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Abstract—We introduce Self-supervised Online Reward
Shaping (SORS), which aims to improve the sample
efficiency of any RL algorithm in sparse-reward environ-
ments by automatically densifying rewards. The proposed
framework alternates between classification-based reward
inference and policy update steps—the original sparse
reward provides a self-supervisory signal for reward infer-
ence by ranking trajectories that the agent observes, while
the policy update is performed with the newly inferred,
typically dense reward function. We introduce theory that
shows that, under certain conditions, this alteration of
the reward function will not change the optimal policy
of the original MDP, while potentially increasing learning
speed significantly. Experimental results on several sparse-
reward environments demonstrate that, across multiple
domains, the proposed algorithm is not only significantly
more sample efficient than a standard RL baseline using
sparse rewards, but, at times, also achieves similar sample
efficiency compared to when hand-designed dense reward
functions are used.

I. INTRODUCTION

While reinforcement learning (RL) algorithms have
achieved tremendous success in many tasks ranging from
Atari games [1], [2], [3] to robotics control problems
[4], [5], [6], they often struggle in environments with
sparse rewards. In dense reward settings, the agent
receives diverse rewards in most states, e.g., a reward
proportional to distance to the goal, rather than a constant
reward everywhere but the goal. Such dense rewards
lead to frequent updates that quickly allow the agent to
differentiate good states from bad ones.

Unfortunately, designing a good, dense reward func-
tion is known to be a difficult task [7], [8], especially
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for non-experts. In addition, RL approaches can eas-
ily exploit badly designed rewards, get stuck in local
optima and induce behavior that the designer did not
intend [9]. In contrast, goal-based sparse rewards are
appealing since they do not suffer from the reward
exploitation (commonly known as reward hacking) prob-
lem to the same extent. However, sparse rewards only
provide rewards for few select states. Reward sparse-
ness complicates the temporal credit assignment problem
significantly and negatively impacts the overall learning
process. Reward shaping is a commonly used approach
to speed up RL in environments with sparse rewards [10],
[11], [12]. However, altering the ground-truth reward can
potentially change the optimal policy and, hence, induce
undesired behavior.

In this paper, we propose a novel RL framework
that efficiently learns a policy for sparse-reward en-
vironments by training on dense rewards that are in-
ferred in a self-supervised manner. Our framework—
Self-supervised Online Reward Shaping (SORS)—can
speed up the policy learning process without requiring
any domain knowledge or external supervision, and the
proposed framework is compatible with any existing RL
algorithm.

SORS alternates between updating the policy using
an RL algorithm of choice and inferring a dense reward
function from past observations. It infers a reward using
a classification-based reward inference algorithm, T-
REX [13]. However, unlike T-REX, instead of requiring
manual rankings over the trajectories, SORS uses the
sparse reward as a self-supervised learning signal to rank
the trajectories generated by the agent during learning.

We justify the rationale behind the reward inference
performed by SORS based on the following insight: Any
reward function induces a total order over the trajectory
space by means of the discounted return it assigns to
trajectories. We then provide a theorem that indicates
any two reward functions that induce the same fotal
order over the trajectory space, induce identical sets of
optimal policies under mild assumptions on the dynamics



of the environment. The objective function that SORS
optimizes for reward inference encourages the dense
reward function to induce the same total order as the
sparse reward over the trajectory space.

Our empirical results on several sparse reward Mu-
JoCo [14] locomotion tasks show that SORS can signifi-
cantly improve the sample efficiency of the state-of-the-
art baseline algorithm, namely Soft-Actor-Critic (SAC).
SORS even achieves comparable sample efficiency to a
baseline that uses a hand-designed dense reward func-
tion.

