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Abstract: The goal of offline reinforcement learning (RL) is to find an optimal
policy given prerecorded trajectories. Many current approaches customize existing
off-policy RL algorithms, especially actor-critic algorithms in which policy evalua-
tion and improvement are iterated. However, the convergence of such approaches
is not guaranteed due to the use of complex non-linear function approximation and
an intertwined optimization process. By contrast, we propose a simple baseline
algorithm for offline RL that only performs the policy evaluation step once so that
the algorithm does not require complex stabilization schemes. Since the proposed
algorithm is not likely to converge to an optimal policy, it is an appropriate baseline
for actor-critic algorithms that ought to be outperformed if there is indeed value in
iterative optimization in the offline setting. Surprisingly, we empirically find that
the proposed algorithm exhibits competitive and sometimes even state-of-the-art
performance in a subset of the D4RL offline RL benchmark. This result suggests
that future work is needed to fully exploit the potential advantages of iterative
optimization in order to justify the reduced stability of such methods.
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1 Introduction

The standard reinforcement learning setting involves an active component during learning: an agent
continuously gathers experience as it learns. This is a very general learning framework that resembles
the way animals learn, but the interactive component often hurts the applicability of RL since the
agent interaction can be expensive or unsafe. To address this challenge, the offline reinforcement
learning paradigm has been proposed, which aims to learn a policy purely from pre-generated data
[1]. Considering that many recent breakthroughs in machine learning can be attributed to large-scale
data, this new paradigm is very promising. However, the offline setup causes significant theoretic and
algorithmic difficulties that need to be resolved to fulfill this promise.

Specifically, actor-critic based off-policy RL algorithms, which iterate policy evaluation and im-
provement, suffer from the overestimation problem caused by function approximation error and
bootstrapping [2, 3] in the offline RL setup, even though the algorithms are equipped with algorithmic
techniques [4, 2, 5] that can stabilize learning and mitigate the so-called Deadly Triad [6]. This is
because over-estimated values cannot be readjusted in offline RL, unlike the ordinary RL setup where
incorrectly optimistic actions get executed and corrected.

The Deadly Triad states that when off-policy learning, function approximation, and bootstrapping
are used together, the danger of instability and divergence arises [6]. Therefore, the actor-critic
algorithms that leverage all three components are vulnerable. Many algorithms try to stabilize
learning by ensuring the queries for bootstrapping to be within the data manifold of the given offline
dataset [7, 8, 9, 10, 11, 12] since over-estimation is prominent when the value function is queried for
out-of-distribution inputs. However, strictly speaking, the Deadly Triad occurs due to iteration of the
actor-critic algorithm; the first critic update is simply policy evaluation of the action-value function
of the behavior policy 3 using on-policy data. While the policy implied by the first value function
Q7 is likely to be suboptimal that would be surpassed by iterative algorithms, it has not been fully
examined that a greedy policy with regard to Q” cannot work well in the offline RL setting.
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To this end, we propose a baseline algorithm, named YOEO, that evaluates the value of a behavior
policy once and extracts a greedy policy under the learned value approximation, and by doing so,
we examine the hidden presumption of the actor-critic based offline RL algorithms that the iterative
process is essential and beneficial. Our algorithm leverages pessimism under uncertainty [13, 14]
within the distributional RL framework [15, 16, 17]. Surprisingly, we find that the greedy policy
extracted from the value function of the behavior policy with our algorithm exhibits competitive and
sometimes even state-of-the-art results in D4RL benchmarks [18]. Our results indicate not only the
effectiveness of the proposed algorithm adopting pessimistic regularization, but also implies potential
vulnerabilities of the iterative optimization process of actor-critic algorithms in the offline setting,
especially when a complex function approximator like a deep neural network is used. We expect that
the proposed strong baseline will foster future offline RL research by allowing researchers to measure
the actual advantage coming from the iterative process, which is a main concern in offline RL.

