
Self-Supervised Online Reward Shaping

in Sparse-Reward Environments

Farzan Memarian∗†, Wonjoon Goo∗, Rudolf Lioutikov, Scott Niekum, and Ufuk Tocpu

University of Texas at Austin, TX, USA

Abstract—We introduce Self-supervised Online Reward

Shaping (SORS), which aims to improve the sample

efficiency of any RL algorithm in sparse-reward environ-

ments by automatically densifying rewards. The proposed

framework alternates between classification-based reward

inference and policy update steps—the original sparse

reward provides a self-supervisory signal for reward infer-

ence by ranking trajectories that the agent observes, while

the policy update is performed with the newly inferred,

typically dense reward function. We introduce theory that

shows that, under certain conditions, this alteration of

the reward function will not change the optimal policy

of the original MDP, while potentially increasing learning

speed significantly. Experimental results on several sparse-

reward environments demonstrate that, across multiple

domains, the proposed algorithm is not only significantly

more sample efficient than a standard RL baseline using

sparse rewards, but, at times, also achieves similar sample

efficiency compared to when hand-designed dense reward

functions are used.

I. INTRODUCTION

While reinforcement learning (RL) algorithms have

achieved tremendous success in many tasks ranging from

Atari games [1], [2], [3] to robotics control problems

[4], [5], [6], they often struggle in environments with

sparse rewards. In dense reward settings, the agent

receives diverse rewards in most states, e.g., a reward

proportional to distance to the goal, rather than a constant

reward everywhere but the goal. Such dense rewards

lead to frequent updates that quickly allow the agent to

differentiate good states from bad ones.

Unfortunately, designing a good, dense reward func-

tion is known to be a difficult task [7], [8], especially

* Equal Contribution.

† Corresponding Author: farzan.memarian@utexas.edu
1 Farzan Memarian is with the Oden Institute for Computational

Engineering and Sciences, University of Texas at Austin, TX, USA.

Wonjoon Goo, Rudolf Lioutikov and Scott Niekum are with the

Department of Computer Science, University of Texas at Austin, TX,

USA. Ufuk Topcu is with the Department of Aerospace Engineering

and Engineering Mechanics, University of Texas at Austin, TX, USA.

for non-experts. In addition, RL approaches can eas-

ily exploit badly designed rewards, get stuck in local

optima and induce behavior that the designer did not

intend [9]. In contrast, goal-based sparse rewards are

appealing since they do not suffer from the reward

exploitation (commonly known as reward hacking) prob-

lem to the same extent. However, sparse rewards only

provide rewards for few select states. Reward sparse-

ness complicates the temporal credit assignment problem

significantly and negatively impacts the overall learning

process. Reward shaping is a commonly used approach

to speed up RL in environments with sparse rewards [10],

[11], [12]. However, altering the ground-truth reward can

potentially change the optimal policy and, hence, induce

undesired behavior.

In this paper, we propose a novel RL framework

that efficiently learns a policy for sparse-reward en-

vironments by training on dense rewards that are in-

ferred in a self-supervised manner. Our framework—

Self-supervised Online Reward Shaping (SORS)—can

speed up the policy learning process without requiring

any domain knowledge or external supervision, and the

proposed framework is compatible with any existing RL

algorithm.

SORS alternates between updating the policy using

an RL algorithm of choice and inferring a dense reward

function from past observations. It infers a reward using

a classification-based reward inference algorithm, T-

REX [13]. However, unlike T-REX, instead of requiring

manual rankings over the trajectories, SORS uses the

sparse reward as a self-supervised learning signal to rank

the trajectories generated by the agent during learning.

We justify the rationale behind the reward inference

performed by SORS based on the following insight: Any

reward function induces a total order over the trajectory

space by means of the discounted return it assigns to

trajectories. We then provide a theorem that indicates

any two reward functions that induce the same total

order over the trajectory space, induce identical sets of

optimal policies under mild assumptions on the dynamics

Accepted for publication in IROS 2021

a
rX

iv
:2

1
0
3
.0

4
5
2
9
v
3

[c

s.
L

G
]

 2
6
 J

u
l

2
0
2
1

of the environment. The objective function that SORS

optimizes for reward inference encourages the dense

reward function to induce the same total order as the

sparse reward over the trajectory space.

