
Distributional Depth-Based Estimation

of Object Articulation Models

Ajinkya Jain∗

UT Austin
Stephen Giguere†

UT Austin
Rudolf Lioutikov†

Karlsruhe Institute of Technology
Scott Niekum

UT Austin

Abstract: We propose a method that efficiently learns distributions over articula-
tion model parameters directly from depth images without the need to know artic-
ulation model categories a priori. By contrast, existing methods that learn articu-
lation models from raw observations typically only predict point estimates of the
model parameters, which are insufficient to guarantee the safe manipulation of ar-
ticulated objects. Our core contributions include a novel representation for distri-
butions over rigid body transformations and articulation model parameters based
on screw theory, von Mises-Fisher distributions, and Stiefel manifolds. Combin-
ing these concepts allows for an efficient, mathematically sound representation
that implicitly satisfies the constraints that rigid body transformations and articu-
lations must adhere to. Leveraging this representation, we introduce a novel deep
learning based approach, DUST-net, that performs category-independent articula-
tion model estimation while also providing model uncertainties. We evaluate our
approach on several benchmarking datasets and real-world objects and compare
its performance with two current state-of-the-art methods. Our results demon-
strate that DUST-net can successfully learn distributions over articulation models
for novel objects across articulation model categories, which generate point esti-
mates with better accuracy than state-of-the-art methods and effectively capture
the uncertainty over predicted model parameters due to noisy inputs. [webpage]
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1 Introduction

Articulated objects, such as drawers, staplers, refrigerators, and dishwashers, are ubiquitous in hu-
man environments. These objects consist of multiple rigid bodies connected via mechanical joints
such as hinge joints or slider joints. Robots in human environments will need to interact with these
objects often while assisting humans in performing day-to-day tasks. To interact safely with such
objects, a robot must reason about their articulation properties while manipulating them. An ideal
method for learning such properties might estimate these parameters directly from raw observations,
such as RGB-D images while requiring limited or no a priori information about the task. The ability
to additionally provide a confidence over the estimated properties, would allow such a method to be
leveraged in the development of safe motion policies for articulated objects [1].

The majority of existing methods to learn articulation models for objects from visual data either
need fiducial markers to track motion between object parts [2–5] or require textured objects [6–10].
Recent deep-learning based methods address this by predicting articulation properties for objects
from raw observations, such as depth images [11–14] or PointCloud data [15, 16]. However, the
majority of these methods [11, 12, 15, 16] require knowledge of the articulation model category for
the object (e.g., whether it has a revolute or prismatic joint) which may not be available in many
realistic settings. Alleviating this requirement, Jain et al. [14] introduced ScrewNet, which uses a
unified representation based on screw transformations to represent different articulation types and
performs category-independent articulation model estimation directly from raw depth images. How-
ever, ScrewNet [14] and related methods [11–13, 15, 16] only predict point estimates for an object’s
articulation model parameters. Nonetheless, reasoning about the uncertainty in the estimated param-
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Figure 1: DUST-net uses a sequence of images I1:n to compute the parameters, Φ, of the conditional
distribution over the joint parameters S and configurations {θ, d}1:n−1. This distribution allows
for inference and reasoning, such as uncertainty and confidence, over both the parameters and the
configurations. Using a von Mises-Fisher distribution on a Stiefel manifold allows for an efficient
reparameterization that inherently obeys multiple constraints that define rigid body transformations.

eters can provide significant advantages for ensuring success in robot manipulation tasks, and allows
for further advancements such as robust planning [1], active learning using human queries [17], and
the learning of behavior policies that provide safety assurances [18]. Motivated by these advantages,
we propose a method for learning articulation models, which estimates the uncertainty over model
parameters using a novel distribution over the set of screw transformations based on the matrix von
Mises-Fisher distribution over Stiefel manifolds [19]. We introduce DUST-net, Deep Uncertainty
estimation on Screw Transforms-network, a novel deep learning-based method that, in addition to
providing point estimates of the object’s articulation model parameters, leverages raw depth images
to provide uncertainty estimates that can be used to guide the robot’s behavior without requiring to
knowledge of the object’s articulation model category a priori.

