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Abstract: We introduce a sample-efficient method for learning state-dependent
stiffness control policies for dexterous manipulation. The ability to control stiff-
ness facilitates safe and reliable manipulation by providing compliance and ro-
bustness to uncertainties. Most current reinforcement learning approaches to
achieve robotic manipulation have exclusively focused on position control, of-
ten due to the difficulty of learning high-dimensional stiffness control policies.
This difficulty can be partially mitigated via policy guidance such as imitation
learning. However, expert stiffness control demonstrations are often expensive
or infeasible to record. Therefore, we present an approach to learn Stiffness
Control from Augmented Position control Experiences (SCAPE) that bypasses
this difficulty by transforming position control demonstrations into approximate,
suboptimal stiffness control demonstrations. Then, the suboptimality of the aug-
mented demonstrations is addressed by using complementary techniques that help
the agent safely learn from both the demonstrations and reinforcement learning.
By using simulation tools and experiments on a robotic testbed, we show that the
proposed approach efficiently learns safe manipulation policies and outperforms
learned position control policies and several other baseline learning algorithms.
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1 Introduction

In recent years, deep reinforcement learning has been successfully used to improve object manipula-
tion with robotic hands [1, 2]. However, one of the primary limitations of these works is that in most
robotic hands, the robot joint poses are explicitly controlled through position control and forces are
implicitly decided. Lack of explicit control over the forces leads to limited safety and inability to
handle uncertainties [3]. These might be critical factors when a robot is operating in unstructured
environments and during the exploratory phase of the learning process [4, 5].

Modulation of stiffness in concert with position control has been shown to address robustness, safety,
and performance under uncertainties [6, 7, 8], and has gained much attention in the learning com-
munity as well [9]. However, stiffness control imposes additional action dimensions, which affects
sample-efficiency of policy learning. This hindrance can be partially mitigated through guidance
via imitation learning [10]. Expert demonstrations have been successfully collected and used in pol-
icy learning for position control-based robotic hands [1, 11, 12]. However, in the case of stiffness
control, such expert demonstrations are expensive and difficult to acquire. Typical demonstrations
can directly be recorded via various sensors, but stiffness is not a measurable quantity, but rather a
relationship.

In prior literature, admittance control has been used to capture equilibrium position trajectories [13,
14]. Subtle and quick impact perturbations are used to measure the compensatory forces and torques
employed by the demonstrator while performing the trajectory, which are then used to implicitly
calculate the stiffness at certain positions. These stiffness estimates are then used to further estimate
and model the stiffness profiles, thereby compounding potential errors. This estimation process is
more ambiguous for object manipulation due to the required precision and accuracy, and therefore
poses a major challenge to learning stiffness control from demonstrations.
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In this paper, we present a novel learning strategy—Stiffness Control from Augmented Posi-
tion control Experiences (SCAPE)—for learning state-dependent stiffness control policies in high-
dimensional problems such as dexterous manipulation. Imitation learning is used in conjunction
with reinforcement learning to provide policy guidance, and we propose a way to bypass the need
for stiffness demonstrations through an augmentation process. This process leverages the knowl-
edge of the robot model such that we do not require expert stiffness control demonstrations. Instead,
position control demonstrations are augmented to infer approximate, suboptimal stiffness control
demonstrations. To address this suboptimality, we use a Q-filter [11] to prevent the agent from
mimicking dangerous choices that may appear in the inferred stiffness demonstrations. We also in-
troduce the concept of an imitation regulator that controls the mode of imitation depending on the
assessment of the current policy. Ablation studies show that these techniques play meaningful roles
in both safety and stability of learning. Through simulation and experiments, we show that SCAPE
produces a successful policy that is robust to different types of realistic uncertainties, and safe in
terms of force interaction.

2 Background and Related Works

Some of the notable past works in learning stiffness control rely on a reference trajectory, which we
refer to as trajectory-dependent approaches. However, the lack of robustness to uncertainties and
variability in the task dynamics renders these approaches inapplicable to dexterous manipulation.
Other recent research aims to learn a stiffness controller that dynamically adapts to the environment,
which we refer to as state-dependent approaches. In this section, we briefly explain some of the
notable attempts to learn stiffness control, and discuss possible shortcomings.

2.1 Trajectory-dependent Stiffness Controllers

One possible approach is to learn time-indexed gain scheduling through PI2 [15], which is a stochas-
tic optimization method that results in a time-indexed reference trajectory that can be tracked by the
robot without modeling the inverse kinematics or dynamics. This approach adds additional parame-
ters to control compliance so that the resulting controller takes environment dynamics into account
and modulates the gains accordingly [16, 17, 18]. However, a solution from PI2 can only opti-
mize about a pre-defined cost function and cannot be used for object-centered manipulation, which
requires highly divergent position and stiffness trajectories depending on the goal and observations.

Another approach uses an Incremental Gaussian Mixture Model (IGMM) and Gaussian Mixture Re-
gression (GMR) to predict the interaction force for the next time-step, and feed-forward appropriate
control effort [19, 20]. The goal of this approach is to learn a feed-forward model such that the feed-
back stiffness control effort can be minimized. However, this approach makes a critical assumption
that expert demonstrations with force trajectories are available, which renders it inapplicable without
such demonstrations.