Our empirical results on several sparse reward Mu-

JoCo [14] locomotion tasks show that SORS can signifi-

cantly improve the sample efficiency of the state-of-the-

art baseline algorithm, namely Soft-Actor-Critic (SAC).

SORS even achieves comparable sample efficiency to a

baseline that uses a hand-designed dense reward func-

tion.

We make the following contributions:

• We propose a novel reward shaping algorithm,

SORS, that pairs with any existing RL algorithm,

performs self-supervised online reward shaping, and

can improve the sample efficiency of the RL algo-

rithm in sparse-reward environments.

• We provide theoretical justification for our approach

by showing a sufficient condition for two reward

functions to share the same set of optimal policies.

We use this condition to show that, under some as-

sumptions, replacing the ground-truth sparse reward

function with the inferred shaped reward function

does not alter the optimal policies.

• We empirically demonstrate that the proposed

method converges significantly faster than a stan-

dard baseline RL algorithm, namely Soft Actor-

Critic (SAC) [15] for several sparse-reward MuJoCo

locomotion tasks.

II. RELATED WORK

A. Reward Shaping

Reward shaping is a method to incorporate domain

knowledge to densify reward functions. Typically, the

goal of reward shaping is to speed up learning and

overcoming the challenges of exploration and credit

assignment when the environment only returns a sparse,

uninformative, or delayed reward.

In one of the seminal works on reward shaping [10],

the authors study the forms of shaped rewards which

induce the same optimal policy as the ground-truth

reward function. Specifically, they proved that the so-

called potential-based reward shaping is guaranteed not

to alter the optimal policy. The only requirement is that

the potential function needs to be a function of states.

While they provide one specific form for reward shaping

without altering the optimal policy of the MDP, they

do not provide any practical algorithm for acquiring

a potential function that can improve the learning of

optimal behavior. They argue that the optimal state value

function is a good shaping potential, but this insight is

not helpful in practice, as the goal of RL is finding the

optimal value function is the goal of RL and we do not

have it a priori. In this work, we propose an alternative

reward shaping framework in which we replace the origi-

nal reward function with another shaped reward function

which is updated online as the RL agent interacts with

the environment. Our reward shaping approach does not

require any human guidance or extra information.

Devlin et al. [16] build on potential-based shaping

[10] to prove that dynamic shaping of the reward func-

tion does not change the optimal policy, provided that

we use the potential-based shaping framework. Other

researchers [11] have extended potential-based shaping

[10] to potential functions that are functions of state and

action pairs rather than states alone. They propose two

methods for providing potential-based advice, namely,

look-ahead advice, and look-back advice.

In another interesting work on reward shaping [17],

the authors propose a new RL objective which uses a

distance-to-goal shaped reward function. They unroll the

policy to produce pairs of trajectories from each starting

point and use the difference between the two rollouts

to discover and avoid local optima. Unlike their work,

we do not need to alter the way the base RL algorithm

collects experiences. Moreover, we do not rely on using

a distance-to-goal shaped reward function, instead we

learn a dense reward function which asymptotically leads

to optimal policies that equivalent to those of the original

sparse reward.

There is prior work on automatic reward shaping [18],

where they propose reward shaping via meta-learning.

Their method can automatically learn an efficient reward

shaping for new tasks, assuming the state space is shared

among the meta-learning tasks. This work differs from

ours in that it is in the context of meta learning, whereas

our automatic reward shaping algorithm works even for

a single task, and we do not need to train our model on

a library of prior tasks.

Brys et al. propose a method to use expert demonstra-

tions to accelerate RL by biasing the exploration through

reward shaping [12],. They propose a potential function

which is higher for state-action pairs similar to those

seen in the demonstrations and low for dissimilar state-

action pairs. Another related work studies online learning

of intrinsic reward functions as a way to improve RL

algorithms [19].