DUST-net garners numerous benefits over existing methods. First, DUST-net estimates articulation
properties for objects with uncertainty estimates, unlike most current methods [11–16]. These un-
certainty estimates, apart from helping robots to manipulate objects safely [1], could allow a robot
to take information-gathering actions when it is not confident and enhance its chances of success
in completing the task. Second, similar to ScrewNet [14], DUST-net can estimate model parame-
ters without the need to to know the articulation model category a priori, by leveraging the unified
representation for different articulation model types. Third, this unified representation helps DUST-
net to be more computationally and data-efficient than other state-of-the-art methods [11, 12], as
it uses a single network to estimate model parameters for all common articulation models, unlike
other methods that require a separate network for each articulation model category [11, 12, 15, 16].
Empirically, DUST-net outperforms other methods even when trained using only half the training
data in comparison. Fourth, the distributional learning setting yields more robustness to outliers and
noise. Fifth, DUST-net is able to reliably estimate distributions over articulation model parameters
for objects in the robot’s camera frame. By contrast, ScrewNet [14], the most closely related ap-
proach to ours, can only predict point estimates for articulation model parameters in the object’s
local frame.

We evaluate DUST-net through experiments on two benchmarking datasets: a simulated articulated
objects dataset [11] and the PartNet-Mobility dataset [20–22], as well as three real-world objects: a
microwave, a drawer, and a toaster oven. We compare DUST-net with two state-of-the-art methods,
namely ScrewNet [14] and an MDN-based method proposed by Abbatematteo et al. [11], as well
as two baseline methods. The experiments demonstrate that the samples drawn from the distribu-
tions learned by DUST-net result in significantly better estimates for articulation model parameters
in comparison to the point estimates predicted by other methods. Additionally, the experiments
show that DUST-net can successfully and accurately capture the uncertainty over articulation model
parameters resulting from noisy inputs.
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2 Related Work

Articulation model estimation from visual observations: A widely used approach for estimating
articulation models is based on the probabilistic framework proposed by Sturm et al. [2]. It uses
the time-series observations of 6D poses of different parts of an articulated object to learn the re-
lationship between them [2, 5, 6, 10]. More recently, Abbatematteo et al. [11] and Li et al. [12]
proposed methods to learn articulation properties for objects from raw depth images given articu-
lation model category. In a related body of work on object parts mobility estimation, Wang et al.
[15] and Yan et al. [16] proposed approaches to segment different parts of the object in an input
point cloud and estimate their mobility relationships, given a known articulation model category.
Alleviating the requirement of having a known articulation model category, Jain et al. [14] recently
proposed ScrewNet that performs category-independent articulation model estimation from depth
images. However, these methods only predict point estimates for the articulation model parameters,
while DUST-net predicts a distribution over their values.

Rigid Body Pose Estimation: Our contributions are related to existing work on estimating distribu-
tions describing the orientation of rigid bodies. Gilitschenski et al. [23], Arun Srivatsan et al. [24],
Srivatsan et al. [25] and Rosen et al. [26] propose strategies that can be used to estimate the rigid
body transformation of an object using a combination of Bingham and Gaussian distributions, and
the von Mises-Fisher distribution, respectively. The mathematical model used by our approach is
inspired by these works, but 1) extends them to also represent uncertainty over the configuration of
articulated object components about screw axes, and 2) integrates them into a deep learning model
that is capable of learning these configurations from raw depth images. In addition, while these
approaches use distributions over orientations and rigid body transformations to produce estimates,
DUST-net directly outputs a distribution that can be used to facilitate further applications such as
uncertainty-aware behavior planning.

Interactive perception (IP): Katz and Brock [3] introduced IP as a method to leverage a robot’s
interaction with objects to generate a rich perceptual signal for articulation model estimation for
planar objects, and extended it to learn 3D articulation models for objects [4]. Martı́n-Martı́n et al.
[8] used hierarchical recursive Bayesian filters to make estimation more robust and developed online
methods for articulation model estimation from RGB images [7–9]. A comprehensive survey on
IP methods in robotics was presented by Bohg et al. [27]. While IP presents a powerful tool for
estimating articulation properties for objects, a wide majority of existing IP methods require textured
objects, unlike DUST-net, which learns these properties using depth images.