2 Related Work

Evaluating and improving a policy with the data generated from a different policy (off-policy RL)
has been widely investigated, and several papers have shown theoretical convergence properties
of prediction and control algorithms in the off-policy setting [19, 20, 21]. However, theoretical
frameworks are limited to linear function approximation, while non-linear function approximation is
essential to handle large-scale MDPs. Yet, there have been efforts to build practical algorithms with
non-linear function approximators, and they have shown considerable success in various domains
[22, 23, 24, 25] tackling real-world RL problems.

In theory, off-policy algorithms can be used in the offline setup without any modifications, but
the algorithms often catastrophically fail when applied in the batch setting [7]. This is due to the
accumulation of extrapolation error from bootstrappmg and the pOlle improvement step (i.e. max
operation) [7, 8]. In the non-batch setting, new experiences gathered via interaction can prevent this
degenerate case, but it is impossible in the batch setting where interaction is prohibited. Pertaining to
this problem, much research has been proposed, especially in the context of actor-critic algorithms in
which policy evaluation and improvement are iterated. One class of solutions constrains the policy
improvement step so that the optimized policy matches the behavior policy, in distribution [9] or in
support [8]. In more recent work, a behavior policy for distribution matching is replaced with a prior
policy, which is trained along with policy evaluation via weighted behavior cloning [12]. In [11], the
policy improvement step is omitted while using the prior policy as a target policy for the evaluation.
While the prior works try to overcome the Deadly Triad, we sidestep the problem and examine the
hidden assumption of the actor-critic algorithm that the iterative process is essential and beneficial.

The most closely related prior works are behavior cloning-based methods [26, 10] which mimic a
subset of good state-action pairs from the pre-generated trajectories. Since these methods approximate
a value function for a behavior policy without an iterative policy improvement step, the algorithm does
not diverge. The main difference with our proposed approach is that we train an action-value function
with pessimistic regularization while the prior works evaluate a state- or action-value function to filter
state-action pairs based on advantage calculated with Monte-Carlo return [26] or TD(k) return [10]
and train a policy via behavior cloning with the filtered data.

For principled regularization of the action-value function, we adopt pessimism under uncertainty,
which can address the overestimation problem when the given offline dataset is not informative enough
to estimate the value of every action given a state [14]. This pessimism can be applied by directly
penalizing () values for a particular state-action distribution [13], or with model-approximation
[27] that leverages uncertainty prediction techniques developed for supervised learning, such as
Lakshminarayanan et al. [28] or van Amersfoort et al. [29]. While the previous approaches apply
pessimism unconditionally for every state [13] or use transition-dynamics based proxies [27] for
measuring uncertainty, we propose a theoretically justifiable regularization method for estimating Q°
that is based on distributional RL.

3 Preliminaries

The common mathematical framework for reinforcement learning is a Markov Decision Process
(MDP), which is defined by a tuple M = (S, A, T, dy,r,) defined by a set of states s € S, a



set of actions a € A, conditional transition dynamics T'(s’|s, a), an initial state distribution dj, a
reward function r : § x A — R, and a discount factor v € (0,1]. In this framework, the goal
of reinforcement learning is to find an optimal policy 7(a|s) that maximizes an expected sum of
discounted reward (return). Formally, the objective is defined as:

H
J(ﬂ') = Ermpﬂ' [Z ’}/tT(St,at)‘| 5 (])
t=0
where 7 is a sequence of states and actions (sg, ag, . .., Sg, ay) of length H, and p™ is a trajectory
distribution of a policy, which can be represented as:

H
p™(7) = do(so) [ [ m(acls) T(seralse, ar). 2
t=0

One way to find an optimal policy is to estimate an action-value function @™, which represents
the expected return over possible trajectories following a policy 7 starting from a given state and

action: Q7 (s¢,at) = Errpr(s,a) [Eff:t fyt/_tr(st/,at/)}. Q™ function implies a greedy policy

77 (a|s) = 6 (a = argmax;, Q™ (s, b)), which is better than or equal to its original evaluation target
policy 7. Therefore, when we perform policy evaluation (¢ estimation) and policy updates iteratively,
we can move toward the optimal policy 7* and the optimal @ function Q™ . Policy evaluation can be
done with a Monte-Carlo method, but bootstrapping is commonly used, which utilizes a recursive
equation that must be satisfied at convergence:

Qﬂ—(sa a) = T(Sv (l) + VES’NT(SWS,a),a/Nﬂ(a’|s’)Qﬂ— (8/7 a/)- (3)

When an MDP is discrete and () can be represented by a tabular representation (i.e. when |S| x |.A| is
small), it is known that policy evaluation converges to a correct solution in the limit of the number of
transition tuples [6]. However, when an MDP has a large state or action space, () has to be represented
with a function approximator, such as a deep neural network. In addition, when the action space is
continuous, directly extracting a better policy from () becomes infeasible due to the arg max operator.
These restrictions are addressed in actor-critic algorithms [4, 2, 5] which explicitly alternate policy
evaluation and policy improvement with a batch of (online) transition samples D and a parameterized
value function Qg and a policy my:

oF 1« arg m@in Es.a.5'~D d(@g (s,a),r(s,a) + 'yEa/N%k (a,‘s/)ng (s, a’)) (policy evaluation),
“4)
O arg md;)ix EsD a~my(als) [Q0k+1 (s, a)] (policy improvement), (5)

where k is an update step, and d is a distance measure such as squared l» or Huber loss.

4 You Only Evaluate Once

Behind actor-critic based offline RL algorithms, there is a common presumption that the iterative
process is essential in achieving better performance than that of the behavior policy, even though it
could sacrifice the reliability of the algorithm due to the over-estimation problem. This is because we
want to find a policy that behaves differently from the data-generating policy by making counterfactual
queries (policy improvement) and answering (policy evaluation) them iteratively [1]. However, it
has not been established that a simpler and safer baseline cannot work well—a policy that selects
the best action with regard to the action-value function of the behavior policy. Without rigorously
examining this hypothesis, the true worth of iterative algorithms and counterfactual queries cannot be
fully understood.

In this paper, we challenge the iterative offline algorithms by proposing a stable offline algorithm
that recovers the best action of behavioral policy 3(s) that is used to generate an offline dataset D.
Formally, our goal is to find the greedy behavioral policy 5*(s) that selects the best action with
respect to Q7, only considering the action candidates of /3:

B*(s) == argmax Q”(s,a) where B(s)=suppf(s):={ac A:pB(als) >0} (6
a€B(s)



When we have an oracle B(s), 8* can be estimated by simply making on-policy queries to the
approximated action-value function Qﬁ, which can be trained via TD loss based on SARSA tuple
(s,a,r,s',a’) € D. This can be reasonably correct as long as the given dataset is sufficient to perform
an on-policy evaluation. However, the approach to learning 3* directly by estimating B(s) and
QF is prone to failure. This is because directly modeling B(s) is often infeasible since 5 can be
a mixture of many stochastic policies, and the estimation error in B(s) can create unpredictable
errors in finding 8* because the prediction of QB for off-policy input (s, @) solely depends on the
generalization ability of Qﬁ. Figure 1 demonstrates one failure case in estimating Q”; when Qﬂ is
trained without any regularization, it behaves more like a state value function V?(s) ignoring the
action input. Therefore, any erroneous action generated by estimated B(s) will be treated as the best
action.

Instead, we propose to learn the greedy behavioral policy 5* without directly estimating B(s). It can

be achieved when Q7 is properly regularized so that the greedy policy implied by the regularized Q°
is 8*. We argue that pessimistic regularization satisfies such property:

Theorem (Q° implies 5*). Let Q° be a valid pessimistic approximation of Q°: (1) QP (s,a) <
maX,e B(s) QP(s,a) Vs€D, a¢ B(s) and (2) Qﬁ(s7 a) = Q%(s,a) ¥ (s,a) € D. Then, a greedy
policy over Q/3 is .

Proof.

argmax Q°(s,a) = argmax Q”(s,a) = argmaxQ”(s,a) = B*(s). O
acA a€B(s) acB(s)

Pessimistic regularization is essential even for learning Q” since there are always out-of-distribution
state-action pairs (s,a) given a fixed dataset D, and the values of these inputs depend on the
generalization characteristic of the function approximator used to learn Q. Therefore, we have to
regularize QP properly, and we adapt pessimism under the uncertainty principle since we cannot
assume any value for OOD input unless we have a prior regarding an MDP. Yet, in contrast to
pessimistic regularization for Q*, which requires a calibrated epistemic uncertainty measurement [14]
or suffers from over-regularization due to excessive pessimism [13], QB can be properly regularized
by enforcing Q” (s, @) to be smaller than the maximum value of Q° (s, a) for a € B(s).