B. Sparse Rewards

RL in sparse-reward environments has been tackled in

various ways. For instance, the authors of [20] address

sparse-reward environments that can be de-composed

into smaller subtasks. They learn a high-level scheduler

and several auxiliary policies and show that this leads to

improved exploration. Their algorithm learns to provide

internal auxiliary sparse rewards in addition to the orig-

inal sparse reward. Our algorithm is different from this

line of work as our algorithm works for singular tasks,

and we do not use any hierarchy of decision making.

We learn a dense reward which assigns a reward to

every individual state, rather than merely providing an

auxiliary reward on selected states.

Other related work [21] on learning from sparse re-

wards proposes a method to learn a temporally extended

episodic task composed of several subtasks where the

environment returns a sparse reward only at the end of

the episodes. Using the environment’s sparse feedback

and queries from a demonstrator, they learn the high-

level task structure in the form of a deterministic finite

state automaton, and then use the learned task structure

in an inverse reinforcement learning (IRL) framework

to infer a dense reward function for each subtask. Our

work differs in that we do not rely on an expert to

provide demonstrations and instead we learn to shape the

sparse reward relying only on the environment’s sparse

feedback.

C. Learning a Reward Function From Prefer-

ence/Ranking

Several prior works have studied the problem of

inferring a reward function from human preferences

or rankings over demonstrations. One early work on

learning from preferences [22] proposes an active learn-

ing approach to infer a reward function that encodes

the human’s preferences. They train a policy and a

reward network simultaneously. At each iteration, they

use the policy to produce pairs of trajectories and then

query the human for their preference over the pair of

trajectories and use these preferences to improve the

reward by minimizing a preference-based loss function.

They then updated the policy based on the improved

reward. In other work [23], Ibarz et al. extend the

work Christiano et al. [22] to use an initial set of

demonstrations to pre-train the policy, rather than start

training from a random policy. Brown et al. introduce the

T-REX algorithm, which infers a reward function from a

given set of ranked demonstrations [13],. Their algorithm

samples pairs of demonstrations from this initial set

of demonstrations and uses the ranking to label which

demonstration is preferred in a given pair. It then uses a

binary classification loss over these preferences to update

the reward function. They show their algorithm learns

reward functions that, when optimized for a policy, often

exceed the performance of the best demonstrations.

We use an adaptation of the T-REX algorithm for the

reward inference part of our algorithm. However, our

work is different from the above works in two ways.

First, we do not need an initial set of demonstrations.

Second, our algorithm does not require a human in

the loop—instead we leverage the environment’s sparse

feedback to rank the collected trajectories and then use

the set of ranked trajectories for inferring a dense reward

function to accelerate policy learning.

In another work, Brown et al. propose an algorithm to

infer a reward from a set of sub-optimal demonstrations

that are not ranked by an expert [24]. Using the set of

demonstrations, they perform behavioral cloning to learn

a policy. They then inject noise in the policy to produce

various qualities of trajectories and rank the trajectories

based on the level of noise used in producing them.

Then they proceed to learn a reward from the set of

ranked trajectories. Our work differs, in that our self-

supervisory signal comes from a known sparse reward

signal on agent-collected trajectories, and our objective is

to use the learned reward function as a way to accelerate

policy learning, rather than imitate demonstrations.

III. BACKGROUND AND PRELIMINARIES

A. Reinforcement Learning

A Markov decision process (MDP) is defined as

M = 〈S,A, T, r, γ〉, in which S is the state space,

A is the action space, T : S × A → P(S) is the

transition dynamics which maps any given state and

action pair into a probability distribution over the next

state, r : S×A → R is the reward function, and γ is the

discount factor. At each discrete time step, the MDP is

in a state s, the agent takes an action a, and as a result,

the MDP transitions into a new state, s′ ∼ T (s, a), and

the agent receives a scalar valued reward r(s, a, s′). A

policy π(a|s) : S → P(A) is defined as a probability

distribution over actions at any given state s. Given a

policy π, we have the following definitions:

Qπ(s, a) = r(s, a) + γ Ea′∼π(a′|s′)Es′∼T (s,a)[Q(s′, a′)]

V π(s) = Ea∼π(a|s)[Q
π(s, a)]

where Qπ(s, a), V π(s) are respectively the action-value

function and the state value function for the policy π.

