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Abstract

Learning with an objective to minimize the mismatch with a reference distribution
has been shown to be useful for generative modeling and imitation learning. In
this paper, we investigate whether one such objective, the Wasserstein-1 distance
between a policy’s state visitation distribution and a target distribution, can be
utilized effectively for reinforcement learning (RL) tasks. Specifically, this paper
focuses on goal-conditioned reinforcement learning where the idealized (unachiev-
able) target distribution has full measure at the goal. This paper introduces a
quasimetric specific to Markov Decision Processes (MDPs) and uses this quasimet-
ric to estimate the above Wasserstein-1 distance. It further shows that the policy
that minimizes this Wasserstein-1 distance is the policy that reaches the goal in
as few steps as possible. Our approach, termed Adversarial Intrinsic Motivation
(AIM), estimates this Wasserstein-1 distance through its dual objective and uses it
to compute a supplemental reward function. Our experiments show that this reward
function changes smoothly with respect to transitions in the MDP and directs the
agent’s exploration to find the goal efficiently. Additionally, we combine AIM with
Hindsight Experience Replay (HER) and show that the resulting algorithm acceler-
ates learning significantly on several simulated robotics tasks when compared to
other rewards that encourage exploration or accelerate learning.

1 Introduction

Reinforcement Learning (RL) [70] deals with the problem of learning a policy to accomplish a given
task in an optimal manner. This task is typically communicated to the agent by means of a reward
function. If the reward function is sparse [4] (e.g., most transitions yield a reward of 0), much random
exploration might be needed before the agent experiences any signal relevant to learning [11, 2].

Some of the different ways to speed up reinforcement learning by modifying or augmenting the reward
function are shaped rewards [51], redistributed rewards [2], intrinsic motivations [8, 65, 67, 68, 53, 56],
and learned rewards [77, 53]. Unfortunately, the optimal policy under such modified rewards might
sometimes be different than the optimal policy under the task reward [51, 18]. The problem of
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learning a reward signal that speeds up learning by communicating what to do but does not interfere
by specifying how to do it is thus a useful and complex one [78].

This work considers whether a task-dependent reward function learned based on the distribution
mismatch between the agent’s state visitation distribution and a target task (expressed as a distribution)
can guide the agent towards accomplishing this task. Adversarial methods to minimize distribution
mismatch have been used with great success in generative modeling [28] and imitation learning
[38, 24, 75,72, 27]. In both these scenarios, the task is generally to minimize the mismatch with a
target distribution induced by the data or expert demonstrations. Instead, we consider the task of
goal-conditioned RL, where the ideal target distribution assigns full measure to a goal state. While
the agent can never match this idealized target distribution perfectly unless starting at the goal,
intuitively, minimizing the mismatch with this distribution should lead to trajectories that maximize
the proportion of the time spent at the goal, thereby prioritizing transitions essential to doing so.

The theory of optimal transport [74] gives us a way to measure the distance between two distributions
(called the Wasserstein distance) even if they have disjoint support. Previous work [3, 31] has shown
how a neural network approximating a potential function may be used to estimate the Wasserstein- 1
distance using its dual formulation, but assumes that the metric space this distance is calculated on is
Euclidean. A Euclidean metric might not be the appropriate metric to use in more general RL tasks
however, such as navigating in a maze or environments where the state features change sharply with
transitions in the environment.

This paper introduces a quasimetric tailored to Markov Decision Processes (MDPs), the time-step
metric, to measure the Wasserstein distance between the agent’s state visitation distribution and the
idealized target distribution. While this time-step metric could be an informative reward on its own,
estimating it is a problem as hard as policy evaluation [30]. Instead, we show that the dual objective,
which maximizes difference in potentials while utilizing the structure of this quasimetric for the
necessary regularization, can be optimized through sampled transitions.

We use this dual objective to estimate the Wasserstein-1 distance and propose a reward function
based on this estimated distance. An agent that maximizes returns under this reward minimizes
this Wasserstein-1 distance. The competing objectives of maximizing the difference in potentials
for estimating the Wasserstein distance and minimizing it through reinforcement learning on the
subsequent reward function leads to our algorithm, Adversarial Intrinsic Motivation (AIM).

Our analysis shows that if the above Wasserstein-1 distance is computed using the time-step metric,
then minimizing it leads to a policy that reaches the goal in the minimum expected number of steps. It
also shows that if the environment dynamics are deterministic, then this policy is the optimal policy.

In practice, minimizing the Wasserstein distance works well even when the environment dynamics
are stochastic. Our experiments show that AIM learns a reward function that changes smoothly with
transitions in the environment. We further conduct experiments on the family of goal-conditioned
reinforcement learning problems [1, 61] and show that AIM when used along with hindsight experience
replay (HER) greatly accelerates learning of an effective goal-conditioned policy compared to learning
with HER and the sparse task reward. Further, our experiments show that this acceleration is similar
to the acceleration observed by using the actual distance to the goal as a dense reward.

2 Related Work

We highlight the related work based on the various aspects of learning that this work touches, namely
intrinsic motivation, goal-conditioned reinforcement learning, and adversarial imitation learning.

2.1 Intrinsic Motivation

Intrinsic motivations [8, 56, 55] are rewards presented by an agent to itself in addition to the external
task-specific reward. Researchers have pointed out that such intrinsic motivations are a characteristic
of naturally intelligent and curious agents [29, 5, 6]. Intrinsic motivation has been proposed as a way
to encourage RL agents to learn skills [10, 9, 64, 60] that might be useful across a variety of tasks,
or as a way to encourage exploration [11, 63, 7, 23]. The optimal reward framework [65, 68] and
shaped rewards [51] (if generated by the agent itself) also consider intrinsic motivation as a way to
assist an RL agent in learning the optimal policy for a given task. Such an intrinsically motivated



reward signal has previously been learned through various methods such as evolutionary techniques
[53, 62], meta-gradient approaches [67, 77, 78], and others. The Wasserstein distance has been used
to present a valid reward for imitation learning [75, 19] as well as program synthesis [26].