4.1 Practical Implementation

When we have a valid pessimistic approximation of @7, 3* can be inferred without knowing B(s)
since the greedy action over the approximated value function Q" is 8*. However, the first constraint of
the valid pessimistic approximation still depends on B(s), and it makes implementing the pessimistic
regularization in its original form difficult.

To address this problem, we express the two conditions of the theorem in terms of the state value distri-
bution over Y (s); Y?(s) is a random variable representing the return of the policy 3 starting from a
state s where its expectation is the state value V?(s) = E[Y#(s)] [15, 16, 17]. With the random vari-
able Y4 (s), the two constraints can be rewritten as follows: (1) Q% (s, -) < max,ep(s) Q% (s,a) =
max,, Y?(s;w), and (2) Qﬁ(s, a) =1+ YEg1(s,a) VA =r+ VE s/ T (s,a) [Ew [YP(s's w)]]
where w is an outcome of the sample space of Y. This converted expression is defined without a need
for B(s), and therefore, we can now implement the pessimistic regularization with Y () instead
of B(s). Note that the constraint is defined with the maximum and the expected value of Y only
for the state s € D. This allows us to use any on-policy evaluation methods for Y as long as the
resulting approximation is precise for on-policy states.

We propose a two-step approach: we first perform state value distribution learning using (s, r, s)
transition tuple in D (behavioral policy evaluation) and then train ° in a supervised manner that
satisfies the given constraints. Specifically, we represent a state-value distribution of Y7 using
implicit quantile network (IQN) [17], which is a recently proposed distributional RL algorithm that
models the value distribution in the form of an inverse cumulative distribution function parameterized
with ¢: (with a slight abuse of notation) Y (s;7) = inf{v € R : 7 < Prob(Y(s) < v)} where 7
is queried probability. In IQN, the parameter ¢/ can be trained by a distributional TD learning. For
details about the distributional TD learning, please refer to Will et al. [17].



With the approximated state-value distribution Yw of the behavior policy 3, we train an action-

value function Qg with a supervised loss for on-policy state-action pair (s,a) and a pessimistic
regularization R for off-policy pair (s, a):

1, .
L =Ears)~D 3 ’Qg(s, a) — (r +E [Yw(s’)])‘2 + AR(s;0) @)

where ) is a hyperparameter that controls the strength of pessimism. While we can approximate

the expectation of f@, with sampling, we use the median value of the distribution }A/}/,(s’ ;0.5) for
computational efficiency.

The main goal of R is to implement the pessimism on Qp and guarantee Qg to be a valid pessimistic
approximation of Q” that satisfies Qg(s, -) < max Y?(s). While every possible action a € A needs
to be checked, it is computationally infeasible when the action space is large or infinite. Hence, we
sample actions from a static distribution u (passive pessimistic regularization) and a distribution 7
that is actively changing over training iterations (active pessimistic regularization). Then, we penalize
Qg if the estimations on the action samples violate the pessimistic constraint. We use a different
hyperparameter 7 for each of action samples. We sample n; number of actions from each distribution
and use the log-sum-exp trick to change the hard constraint into a soft constraint:

R(s:0) = log | exp(V(sim)) + 3. expc?e<s,a>}+1og[exp<ms;m>+ S expQols.b)

armg(s) b~p(s)

®)

We use a random uniform policy for ;1 while the 7, -
is trained against trained () (or a set of (s when an Algorithm 1: You Only Evaluate Once
ensemble technique is used) as same as an ordinary Input:Dataset D = {(s,a,r,s')},

actor in the actor-critic algorithm. However, it is Hyper-parameter \, 71, T2
different from the actor in that 7wy, works as an active Initialize v, 6, and ¢

regularizer that adAversarially finds the wrong gener- Train Y. ", with distributional TD-loss
alization part of QQg. For 71 and 72, we use 0.9 and  while until convergence do

