/ε)

)
-approximation algorithm for UFL instances on the metric (V, dT ).

Our input vector is ~N = (Nv)v∈V , where Nv ∈ Z≥0 is the number of clients at the location v ∈ V .

4.1 Useful Definitions and Tools

Before describing our algorithm, we introduce some useful definitions and tools. Recall that VT is the
set of vertices in T and V ⊆ VT is the set of leaves. Since we are dealing with a fixed T in this section,
we shall use `(v) for `T (v). Given any u ∈ VT , we use Tu to denote the sub-tree of T rooted at u.
Let L ≥ 1 be the depth of T ; we assume L ≥ logλ(εf).2 We use L′ = max{0, dlogλ(εf)e} ≤ L to
denote the smallest non-negative integer ` such that λ` ≥ εf .

We extend the definition ofNu’s to non-leaves u of T : For every u ∈ VT \V , letNu =
∑
v∈Tu∩V Nv

to be the total number of clients in the tree Tu.

We can assume that facilities can be built at any location v ∈ VT (instead of only at leaves V ): On
one hand, this assumption enriches the set of valid solutions and thus only decreases the optimum
cost. On the other hand, for any u ∈ VT with an open facility, we can move the facility to any leaf v
in Tu. Then for any leaf v′ ∈ V , it is the case that d(v′, v) ≤ 2d(v′, u). Thus moving facilities from
VT \ V to V only incurs a factor of 2 in the connection cost.

An important function that will be used throughout this section is the following set of minimal
vertices:
Definition 8. For a set M ⊆ T of vertices in T , let

min-set(M) := {u ∈M : ∀v ∈ Tu \ {u}, v /∈M}.

For every v, let we define Bv := min{f,Nvλ`(v)}. This can be viewed as a lower bound on the cost
incurred inside the tree Tv , as can be seen from the following claim:
Claim 9. Let V ′ ⊆ VT be a subset of vertices that does not contain an ancestor-descendant pair3.
Then we have opt ≥

∑
v∈V ′ Bv .

4.2 Base Algorithm for UFL without Privacy Guarantee

Before describing the ε-DP algorithm, we first give a base algorithm (Algorithm 1) without any privacy
guarantee as the starting point of our algorithmic design. The algorithm gives an approximation ratio
ofO(1/ε); however, it is fairly simple to see that by making a small parameter change, we can achieve
O(1)-approximation ratio. We choose to present the algorithm with O(1/ε)-ratio only to make it
closer to our final algorithm (Algorithm 2), which is simply the noise-version of the base algorithm.
The noise makes the algorithm ε-DP, while only incurring a small loss in the approximation ratio.

Recall that we are considering the super-set output setting,where we return a set R of facilities, but
only open a set S ⊆ R of facilities using the following closest-facility rule: We connect every client
to its nearest facility in R, then the set S ⊆ R of open facilities is the set of facilities in R with at
least 1 connected client.

2If this is not the case, we can repeat the following process many steps until the condition holds: create a new
root for T and let the old root be its child.

3This means for every two distinct vertices u, v ∈ V ′, u is not an ancestor of v
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Algorithm 1 UFL-tree-base(ε)

1: L′ ← max{0, dlogλ(εf)e}
2: Let M ←

{
v ∈ VT : `(v) ≥ L′ or Nv · λ`(v) ≥ f

}
be the set of marked vertices

3: R← min-set(M)
4: return R but only open S ⊆ R using the closest-facility rule.

In the base algorithm, M is the set of marked vertices in T and we call vertices not in M unmarked.
All vertices at levels [L′, L] are marked. Notice that there is a monotonicity property among vertices
in VT : for two vertices u, v ∈ VT with u being an ancestor of v, v is marked implies that u is marked.
Due to this property, we call an unmarked vertex v ∈ VT maximal-unmarked if its parent is marked.
Similarly, we call a marked vertex v ∈ VT minimal-marked if all its children are unmarked (this is
the case if v is a leaf). So R is the set of minimal-marked vertices. Notice one difference between our
algorithm and that of [8]: we only return minimal-marked vertices, while [8] returns all marked ones.
This is one place where we can save a logarithmic factor, which requires more careful analysis.

We bound the facility and connection cost of the solution S given by Algorithm 1 respectively. Indeed,
for the facility cost, we prove some stronger statement. Define V ◦ = {u ∈ Vt : Nu ≥ 1} be the set
of vertices u with at least 1 client in Tu. We prove
Claim 10. S ⊆ min-set(V ◦ ∩M).

The stronger statement we prove about the facility cost of the solution S is the following:
Lemma 11. |min-set(V ◦ ∩M)| · f ≤ (1 + 1/ε)opt.