Further approaches: Articulation motion models can be viewed as geometric constraints imposed
on multiple rigid bodies. Such constraints can be learned from human demonstrations by leveraging
different sensing modalities [13, 28–31]. Recently, Daniele et al. [30] proposed a multimodal learn-
ing framework that incorporates both vision and natural language information for articulation model
estimation. However, these approaches predict point estimates for the articulation model parameters,
unlike DUST-net, which predicts a distribution over the articulation model parameters.

3 Problem Formulation:

Given a sequence of n depth images I1:n of motion between two parts of an articulated object, we
estimate the parameters of a probability distribution p(φ|I1:n) representing uncertainty over the pa-
rameters φ of the articulation model M governing the motion between the two parts. Following
Jain et al. [14], we define the model parameters φ as the parameters of the screw axis of motion,
S = (l,m), where both l and m are elements of R3. This unified parameterization can be used in ar-
ticulation models with at most one degree-of-freedom (DoF), namely rigid, revolute, prismatic, and
helical [14]. Additionally, we estimate the parameters of a distribution p(q1:n−1|I1:n) representing
uncertainty over the configurations q1:n−1 identifying the rigid body transformations between the
two parts in the given sequence of images I1:n under model M with parameters φ. Configurations
qi, i ∈ {1...n − 1} correspond to a set of tuples, qi = (θi, di), defining a rotation around and a
displacement along the screw axis S3. We assume that the relative motion between the two object
parts is determined by a single articulation model.

3Please refer to the supplementary material for further details
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4 Approach

Given a sequence of depth images I1:n of motion between two parts of an articulated object, DUST-
net estimates parameters of the joint probability distribution p(φ, q1:n−1|I1:n) representing uncer-
tainty over the articulation model parameters φ governing the motion between the two parts and
the observed configurations q1:n−1. When deciding how to learn this distribution, two goals arise.
While some parameters, such as the translation of an object part along a screw axis, are defined
on Euclidean space, the set of valid screw axes exhibits constraints that prevent standard distribu-
tions defined on R

6 from being applied without complicating the learning process. For example, a
standard representation for distributions over screw axes can be the product of a Bingham distribu-
tion over the line’s orientation and a multivariate normal distribution over its position in space [32].
However, this representation produces non-unique estimation targets. A rotation of θ about the
screw axis with orientation l results in the same transformation as a rotation of −θ about the screw
axis with orientation −l. Similarly, a displacement d along l results in the same transformation as
a displacement −d along −l. This leads to ambiguities in the targets in the estimation problem and
can hinder the performance of the trained estimator. By selecting a representation that accounts for
these symmetries, these non-unique estimation targets are removed. Second, once a suitable param-
eterization is chosen, we seek a parametric form for the joint distribution which can be learned by a
deep network.

First, we consider the problem of parameterizing the set of screw axes. As noted earlier, we define
the model parameter φ as the parameters of the screw axis of motion S = (l,m). However, this
parameterization requires that l has unit norm, and that l and m are orthogonal. To eliminate these
constraints, we rewrite the moment vector of a screw axis as m = ‖m‖ m̂, where ‖m‖ and m̂ rep-
resent its magnitude and a unit vector along it respectively, and the Plücker coordinates for the screw
axis as S = (l, m̂, ‖m‖). The Plücker coordinates can then be seen as an unconstrained point in the
space S := V2,3 × R

+, where (l, m̂) ∈ V2,3 with V2,3 denoting the Stiefel manifold of 2-frames in

R
3 and ‖m‖ ∈ R

+ with R
+ denoting the set of positive real numbers. The Stiefel manifold Vk,m

is the space whose points are sets of k orthonormal vectors in R
m, called k-frames in R

m (k ≤ m)1

[19]. Consequently, because of the one-to-one mapping from elements of V2,3×R
+ to screw axes,

the non-unique estimation targets described above are eliminated. Based on this parametrization of
screw axes, we define the set of valid configuration parameters as follows. We restrict the range of
values for the rotation about the screw axis to be θ ∈ [0, 2π) and restrict the displacement along
the axis to be d ∈ R

+. Note that these constraints do not reduce the representational power of the
screw transform (l,m, θ, d) to denote a general rigid body transform, but merely ensure a unique
representation.