We make the following contributions:

e We propose a novel reward shaping algorithm,
SORS, that pairs with any existing RL algorithm,
performs self-supervised online reward shaping, and
can improve the sample efficiency of the RL algo-
rithm in sparse-reward environments.

o We provide theoretical justification for our approach
by showing a sufficient condition for two reward
functions to share the same set of optimal policies.
We use this condition to show that, under some as-
sumptions, replacing the ground-truth sparse reward
function with the inferred shaped reward function
does not alter the optimal policies.

e We empirically demonstrate that the proposed
method converges significantly faster than a stan-
dard baseline RL algorithm, namely Soft Actor-
Critic (SAC) [15] for several sparse-reward MuJoCo
locomotion tasks.

II. RELATED WORK
A. Reward Shaping

Reward shaping is a method to incorporate domain
knowledge to densify reward functions. Typically, the
goal of reward shaping is to speed up learning and
overcoming the challenges of exploration and credit
assignment when the environment only returns a sparse,
uninformative, or delayed reward.

In one of the seminal works on reward shaping [10],
the authors study the forms of shaped rewards which
induce the same optimal policy as the ground-truth
reward function. Specifically, they proved that the so-
called potential-based reward shaping is guaranteed not
to alter the optimal policy. The only requirement is that
the potential function needs to be a function of states.
While they provide one specific form for reward shaping
without altering the optimal policy of the MDP, they
do not provide any practical algorithm for acquiring
a potential function that can improve the learning of
optimal behavior. They argue that the optimal state value

function is a good shaping potential, but this insight is
not helpful in practice, as the goal of RL is finding the
optimal value function is the goal of RL and we do not
have it a priori. In this work, we propose an alternative
reward shaping framework in which we replace the origi-
nal reward function with another shaped reward function
which is updated online as the RL agent interacts with
the environment. Our reward shaping approach does not
require any human guidance or extra information.

Devlin et al. [16] build on potential-based shaping
[10] to prove that dynamic shaping of the reward func-
tion does not change the optimal policy, provided that
we use the potential-based shaping framework. Other
researchers [11] have extended potential-based shaping
[10] to potential functions that are functions of state and
action pairs rather than states alone. They propose two
methods for providing potential-based advice, namely,
look-ahead advice, and look-back advice.

In another interesting work on reward shaping [17],
the authors propose a new RL objective which uses a
distance-to-goal shaped reward function. They unroll the
policy to produce pairs of trajectories from each starting
point and use the difference between the two rollouts
to discover and avoid local optima. Unlike their work,
we do not need to alter the way the base RL algorithm
collects experiences. Moreover, we do not rely on using
a distance-to-goal shaped reward function, instead we
learn a dense reward function which asymptotically leads
to optimal policies that equivalent to those of the original
sparse reward.

There is prior work on automatic reward shaping [18],
where they propose reward shaping via meta-learning.
Their method can automatically learn an efficient reward
shaping for new tasks, assuming the state space is shared
among the meta-learning tasks. This work differs from
ours in that it is in the context of meta learning, whereas
our automatic reward shaping algorithm works even for
a single task, and we do not need to train our model on
a library of prior tasks.

Brys et al. propose a method to use expert demonstra-
tions to accelerate RL by biasing the exploration through
reward shaping [12],. They propose a potential function
which is higher for state-action pairs similar to those
seen in the demonstrations and low for dissimilar state-
action pairs. Another related work studies online learning
of intrinsic reward functions as a way to improve RL
algorithms [19].



B. Sparse Rewards

RL in sparse-reward environments has been tackled in
various ways. For instance, the authors of [20] address
sparse-reward environments that can be de-composed
into smaller subtasks. They learn a high-level scheduler
and several auxiliary policies and show that this leads to
improved exploration. Their algorithm learns to provide
internal auxiliary sparse rewards in addition to the orig-
inal sparse reward. Our algorithm is different from this
line of work as our algorithm works for singular tasks,
and we do not use any hierarchy of decision making.
We learn a dense reward which assigns a reward to
every individual state, rather than merely providing an
auxiliary reward on selected states.