2.2 Goal-Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning [42] can be considered a form of multi-task reinforcement
learning [17] where the agent is given the goal state it needs to reach at the beginning of every
episode, and the reward function is sparse with a non-zero reward only on reaching the goal state.
UVFA [61], HER [1], and others [76, 20] consider this problem of reaching certain states in the
environment. Relevant to our work, Venkattaramanujam et al. [73] learns a distance between states
using a random walk that is then used to shape rewards and speed up learning, but requires goals to
be visited before the distance estimate is useful. DisCo RL [50] extends the idea of goal-conditioned
RL to distribution-conditioned RL.

Contemporaneously, Eysenbach et al. [21, 22] has proposed a method which considers goals and
examples of success and tries to predict and maximize the likelihood of seeing those examples under
the current policy and trajectory. For successful training, this approach needs the agent to actually
experience the goals or successes. Their solution minimizes the Hellinger distance to the goal, a form
of f-divergence. AIM instead uses the Wasserstein distance which is theoretically more informative
when considering distributions that are disjoint, and does not require the assumption that the agent has
already reached the goal through random exploration. Our experiments in fact verify the hypothesis
that AIM induces a form of directed exploration in order to reach the goal.

2.3 Adversarial Imitation Learning and Minimizing Distribution Mismatch

Adversarial imitation learning [38, 24, 75, 72, 27] has been shown to be an effective method to
learn agent policies that minimize distribution mismatch between an agent’s state-action visitation
distribution and the state-action visitation distribution induced by an expert’s trajectories. In most
cases this distribution that the expert induces is achievable by the agent and hence these techniques
aim to match the expert distribution exactly. In the context of goal-conditioned reinforcement learning,
GoalGAIL [20] uses adversarial imitation learning with a few expert demonstrations to accelerate the
learning of a goal-conditioned policy. In this work, we focus on unrealizable target distributions that
cannot be completely matched by the agent, and indeed, are not induced by any trajectory distribution.

FAIRL [27] is an adversarial imitation learning technique which minimizes the Forward KL diver-
gence and has been shown experimentally to cover some hand-specified state distributions, given
a smoothness regularization as used by WGAN [31]. f-IRL [52] learns a reward function where
the optimal policy matches the expert distribution under the more general family of f-divergences.
Further, techniques beyond imitation learning [45, 36] have looked at matching a uniform distribution
over states to guarantee efficient exploration.

3 Background

In this section we first set up the goal-conditioned reinforcement learning problem, and then give a
brief overview of optimal transport.

3.1 Goal-Conditioned Reinforcement Learning

Consider a goal-conditioned MDP as the tuple (8, A, S, P, po,,~) with discrete state space 8,
discrete action space A, a subset of states which is the goal set § C §, and transition dynamics
P:8xAxGi— A(8) (A(+) is a distribution over a set) which might vary based on the goal (see
below). po : A(8) is the starting state distribution, and o : A(G) is the distribution a goal is drawn
from. v € [0,1) is the discount factor. We use discrete states and actions for ease of exposition, but
our idea extends to continuous states and actions, as seen in the experiments.

At the beginning of an episode, the starting state is drawn from py and the goal for that episode
is drawn from o. The reward function r : 8§ x A X 8§ X § 1— R is deterministic, and
(8¢, at, St41/5g) i =1[s¢41 = s4|. That is, there is a positive reward when an agent reaches the
goal (s;11 = s4), and 0 everywhere else. Since the goal is given to the agent at the beginning of



the episode, in goal-conditioned RL the agent knows what this task reward function is (unlike the
more general RL problem). The transition dynamics are goal-conditioned as well, with an automatic
transition to an absorbing state 5 on reaching the goal s, and then staying in that state with no rewards
thereafter (P(5|sq,a,54) = 1V a € A and P(5|5,a,s4) = 1V a € A). In short, the episode
terminates on reaching the goal state.

The agent takes actions in this environment based on a policy # € II : 8§ x § 1— A(A). The
return H, for an episode with goal s, is the discounted cumulative reward over that episode H, =
Yoo (s, ar, si41]8g), Where so ~ po, ai ~ 7(:|st,8g), and sg41 ~ P(-|s¢, ar, s4). The
agent aims to find the policy 7* = argmax, cr; EgegEq )~ o Ex[Hg| that maximizes the expected
returns in this goal-conditioned MDP. For a policy , the agent’s goal-conditioned state distribution
pr(8lsg) = Egompo[(1 =) Yoioo v P (st = s|m, s¢)]. Overloading the terminology a bit, we also
define the goal-conditioned target distribution py(s|s,) = d(s,), a Dirac measure at the goal state s,,.

While learning using traditional RL paradigms is possible in goal-conditioned RL, there has also
been previous work (Section 2.2) on leveraging the structure of the problem across goals. Hindsight
Experience Replay (HER) [1] attempts to speed up learning in this sparse reward setting by taking
episodes of agent interactions, where they might not have reached the goal specified for that episode,
and relabeling the transitions with the goals that were achieved during the episode. Off-policy learning
algorithms are then used to learn from this relabeled experience.

3.2 Optimal Transport and Wasserstein-1 Distance

The theory of optimal transport [74, 14] considers the question of how much work must be done to
transport one distribution to another optimally, where this notion of work is defined by the use of a
ground metric d. More concretely, consider a metric space (M, d) where M is a set and d is a metric
on M (Definitions in Appendix A). For two distributions y and v with finite moments on the set M,
the Wasserstein-p distance is denoted by:

Wy, v):i= inf Eiyyyec[d(X,Y)?]VP 1
(1) cet B cld( )] (D

where Z is the space of all possible couplings, i.e. joint distributions ¢ € A(M x M) whose marginals
are u and v respectively. Finding this optimal coupling tells us what is the least amount of work, as
measured by d, that needs to be done to convert g to v. This Wasserstein-p distance can then be used
as a cost function (negative reward) by an RL agent to match a given target distribution [75, 19, 26].