Having described the parameterization of the set of screw axes and configurations, we now consider
the task of defining a joint probability distribution over their values. We propose to represent the
distribution over predicted screw axis parameters, p(S | I1:n) with S ∈ S, as a product of a matrix
von Mises-Fisher distribution F(·|3,F) defined on the Stiefel manifold V2,3

1 and a truncated normal
distribution N+(·|µ, σ) with truncation interval [0,+∞) over R+. Formally,

p(S | I1:n) = p
(

l, m̂, ‖m‖
∣

∣ I1:n,F, µm, σ
2
m

)

= F ( l, m̂ | 3,F) N+
(

‖m‖ | µm, σ
2
m

)

, (1)

where F is a 3×2 matrix representing the parameters of the matrix von Mises-Fisher distribution over
V2,3, and µm and σm denote the mean and standard deviation of the truncated normal distribution.

Given the sequence of n images, we also wish to estimate the posterior over configurations q1:n−1 =
{θ1:n−1, d1:n−1} corresponding to the rotations about and displacements along the screw axis S. We
define the joint posterior representing the uncertainty over the screw axis S and the configurations
{θ1:n−1, d1:n−1} about it as a product of the aforementioned distribution and a set of distributions
defined over the configuration parameters,

p(S, θ1:n−1, d1:n−1 | I1:n,Φ) = p(S;F, µm, σ
2
m
) Ψ(θ1:n−1;ψ) Υ(d1:n−1; υ) (2)

where Φ = {F, µm, σ
2
m
, ψ, υ} is the set of parameters for the distribution and Ψ and Υ represent the

set of distributions having parameters ψ and υ over the configurations θ1:n−1 and d1:n−1, respec-
tively. For the sake of brevity, we present further details on modeling assumptions in the supple-
mentary material (see Appendix B). In this work, we consider Ψ and Υ to be products of truncated

normal distributions such that Ψ =
∏n−1

i=1 N+(θi|M
i
θ, σ

2
θ) and Υ =

∏n−1
i=1 N+(di|M

i
d, σ

2
d) with

1Please refer to the supplementary material for further details
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Mθ = {µ1
θ, ..., µ

n−1
θ }, Md = {µ1

d, ..., µ
n−1
d }, σθ, and σd denoting the set of means and the standard

deviations of the set of truncated normal distributions over the configurations θ1:n−1 and d1:n−1,
respectively.

Distribution parameter matrix F: The parameter matrix for the matrix von Mises-Fisher distribu-
tion over V3,2 is a 3× 2 matrix, F. This presents two possible parameterizations of the matrix: first,
to estimate each of the 6 elements of the 3 × 2 matrix F and second, to estimate the matrices Γ,Λ,
and Ω defining the SVD of F, given by F = ΓΛΩT . The second parameterization decouples the
two objectives of distribution mode alignment with the ground truth labels and uncertainty repre-
sentation; the mode of the distribution is given by M = ΓΩT , and the concentration matrix for the
distribution is given by K = ΩΛΩT . This decoupling allows the network to independently optimize
both objectives, whereas in the first parameterization, changes in the elements of F causes changes
in both components.

By definition, Λ is a 2 × 2 diagonal matrix with two independent parameters, and Ω ∈ O(2) is a
rotation matrix in two dimensions with one independent parameter, the rotation angle ω. The matrix

Γ ∈ Ṽ3,2 can be constructed from a rotation matrix R ∈ O(3) by keeping only the first two columns
of R. Hence, the matrix Γ can be defined by three independent Euler angles, (α, β, γ) denoting
rotation according to the ZY X convention in the rotating frame. Euler angles can suffer from the
problem of gimble lock [32], which we resolve by restricting the Euler angles to be in the ranges
α ∈ [0, 2π), β ∈ [0, π), and γ ∈ [0, 2π).

Normalization factor: One of the main challenges of using the matrix von Mises-Fisher distribution
is the calculation of its normalization factor 0F1(

m
2 ,

1
4Λ

2), which is a hypergeometric function of
matrix argument [19]. In this work, we approximate this hypergeometric function using a truncated
series in terms of zonal polynomials, which are multivariate symmetric homogeneous polynomials
and form a basis of the space of symmetric polynomials [19]. Through our preliminary experiments,
we found that this truncated series is a good approximation of 0F1 as it converges to a finite value,
if the singular values of the F , i.e. λ1 and λ2 are less than λmax = 50.