Other related work [21] on learning from sparse re-
wards proposes a method to learn a temporally extended
episodic task composed of several subtasks where the
environment returns a sparse reward only at the end of
the episodes. Using the environment’s sparse feedback
and queries from a demonstrator, they learn the high-
level task structure in the form of a deterministic finite
state automaton, and then use the learned task structure
in an inverse reinforcement learning (IRL) framework
to infer a dense reward function for each subtask. Our
work differs in that we do not rely on an expert to
provide demonstrations and instead we learn to shape the
sparse reward relying only on the environment’s sparse
feedback.

C. Learning a Reward Function

ence/Ranking

From  Prefer-

Several prior works have studied the problem of
inferring a reward function from human preferences
or rankings over demonstrations. One early work on
learning from preferences [22] proposes an active learn-
ing approach to infer a reward function that encodes
the human’s preferences. They train a policy and a
reward network simultaneously. At each iteration, they
use the policy to produce pairs of trajectories and then
query the human for their preference over the pair of
trajectories and use these preferences to improve the
reward by minimizing a preference-based loss function.
They then updated the policy based on the improved
reward. In other work [23], Ibarz et al. extend the
work Christiano et al. [22] to use an initial set of
demonstrations to pre-train the policy, rather than start
training from a random policy. Brown et al. introduce the
T-REX algorithm, which infers a reward function from a
given set of ranked demonstrations [13],. Their algorithm
samples pairs of demonstrations from this initial set

of demonstrations and uses the ranking to label which
demonstration is preferred in a given pair. It then uses a
binary classification loss over these preferences to update
the reward function. They show their algorithm learns
reward functions that, when optimized for a policy, often
exceed the performance of the best demonstrations.

We use an adaptation of the T-REX algorithm for the
reward inference part of our algorithm. However, our
work is different from the above works in two ways.
First, we do not need an initial set of demonstrations.
Second, our algorithm does not require a human in
the loop—instead we leverage the environment’s sparse
feedback to rank the collected trajectories and then use
the set of ranked trajectories for inferring a dense reward
function to accelerate policy learning.

In another work, Brown et al. propose an algorithm to
infer a reward from a set of sub-optimal demonstrations
that are not ranked by an expert [24]. Using the set of
demonstrations, they perform behavioral cloning to learn
a policy. They then inject noise in the policy to produce
various qualities of trajectories and rank the trajectories
based on the level of noise used in producing them.
Then they proceed to learn a reward from the set of
ranked trajectories. Our work differs, in that our self-
supervisory signal comes from a known sparse reward
signal on agent-collected trajectories, and our objective is
to use the learned reward function as a way to accelerate
policy learning, rather than imitate demonstrations.

IIT. BACKGROUND AND PRELIMINARIES

A. Reinforcement Learning

A Markov decision process (MDP) is defined as
M = (S, A, T,r~), in which S is the state space,
A is the action space, T : S x A — P(S) is the
transition dynamics which maps any given state and
action pair into a probability distribution over the next
state, r : S x A — R is the reward function, and + is the
discount factor. At each discrete time step, the MDP is
in a state s, the agent takes an action a, and as a result,
the MDP transitions into a new state, s’ ~ T'(s,a), and
the agent receives a scalar valued reward r(s,a,s’). A
policy 7(als) : S — P(A) is defined as a probability
distribution over actions at any given state s. Given a
policy m, we have the following definitions:

Qﬂ—(& a) = ’I"(S, (I) + IEa/~7r(a’|s/)}Es/~T(s,a) [Q(Sl, a/)]
Vﬂ-(s) = anﬂ'(a|s) [Qﬂ<3a a)]

where Q7 (s,a), V™ (s) are respectively the action-value
function and the state value function for the policy 7.