The goal of RL is to find a policy with maximal value

function at each state, or find the maximal value function

directly. A trajectory τ = {st, at}
|τ |
t=1 is a sequence

of state action pairs obtained by running a policy on

the MDP, where subscript t is the time index of the

trajectory, i.e., each trajectory starts from (s1, a1). We

define the discounted return of a trajectory according

to reward function r as: Rr(τ) :=
∑|τ |

t=1 γ
t−1r(st, at),

where (st, at) is the state and action pair of the trajectory

τ at time t.

B. Reward Shaping

Given an MDP with a reward function r(s, a), re-

ward shaping is the process of replacing the origi-

nal reward with another reward function, or augment-

ing the original reward function with an auxiliary re-

ward function F (s, a) : S × A → R to create

a new reward function[10]; Concretely, rsh(s, a) =
rnew(s, a) or rsh(s, a) = r(s, a) + F (s, a), where

rsh(s, a) is the shaped reward. While the goal of reward

shaping is to speed up RL, in general, a shaped reward

could induce a different optimal policy than the original

reward.

IV. PREFERENCE ORACLE AND EQUIVALENCY OF

REWARD FUNCTIONS

Consider a reward-free MDP M = 〈S,A, T, γ〉, and

a preference oracle which is a binary relation ≤p∗ that

defines a total order on the set of all trajectories sampled

from the MDP. We can order all possible trajectories

based on the total order defined by the oracle:

τ1 ≤p∗ τ2 ≤p∗ · · · ≤p∗ τk ≤p∗ · · · .

Note that any deterministic reward function r(s, a) can

serve as a preference oracle via the discounted return Rr

under that reward function:

τi ≤r τj ⇔ Rr(τi) ≤ Rr(τj).

where ≤r is the binary relation defined by reward

function r. Using the notion of total order, we will

define a set of reward functions that share the same

set of optimal policies; specifically, we will prove that

two reward functions that produce the same total order

will also yield the same set of optimal policies under

deterministic transition dynamics. We begin by formally

defining the total order equivalency between two reward

functions.

Definition 1 (Total order equivalency). For a given

reward-free MDP M = 〈S,A, T, γ〉 with possible tra-

jectories T = (S × A)+, the total order equivalency of

reward functions r1 and r2 is defined as

r1 ≡ r2 iff τi ≤r1 τj ⇔ τi ≤r2 τj ∀τi, τj ∈ T .

Theorem 1. Given a deterministic reward-free MDP

M = 〈S,A, T, γ〉, if two reward functions r and r′ are

total order equivalent, they will induce the same set of

optimal policies, i.e., r ≡ r′ =⇒ {π∗
r (s)} = {π∗

r′(s)},

where {π∗
r} and {π∗

r′} are the sets of optimal policies

induced by reward functions r and r′ respectively.

Proof. The state-action value function of a policy π at

a given state and action pair s, a is defined as:

Qπ(s, a) = Eπ,T [Rr (τs,a)]

which is equal to the expected return over all trajectories

τs,a ∈ Ts,a that start with action a at state s and

follow policy π under the transition dynamics T . Given

the optimal state-action value function Q∗
r for reward

function r, an optimal policy under the reward function

r is derived as π∗
r (s) = argmaxaQ

∗
r(s, a)

1. Following

these definitions, it is clear that any action chosen by an

optimal policy will yield the highest possible Q value,

i.e.,

Q∗
r(s, π

∗
r (s)) ≥ Q∗

r(s, b) ∀b ∈ A.

For MDPs with deterministic dynamics, an optimal

policy under a reward function r will induce a set of

optimal trajectories starting from any state-action pair,

where all the optimal trajectories receive equal returns

from reward function r. If the policy is deterministic, the

set of optimal trajectories will include only one member.

Hence, for deterministic MDPs the optimal Q-function

for state-action pair (s, a) and an optimal trajectory

starting from the same pair are

Q∗
r(s, a) = max

τ∈Ts,a

Rr(τ), and

τ∗(s, a) = argmax
τ∈Ts,a

Rr(τ).