Finding the ideal coupling above is generally considered in-
tractable. However, if what we need is an accurate estimate of the
Wasserstein distance and not the optimal transport plan we can
turn our attention to the dual form of the Wasserstein-1 distance.
The Kantorovich-Rubinstein duality [74, 57] for the Wasserstein- 1

O distance (which we refer to simply as the Wasserstein distance
hereafter) on a ground metric d gives us:
s Wilpv) = sup Eyey [f@)] —Eamy [f@)] @)
Lip(f)<1

o =B N W & U o N ® ©

where the supremum is over all 1-Lipschitz functions f : M 1—
R in the metric space. Importantly, Jevti¢ [40] has recently shown
that this dual formulation extends to quasimetric spaces as well.
More details, such as the definition of the Lipschitz constant of a
function and special cases used in WGAN [3, 31, 27] are elaborated in Appendix B. One last note of
importance is that the Lipschitz constant of the potential function f is computed based on the ground
metric d.

Figure 1: Grid world example

4 Time-Step Metric

The choice of the ground metric d is important when computing the Wasserstein distance between two
distributions. That is, if we want the Wasserstein distance to give an estimate of the work needed to
transport the agent’s state visitation distribution to the goal state, the ground metric should incorporate
a notion of this work.



Consider the grid world shown in Figure 1, where a wall (bold line) marks an impassable barrier
in part of the state space. If the states are specified by their Cartesian coordinates on the grid, the
Manhattan distance between the states specified by the blue and red circles is not representative of the
optimal cost to go from one to the other. This mismatch would lead to an underestimation of the work
involved if the two distributions compared were concentrated at those two circles. Similarly, there
will be errors in estimating the Wasserstein distance if the grid world is toroidal (where an agent is
transported to the opposite side of the grid if it walks off one side) or if the transitions are asymmetric
(windy grid world [70]).

To estimate the work needed to transport measure in an MDP when executing a policy 7, we consider
a quasimetric — a metric that does not need to be symmetric — dependent on the number of transitions
experienced before reaching the goal when executing that policy.

Definition 1. The time-step metric d7. in an MDP with state space 8, action space A, transition
Sfunction P, and agent policy T is a quasimetric where the distance from state s € § to state s, € 8 is
based on the expected number of transitions under policy .

dr(s,sg) : =E [T(sg|T, )]

where T(sq4|m, s) is the random variable for the first time-step that state s, is encountered by the
agent after starting in state s and following policy .

This quasimetric has the property that the per step cost is uniformly 1 for all transitions except ones
from the goal to the absorbing state (and the absorbing state to itself), which are 0. Thus, it can be
written recursively as:

(o) = {

0 if s =54 3)
L+ Eann(]s,s,) Es'mP(]s,a,5,) [AT(8",54)]  otherwise
Recall that in order to estimate the Wasserstein distance using the dual (Equation 2) in a metric space
where the ground metric d is this time-step metric, the potential function f : § i— R needs to be
1-Lipschitz with respect to d7.. In Appendix C we prove that L-Lipschitz continuity can be ensured
by enforcing that the difference in values of f on expected transitions from every state are bounded
by L, implying

Lip(f) < sup { E E  [If(s) - f(S’)]} : C
se8 | a~m(-|s,sq) s'~P(:|s,a,sq)
Note that finding a proper way to enforce the Lipschitz constraint in adversarial methods remains
an open problem [48]. However, for the time-step metric considered here, equation 4 is one elegant
way of doing so. By ensuring that the Kantorovich potentials do not drift too far from each other
on expected transitions under agent policy 7 in the MDP, the conditions necessary for the potential
function to estimate the Wasserstein distance can be maintained [74, 3]. Finally, the minimum
distance d% from state s to a given goal state s, (corresponding to policy 7*) is defined by the
Bellman optimality condition (Equation 16 in Appendix D).

Consider how the time-step distance to the goal and the value function for goal-conditioned RL relate
to each other. When the reward is 0 everywhere except for transitions to the goal state, the value
becomes V7™ (s|sy) = E [y7(5sI™ )], d%. (s, s,) and V (so|s) are related as follows.

Proposition 1. A lower bound on the value of any state under a policy m can be expressed in terms
of the time-step distance from that state to the goal: V (sq|sq) > 41 (s0:50),

T

The proofs for all theoretical results are in Appendix D. The Jensen gap AJ, ..(s) := V™ (s|sy) —

~97(5:59) describes the sharpness of the lower bound in the proposition above and it is zero if and
only if Var(T'(sq4|m, s)) = 0 [46]. From this line of reasoning, we deduce the following proposition:

Proposition 2. [fthe transition dynamics are deterministic, the policy that maximizes expected return
is the policy that minimizes the time-step metric (7* = w*).

S Wasserstein-1 Distance for Goal-Conditioned Reinforcement Learning

In this section we consider the problem of goal-conditioned reinforcement learning. In Section 5.1 we
analyze the Wasserstein distance computed under the time-step metric d7.. Section 5.2 proposes an



algorithm, Adversarial Intrinsic Motivation (AIM), to learn the potential function for the Kantorovich-
Rubinstein duality used to estimate the Wasserstein distance, and giving an intrinsic reward function
used to update the agent policy in tandem.

5.1 Wasserstein-1 Distance under the Time-Step Metric

From Sections 3.2 and 4 the Wasserstein distance under the time-step metric d7. of an agent policy 7
with visitation measure p, to a particular goal s, and its distribution p, can be expressed as:

Wf(p‘fmpg) = Zsespw(sbg)d?(sasg) (5)
where W7 refers to the Wasserstein distance with the ground metric d7..