Architecture: DUST-net sequentially connects a ResNet-18 CNN [33] and a 2-layer MLP. ResNet-
18 extracts task-relevant features from the input images, which are used by the MLP to predict a
set of parameters Φ for the distribution p(S, θ1:n−1, d1:n−1 | I1:n,Φ). The network is trained end-
to-end, with ReLU activations for the hidden fully-connected layers. The first four output (out of
40) of the last linear layer of MLP, corresponding to the parameters (α, β, γ) and ω representing the
matrices Γ and Ω respectively, are fed through a ReLU-6 layer to ensure that the predictions map to
their respective ranges. Remaining output is fed through a Softplus layer for non-negative output.
Detailed network architecture is presented in the appendix (Fig. 7).

Training: The training data for the model consists of sequences of depth images of ob-
jects parts moving relative to each other and the corresponding screw transforms y =
(l, m̂, ‖m‖ , θ1:n−1, d1:n−1). The objects and depth images are rendered in Mujoco [34]. We train
DUST-net by maximizing the log-probability of the labels y under the distribution p(y | I1:n,Φ):
L(y,Φ) = − log p(y | Φ). We assume that the observed configurations in I1:n share the same vari-
ance. We use the precision parameters rather than the standard deviations, σm, σθ and σd to represent
the distribution during training for better numerical stability. Following the discussion on training
MDNs by Makansi et al. [35], we separate the training in three stages. In the first stage, we assume
the dispersion of the matrix von Mises-Fisher distribution to be fixed with Λ = diag(λ0, λ0), λ0 = 1
and learn parameters corresponding to Γ and Ω matrices. In the second stage, we fix the Λ matrix
and learn the rest of the parameters in the set Φ. Finally, we train to predict the complete set Φ.

5 Experiments

In this section, we evaluate DUST-net on its ability to learn articulation model parameters and un-
certainty estimates. We conducted three sets of experiments evaluating DUST-net’s performance
under different criteria: (1) how accurate point estimates of the articulation model parameters drawn
from DUST-net’s estimated distribution are in comparison to the existing methods, (2) how effec-
tively DUST-net captures the uncertainty over parameters arising from noisy input, and (3) how
effectively DUST-net transfers from simulation to a real-world setting. We evaluated DUST-net’s
performance on two simulated benchmarking datasets: the objects dataset provided by Abbatem-
atteo et al. [11], and the PartNet-Mobility dataset [20–22], as well as a set of three real-world
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A.4 Matrix von Mises-Fisher distribution

A random matrix X on Vk,m is said to have the matrix von Mises-Fisher distribu-
tion (or matrix Langevin distribution), if its density function is given by F(X|m,F) =

1

0F1(
m
2 ,

1
4F

TF)
exp(Tr(FTX)), where F is any m × k matrix and 0F1 is a hypergeometric

function with matrix argument [19] (see Figure 6b for an illustration). We can write the general

(unique) singular value decomposition (SVD) of F as F = ΓΛΩT , where Γ ∈ Ṽk,m, Ω ∈ O(k),

Λ = diag(λ1, ..., λk), λ1 ≥ ... ≥ λk ≥ 0, Ṽk,m denotes the set of matrices Γ ∈ Vk,m with the
property that all the elements of the first row of the matrix Γ are positive, and O(k) denoting the
orthogonal group in k dimensions. It can be shown that 0F1(

m
2 ,

1
4F

TF) = 0F1(
m
2 ,

1
4Λ

2). For
more details, we refer to [19].

B Joint distribution over model parameters

A screw transform, represented as a tuple 〈S, θ, d〉, corresponds to a point on the manifold
S × SO(2) × R

+, where S := V2,3 × R
+, V2,3 is the Stiefel manifold of 2−frames in R

3, SO(2)
denotes the circle group or the special orthogonal in two dimensions, and R