The goal of RL is to find a policy with maximal value
function at each state, or find the maximal value function
directly. A trajectory 7 = {st,at}l;‘l is a sequence
of state action pairs obtained by running a policy on
the MDP, where subscript ¢ is the time index of the
trajectory, i.e., each trajectory starts from (s1,a;). We
define the discounted return of a trajectory according
to reward function r as: R,(7) := E';ll Yl (se, ap),
where (s¢, a;) is the state and action pair of the trajectory
T at time ¢.

B. Reward Shaping

Given an MDP with a reward function r(s,a), re-
ward shaping is the process of replacing the origi-
nal reward with another reward function, or augment-
ing the original reward function with an auxiliary re-
ward function F(s,a) S x A — R to create
a new reward function[10]; Concretely, 7s,(s,a) =
Tnew(S,a) or 7rgp(s,a) = r(s,a) + F(s,a), where
rsn(s,a) is the shaped reward. While the goal of reward
shaping is to speed up RL, in general, a shaped reward
could induce a different optimal policy than the original
reward.

IV. PREFERENCE ORACLE AND EQUIVALENCY OF
REWARD FUNCTIONS

Consider a reward-free MDP M = (S, A, T,~), and
a preference oracle which is a binary relation <, that
defines a total order on the set of all trajectories sampled
from the MDP. We can order all possible trajectories
based on the total order defined by the oracle:

T Zpx T2 Spsx = Spx Tk Sps """ .

Note that any deterministic reward function 7(s,a) can
serve as a preference oracle via the discounted return R,
under that reward function:

7 < T & Re(1i) < Rp(75).

where <, is the binary relation defined by reward
function r. Using the notion of total order, we will
define a set of reward functions that share the same
set of optimal policies; specifically, we will prove that
two reward functions that produce the same total order
will also yield the same set of optimal policies under
deterministic transition dynamics. We begin by formally
defining the total order equivalency between two reward
functions.

Definition 1 (Total order equivalency). For a given
reward-free MDP M = (S, A, T,~) with possible tra-
jectories T = (S x A)™, the total order equivalency of
reward functions r1 and r9 is defined as

m=Erifftn <, e <, 7V, T,

Theorem 1. Given a deterministic reward-free MDP
M = (S, A, T,~), if two reward functions r and r' are
total order equivalent, they will induce the same set of
optimal policies, i.e., v =1 = {7i(s)} = {75 (s)},
where {m}} and {r},} are the sets of optimal policies
induced by reward functions v and r' respectively.

Proof. The state-action value function of a policy 7w at
a given state and action pair s, a is defined as:

Q"(s,a) = Ex 1 [Ry (7s,0)]

which is equal to the expected return over all trajectories
Ts,a € Tsq that start with action a at state s and
follow policy 7 under the transition dynamics 7'. Given
the optimal state-action value function @) for reward
function r, an optimal policy under the reward function
r is derived as 7¥(s) = argmax, Q*(s,a) !. Following
these definitions, it is clear that any action chosen by an
optimal policy will yield the highest possible Q value,
ie.,

Qr(s,m(s)) > Qr(s,b) Vbe A.

For MDPs with deterministic dynamics, an optimal
policy under a reward function r will induce a set of
optimal trajectories starting from any state-action pair,
where all the optimal trajectories receive equal returns
from reward function r. If the policy is deterministic, the
set of optimal trajectories will include only one member.
Hence, for deterministic MDPs the optimal Q-function
for state-action pair (s,a) and an optimal trajectory
starting from the same pair are

Q7 (s,a) = max R,(7), and

T€Tsa
7*(s,a) = argmax R, (7).
T€Ts.a
Using the total order relation <, induced by the
reward function r, and the equivalence between r and
r’, we conclude that the two reward functions share the
same set of optimal policies. In other words, if 7" is an

"There can be more than one optimal policy corresponding to a
given optimal Q-function. For example, if multiple actions maximize
the Q-function at a given state.



optimal policy under reward function 7, it is an optimal
policy under reward function r’ as well:

Vhe A, Qi(s,b) < Qs mi(s))

max max R < max R
bXTGT:,(b T(T) _TETs,:;:((s) T(T)

max T(s,0) <, TF(s,mr(8))

max 75(8,0) <pr (s, (8)) (Cor=7')

a. ax R, < a R.
max max (1) < max o (7)

Vhe A, Qh(s,b) < Ql(s,mi(s))

& 7 (s) is an optimal policy under 7. O

T ¢ ¢ T 0

Theorem 1 suggests that a set of optimal policies
is uniquely defined by the total order, and there are
potentially infinitely many reward functions that share
the same set of optimal policies. Among these reward
functions, some are preferable with respect to efficiency
of policy learning. While sparse rewards are hard to
learn from due to the credit assignment difficulty, a more
informative reward function (potentially dense) can exist
that shares the same set of optimal policies and is much
easier to learn from. This implication is consistent with
the optimal reward problem [25] and reward shaping
[10].

While the specification of a set of reward functions
that share the same optimal policy has been studied
[26], [27], the proposed theorem is more general in
that we do not assume any restriction on the reward
function space. In [26], a behavior equivalence class
(BEC) is defined across reward functions that share
the same feature vector extractor ¢(s,a), so the reward
function space is restricted to the span of the feature
vector space. The BEC can be very small if the feature
space is not diverse enough and defining good features
a priori requires external knowledge or a well-designed
loss function [28]. By contrast, our theory does not
have any restrictions on the form of reward function,
so our notion of equivalence can contain a larger reward
function set than BEC.

While the preference oracle can define the optimal
behavior that we want to induce, it is unreasonable to
assume that we have such an oracle at hand, since it
requires a total order over all possible trajectories. In-
stead, previous methods working with orderings between
trajectories assume external human input in an online
[22] or offline manner [13], with a human preference
oracle. While we use the same loss function as these
approaches, we focus on the reward shaping problem in

the sparse reward scenario for which we have a coarse
notion of task progress or success. Specifically, we try
to infer a new, potentially dense reward function that
satisfies the order constraints imposed by the sparse
reward function and replace the original reward with
the inferred reward function to improve the sample
efficiency of policy learning. The detailed explanation
of the method is presented in the next section.

V. METHOD

We tackle the problem of RL in sparse-reward environ-
ments. The key idea is to infer a dense reward function
that shares the same set of optimal policies with the
sparse reward, and use the inferred reward function for
policy learning to foster faster, sample efficient learning.
We call the proposed RL framework Self-supervised
Online Reward Shaping (SORS).

SORS alternates between online reward shaping and
reinforcement learning with the inferred reward function.
During the online reward shaping, a potentially dense
reward function is trained with a loss function that
encourages the inferred reward to create the same total
order over trajectories as the sparse reward. During rein-
forcement learning, the policy is trained with the inferred
reward function and new trajectories are collected in the
process. Since SORS can work with any RL algorithm,
we mainly focus on discussing the online reward shaping
module. The overall framework with an off-policy RL
back-end is described in Algorithm. 1.

We train a parameterized reward function ry by en-
couraging it to satisfy the order constraints imposed by
the ground-truth sparse reward function 7. Specifically,
we train the reward function with a binary classification
loss over pairs of trajectories sampled from the trajectory
buffer D, that saves every observed trajectory during
reinforcement learning. The loss function is formally
defined as:

2.

(7i,7)~D5

L(0;D;) =— [H(Ti <,, 7j)log P(1; < 7})

+ (1 -1 <p, 7)) log P13 > 75) |,
(D

where I(.) is the indicator function that evaluates to one
if the condition inside it is True, and evaluates to zero
otherwise. P(7; < 7;) is defined as:

exp(Ry, (7))
exp(Ry, (7)) + exp(Ry, (75))
This same loss function has been used in other work to
train a reward function with given pair-wise preference

P(r = 1) = 2)



over trajectories, since the loss function encourages the
learned reward to assign a higher return to the preferred
trajectory [22], [13]. While our final goal is not just to
infer a reward based on the pairwise preferences, but
learning a reward function that satisfies the total order
constraints generated by the ground-truth sparse reward,
we empirically find that pairwise preference-based loss
can enforce a total order comparable to the ground-truth
total order. We leave the use of recently proposed ranking
loss [29] that considers the total order as a future work.