Notice that Claim 10 and Lemma 11 imply that |S| · f ≤ O(1 + 1/ε)opt.

Now we switch gear to consider the connection cost of the solution S and prove:
Lemma 12. The connection cost of S given by the base algorithm is at most O(1)opt.

4.3 Guaranteeing ε-DP by Adding Noises

In this section, we describe the final algorithm (Algorithm 2) that achieves ε-DP without sacrificing
the order of the approximation ratio. Recall that η =

√
λ.

Algorithm 2 DP-UFL-tree(ε)

1: L′ ← max{0, dlogλ(εf)e}

2: for every v ∈ VT with `(v) < L′, define Ñv := Nv + Lap

(
f

cηL′+`(v)

)
, where c = η−1

η2 .

3: Let M ←
{
v ∈ VT : `(v) ≥ L′ or Ñv · λ`(v) ≥ f

}
be the set of marked vertices

4: R← min-set(M)
5: return R but only open S ⊆ R using the closest-facility rule.

We give some intuitions on how we choose the noises in Step 1 of the Algorithm. Let us travel
through the tree from level L′ down to level 0. Then the Laplacian parameter, which corresponds to
the magnitude of the Laplacian noise, goes up by factors of η. This scaling factor is carefully chosen
to guarantee two properties. First the noise should go up exponentially so that the DP parameter
only depends on the noise on the highest level, i.e, level L′. Second, η is smaller than the distance
scaling factor λ = η2. Though the noises are getting bigger as we travel down the tree, their effects
are getting smaller since they do not grow fast enough. Then essentially, the effect of the noises is
only on levels near L′.
Lemma 13. Algorithm 2 satisfies ε-DP property.

4.4 Increase of cost due to the noises

We shall analyze how the noise affects the facility and connection costs. Let M0, R0 and S0 (resp.
M1, R1 and S1) be the M,R and S generated by Algorithm 1 (resp. Algorithm 2). In the proof,
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we shall also consider running Algorithm 1 with input vector being 2 ~N instead of ~N . Let M ′0, R′0

and S′0 be the M,R and S generated by Algorithm 1 when the input vector is 2 ~N . Notice that the
optimum solution for input vector 2 ~N is at most 2opt. Thus, Lemma 11 implies |S′0|·f = O(1/ε)opt.
Notice that M0, R0, S0,M ′0, R′0 and S′0 are deterministic while M1, R1 and S1 are randomized.

The lemmas we shall prove are the following:
Lemma 14. E

[
|S1| · f

]
≤ O(1/ε) · opt.

Lemma 15. The expected connection cost of the solution S1 is O(1) times that of S0.

Thus, combining the two lemmas, we have that the expected cost of the solution S1 is at most
O(1/ε)opt, finishing the proof of Theorem 6. Indeed, we only lose an O(1)-factor for the connection
cost as both factors in Lemma 11 and 15 are O(1). We then prove the two lemmas separately.

4.4.1 Increase of facility costs due to the noise

In this section, we prove Lemma 14. A technical lemma we can prove is the following:
Claim 16. Let M ⊆ VT and M ′ = M ∪ {v} for some v ∈ VT \M , then exactly one of following
three cases happens.

(16a) min-set(M ′) = min-set(M).

(16b) min-set(M ′) = min-set(M) ] {v}.
(16c) min-set(M ′) = min-set(M) \ {u} ∪ {v}, where u ∈ min-set(M), v /∈ min-set(M) and

v is a descendant of u.

Proof of Lemma 14. Recall that V ◦ is the set of vertices u with Nu ≥ 1. We first focus on open
facilities in V ◦ in S1. Claim 16 implies that adding one new element toM will increase |min-set(M)|
by at most 1. Thus, we have

|min-set(M1 ∩ V ◦)| − |min-set(M ′0 ∩ V ◦)| ≤ |(M1 ∩ V ◦) \ (M ′0 ∩ V ◦)|

=

∣∣∣∣{u ∈ V ◦ : `(u) < L′, 2Nu <
f

λ`(u)
≤ Ñu

}∣∣∣∣ .
We now bound the expectation of the above quantity. Let U∗ be the set of vertices u ∈ V ◦ with
`(u) < L′ and Nu < f

2λ`(u) . Then for every u ∈ U∗, we have

Pr[u ∈M1] = Pr

[
Nv + Lap

(
f

cηL′+`(u)

)
≥ f

λ`(u)

]
≤ 1

2
exp

(
− f/(2λ`(u))

f/
(
cηL′+`(u)

)) =
1

2
exp

(
−cη

L′−`(u)

2

)
. (2)

We bound f times the sum of (2), over all u ∈ U∗. Notice that every u ∈ V ◦ has Nu ≥ 1. So we
have Bu = min

{
f,Nuλ

`(u)
}
≥ λ`(u) for every u we are interested. Then,

f ≤ 1

ε
· εf · Bu

λ`(u)
≤ 1

ε
· λL

′
· Bu
λ`(u)

=
Bu
ε
· η2(L′−`(u)). (3)

The last inequality comes from εf ≤ λL′ . The equality used that λ = η2.