The following proposition shows that the Wasserstein distance decreases as d7.(s, s,) decreases,
while also revealing a surprising connection with the Jensen gap.

Proposition 3. For a given policy 7, the Wasserstein distance of the state visitation measure of that
policy from the goal state distribution pg under the ground metric d7, can be written as

Wi (prrpg) = E h(d%(so,sg>>+%< Tomsen(50) — 1) ©6)

S0~ pPo 1

. . . . -
where I is an increasing function of df.

The first component in the above analytical expression shows that the Wasserstein distance depends on
the expected number of steps, decreasing if the expected distance decreases. The second component
shows the risk-averse nature of the Wasserstein distance. Concretely, the bounds for the Jensen
inequality given by Liao and Berg [46] imply that there are non-negative constants C; = C1(d7., )
and Cy = C5(d7F., ) depending only on the expected distance and discount factor such that

CLVar(T (s, [, 5)) < Afpen(s) < CoVar(T(sq|, s)).

From the above, we can deduce that a policy with lower variance will have lower Wasserstein distance
when compared to a policy with same expected distance from the start but higher variance. The
relation between the optimal policy in goal-conditioned RL and the Wasserstein distance can be made
concrete if we consider deterministic dynamics.

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein
distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.

5.2 Adversarial Intrinsic Motivation to minimize Wasserstein-1 Distance

The above section makes it clear that minimizing the Wasserstein distance to the goal will lead to a
policy that reaches the goal in as few steps as possible in expectation. If the dynamics of the MDP
are deterministic, this policy will also be optimal. Note that the dual form (Equation 2) can be used
to estimate the distance, even if the ground metric d7. is not known. The smoothness requirement on
the potential function f can be ensured with the constraint in Equation 4 on all states and subsequent
transitions expected under the agent policy.

Now consider the full problem. The reinforcement learning algorithm aims to learn a goal-conditioned
policy with parameters # € © whose state visitation distribution py minimizes the Wasserstein
distance to a goal-conditioned target distribution p, for a given goal s, ~ 0. AIM leverages the
presence of the set of goals that the agent should be capable of reaching with a goal-conditioned
potential function f4 : § x G 1— R with parameters ¢ € ®. These objectives of the potential
function and the agent can be expressed together using the following adversarial objective:

gréi({)l Iélél(%( SgI[EG {fqb(sga Sg) — lepg [fo(s, SQ)]:| 7

where the potential function f, is 1-Lipschitz over the state space. Combining the objectives in
Equations 7 and 4, the loss for the potential function f then becomes:

Lyi= E_|~falsns) + E [folowsl] +

SgN(T

A E [(max(|f4(s,59) = fo(s, 54)|-1,0))?] (®)

s,a,8,84)~D
g



Where the distribution D should ideally contain all states in S, expected goals in G, and the transitions
according to the agent policy my and transition function P. Such a distribution is difficult to
obtain directly. AIM approximates it with a small replay buffer of transitions from recent episodes
experienced by the agent, and relabels these episodes with achieved goals (similar to HER [1]). Such
an approximation does not respect the discounted measure of states later on in an episode, but is
consistent with how other approaches in deep reinforcement learning tend to approximate the state
visitation distribution, especially for policy gradient approaches [54]. While it does not include all
states and all goals, we see empirically that the above approximation works well.

Now we turn to the reward function that should be presented to the agent such that maximizing the
return will minimize the Wasserstein distance. The Wasserstein discriminator is a potential function
[51] (its value depends on the state). It can thus be used to create a shaped reward 7(s, a, s, s4) =
r(s,a,s'[sq) +7fs(s',59) — fo(s, sq) without risk of changing the optimal policy. Alternatively, we
can explicitly minimize samples of the Wasserstein distance: 7(s, a, s’, sq) = fs(5', 59) — f3(Sg, Sg)-
Finally, instead of the second term f,(s,, 54), we can just use a constant bias term. In practice, all
these choices work well, and the experiments use the latter (with b = max,es f4(s, s4)) to reduce
variance in 7.

’/‘A(s’a“g/’sg) = fd’(sla S!]) —b (9)

The basic procedure to learn and use adversarial intrinsic motivation (AIM) is laid out in Algorithm
1, and also includes how to use this algorithm in conjunction with HER. If not using HER, Line 23
where hindsight goals are added to the replay buffer can be skipped.

6 Experiments

Our experiments evaluate the extent to which the reward learned through AIM is useful as a proxy for
the environment reward signal, or in tandem with the environment reward signal. In particular, we
ask the following questions:

* Does AIM speed up learning of a policy to get to a single goal compared to learning with a sparse
reward?

* Does the learned reward function qualitatively guide the agent to the goal?

* Does AIM work well with stochastic transition dynamics or sharp changes in the state features?

* Does AIM generalize to a large set of goals and continuous state and action spaces?

Our experiments suggest that the answer to all 4 questions is “yes”, with the first three questions
tested in the grid world presented in Figure 1 where the goal is within a room, and the agent has to go
around the room from its start state to reach the goal. Goal-conditioned tasks in the established Fetch
robot domain show that AIM also accelerates learning across multiple goals in continuous state and
action spaces.

This section compares an agent learning with a reward learned through AIM with other intrinsic
motivation signals that induce general exploration or shaped rewards that try to guide the agent to the
goal. The experiments show that AIM guides the agent’s exploration more efficiently and effectively
than a general exploration bonus, and adapts to the dynamics of the environment better than other
techniques we compare to. As an overview, the baselines we compare to are:

¢ RND: with random network distillation (RND) [16] used to provide a general exploration bonus.