Note that SORS does not make use of any external
information in addition to what an ordinary RL algorithm
requires; the framework receives the exact same obser-
vations and rewards from the environment as a baseline
RL algorithm would, and it performs the online reward
shaping in a self-supervised manner. Although SORS
does not use any extra information, we hypothesize that
the additional reward shaping module may improves
learning since (1) we can leverage a deep neural network
in inferring the relevant features that may be infeasible
for a human to define when writing down a reward
function, and (2) SORS performs credit assignment not
only when learning a value function / policy (as in
standard RL), but also by inferring a new reward function
from the automatically-ranked trajectories that it collects.

Another way that we could have used the learned
dense reward is as a shaping potential, ensuring con-
vergence to the same set of optimal policies [10].
As discussed in related works, potential-based reward
shaping is a theoretically sound way of shaping the
reward functions while ensuring that the optimal policy is
maintained [10]. However, the effects of potential-based
reward shaping can be “learned away” over time, as they
are equivalent to value function initialization [?]. Hence,
we choose to use the learned dense reward to replace
the environment’s sparse reward rather than using it as
a shaping potential.

VI. EXPERIMENTS

We aim to study the following questions: (1) Does
the inferred dense reward function improve the sample
efficiency of the base RL algorithm? (2) Will the inferred
dense reward function induce the same policy as the one
induced by the ground-truth reward function?

Reward shaping is particularly helpful when the
ground-truth reward is sparse or otherwise hard to learn
from. Hence, we test SORS on delayed MuJoCo envi-
ronments [30], [31] in which rewards are accumulated
for a given number of time steps (20 time steps) and
provided only at the end of these periods or the end of

Algorithm 1 SORS RL Framework (w/ off-policy RL
algo.)

1: Input: An environment with sparse reward r(s, a).
A base RL algorithm of choice (SAC in this work).

2: Output: 6: Parameters of the dense reward net-
work rg(s,a). ¢: Parameters of the policy network
me(als).

3: Hyper-parameters: N: Total number of environ-
ment interactions. P,, IN,: Reward update period and
number of reward updates for every period. P,, N,:
RL update period and number of RL updates for
every period

4: Initialize 0 and ¢, initialize the trajectory buffer D,

to an empty set.

// Collect Initial Trajectories

Run a random policy and fill up the trajectory buffer

for:=1 ... N do
// Gather Experience
Execute the current stochastic policy and append
the transition tuples to the trajectory buffer D..

10:  Replace old trajectories if buffer is full.

11:  // Dynamic Reward Shaping Module

12:  if i mod P, = 0 then

13: for N, iterations do

14: Update 6 with respect to the loss defined in

Eq.1 with trajectory pairs sampled from D..

15:  // Reinforcement Learning Module

16:  if i mod P, = 0 then

17: for N, iterations do

18: Update ¢ according to the latest shaped re-

ward r¢(s, a) using the base RL algorithm.

R A

the episode, whichever comes first. We use 6 MuJoCo
locomotion tasks, namely Hopper, Walker2d, HalfChee-
tah, Swimmer, Ant, and Humanoid whose observation
and action space range from small (8 and 2 for Swim-
mer respectively) to large (376 and 17 for Humanoid
respectively). The code is available online?.

We choose the Soft-Actor-Critic (SAC) algorithm as
the back-end RL algorithm, and we compare the training
progress of the proposed method against a baseline that
trains a policy with (1) the delayed reward or (2) the
ground-truth dense reward provided by the MuJoCo envi-
ronment. Note that the SAC method is a strong baseline,
which is better than or comparable to other regularized
RL algorithms [30] on the MuJoCo environments, and
hence we omit other baselines.