0.1 respectively. While the 7; is decided following Update 6 with VoL (Eq. 7)

the definition of valid pessimism with a safe margin Update ¢ with V4Eg. DQ o ( 8,7 ( 5))
of 0.1, we use a small 7, since we expect that aran- gpq

dom policy will perform poorly. We train multiple
Qg models and aggregate them by taking a min over
inferred Qg values to get a robust value estimate. We train multiple models with different initial
parameters and the same data following Osband et al. [30].

return Qg, 7y,

As an approximation of 3*, we use two policies defined on top of Qg. One is the last 7, we have at
the end of training since 7y is directly trained to find the greedy policy over Qp. If Qg is properly
regularized (i.e. Qg is a valid pessimistic approximation), m, will converge to 3*. Therefore, the
policy will be implicitly constrained to use actions limited to the support of the behavior policy /.
The other policy is a nonparametric policy m whose action space is explicitly constrained to the
actions shown in the dataset D: 7(s) = arg max,~p Qg(s, a). 7 can perform better than 7, when
the pessimistic constraint is hard to achieve due to restriction of a dataset or characteristics of an
MDP, such as the dataset size |D| or the large action space |.4], that allows room for adversarial
attacks; when there is much room for adversarial attacks, 74 will continuously try to regularize Qg by
suggesting diverse adversarial actions while it does not converge to the desired policy 5*. In such a
case, directly utilizing 74 would result in poor performance, but the action set restricted policy 7 can
perform well by testing limited actions that are more likely to belong to B(s). The overall algorithm
is shown in Algorithm 1, and the implementation details are provided in Appendix.

Since the training of Qo largely depends on the trained state value distribution Yw, the correctness of

}A/;/, is essential in learning greedy behavioral policy 5*. Fortunately, since we are performing policy
evaluation with on-policy data, we avoid the Deadly Triad, and it is more likely to converge to a

correct Y7 than other methods that perform off-policy learning. Furthermore, the correctness of Yy,
and the regularized Qg can be roughly tested by comparing the estimated value with the Monte-Carlo

|



return. This is an extra debugging feature that is only available in YOEO, and we can leverage this to
set the hyperparameters.

It is noteworthy that we are leveraging aleatoric uncertainty to implement pessimism. When epistemic
uncertainty of action-value function Q*(s,a) can be estimated with a fixed dataset, using it to
penalize the value function is a theoretically justifiable implementation of pessimism [14]. However,
measuring epistemic uncertainty is still an open problem when a deep neural network is used even in
the simpler supervised learning setting that does not include bootstrapping as RL. For that reason,
pessimism is commonly implemented with a proximal objective, such as learning a lower bound of
the true @Q* [13] or using an uncertainty proxy [27, 31], and therefore, these approaches often require
sensitive hyperparameter tuning to find the right level of pessimism [1]. In contrast, the objective
of YOEO allows us to use aleatoric uncertainty that can be directly estimated. Also, the two-step
training prevents the error from propagating through bootstrapping, so our method is less susceptible
to divergence at the cost of optimality. This makes our algorithm a suitable baseline for offline RL
that achieves stability at the cost of optimality.

5 Experiments

We aim to study the following question: how much performance gain do potentially risky policy
iteration algorithms provide compared to more stable baseline algorithm YOEO? We compare the
performance of YOEO against several baselines and prior works based on policy iteration: behavior
cloning (BC), soft actor-critic (SAC) [5] without interaction, bootstrapping error accumulation
reduction (BEAR) [8], behavior regularized actor-critic (BRAC) [9], advantage weighted regression
(AWR) [10], batch constrained deep Q-learning (BCQ) [7], and conservative Q-learning (CQL) [13].

The comparison is made on a subset of datasets in the D4RL offline RL benchmark [18]. We
use MuJoCo [32] locomotion tasks [33], Adroit hand-manipulation tasks [34], and Franka kitchen
[35] tasks. For MuJoCo locomotion tasks, we use three environments (hopper, walker2d, and
halfcheetah) in four different settings (random, medium-replay, medium, and medium-expert).
For Adroit hand-manipulation tasks, we use four environments (pen, door, relocate, and hammer)
in two settings (human and cloned). For Franka kitchen tasks, we use three different settings
(complete, partial, and mixed). We train YOEO for 1 million stochastic gradient steps for both
Yw and Qg, then we report the average normalized performance score over 100 trajectories. The
results are displayed in Table 1.