+ denotes the set of pos-
itive real numbers. The unified representation proposed by Jain et al. [14] considers the motion of an
articulated object as a sequence of screw transforms that share a common screw axis S. Hence, the
extended tuple 〈S, θ1:n−1, d1:n−1〉, representing the articulation model for an object, corresponds
to a point on the manifold S × [SO(2)]n−1 × [R+]n−1. We can define a joint distribution over
the articulation model parameters by defining the probability density function for the distribution
as the exponentiated distance of a point from the modal point of the distribution, and subsequently
restricting the density function to the manifold [19]. However, calculating the normalization factor
for this distribution is challenging. For example, a direct extension of the von Mises-Fisher distri-
bution to define a distribution on V2,3 × R yields a density function with a normalizing factor that
requires integrating a generalized hypergeometric function, which, to the best of our knowledge,
is not computationally tractable to compute [38, 39]. Therefore, to define a distribution over the
articulation model parameters that is tractable to learn, we make certain assumptions and propose
an approximate joint distribution over the model parameters in this work.

Given a sequence of n depth images I1:n of object part motion, the joint probability distribution
over the articulation model parameters p(S, θ1:n−1, d1:n−1 | I1:n) can be written as a product of a
distribution over the screw axis parameters and a conditional distribution over the joint configuration
parameters:

p(S, θ1:n−1, d1:n−1 | I1:n) = p(S | I1:n) p(θ1:n−1, d1:n−1 | S, I1:n) (3)

We first approximate the distribution over the screw axis parameters S as a product of two marginal
distributions: one over the orientation vector tuple 〈l, m̂〉 ∈ V2,3 and another over the moment
vector magnitude ‖m‖ ∈ R

+,

p(S | I1:n) ≈ p(〈l, m̂〉 | I1:n) p(‖m‖ | I1:n) (4)

This approximation is motivated by the fact that calculating statistics over manifolds can be com-
putationally intractable in a general setting [19, 37, 40]. This approximation enables us to define
the probability density function over the screw axis parameters using standard distributions over
manifolds whose properties are well studied in the literature, such as the matrix von Mises-Fisher
distributions over Stiefel manifolds [19, 37].

Calculating the conditional distribution over joint configurations, p(θ1:n−1, d1:n−1 | S, I1:n), ex-
actly would require us to evaluate hypergeometric functions over the complete manifold in which
the screw transforms lie. Hypergeometric functions in the matrix argument result in an infinite se-
ries in terms of zonal polynomials, which becomes combinatorially expensive to calculate with the
increasing number of terms [40]. To maintain the numerical tractability of the solution, we ap-
proximate the probability density function of the conditional distribution as a Dirac delta function
centered at the expected value of the distribution over the screw axis parameters S̄:

p(θ1:n−1, d1:n−1 | S, I1:n) ≈ δS̄[p(θ1:n−1, d1:n−1 | S, I1:n)]

= p(θ1:n−1, d1:n−1 | S̄, I1:n)
(5)
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where S̄ =
∫

S
S p(S | I1:n).

As we noted earlier, the unified parameterization of the articulation model parameters corresponds to
a sequence of rigid body transforms (or screw transforms). Each of these rigid body transforms can
be treated as an independent frame transformation between the object parts. Leveraging this fact,
we approximate the conditional distribution over the joint configurations as a product of marginals
over screw transforms at each time step:

p(θ1:n−1, d1:n−1 | S̄, I1:n) =
n−1
∏

i=1

p(θi, di | S̄, I1:n) (6)

In this work, we approximate the conditional distribution over the joint configurations,
p(θi, di | S̄, I1:n), as a product of marginals over the rotation and displacement parameters to further
simplify the parameterization of the joint distribution over articulation model parameters:

p(θi, di | S̄, I1:n) ≈ p(θi | S̄, I1:n) p(di | S̄, I1:n) (7)

While this approximate distribution cannot capture the correlations between joint configurations, it
was found to be sufficiently expressive to enable DUST-Net to outperform the state-of-the-methods
for articulation model estimation with a significant margin (see Section 5). In the future, DUST-
Net may be extended to use multivariate distributions instead, which can capture the correlations
between joint configurations as well.

Combining these together, in this work, we propose to approximate the joint distribution over artic-
ulation model parameters as:

p(S, θ1:n−1, d1:n−1 | I1:n) ≈ p(S | I1:n)
n−1
∏

i=1

p(θi | S̄, I1:n)
n−1
∏

i=1

p(di | S̄, I1:n)

≈ p(〈l, m̂〉|I1:n) p(‖m‖ |I1:n)
n−1
∏

i=1

p(θi | S̄, I1:n)
n−1
∏

i=1

p(di | S̄, I1:n)

(8)

where the exact parameterization of each of these probability distribution functions is discussed in
section 4 of the main text.