Using the total order relation ≤r induced by the

reward function r, and the equivalence between r and

r′, we conclude that the two reward functions share the

same set of optimal policies. In other words, if π∗
r is an

1There can be more than one optimal policy corresponding to a

given optimal Q-function. For example, if multiple actions maximize

the Q-function at a given state.

optimal policy under reward function r, it is an optimal

policy under reward function r′ as well:

∀b ∈ A, Q∗
r(s, b) ≤ Q∗

r(s, π
∗
r (s))

⇔ max
b

max
τ∈Ts,b

Rr(τ) ≤ max
τ∈Ts,π∗

r (s)

Rr(τ)

⇔ max
b

τ∗(s, b) ≤r τ
∗(s, π∗

r (s))

⇔ max
b

τ∗(s, b) ≤r′ τ
∗(s, π∗

r (s)) (∵ r ≡ r′)

⇔ max
b

max
τ∈Ts,b

Rr′(τ) ≤ max
τ∈Ts,π∗

r (s)

Rr′(τ)

⇔ ∀b ∈ A, Q∗
r′(s, b) ≤ Q∗

r′(s, π
∗
r (s))

⇔ π∗
r (s) is an optimal policy under r′.

Theorem 1 suggests that a set of optimal policies

is uniquely defined by the total order, and there are

potentially infinitely many reward functions that share

the same set of optimal policies. Among these reward

functions, some are preferable with respect to efficiency

of policy learning. While sparse rewards are hard to

learn from due to the credit assignment difficulty, a more

informative reward function (potentially dense) can exist

that shares the same set of optimal policies and is much

easier to learn from. This implication is consistent with

the optimal reward problem [25] and reward shaping

[10].

While the specification of a set of reward functions

that share the same optimal policy has been studied

[26], [27], the proposed theorem is more general in

that we do not assume any restriction on the reward

function space. In [26], a behavior equivalence class

(BEC) is defined across reward functions that share

the same feature vector extractor φ(s, a), so the reward

function space is restricted to the span of the feature

vector space. The BEC can be very small if the feature

space is not diverse enough and defining good features

a priori requires external knowledge or a well-designed

loss function [28]. By contrast, our theory does not

have any restrictions on the form of reward function,

so our notion of equivalence can contain a larger reward

function set than BEC.

While the preference oracle can define the optimal

behavior that we want to induce, it is unreasonable to

assume that we have such an oracle at hand, since it

requires a total order over all possible trajectories. In-

stead, previous methods working with orderings between

trajectories assume external human input in an online

[22] or offline manner [13], with a human preference

oracle. While we use the same loss function as these

approaches, we focus on the reward shaping problem in

the sparse reward scenario for which we have a coarse

notion of task progress or success. Specifically, we try

to infer a new, potentially dense reward function that

satisfies the order constraints imposed by the sparse

reward function and replace the original reward with

the inferred reward function to improve the sample

efficiency of policy learning. The detailed explanation

of the method is presented in the next section.

V. METHOD

We tackle the problem of RL in sparse-reward environ-

ments. The key idea is to infer a dense reward function

that shares the same set of optimal policies with the

sparse reward, and use the inferred reward function for

policy learning to foster faster, sample efficient learning.

We call the proposed RL framework Self-supervised

Online Reward Shaping (SORS).

SORS alternates between online reward shaping and

reinforcement learning with the inferred reward function.

During the online reward shaping, a potentially dense

reward function is trained with a loss function that

encourages the inferred reward to create the same total

order over trajectories as the sparse reward. During rein-

forcement learning, the policy is trained with the inferred

reward function and new trajectories are collected in the

process. Since SORS can work with any RL algorithm,

we mainly focus on discussing the online reward shaping

module. The overall framework with an off-policy RL

back-end is described in Algorithm. 1.