We group the u’s according to `(u). For each level ` ∈ [0, L′ − 1], we have

f

2

∑
u∈U∗:`(u)=`

exp

(
−cη

L′−`(u)

2

)
≤ 1

2ε
η2(L′−`) exp

(
−cη

L′−`

2

) ∑
u as before

Bu ≤
c`
2ε

opt,

where we defined x` = ηL
′−`(u) and c` = x2

` exp(− cx`

2 ). The last inequality used Claim 9, which
holds since all u’s in the summation are at the same level.

Taking the sum over all ` from 0 to L′, we obtain

f
∑
u∈U∗

Pr[u ∈M1] ≤ opt

2ε
·
L′−1∑
`=0

c` =
opt

2ε
·
L′−1∑
`=0

x2
` exp(−cx`

2
).
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Notice that {x` : ` ∈ [0, L′ − 1]} is exactly {η, η2, · · · , ηL′}. It is easy to see summation is bounded
by a constant for any constant c. Thus, the above quantity is at most O(1/ε)opt. Therefore, we
proved

f · E
[
|min-set(M1 ∩ V ◦)| − |min-set(M ′0 ∩ V ◦)|

]
≤ O(1/ε) · opt.

Notice that Lemma 11 says that f · |min-set(M ′0 ∩ V ◦)| ≤ O(1/ε)opt. Thus f · E[|min-set(M1 ∩
V ◦)|] ≤ O(1/ε)opt.

Then we take vertices outside V ◦ into consideration. Let U = min-set(M1 ∩ V ◦). Then S1 ⊆
R1 = min-set(U ∪ (VT \ V ◦)). To bound the facility cost of S1, we start with the set U ′ = U
and add vertices in VT \ V ◦ (these are vertices u with Nu = 0) to U ′ one by one and see how
this changes min-set(U ′). By Claim 16, adding a vertex Nv = 0 to U ′ will either not change
min-set(U ′), or add v to min-set(U ′), or replace an ancestor of v with v. In all the cases, the set
min-set(U ′) ∩ V ◦ can only shrink. Thus, we have R1 ∩ V ◦ ⊆ min-set(U) = min-set(M1 ∩ V ◦).
We have E[|R1 ∩ V | · f ] ≤ O(1/ε) · opt.

Thus, it suffices to bound the expectation of |S \V ◦| ·f . Focus on some u ∈ VT with Nu = 0. Notice
that u /∈ S if `(u) ≥ L′. So, we assume `(u) < L′. In this case there is some leaf v ∈ V withNv > 0
such that u is the closest point in R to v. So v is not a descendant of u. Let u′ be the ancestor of v that
is at the same level at u and define π(u) = u′. Then `(π(u)) = `(u). Moreover, u is also the closest
point in R to u′, implying that π is an injection. For every u, we can bound f as in (3), but with Bu
replaced by Bπ(u). Then the above analysis still works since we have

∑
u:Nu=0,`(u)=`Bπ(u) ≤ opt

for every ` ∈ [0, L′ − 1] by Claim 9.

4.4.2 Increase of connection cost due to the noise

Now we switch gear to consider the change of connection cost due to the noise.
Proof of Lemma 15. Focus on a vertex v at level ` and suppose v ∈ S0 and some clients are connected
to v in the solution produced by Algorithm 2. So, we have Nv ≥ f

λ` . Let the ancestor of v (including
v itself) be v0 = v, v1, v2, · · · from the bottom to the top. Then the probability that v0 /∈ M0 is
at most 1/2 and in that case the connection cost increases by a factor of λ. The probability that
v0, v1 /∈ M0 is at most 1/4, and in that case the cost increases by a factor of λ2 and so on. As a
result, the expected scaling factor for the connection cost due to the noise is at most

∞∑
i=0

1

2i
· λi =

∞∑
i=1

(
λ

2

)i
= O(1).

Thus, the connection cost of the solution S1 is at most a constant times that of S0. This is the place
where we require λ < 2.

5 Lower Bound of UFL for HST Metric

In this section, we prove an Ω(1/
√
ε) lower bound on the approximation ratio of any algorithm for

UFL in the super-set setting under the ε-DP model. The metric we are using is the uniform star-metric:
the shortest-path metric of a star where all edges have the same length. We call the number of edges
in the star its size and the length of these edges its radius. By splitting edges, we can easily see that
the metric is a λ-HST metric for a λ > 1, if the radius is λL

λ−1 for some integer L.