* MC: with the distance between states learned through regression of Monte Carlo rollouts of the
agent policy, similar to Hartikainen et al. [34].

e SMiRL: sMiRL [13] is used to provide a bonus intrinsic motivation reward that minimizes the
overall surprise in an episode.

* DiscoRL The DiscoRL [50] approach presents a reward to maximize the likelihood of a target
distribution (normal distribution at the goal). In practice this approach is equivalent to a negative
L2 distance to the goal, which we compare to in the grid world domain.

* GAIL: additional GAIL [38] rewards using trajectories relabeled with achieved goals considered
as having come from the expert in hindsight. This baseline is compared to in the Fetch robot
domain, since that is the domain where we utilize hindsight relabeling.

Grid World In this task, the goal is inside a room and the agent’s starting position is such that it
needs to navigate around the room to find the doorway and be able to reach the goal. The agent can



move in the 4 cardinal directions unless blocked by a wall or the edge of the grid. The agent policy is
learned using soft Q-learning [32] with no hindsight goals used for this experiment.

The agent’s state visitation distribution after just 100 Q-function updates when using AIM-learned
rewards is shown in Figure 2a and the learned rewards for each state are plotted in Figure 2b. The
state visitation when learning with the true task reward shows that the agent is unable to learn a policy
to the goal (Figure 2c). These figures show that AIM enables the agent to reach the goal and learn the
required policy quickly, while learning with the sparse task reward fails to do so.

In Appendix F we also compare to the baselines described above and show that AIM learns a reward
that is more efficient at directing the agent’s exploration and more flexible to variations of the
environment dynamics, such as stochastic dynamics or transitions that cause a sharp change in the
state features. None of the baselines compared to were able to direct the agent to the goal in this
grid world even after given up to 5x more interactions with the environment to train. AIM’s use of
the time-step metric also enabled it to adapt to variations of the environment dynamics better than
the gradient penalty based regularization used in Wasserstein GANs [31] and adversarial imitation
learning [27] approaches.

Fetch Robot The generalization capability of AIM across multiple goals in goal-conditioned RL
tasks with continuous states and actions is tested in the MuJoCo simulator [71], on the Fetch robot
tasks from OpenAl gym [15] which have been used to evaluate learning of goal-conditioned policies
previously [1, 76]. Descriptions of these tasks and their goal space is in Appendix H. We soften the
Dirac target distribution for continuous states to instead be a Gaussian with variance of 0.01 of the
range of each feature.

The goals in this setting are not the full state, but rather the dimensions of factored states relevant to
the given goal. The task wrapper additionally returns the features of the agent’s state in this reduced
goal space, and so AIM can use it to learn our reward function, rather than the full state space. It
is unclear how this smaller goal space might affect AIM. While the smaller goal space might make
learning easier for potential function fy, the partially observable nature of the goals might lead to a
less informative reward.

We combine AIM with HER (refer subsection 3.1) and refer to it as [AIM + HER]. We compare this
agent to the baselines we referred to above, as well as the sparse environment reward (R + HER) and
the dense reward derived from the negative Euclidean (L2) distance to the goal (—L2 + HER). The
L2 distance is proportional to the number of steps it should take the agent to reach the goal in this
environment, and so the reward based on it can act as an oracle reward that we can use to test how
efficiently AIM can learn a reward function that helps the agent learn its policy. We used the HER
implementation using Twin Delayed DDPG (TD3) [25] as the underlying RL algorithm from the
stable baselines repository [37]. We did an extensive sweep of the hyperparameters for the baseline
HER + R (laid out in Appendix H), with a coarser search on relevant hyperparameters for AIM.
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Figure 2: Grid world experiments. Agent’s undiscounted state visitation (2a, 2c): Blue circle
indicates agent’s start state. Red circle is the goal. Blue bubbles indicate relative time agent’s policy
causes it to spend in respective states. Learned reward function (2b): AIM reward at each state of the

grid world. Bold black (or white) lines indicate walls the agent cannot transition through.
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Figure 3: Evaluating AIM with HER on some goal-conditioned RL tasks in the Fetch domain. AIM
learns the reward function in tandem with the policy updates. The “— L2” reward is the true negative
distance to goal, acting as a oracle reward in this domain. The other baselines are detailed above.

Figure 3 shows that using the ATM-learned reward speeds up learning in three of the four Fetch
domains, even without the environment reward. This improvement is very close to what we would
see if we used the dense reward (based on the actual distance function in this domain). An additional
comparison with an agent learning with both the ATM-learned reward as well as the task reward (AIM
+ R + HER) can be seen in Figure 7 in the Appendix, showing that using both signals accelerates
learning even more. These results also highlight that AIM continues to work in continuous state and
action spaces, even though our analysis focuses on discrete states and actions. Results are averaged
across the 6 different seeds, with shaded regions showing standard error across runs. Statistical
analysis using a mixed effects ANOVA and a Tukey test at a significance level of 95% (more detail
in Appendix G) show that in three of the four environments AIM and AIM+ R have similar odds of
reaching the goal as the dense shaped reward, and in all four environments AIM and AIM+ R have
higher odds of reaching the goal compared to the sparse reward.

The other baselines compare well to AIM in the Fetch Reach domain (Figure 3a), but do not do
as well on the other problems. In fact, none of the other baselines outperform the vanilla baseline
[R + HER] in all the domains. The RND rewards help the agent to start learning faster in the Push
domain (Figure 3c), but lead to worse performance in Pick and Place (Figure 3b). On the other hand,
learning the distance function through MC regression helps in the Pick and Place domain, but slows
down learning when dealing with Push. Most notably, both these approaches cause learning to fail
in the Slide domain (Figure 3d), where the credit assignment problem is especially difficult. GAIL
works as well as AIM and the vanilla baseline in Slide, but underperforms in the other domains. We
hypothesize that the additional rewards in these baselines conflict with the task reward. Additionally,
none of the three new baselines work well if we do not provide the task reward in addition to the
specific bonus for that algorithm.