We train a parameterized reward function rθ by en-

couraging it to satisfy the order constraints imposed by

the ground-truth sparse reward function rs. Specifically,

we train the reward function with a binary classification

loss over pairs of trajectories sampled from the trajectory

buffer Dτ that saves every observed trajectory during

reinforcement learning. The loss function is formally

defined as:

L(θ;Dτ) =−
∑

(τi,τj)∼Dτ

[

I(τi ≤rs τj) logP (τi ≺ τj)

+ (1− I(τi ≤rs τj)) logP (τi � τj)

]

,

(1)

where I(.) is the indicator function that evaluates to one

if the condition inside it is True, and evaluates to zero

otherwise. P (τi ≺ τj) is defined as:

P (τi � τj) =
exp(Rrθ(τi))

exp(Rrθ(τi)) + exp(Rrθ(τj))
. (2)

This same loss function has been used in other work to

train a reward function with given pair-wise preference

over trajectories, since the loss function encourages the

learned reward to assign a higher return to the preferred

trajectory [22], [13]. While our final goal is not just to

infer a reward based on the pairwise preferences, but

learning a reward function that satisfies the total order

constraints generated by the ground-truth sparse reward,

we empirically find that pairwise preference-based loss

can enforce a total order comparable to the ground-truth

total order. We leave the use of recently proposed ranking

loss [29] that considers the total order as a future work.

Note that SORS does not make use of any external

information in addition to what an ordinary RL algorithm

requires; the framework receives the exact same obser-

vations and rewards from the environment as a baseline

RL algorithm would, and it performs the online reward

shaping in a self-supervised manner. Although SORS

does not use any extra information, we hypothesize that

the additional reward shaping module may improves

learning since (1) we can leverage a deep neural network

in inferring the relevant features that may be infeasible

for a human to define when writing down a reward

function, and (2) SORS performs credit assignment not

only when learning a value function / policy (as in

standard RL), but also by inferring a new reward function

from the automatically-ranked trajectories that it collects.

Another way that we could have used the learned

dense reward is as a shaping potential, ensuring con-

vergence to the same set of optimal policies [10].

As discussed in related works, potential-based reward

shaping is a theoretically sound way of shaping the

reward functions while ensuring that the optimal policy is

maintained [10]. However, the effects of potential-based

reward shaping can be “learned away” over time, as they

are equivalent to value function initialization [?]. Hence,

we choose to use the learned dense reward to replace

the environment’s sparse reward rather than using it as

a shaping potential.

VI. EXPERIMENTS

We aim to study the following questions: (1) Does

the inferred dense reward function improve the sample

efficiency of the base RL algorithm? (2) Will the inferred

dense reward function induce the same policy as the one

induced by the ground-truth reward function?

Reward shaping is particularly helpful when the

ground-truth reward is sparse or otherwise hard to learn

from. Hence, we test SORS on delayed MuJoCo envi-

ronments [30], [31] in which rewards are accumulated

for a given number of time steps (20 time steps) and

provided only at the end of these periods or the end of

Algorithm 1 SORS RL Framework (w/ off-policy RL

algo.)

1: Input: An environment with sparse reward rs(s, a).
A base RL algorithm of choice (SAC in this work).

2: Output: θ: Parameters of the dense reward net-

work rθ(s, a). φ: Parameters of the policy network

πφ(a|s).
3: Hyper-parameters: N : Total number of environ-

ment interactions. Pr, Nr: Reward update period and

number of reward updates for every period. Pp, Np:

RL update period and number of RL updates for

every period

4: Initialize θ and φ, initialize the trajectory buffer Dτ

to an empty set.

5: // Collect Initial Trajectories

6: Run a random policy and fill up the trajectory buffer

7: for i = 1 . . . N do

8: // Gather Experience

9: Execute the current stochastic policy and append

the transition tuples to the trajectory buffer Dτ .

10: Replace old trajectories if buffer is full.

11: // Dynamic Reward Shaping Module

12: if i mod Pr = 0 then

13: for Nr iterations do

14: Update θ with respect to the loss defined in

Eq.1 with trajectory pairs sampled from Dτ .

15: // Reinforcement Learning Module

16: if i mod Pp = 0 then

17: for Np iterations do

18: Update φ according to the latest shaped re-

ward rθ(s, a) using the base RL algorithm.

the episode, whichever comes first. We use 6 MuJoCo

locomotion tasks, namely Hopper, Walker2d, HalfChee-

tah, Swimmer, Ant, and Humanoid whose observation

and action space range from small (8 and 2 for Swim-

mer respectively) to large (376 and 17 for Humanoid

respectively). The code is available online2.