Despite the fact that YOEO aims to learn a greedy behavioral policy 5*(s) with respect to Q” rather
than try to learn 7*, it shows highly competitive results: it achieves better performance than the
current state-of-the-art model-free offline RL algorithms in five datasets (hopper-random, walker2d-
medium-replay, hopper-medium-expert, and hammer-cloned, kitchen-compete), and competitive
performance across all other configurations surpassing most of the other offline RL algorithms. The
results indicate that the previous offline RL algorithms fail to fully exploit the potential benefit of
iterative evaluation and update.

The performance of & shown in the last column of Table 1 also supports our hypothesis on 7. While
7 shows similar results in other datasets, ™ shows a better result than 7, in ~human type dataset in
Adroit tasks and -parital and -mixed type datasets in the kitchen task of which the size of the

dataset is relatively small or the action space is large; since Qo needs to be regularized for diverse set
of actions, g would not converge to 5* whose actions are limited to the support of /3.

5.1 Ablation Study: how much will each regularization term affect the performance?

We conduct an ablation study to show the effectiveness of the regularization and the contribution of
each term in Eq. 8. Specifically, we consider two ablations: (1) Qﬁ trained only via TD loss based on
(s,a,r, s, a’) tuple without any regularization (denoted as Q” \'R) and (2) Q" trained without the
second term in Eq. 8 (denoted as QF \ ). Additionally, we test the effect of the ensemble by changing
the number of trained models. The experiment settings and the results are summarized in Table 2.

We confirm the necessity of pessimistic regularization even when we do on-policy policy evaluation;

the qualitative results shown in Figure 1 reveal that Qo \R can estimate the ground-truth value for
on-policy input (s, a), but it fails to estimate the value for out-of-distribution input (s, b), especially



Table 1: Performance of YOEO and prior methods on a subset of D4RL benchmarks. Each number
represents the performance relative to a random policy as 0 and an expert policy as 100. All the
numbers except ours are borrowed from [18] and [13]. The numbers of our results are averaged over
3 different random seeds.

. SAC- CQL YOEO YOEO

Type Environemt BC offline BEAR BRAC AWR BCQ () (74) #)
HalfCheetah 2.1 305  25.1 312 25 22 354 45 5.7

Random  Hopper 9.8 11.3 11.4 12.2 10.2 10.6  10.8 12.2 12.3
Walker2D 1.6 4.1 73 1.9 1.5 49 7 49 4.1
Medigm. HalfCheetah 384  -24 386 477 403 382 462 362 30.9
Roo] Hopper 118 35 33.7 0.6 284 331 486 425 37.2
CPAY  Walker2D 113 1.9 19.2 0.9 155 15 326 419 30.1
HalfCheetah 36.1  -43 417 463 374 407 444 451 43.6

Medium  Hopper 29 0.8 52.1 31,1 359 545 866 719 62.5

Walker2D 6.6 0.9 59.1 81.1 174 531 745 74.1 76.2
HalfCheetah ~ 35.8 1.8 53.4 44.2 527 647 624 41.9 359

Medium-

Expert Hopper 111.9 1.6 96.3 0.8 27.1 1109 111 112.1 112
P Walker2D 6.4 -0.1 40.1 81.6 538 575 987 89.5 84.3
pen 34.4 6.3 -1 8.1 123 689 375 17.3 43.6

human door 0.5 39 -0.3 -0.3 0.4 0 9.9 -0.1 57
relocate 0 0 -0.3 -0.3 0 -0.1 0.2 -0.1 0.2

hammer 1.5 0.5 0.3 0.3 1.2 0.5 44 2.6 54

pen 56.9 235 26.5 1.6 28 44 39.2 32.6 30.5

cloned door -0.1 0 -0.1 -0.1 0 0 0.4 0.1 0.7
relocate -0.1 -0.2 -0.3 -0.3 -0.2 -0.3 -0.1 -0.1 -0.2

hammer 0.8 0.2 0.3 0.3 0.4 0.4 2.1 2.7 1.2

complete 33.8 15.0 0 0 0 8.1 43.8 63.2 31.3

kitchen partial 33.8 0 13.1 0 15.4 189  49.8 17.2 46.8
mixed 475 25 472 0 10.6 8.1 51.0 59 40.4