Code: https://github.com/hiwonjoon/IROS2021_SORS
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Fig. 1: Learning curves of SAC (without reward shaping, blue line), SORS (with reward shaping, orange line),
and SAC with a hand-designed dense reward function (green line). A trajectory is generated every 10,000 steps
with the policy at that step, and the return of the generated trajectory is reported. We smooth the curve with an
exponential moving average with a half-life time of 2,000. The results are averaged over 5 different random seeds,

and the shaded area represents standard deviation.

For SAC implementation, both the policy and the Q-
functions are modeled by fully connected neural net-
works with 3 hidden layers, where each layer is of size
256 and is followed by ReLU non-linearity. The stochas-
tic policy is modeled by a diagonal multivariate normal
distribution and its parameters (mean and covariance)
are generated via the policy network. We use the same
techniques introduced in SAC, such as dual Q-training,
use of slowly updated target Q network, and dynami-
cally adjusted entropy regularization coefficient. The Q-
function and the policy are updated for 50 stochastic
gradient descent steps with a mini-batch of size 100
using Adam optimizer with a learning rate of 3e — 4
after every 50 interactions with the environment.

The architecture of the neural network modeling the
dense reward function is as follows: 3 fully connected
hidden layers of size 256, followed by a fully connected
hidden layer of size 4. The output of the network up
to this point will be a 4 dimensional feature vector. All
the hidden layers are followed by tanh non-linearity.
The final output of the network is computed by applying

a weight vector w to the 4 dimensional feature vector.
We enforce the condition ||w||2 = 1 to limit the scale
of the reward. Both the neural network parameters and
the reward weight vector w are trained together by
minimizing the loss function given in Eq. 1. To reduce
the variance between runs and improve the stability of
our method, we train an ensemble of 4 reward networks
with different initializations and take the average of their
outputs to produce the final reward. At the beginning of
training SORS, we run a random policy for 2000 steps to
collect an initial set of trajectories. During the rest of the
run, we call the dense reward learning module after every
1,000 environment steps, and perform 100 stochastic
gradient descent steps using a mini-batch of size 10
trajectory pairs. We keep training both the baseline and
SORS until the agent interacts with the environment for
106 steps.

Figure. 1 shows the comparison between SORS and
the baselines on several environments. In all 6 delayed
MuJoCo environments, SORS learns faster than the
baseline trained on the delayed reward. Moreover, SORS



shows similar sample efficiency and asymptotic perfor-
mance to the baseline trained with the ground-truth dense
reward function on all environments except HalfCheetah.
This implies that the proposed method can successfully
densify the reward function. Swimmer is an example of
an environment where the policy trained with our method
converged to a better policy than the baseline that uses
the original dense reward of the environment. The results
on Swimmer support our hypothesis on the existence of
an informative reward function that potentially fosters
faster reinforcement learning than the sparse reward, or
even the ground truth dense reward function.

VII. CONCLUSION

We propose a novel reward shaping method, called
SORS, which aims to infer a reward function that
satisfies the preference constraints given by the original
sparse reward function. Since the constraints can be
automatically generated by observing the return of the
experienced trajectories according to the sparse reward,
the proposed algorithm is fully self-supervised. Our
experiments show that SORS enables faster, more sample
efficient reinforcement learning by generating a dense
reward function that induces a policy with strong per-
formance with respect to the original sparse reward. Our
experiments show that it is easier to learn from the
learned dense reward, as it provides more immediate
feedback, even though the assumptions needed for a the-
oretical guarantee of leaving the set of optimal policies
unchanged are not strictly met. Along these lines, future
work may include an investigation of how to provide
guarantees with respect to optimality in the original MDP
under weaker assumptions than what we have provided
in this work.
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