We choose the Soft-Actor-Critic (SAC) algorithm as

the back-end RL algorithm, and we compare the training

progress of the proposed method against a baseline that

trains a policy with (1) the delayed reward or (2) the

ground-truth dense reward provided by the MuJoCo envi-

ronment. Note that the SAC method is a strong baseline,

which is better than or comparable to other regularized

RL algorithms [30] on the MuJoCo environments, and

hence we omit other baselines.

2Code: https://github.com/hiwonjoon/IROS2021 SORS

shows similar sample efficiency and asymptotic perfor-

mance to the baseline trained with the ground-truth dense

reward function on all environments except HalfCheetah.

This implies that the proposed method can successfully

densify the reward function. Swimmer is an example of

an environment where the policy trained with our method

converged to a better policy than the baseline that uses

the original dense reward of the environment. The results

on Swimmer support our hypothesis on the existence of

an informative reward function that potentially fosters

faster reinforcement learning than the sparse reward, or

even the ground truth dense reward function.

VII. CONCLUSION

We propose a novel reward shaping method, called

SORS, which aims to infer a reward function that

satisfies the preference constraints given by the original

sparse reward function. Since the constraints can be

automatically generated by observing the return of the

experienced trajectories according to the sparse reward,

the proposed algorithm is fully self-supervised. Our

experiments show that SORS enables faster, more sample

efficient reinforcement learning by generating a dense

reward function that induces a policy with strong per-

formance with respect to the original sparse reward. Our

experiments show that it is easier to learn from the

learned dense reward, as it provides more immediate

feedback, even though the assumptions needed for a the-

oretical guarantee of leaving the set of optimal policies

unchanged are not strictly met. Along these lines, future

work may include an investigation of how to provide

guarantees with respect to optimality in the original MDP

under weaker assumptions than what we have provided

in this work.

VIII. ACKNOWLEDGEMENT

This work was partly supported through the following

grants: ARL W911NF2020132, NSF 1652113 and ARL ACC-

APG-RTP W911NF1920333. Also, this work has taken place

in part in the Personal Autonomous Robotics Lab (PeARL)

at The University of Texas at Austin. PeARL research is

supported in part by the NSF (IIS-1724157, IIS-1638107,

IIS-1749204, IIS-1925082), ONR (N00014-18-2243), AFOSR

(FA9550-20-1-0077), and ARO (78372-CS). This research was

also sponsored by the Army Research Office under Coopera-

tive Agreement Number W911NF-19-2-0333. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official

policies, either expressed or implied, of the Army Research

Office or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation herein.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski et al., “Human-level control through deep rein-

forcement learning,” nature, vol. 518, no. 7540, pp. 529–533,

2015.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,

T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous

methods for deep reinforcement learning,” in International

conference on machine learning, 2016, pp. 1928–1937.

[3] H. Van Hasselt, A. Guez, and D. Silver, “Deep rein-

forcement learning with double q-learning,” arXiv preprint

arXiv:1509.06461, 2015.

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforce-

ment learning for robotic manipulation with asynchronous off-

policy updates,” in 2017 IEEE international conference on

robotics and automation (ICRA). IEEE, 2017, pp. 3389–3396.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning

in robotics: A survey,” The International Journal of Robotics

Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end

training of deep visuomotor policies,” The Journal of Machine

Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[7] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse

reinforcement learning,” in Proceedings of the twenty-first in-

ternational conference on Machine learning. ACM, 2004, p. 1.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction. Cambridge, MA, USA: A Bradford Book, 2018.

[9] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and

A. Dragan, “Inverse reward design,” in Advances in Neural

Information Processing Systems, 2017, pp. 6765–6774.

[10] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance un-

der reward transformations: Theory and application to reward

shaping,” in Icml, vol. 99, 1999, pp. 278–287.

[11] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods

for advising reinforcement learning agents,” in Proceedings of

the 20th International Conference on Machine Learning (ICML-

03), 2003, pp. 792–799.

[12] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E.

Taylor, and A. Nowé, “Reinforcement learning from demon-

stration through shaping,” in Twenty-fourth international joint

conference on artificial intelligence, 2015.