Trajectory planners combined with reinforcement learning can also be used. Once the trajectory is
defined, a residual control policy can be learned to adjust the gains according to the current obser-
vation. This method is mostly used in simple tasks where a trajectory planner is readily available,
such as in peg-in-hole assembly tasks [21, 22, 23]. While this is a suitable approach for closed envi-
ronments, it is less effective for dexterous manipulation where desired trajectories can change based
on dynamic observations such as dropping the object or unexpected interaction forces. In addition,
due to the lack of policy guidance, the learning process requires a complex reward function as well
as an extensive amount of training time even with a trajectory planner aiding the policy search.

2.2 State-dependent Stiffness Controllers

Due to the specificity of the solution, relying on a fixed reference trajectory or scheduled gain is
bound to result in catastrophic failure in dynamically changing environments. To account for a large
degree of variability in the environment, state-dependent stiffness control policies have recently been
proposed. In this paper, we compare our work with these state-dependent methods, as the existing
trajectory-dependent approaches are inapplicable in dynamic settings.

In one related approach, during hopping and wiping motions [24], the robots successfully produce
stiffness control policies that outperform direct torque control and position control policies. How-
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These demonstrations are typically generated from teleoperation or kinesthetic teaching, and contain
desired position trajectories. In our study, we use 25 demonstrations that accomplish task-related
kinematic goals without consideration for the object fragility (e.g., commanded to fully close the
grippers). We leverage the fact that the stiffness of the robot is known either from the simulation
model or the hardware specifications, and that position control works by moving to the desired po-
sition with the inherent stiffness or position gain of the actuator. In this paper, we refer to this
inherent stiffness as kpassive. Therefore, state-action pairs, (s, a), in common position control
demonstrations can be augmented to that of stiffness control demonstrations, (s′, a′), where the
desired stiffness is kpassive. Consequently, these augmented demonstrations become suboptimal
stiffness control demonstrations since the commanded stiffness of the robot is fixed to kpassive. We
can then infer the reward function of the task from the augmented demonstrations without manual
reward shaping, and at the same time use it to learn improved stiffness control. Note that kpassive

is n-dimensional stiffness, from which we can choose any dimension of interest and modulate the
stiffness. In this paper, we modulate the stiffness in the grasping dimension (i.e., kpassive ∈ R).

3.1 Outperforming the Demonstration

Simple imitation learning in the form of behavioral cloning does not allow the agent to improve be-
yond the performance of the demonstrations due to the cloning loss [11]. The weight of the cloning
loss can be decreased iteratively, assuming that the agent is able to learn a policy equivalent to the
demonstrator early in the iteration [1]. But it is unclear how to determine the amount of dependency
on the demonstrations with respect to the iteration. Also, simply reducing the dependency does not
prevent the agent from cloning the undesirable behaviors seen in the suboptimal demonstrations we
use. Therefore, we adopt additional techniques to encourage the policy to outperform the augmented
demonstrations and address its suboptimality.

3.1.1 Q-Filter

We use a Q-filter [11] to choose which replay transitions to clone from. The fundamental moti-
vation behind learning from demonstrations is the assumption that the demonstrations provide a
near-optimal action. However, this is not true for the augmented demonstrations. A Q-filter allows
the agent to compare the Q values produced by the transitions from demonstrations, (si, ai, g), and
the current policy, (si, πθ(si, g), g). By comparing their values, the agent does not clone the behav-
ior if its current policy provides a better action for the given demonstration state. More formally, the
cloning loss Lbc can be defined as:

Lbc = ||ai − πθ(si, gi)||1Q(si,ai,gi)>Q(si,πθ(si,gi),gi) (1)

However, it is often difficult to infer the subtle difference in the qualities of the policies solely from
examining the resulting Q estimates due to the overestimation issue of Q values [28]. Although the
usage of the Q-filter improves the safety of learning, it tends to produce oscillatory gradients that
prevent convergence of the policy due to its Boolean property [11].

3.1.2 Imitation Regulator

To improve convergence of our method, we introduce an imitation regulator that observes the overall
success rates of the current policy and determines the appropriate source of imitation from: 1) the
augmented demonstrations and 2) the agent’s own past experience. The latter is sometimes referred
to as self-imitation learning [29]. The regulator controls the replay buffer DIR used for sampling
transition batches to imitate as follows:

DIR =

{

Ddemo, if SR < SRref

DSIL, otherwise
(2)

where DSIL and Ddemo refer to the buffers that store the actual experience replay and the aug-
mented demonstrations, respectively. SR ∈ [0, 1] is the overall success rate of the current policy. It
is considered an overall success if the object reaches the goal states and also stays intact throughout
the episode. SRref is the reference success rate that is empirically found. Put simply, the regulator
actively switches the source of demonstrations from Ddemo to DSIL once the success rate reaches
SRref . This brings three primary benefits. First, the agent no longer references the suboptimal
demonstrations which contain undesirable behaviors. Second, the policy converges faster from the
minimized oscillation of gradients. Third, by cloning the previously generated actions, the agent
leverages exploration, thereby improving upon its current policy.
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A Supplementary Material

A.1 Learning Structure

We use DDPG + HER for SCAPE and all the baselinese in this study. We use the same hyperparam-
eters as OpenAI baselines [32], except for the batch size of 256 (originally 1024).