Table 2: Ablation experiment results. The normalized performance over 3 random seeds is displayed.
Qs\R  Qo\p(s) Qg (Ens.1) Qp (Ens.3) YOEO

Supervised w/ Yy, X v v v v
R w/ pu(s) X v v 4 v
R w/ 7(s) X X v 4 v
# Ensembles 5 5 1 3 5
Medium- Hopper 30.6 49.1 21.3 36.5 42.5
Replay Walker2D 3.7 21.2 18.9 28.2 41.9
. Hopper 2.7 14.9 54.6 65.9 71.9
Medium  wilker2d 02 29 66.3 75.9 74.1
Medium- Hopper 10.4 58.2 89.6 112 112.1
Expert Walker2D 3 0.3 62.2 94.9 89.5

when the given dataset is homogeneous such as the -medium dataset whose behavior policy 3 is not
a mixture of different policies. This is because Qﬂ behaves more like a V72, ignoring the action, since
an effective action a is predictable based on s. The performance degradation of Qg\ 1 indicates that a
random policy w is a good heuristic that can prevent the degeneration of the action-value function;
the second regularization term using g can foster the discrimination ability of the value function by
enforcing Qg to estimate a different value for (s, a) and (s, b), and this can increase the performance
significantly especially when the given dataset is generated with a homogeneous policy.

We also observe the performance benefit of training more models and ensembling them, especially for
-medium-replay type datasets. We hypothesize that YOEO’s pessimistic regularization method has
high variance due to the stochasticity of the loss function, and the ensembling technique can improve
learning by enabling robust prediction for off-policy data from which the stochasticity is derived.

5.2 Why do CQL and other methods fail?
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Figure 1: Qualitative evaluation of Qe\R (red) and Qg (YOEQ, blue) trained for hopper-medium-v0
dataset. In the left two figures, we plot the predictions of each method for 10,000 on-policy data
points (s, a). The x-axis is the Monte-Carlo value estimate of the given data point. In the right, we
plot the predictions of (s, p(s)) for 4 randomly sampled states from D. 100 actions are sampled from
random uniform policy p. Monte-Carlo estimate of the given state is drawn with the black line, and a
histogram of the predictions with each method is drawn with the corresponding colors. While both

Qs \'R and Qg estimate the value precisely for the on-policy input, Qg\ R behaves more like V7 (s)
failing to take the action input into account for a value prediction.

Table 3: Experimental results of CQPL and its vari-
YOEO outperforms the current state-of-the-art  ants. MR, M, and ME represent medium-replay,
methods, specifically CQL, in several datasets. medium, and medium-expert dataset types, and
Considering that the pessimistic regularization H and W represent Hopper and Walker2D envi-
of YOEO is milder than CQL, we hypothesize ronments respectively. The averaged normalized
that the failure of CQL to surpass 3* is derived performance over 3 random seed is displayed.
from over-regularization; YOEO only penalizes

Qg(s, b) that are larger than the maximum value YOEO CQL(p) CQ°L(p) MOReL

of the state value distribution max Y%, while MR H 425 26.9 297 93.6
CQL performs unbounded minimization for W 419 13.3 26.7 49.8
Q*(s,b) and maximization for Q*(s,a). When M H 719 31.7 32 95.4
b is sampled from a policy based on Q, the regu- w741 78.8 65 77.8
larization will practically penalize Q* (s,b)untili ME H 1121 111.9 111.5 108.7
the value becomes smaller than Q* (s, a). Even W 895 63 83 95.6

when Q* (s, a) is smaller than max Yy, CQL
would still induce more pessimism than YOEO. Furthermore, when Q* is over-regularized, we can
expect that Q* would behave more like )7, losing the advantage of the iterative process.