We did not find any configuration in the Fetch Reach domain where [SMiRL + R + HER] was able to
accomplish the task in the given training budget. Since SMiRL did not work on the grid world or
Fetch Reach, we did not try it out on any of the other domains.

FAIRL [27] (which has been shown to learn policies that cover hand-specified state distributions) was
also applied on these 4 domains but it failed to learn at all. Interestingly, scaling the reward such that
it is always negative led to similar performance to (but not better than) AIM. We hypothesize that
FAIRL, as defined and presented, fails in these domains because the environments are episodic, and
the episode ends earlier if the goal is reached. Since the FAIRL reward is positive closer to the target
distribution, the agent can get close to the target, but refrain from reaching it (and ending the episode)
to collect additional positive reward.

The domain where AIM does not seem to have a large advantage (Slide) is one where the agent strikes
an object initially and that object has to come to rest near the goal. In fact, AIM-learned rewards,
the vanilla environment reward R, and the oracle — L2 rewards all lead to similar learning behavior,
indicating that this particular task does not benefit much from shaped rewards. The reason for this
invariance might be that credit assignment has to propagate back to the single point when the agent
strikes the object regardless of how dense the subsequent reward is.

7 Discussion and Future Work

Approaches for estimating the Wasserstein distance to a target distribution by considering the dual of
the Kantorovich relaxation have been previously proposed [3, 31, 75], but assume that the ground
metric is the L2 distance. We improve upon them by choosing a metric space more suited to the MDP
and notions of optimality in the MDP. This choice allows us to leverage the structure introduced by
the dynamics of the MDP to regularize the Kantorovich potential using a novel objective.

Previous work [12] has pointed out that the gradients from sample estimates of the Wasserstein
distance might be biased. This issue is mitigated in our implementation through multiple updates of
the discriminator, which they found to be empirically useful in reducing the bias. Additionally, recent
work has pointed out that the discriminator in WGAN might be bad at estimating the Wasserstein dis-
tance [69]. While our experiments indicate that the potential function in AIM is learned appropriately,
future work could look more deeply to verify possible inefficiencies in this estimation.

The process of learning the Wasserstein distance through samples of the environment while simultane-
ously estimating the cost of the full path is reminiscent of the A* algorithm [33], where the optimistic
heuristic encourages the agent to explore in a directed manner, and adjusts its estimates based on
these explorations.

The discriminator objective (Equation 8) also bears some resemblance to a linear program formulation
of the RL problem [58]. The difference is that this formulation minimizes the value function on states
visited by the agent, while AIM additionally maximizes the potential at the goal state. This crucial
difference has two main consequences. First, the potential function during learning is not equivalent
to the value of the agent’s policy (verified by using this potential as a critic). Second, increasing the
potential of the goal state in AIM directs the agent exploration in a particular direction (namely, the
direction of sharpest increase in potential).

In the goal-conditioned RL setting, AIM seems to be an effective intrinsic reward that balances
exploration and exploitation for the task at hand. The next step is to consider whether the Wasserstein
distance can be estimated similarly for more general tasks, and whether minimizing this distance in
those tasks leads to the optimal policy. A different potential avenue for future work is the problem
of more general exploration [36, 45] by specifying a uniform distribution as the target, or using this
directed exploration as an intermediate step for efficient exploration [41].

Finally, reward design is an important aspect of practical reinforcement learning. Not only do
properly shaped reward speed up learning [51], but reward design can also subtly influence the kinds
of behaviors deemed acceptable for the RL agent [44] and could be a potential safety issue keeping
reinforcement learning from being deployed on real world problems. Learning-based approaches that
can assist in specifying reward functions safely given alternative approaches for communicating the
task could be of value in such a process of reward design, and an avenue for future research.
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A Metrics and Quasimetrics

A metric space (M, d) is composed of a set M and a metric d : M x M 1 — RT U {oo} that compares
two points in that set. Here R™ is the set of non-negative real numbers.

Definition 2. A metric d : M x M 1— R™ U {co} compares two points in set M and satisfies the
Sfollowing axioms ¥Y'm1, my, m3 € M:

e d(mi,ms) =0 <= my = my (identity of indiscernibles)
* d(mi,ma) = d(ma, my) (symmetry)
o d(mi,m2) < d(mqy,m3) + d(ms, ms) (triangle inequality)

A variation on metrics that is important to this paper is quasimetrics.

Definition 3. A quasimetric [66] is a function that satisfies all the properties of a metric, with the
exception of symmetry d(my,ms) # d(msg, mq).

As an example, consider an MDP where the actions and transition dynamics allow an agent to navigate
from any state to any other state. Let T'(s2|7, s1) be the random variable for the first time-step that
state so is encountered by the agent after starting in state s; and following policy 7. The time-step
metric d7. for this MDP can then be defined as

d5(s1,82):=E [T(sa]|m, s1)]

7 1s a quasimetric, since the action space and transition function need not be symmetric, meaning the
expected minimum time needed to go from s; to sy need not be the same as the expected minimum
time needed to from s, to s;. The diameter of an MDP [39, 43] is generally calculated by taking
the maximum time-step distance between over all pairs of states in the MDP either under a random
policy or a policy that travels from any state to any other state in as few steps as possible.

B Optimal Transport and Wasserstein-1 Distance

The theory of optimal transport [74, 14] considers the question of how much work must be done to
transport one distribution to another optimally. More concretely, suppose we have a metric space
(M, d) where M is a set and d is a metric on M. See the definitions of metrics and quasimetrics
in Appendix A. For two distributions y and v with finite moments on the set M, the Wasserstein-p
distance is denoted by:

Walw): ZCEiZI(I/fL.u)]E(X,Y)% (X, Y)7])” (10)

where Z is the space of all possible couplings between p and v. Put another way, Z is the space of
all possible distributions ¢ € A(M x M) whose marginals are 1 and v respectively. Finding this
optimal coupling tells us what is the least amount of work, as measured by d, that needs to be done to
convert p to . This Wasserstein-p distance can then be used as a cost function (negative reward) by
an RL agent to match a given target distribution [75, 19].