C Hypergeometric function pFq

A general hypergeometric function pFq in the matrix argument can be written as an infinite series in
terms of zonal polynomials, which are multivariate symmetric homogeneous polynomials and form
a basis of the space of symmetric polynomials [19]. Given an m ×m symmetric, positive-definite
matrix Y, the hypergeometric function pFq of matrix argument Y is defined as

pFq

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

Y

)

:=
∞
∑

n=0

∑

ν∈Pn

(a1)ν · · · (ap)ν
(b1)ν · · · (bq)ν

·
Cν(Y )

n!
, (9)

where

• Pn is the set of all ordered integer partitions of n

• (a)ν is the generalized Pochhammer symbol, defined as

(a)ν = (a)(ν1,...,νk) :=

k
∏

i=1

(

a−
i− 1

2

)

νi

;

, where, (a)νi
= a(a+ 1)...(a+ νi − 1), (a)0 = 1,

• and Cν(Y ) denotes the zonal polynomial of Y , indexed by a partition ν, which is a sym-
metric homogeneous polynomial of degree n in the eigenvalues y1, . . . , ym of Y , satisfying

∑

ν∈Pn

Cν(Y ) = (trY )n = (y1 + · · ·+ ym)n. (10)
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MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ ‖m‖ D(SGT , Spred) θi θl di dl λl λm̂ β‖m‖ βθ βd

vm-SoftOrtho 0.139 0.154 0.068 0.956 0.012 0.117 0.003 0.006 56.2 55.8 9.8 47.9 89.5
Direct F 0.240 0.261 0.062 0.104 0.010 0.208 0.002 0.006 8.4 7.9 9.8 48.5 75.3

ScrewNet 0.846 0.929 0.486 0.475 0.115 0.217 0.111 0.118 - - - - -
Abbatematteo et al. [11] 0.194 - - 0.111 0.223 - 0.045 - - - - - -

DUST-net 0.151 0.163 0.052 0.059 0.012 0.122 0.002 0.006 53.8 54.0 18.3 128.1 219.1

ScrewNet (Local) 0.178 0.443 0.068 0.033 0.057 0.118 0.015 0.015 - - - - -

Table 1: Mean error values on the MAAD and Screw Loss(SL) metrics for the simulated articulated
objects dataset [11]. Point estimates for DUST-net correspond to the modes of the distributions
predicted by DUST-net. Angular values {l, m̂, θi, θl} and distances {‖m‖ , D, di, dl} are reported
in radian and meter, respectively. Numerical values are reported for the uncertainty parameters
{λi, βj}. Symbol − represents value not reported.

MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ ‖m‖ D(SGT , Spred) θi θl di dl λl λm̂ β‖m‖ βθ βd

vm-SoftOrtho 0.284 0.243 0.221 1.137 0.030 0.086 0.012 0.027 26.9 31.1 5.7 54.5 60.9
Direct F 0.214 0.212 0.257 0.219 0.030 0.064 0.012 0.024 8.1 7.3 4.9 59.5 70.9

ScrewNet 0.846 0.929 0.486 0.475 0.115 0.217 0.111 0.118 - - - - -
Abbatematteo et al. [11] 0.989 - - 0.095 0.141 - 0.085 - - - - - -

DUST-net 0.220 0.219 0.178 0.189 0.029 0.063 0.012 0.029 49.3 48.3 7.7 72.0 131.9

ScrewNet (Local) 0.260 1.23 0.314 0.151 0.060 0.106 0.040 0.009 - - - - -

Table 2: Mean error values on the MAAD and Screw Loss(SL) metrics for the PartNet-Mobility
dataset [20–22]. Point estimates for DUST-net correspond to the modes of the distributions predicted
by DUST-net. Angular values {l, m̂, θi, θl} and distances {‖m‖ , D, di, dl} are reported in radian
and meter, respectively. Numerical values are reported for the uncertainty parameters {λi, βj}.
Symbol − represents value not reported.