To confirm this hypothesis, we modify CQL to estimate Q” instead of Q* by changing the TD loss to
be computed with (s, a,r,s’,a’), not (s,a,r,s"). The pessimistic regularization part remains intact.
We denote this algorithm CQPL. We ran the CQL(p) algorithm, and the results are displayed in
Table 3. CQPL(p) works similarly to CQL(p), and this supports our hypothesis that the CQL is
over-regularizing. The success of the model-based offline algorithm (MOReL [31]), implies that the
over-regularization of CQL can be avoided by utilizing the uncertainty that CQL lacks.

6 Discussion

We investigate a simple baseline algorithm for offline RL that only evaluates the value function of the
behavior policy as opposed to approximate (Q* with unstable iterative process. Since the proposed
algorithm does not involve a policy optimization step and value re-evaluation based on the updated
policy, the algorithm can be stable, but the resulting policy is more likely to be suboptimal. This makes
the algorithm an appropriate baseline for actor-critic algorithms that ought to outperform this baseline
if there is indeed value in iterative optimization in the offline setting. In the experiments, the proposed
baseline surprisingly shows competitive results on the several D4RL benchmarks, surpassing the state-
of-the-art results in some tasks. This implies the usefulness of conservativeness under uncertainty,
which can prevent incorrect generalization behavior of a complex function approximator occurring
due to lack of data, as well as the potential flaws of iterative optimization in actor-critic algorithms
in the offline setting. Therefore, it is essential for future work to build a theoretical framework that
sheds light on iterative optimization and generalization of offline actor-critic methods that use deep
neural networks, if iterative optimization is to be fully taken advantage of.
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A Experimental Details

The state value distribution Yy, is parameterized following Will et al. [17]: Yy, (s;7) = F (Ey(s)®

Ty (T)) where F;, and Ey, is a multi-layer perceptron (MLP) that maps an input into 64 and 1-
dimensional output, and T, is a cosine-based embedding function that maps a 64-dimensional cosine

basis vector [cos(miT)]$2, into the same length feature vector with a single fully-connected layer

with ReLU activation. For (0, we used an MLP that maps a concatenation of state and action input to
a single scalar value. We used a deterministic policy 7, that maps a state into an action-dimensional
vector. For every MLP, we used 2 fully-connected layers, and we trained five sz and Qgs with a
single 7g. For the action samples used in Eq. 8, we added an action noise following Fujimoto et al.
[2]. For the efficiency in computing 7, we reduce the search space by first finding the 100 nearest
states in raw-state space and querying the actions of those states. We use an approximated nearest
neighbor algorithm called Annoy [36]. Both in training Y¢, and Qg, we adapted an n-step TD trick
instead of using TD(0); we sampled (s¢, at, Zi,igf ¥t~ 17y, s¢410) from a dataset instead of sampling
(s,a,r,s"). Also, we used a slowly moving target network in calculating the bootstrapped distribution
by keeping an exponential moving average of 1 [4] and using the averaged weight for bootstrapping.

We provide the hyperparameters used for the experiments in A.1. We use the provided hyperparame-
ters unless mentioned otherwise for the ablation experiments. Code is also available '.

Table A.1: Hyperparameters used in the experiments

Y‘/’ Qé) Mg
¥ 0.99
n-steps 10
# Ensembles 5 5 1
Batch Size 100
# Training Iterations 1 million steps
Learning Rate le-4 le-3 3e-4
weight-decay 0 le-8 w/ AdamW 0
|F| 64
Ey |S| — 256+ReLU— 256 +ReLU — | F|
Ty [cos(miT)]$3, — 64 +ReLU — | F|
Fy, |F'| —256+ReLU— 256 +ReLU— 1
N,N’ 16
K 1
Qo |S| + |A] — 2564 swish — 256 +swish— 1
A 1.0 (-medium-expert), 0.1 (otherwise)
# policy samples 10
T1 0.9
T2 0.1
T NOiSE & 0.3
Ty Noise clip 0.5
T | S| — 2564 swish — 256 +swish — | A|

"https://github. com/hiwonjoon/YOEO-public
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