Finding the ideal coupling (meaning finding the optimal transport plan from one distribution to the
other) which gives us an accurate distance is generally considered intractable. However, if what we
need is an accurate estimate of the Wasserstein distance and not the optimal transport plan (as is the
case when we mean to use this distance as part of our intrinsic reward) we can turn our attention
to the dual form of this distance. The Kantorovich-Rubinstein duality [74] for the Wasserstein-1
distance on a ground metric d is of particular interest and gives us the following equality:

Wi(p,v) = sup Eyy [f(y)] = Eonp [f(2)] (an
Lip(f)<1
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where the supremum is over all 1-Lipschitz functions f : M 1— R in the metric space, and the
Lipschitz constant of a function f is defined as:

OEFGIN

Lip(f): =Sup{ e

(z,y) EJ\/[Q,x#y} (12)

That is, the Lipschitz condition of this function f (called the Kantorovich potential function) is
measured according to the metric d. Recently, Jevti¢ [40] has shown that this dual formulation where
the constraint on the potential function is a smoothness constraint extends to quasimetric spaces as
well. If defined over a quasimetric space, the Wasserstein distance also has properties of a quasimetric
(specifically, the distances are not necessarily symmetric).

If the given metric space is a Euclidean space (d(z,y) = ||y — «||2), the Lipschitz bound in Equation
2 can be computed locally as a uniform bound on the gradient of f.

Wip,v) = sup By, [f(y)] = Eanp [f(2)] (13)
IV ll<1

meaning that f is the solution to an optimization objective with the restriction that |V f (x)||< 1 for
all z € M. This strong bound on the dual in Euclidean space is the one that has been used most in
recent implementations of the Wasserstein generative adversarial network [3, 31] to regularize the
learning of the discriminator function. Such regularization has been found to be effective for stability
in other adversarial learning approaches such as adversarial imitation learning [27].

Practically, the Kantorovich potential function f can be approximated using samples from the two
distributions p and v, regularization of the potential function to ensure smoothness, and an expressive
function approximator such as a neural network. A more in depth treatment of the Kantorovich
relaxation and the Kantorovich-Rubinstein duality, as well as their application in metric and Euclidean
spaces using the Wasserstein-1 distance we lay out above, is provided by Peyré and Cuturi [57].

Now consider the problem of goal-conditioned reinforcement learning. Here the target distribution v
is the goal-conditioned target distribution p, which is a Dirac at the given goal state. Similarly, the
distribution to be transported ( is the agent’s goal-conditioned state distribution p.

The Wasserstein-1 distance of an agent executing policy 7 to the goal s, can be expressed in a fairly
straightforward manner as:

Wi(pn: pg) = 3 pa(slsy)d(s, s,) (14)

sES
The above is a simplification of Equation 1, where p = 1 and the joint distribution is easy to specify

since the target distribution p, is a Dirac distribution.

C Lipschitz constant of Potential function

For a given goal s, and all states sq € §, recall that function f is L-Lipschitz if it follows the
Lipschitz condition as follows.

|f(sq) — f(s0)] < LdF(s0,84) Vso € 8 (15)

Proposition 4. If transitions from the agent policy w are guaranteed to arrive at the goal in finite
time and f is L-bounded in expected transitions, i.e.,

sup B (IF(s) = f(o)ll < L,

s€§ s'~m,

then f is L-Lipschitz.

Proof. Since f(sg) — f(so0) is a scalar quantity, we may write f(sy) — f(s0) = Ex p[f(sg) — f(50)]-
Using this fact and that P(T'(sg) < oo) = 1 where T'(sg) = 1™ (s4|, so) for notation simplicity,
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the LHS of the expression above becomes a telescopic sum

£(50) = F(s0)] = B [£(5) = £(50)

[ T(s0)—1
= E || X () = fls0)
’ L t=0
[T(s0)—1
S E | D If(se1) = f(sh)]
P t=0

Now let us assume that for all transitions (s, a, s’), E[|f(s") — f(s)|] < L. Then

T(s0)—1 [ T(s0)—1
E | S ) fel| = B [E | S [flsi1) = £l T(s0)
w, P =0 T(so) | m,P =0
[T(s0)—1
< FE L
T(s0) ;
=L E [T(s0)]
T(so)
= Ld%(SO, 59)7
showing that | f(s,) — f(s0)|< LdF-(s0, s4) as desired. O

D Proofs of Claims

The Bellman optimality condition gives us the following optimal distance to goal:

0 if s = s

16
1+ mingea ) s P(s’|s,a,sg)d%(s’,sg) otherwise (16)

LIRS

Proposition 1. A lower bound on the value of any state under a policy w can be expressed in terms
of the time-step distance from that state to the goal: V (sg|s,) > y@7(50:5),

Proof.
V™ (slsg) =E {’yT(SQ‘”’S)} > 'yd”}(S’Sg) Vses

where the inequality follows as a consequence of Jensen’s inequality and the convex nature of the
value function. O

Proposition 2. [fthe transition dynamics are deterministic, the policy that maximizes expected return
is the policy that minimizes the time-step metric (7* = *).