F Further Results

F.1 Accuracy of Point Estimates

Detailed numerical results for the synthetic articulated objects dataset and the PartNet-Mobility
dataset are shown in Tables 1 and 2, respectively. Results demonstrate that under both metrics,
the estimates obtained from DUST-net are considerably more accurate than those obtained from
the state-of-the-art methods. DUST-net also correctly estimates very high distribution concentration
parameters for the true, noise-free labels. The first baseline, vm-SoftOrtho, performs comparably
with DUST-net on both datasets when only MAAD estimates are considered. However, Tables 1 and
2 show that it produces a very high distance (≈ 1m) between the predicted and ground-truth screw
axes. This error arises due to the soft-orthogonality constraint used by vm-SoftOrtho, as DUST-net
and the second baseline method, both of which handle the constraint implicitly, do not report high
errors on that metric. Meanwhile, the second baseline, Direct F , performs comparably with DUST-
net on both metrics for both datasets, but fails to capture the uncertainty over parameters with the
required accuracy.

F.2 Uncertainty Estimation

The detailed numerical results from the second set of experiments are shown in Table 3. In the noise-
less case, the singular values of the matrix von Mises-Fisher distribution increases until they reach
their maximum allowed value at λmax = 50, while the precision parameters βj , j ∈ {‖m‖ , θ, d}
for truncated normal distributions over remaining parameters become arbitrarily large.

λ1 λ2 β‖m‖ βθ βd λ1 λ2 β‖m‖ βθ βd λ1 λ2 β‖m‖ βθ βd λ1 λ2 β‖m‖ βθ βd
Label Noise No noise 15 15 50 50 50 12 12 50 50 50 10 10 50 50 50

SynArt 53.8 53.9 18.3 128.0 219.0 8.2 8.2 14.6 53.7 51.9 6.8 6.8 10.5 41.6 49.6 3.8 3.8 10.3 41.9 47.4

PartNet 49.3 48.3 7.7 72.0 132.0 6.4 6.3 9.4 29.5 29.2 4.9 4.7 8.9 34.0 37.9 3.2 3.1 9.4 31.2 32.1

Table 3: Testing variation of DUST-net’s confidence over predicted articulation model parameters
with input noise. DUST-net’s confidence over its predicted parameters decreases monotonically
as input noise is increased showing that DUST-net’s predicted distribution captures the network’s
confidence over the predicted articulation parameters effectively.
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MAAD / SL MAAD Screw Loss MAAD SL MAAD SL Precision
l m̂ ‖m‖ D(SGT , Spred) θi θl di dl λl λm̂ β‖m‖ βθ βd

Toaster ScrewNet 2.42 2.48 0.74 0.76 0.45 1.26 0.01 0.00 - - - - -
Oven DUST-net 0.17 0.31 0.52 0.59 0.44 0.64 0.01 0.01 2.5 0.1 11.6 10.8 75.5

Microwave ScrewNet 0.79 0.81 0.13 0.52 1.19 0.54 0.01 0.01 - - - - -
DUST-net 0.41 0.42 0.22 0.43 0.46 0.40 0.00 0.00 0.7 0.6 19.7 14.3 39.9

Drawer ScrewNet 0.69 0.24 0.49 0.24 0.72 0.97 0.08 0.08 - - - - -
DUST-net 0.42 0.50 0.32 0.74 0.75 0.56 0.07 0.08 0.2 0.1 12.3 31.6 55.2

Table 4: Mean error values on the MAAD and Screw Loss metric for estimation of articulation
model parameters for real-world objects when network was trained solely using simulated data.
ScrewNet predictions are reported in the camera frame. Angular values {l, m̂, θi, θl} and distances
{‖m‖ , D, di, dl} are reported in radian and meter, respectively. Numerical values are reported for
the uncertainty parameters {λi, βj}. Symbol − represents value not reported.

F.3 Real objects

The numerical results from the sim-to-real transfer experiments are shown in Table 4. Results re-
port that while DUST-net outperforms ScrewNet in estimating the model parameters for real-world
objects, the estimated parameters are not yet accurate enough to be used directly for manipulating
these objects. However, a noteworthy insight from the results is that DUST-net also reported very
low confidence over the predicted parameters. This clearly delineates why it is beneficial to estimate
a distribution over the articulation model parameters instead of only point estimates, as discussed
earlier in the section 5.3.
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