The main theorem we are going to prove is the following:
Theorem 17. There is a constant c > 0 such that the following holds. For any small enough
ε < 1, f > 0 and sufficiently large integer n that depends on ε, there exists a set of UFL instances
{(V, d, f, ~N)} ~N , where (V, d) is the uniform-star metric of size n and radius

√
εf , and every instance

in the set has n ≤ | ~N |1 ≤ n/ε, such that the following holds: no ε-DP algorithm under the super-set
setting can achieve c 1√

ε
-approximation for all the instances in the set.

Proof. Throughout the proof, we let m = 1/ε and we assume m is an integer. We prove Theorem 17
in two steps, first we show the lower bound on an instance with a 2-point metric, but non-uniform
facility costs. Then we make the facility costs uniform by combining multiple copies of the 2-point
metric into a star metric.
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Consider the instance shown in Figure 1a where V = {a, b} and d(a, b) =
√
εf . The facility costs

for a and b are respectively f and 0. Thus, we can assume the facility b is always open. All the clients
are at a, and the number N of clients is promised to be an integer between 1 and m. We show that
for this instance, no ε-DP algorithm in the super-set output setting can distinguish between the case
where N = 1 and that N = m with constant probability; this will establish the Ω(

√
m) lower bound.

b

a

f/
√
m

cost = 0

cost = f

(a)

a1 a2 · · · · · · an−1 an

b cost = f

f/
√
m

cost = f cost = f cost = f cost = f

(b)

· · · · · ·

· · · · · ·

b1 b2 b3 bn

a1 a2 a3 an
∞ ∞

cost = 0

f/
√
m

cost = 0 cost = 0 cost = 0

cost = f cost = f cost = f cost = f

(c)

Figure 1: Instance for the lower bound.

Obviously, there are only 2 solutions for any instance in the setting: either we open a, or we do not.
Since we are promised there is at least 1 client, the central curator has to reveal whether we open a or
not, even in the super-set output setting: If we do not open a, then we should not include a in the
returned set R since otherwise the client will think it is connected to a; if we open a, then we need to
include it in the returned set R since all the clients need to be connected to a.

Let Di be the scenario where we have N = i clients at a, where i ∈ [m]. Then the cost of the two
solutions for the two scenarios D1 and Dm are listed in the following table:

not open a open a
D1 f/

√
m f

Dm
√
mf f

Thus, if the data set is D1, we should not open a; if we opened, we’ll lose a factor of
√
m. If the data

set is Dm, then we should open a; if we did not open, then we also lose a factor of
√
m.

Now consider any ε-DP algorithm A. Assume towards the contradiction that A achieves 0.2
√
m

approximation ratio. Then, under the data set D1, A should choose not to open a with probability at
least 0.8. By the ε-DP property, under the data set Dm, A shall choose not to open a with probability
at least 0.8e−(m−1)ε > 0.8/e ≥ 0.2. Then under the data set Dm, the approximation ratio of A is
more than 0.2

√
m, leading to a contradiction.

Indeed, later we need an average version of the lower bound as follows:
√
m√

m+ 1
E cost(A(1); 1) +

1√
m+ 1

E cost(A(m);m) ≥ cf, (4)

where c is an absolute constant, A(N) is the solution output by the algorithm A when there are
N clients at a, and cost(A(N);N) is the cost of the solution under the input N . Our argument
above showed that either E cost(A(1); 1) ≥ Ω(0.2

√
m) · f/

√
m = 0.2f , or E cost(A(N);N) ≥

0.2
√
m · f = 0.2

√
mf . In either case, the left side of (4) is at least 0.2

√
mf√

m+1
≥ cf if c is small.

The above proof almost proved Theorem 17 except that we need to place a free open facility at
location b. To make the facility costs uniform, we can make multiple copies of the locations a, while
only keeping one location b; this is exactly a star metric (see Figure 1b). The costs for all facilities
are f . However, since there are so many copies of a, the cost of f for opening a facility at b is so
small and thus can be ignored. Then, the instance essentially becomes many separate copies of the
2-point instances we described (see Figure 1c).

However, proving that the “parallel repetition” instance in Figure 1c has the same lower bound
as the original two-point instance is not so straightforward. Intuitively, we can imagine that the
central curator should treat all copies independently: the input data for one copy should not affect
the decisions we make for the other copies. However, it is tricky to prove this. Instead, we prove
Theorem 17 directly by defining a distribution over all possible instances and argue that an ε-DP
algorithm must be bad on average.
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Due to the page limit, the detailed analysis is left to the full vesion of the paper.
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