A.2 Policy Parametrization

In all environments, we use a stiffness variable k to command a desired stiffness in the grasping
direction. For the Block environment, the stiffness is applied to the direction of the parallel gripper
opening/closing. For the Chip environment, the stiffness is applied to the wrist joint’s pitch rotation,
which is the degree of freedom responsible for maintaining the grasp of the chip. For the NuFin-
gers environment, the stiffness is applied to the grasping direction, which coincides with the radial
direction of the polar coordinates.

In addition to the stiffness parameter, klim provides the upper limit for all stiffness controllers in this
paper. We have found that having an extra parameter that controls the upper limit of the stiffness
helps the policy converge faster to the minimum stiffness. Furthermore, such upper limit can be
meaningfully related to the physical passivity of the robot [7].

Therefore, in all environments, SCAPE outputs two additional dimensions of the action space com-
pared to the position control policy, which account for k and klim.

A.3 Environments

Tables below contain detailed information regarding the environments used in the paper.

Table 1: Reference success rates for each environment.

Block Chip NuFingers

SRref 0.65 0.85 0.65

Table 2: List of uncertainties included in the training and evaluation.

Measurement Noise

Property
Adds noise to the measurement

Uniform(-1 cm, 1 cm) (Block, Chip)
Uniform(-0.02 rad, 0.02 rad) (NuFingers)

Application
3D position of the object (Block, Chip)

Rotation of the object (NuFingers)

Occurrence 100%

Random Perturbation

Property
Adds velocity to the object

Uniform(-50 cm/s, 50 cm/s) (Block, Chip)
Uniform(-0.5 rad/s, 0.5 rad/s) (NuFingers)

Application
x-dir (Block)
x1-dir (Chip)

θ-dir (NuFingers)

Occurrence 100%

Control Failure

Property Repeats the previous action

Application Entire action

Occurrence 10%

A.3.1 Details for the Block Environment

The Block environment is a modified version of FetchPickAndPlace environment from Gym. The
grippers are more compliant. Most importantly, the object is now considered broken if the interac-
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tion force exceeds a certain threshold called fragility shown in Table 3. In addition to the original
observation and action spaces, the new observation space now includes force and stiffness, and the
action space includes the changes in stiffness and its limit. The task-related kinematic goal is for
the object to reach the goal position, i.e., ||xo−g|| < d, and the force F is measured from series

elasticity of each gripper. The distance threshold is d = 5cm, α = 2e−3 normalizes the force, and
β = 0. We use a sparse reward function for the task-related kinematic goal to avoid penalizing the
agent from necessary exploration [31], and a dense reward function for the safety-related goal to
minimize the interaction forces. Also, the target location is always in the air to examine only the
grasping solutions and discourage the use of other means of moving the object.

Table 3: List of modifications to model parameters in the Block environment.

Gripper Link Mass (kg) Contact Dimension

Original 4 4

Modified 0.4 6

Gripper Actuator Stiffness (N/m) Control Range (m)

Original 30000 0.0 – 0.2

Modified 250 -1.0 – 1.0

Gripper Joint Armature Damping (Ns/m)

Original 100 1000

Modified 1 20

Object Fragility (N ) Contact Dimension

Original N/A 4

Modified 300 6

A.3.2 Details for the Chip Environment

The robot in the Chip environment has a compliant wrist. The observation space includes the posi-
tions of the object, fingertip, and the goal in Cartesian space. The fingertip velocity is also included.
The action space consists of planar movement of the arm, the pitch movement at the wrist, and the
changes in the wrist stiffness and its limit. The estimated interaction force is the wrist torque τ ,
which is calculated from the series elasticity of the wrist actuator.

The task-related kinematic goal is for the chip to rest at the target location, with small velocity,
i.e., ||so−g|| < d, where s contains the position as well as velocity. Without the velocity goal, the
low fidelity of the friction in MuJoCo leads the agent to continuously move the object around the
goal position without stopping. This phenomenon is likely due to the fact that the kinetic friction
is usually smaller than the static friction. By adding the velocity goal, the agent is penalized from
moving and thus able to successfully learn the task. F is the wrist torque measured from series
elasticity, d = 5cm, α = 2e−2, and β = 0.

Table 4: List of important model parameters in the Chip environment.

Stiffness (N/m) Control Range (m)

Forearm Actuator (x1) 250 0.0 – 0.2

Forearm Actuator (x2) 250 0.0 – 0.2

Stiffness (Nm/rad) Control Range (rad)

Wrist Actuator 50 -1.0 – 1.0

Coefficients Contact Dimension

Frictionfinger−object 1 6

Frictionobject−wall 1 3

Fragility (N ) Mass (kg)

Object 200 0.1
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