[13] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum,

“Extrapolating beyond suboptimal demonstrations via inverse

reinforcement learning from observations,” in Proceedings of

the 36th International Conference on Machine Learning, ser.

Proceedings of Machine Learning Research, K. Chaudhuri and

R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:

PMLR, 09–15 Jun 2019, pp. 783–792. [Online]. Available:

http://proceedings.mlr.press/v97/brown19a.html

[14] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine

for model-based control,” in 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. IEEE, 2012, pp.

5026–5033.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-

critic: Off-policy maximum entropy deep reinforcement learn-

ing with a stochastic actor,” in International Conference on

Machine Learning. PMLR, 2018, pp. 1861–1870.

[16] S. M. Devlin and D. Kudenko, “Dynamic potential-based

reward shaping,” in Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems.

IFAAMAS, 2012, pp. 433–440.

[17] A. Trott, S. Zheng, C. Xiong, and R. Socher, “Keeping your dis-

tance: Solving sparse reward tasks using self-balancing shaped

rewards,” arXiv preprint arXiv:1911.01417, 2019.

[18] H. Zou, T. Ren, D. Yan, H. Su, and J. Zhu, “Reward shaping

via meta-learning,” arXiv preprint arXiv:1901.09330, 2019.

[19] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-

driven exploration by self-supervised prediction,” in Interna-

tional Conference on Machine Learning. PMLR, 2017, pp.

2778–2787.

[20] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave,

T. Van de Wiele, V. Mnih, N. Heess, and J. T. Springenberg,

“Learning by playing-solving sparse reward tasks from scratch,”

arXiv preprint arXiv:1802.10567, 2018.

[21] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu, “Active

task-inference-guided deep inverse reinforcement learning,” in

2020 59th IEEE Conference on Decision and Control (CDC).

IEEE, 2020, pp. 1932–1938.

[22] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg,

and D. Amodei, “Deep reinforcement learning from human

preferences,” in Advances in Neural Information Processing

Systems, 2017, pp. 4299–4307.

[23] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei,

“Reward learning from human preferences and demonstrations

in atari,” in Advances in Neural Information Processing Sys-

tems, 2018, pp. 8022–8034.

[24] D. S. Brown, W. Goo, and S. Niekum, “Better-than-

demonstrator imitation learning via automatically-ranked

demonstrations,” in Proceedings of the 3rd Conference on Robot

Learning, 2019.

[25] J. D. Sorg, “The optimal reward problem: Designing effective

reward for bounded agents.” Ph.D. dissertation, Computer Sci-

ence and Engineering in The University of Michigan.b, 2011.

[26] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforce-

ment learning,” in Proceedings of the Seventeenth International

Conference on Machine Learning. Morgan Kaufmann Pub-

lishers Inc., 2000, pp. 663–670.

[27] D. S. Brown and S. Niekum, “Machine teaching for inverse

reinforcement learning: Algorithms and applications,” in In

proceedings of the AAAI Conference on Artificial Intelligence,

2019.

[28] D. S. Brown, R. Coleman, R. Srinivasan, and S. Niekum,

“Safe imitation learning via fast bayesian reward inference

from preferences,” in Proceedings of the 37th International

Conference on Machine Learning (ICML), 2020.

[29] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast

differentiable sorting and ranking,” in Proceedings of the 37th

International Conference on Machine Learning, 2020, pp. 950–

959.

[30] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-imitation learning,”

in International Conference on Machine Learning. PMLR,

2018, pp. 3878–3887.

[31] Y. Guo, J. Oh, S. Singh, and H. Lee, “Generative adversarial

self-imitation learning,” arXiv preprint arXiv:1812.00950, 2018.

	I Introduction
	II Related work
	II-A Reward Shaping
	II-B Sparse Rewards
	II-C Learning a Reward Function From Preference/Ranking

	III Background and Preliminaries
	III-A Reinforcement Learning
	III-B Reward Shaping

	IV Preference Oracle and Equivalency of Reward Functions
	V Method
	VI Experiments
	VII Conclusion
	VIII Acknowledgement
	References