Proof. Consider the value of a state s given goal s,. If the transitions are deterministic and the agent
policy  is deterministic (as is the case for the optimal policy), then the time to reach the goal satisfies
Var(T'(sg|m, s)) = 0, implying that Ajepsen vanishes and therefore

V7 (slsg) = 740
Since v € [0, 1), V™ is monotonically decreasing with d7.

argmax V7" (s|sg) = argmindf(s,sy) Vs €8
T T
That is, in the deterministic transition dynamics scenario, 7* = . O
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Proposition 3. For a given policy w, the Wasserstein distance of the state visitation measure of that
policy from the goal state distribution pg under the ground metric d7, can be written as

Wi(pr,pg) = E  [W(d7(s0,89)) + ——

S0~ pPo 1

(A.;renyen( ) 1) (6)
where h is an increasing function of d7.

Proof. The first step of the proof is to obtain an analytical expression for the the expected distance to
the goal after ¢ steps as a function of the expected distance at ¢ = 0. To reduce the notation burden,
denote T'(sg) = T'(s4|m, s0) and let s;(so) be the state after ¢ steps conditional on some starting state
5o where actions are taken according to . We have excluded s, and 7 from the notation since they
are fixed for the purpose of this proposition. Using the law of total expectation we have that for every
initial sq

Es, [d(st(0); 89)] = E(so) [Bs, [d(st(50), ) | T(50)]] = E(s0)[max(T(so) — ¢, 0)],

Now, by expanding the definition of p, (s | s4) in equation 5, exchanging the order of summation,
and using the previous equation we may write

[ (Prs Pg) ZZ (L =) By [P(s1 = 5 | 7, 59)]dT(5, 59)

s€8 t=0

=E,, l ZWtEst d(s(s0), 5g) | SO]]

—E,, lET(SO { 0 Z’y max(T(so) — t 0)’ H

Standard but tedious algebraic manipulations given in Lemma 1 in the Appendix show that

o0

51 max(T(s0) — £,0) = Tlso) = -1-(1 = 77%)
t=0

Combining the two identities above we arrive at

7 v s
WEpes00) = Buy [Ercey [Tlo0) = 72 (1= 7)o

o [do0.) = 1= BT o))

=E

- (17
_ Y d(s0,s4) g T(s0) d(s0,54)

=E,, |d(sg, _— 08%) - ——— (1 -FE 9

0_(So Sg)+1_,yv 1_7( [y 0 | 0] + )

y

= ESO d(So, Sg) + ﬁ,}/d(so,sg) + i(A}rensen( ) 1):| .

To finalize the proof, we only need to show that the function h(u) = p + ﬁv“ is monotonically

increasing for every v € [0,1). This is a standard calculus exercise that we show in Lemma 2 in
Appendix E. O

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein
distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.

Proof. Proposition 2 shows that the Jensen gap vanishes for the optimal policy of an MDP with
deterministic transitions and that it minimizes the expected distance from start for all initial states.
Proposition 3, on the other hand, implies that when the Jensen gap vanishes, the Wasserstein distance
is monotonically increasing in the expected distance from the start. Together, the two propositions
show that 7* minimizes the Wasserstein distance. O
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Algorithm 1: AIM + HER

Input: Agent policy 7y, discriminator fy, environment env,

number of Epochs IV, number of time-steps per epoch K,

policy update period k, discriminator update period m, episode length 7',
replay buffer (for HER), smaller replay buffer (for discriminator)

1 Initialize discriminator parameters ¢;

2 Initialize policy parameters 6;

3 forn=0,1,...,N—1do

end

t=0;
goal_reached = True;
while ¢t < K do

if goal_reached or episode_over then
Sample goal s, ~ 0(9);
Sample start state s ~ po(8);
goal_reached = False;
episode_over = False;
tstart = K;
end
Sample action a ~ my(+|s, s¢);
s’ = env.step(a);
if s’ = s, then
| goal_reached = True;
end
// end episode if goal not reached in T steps
ift — tstart = T then
| episode_over = True;
end
Add (s, a, s, sq, goal_reached) to replay buffer and smaller replay buffer;
if goal_reached or episode_over then
| Add hindsight goals to both buffers;
end
// Update policy parameters 6§ every k steps
if t%k = 0 then
Sample tuples (s, a, s, 4, goal_reached) from replay buffer;
Get intrinsic reward (Equation 9);
Update policy parameters 6 using any off-policy learning algorithm;

end

// Update discriminator parameters ¢ every m steps
if t%m = 0 then

Sample tuples (s, a, s, s4, goal_reached) from smaller replay buffer;
Update discriminator parameters ¢ using Equation 8;

end
t=t+1;

end
Evaluate agent policy;

E Auxiliary results for Proposition 3

Lemma 1. Let T be a positive integer. Then

o0
(1 -7y max(T —1,0) =T — ﬁ(l —97).
t=0
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Proof. Direct computation gives

i

00 1

(1=9)> 7' max(T —,0) = (1)

t=0 t

V(T —1)

(]

Il
R
—

T-1
=1=-NTY 7' ~1-1) ¢

t t=

Il
o

We will now simplify the two terms of the last expression. For the first one, have

T-1 | _~T
(l—v)Tth:(l—v)Tl_W7 =T-Ty".
t=0

For the second one, the computations are a bit more involved

t=0
1—AT
= 1 —_
(1 =) o —
gl T-1 T T v T
= Ty (=7 +0=-7"))=-Ty + (1=77).
(1=9) ( ) (1=9)
When combining the two simplified expressions the terms with 77 will cancel out, yielding the
desired expression. O

Lemma 2. The function h~(p) = 1+ ﬁ'y“ is monotonically increasing for every v € [0, 1).

Proof. We must show that ihv(u) > 0 for every v € [0,1) and every p > 0. Computing the
derivative directly we obtain

d log(y)y+!
—h =14+ -
Thus, it will suffice to show that the second term above is greater than -1. For this purpose, first note
that log(y)y**! > log(«y) since v < 1. Now, we use the fact that log(y) < 1 — ~y for v < 1. This
can be verified noting that 1 — + is the tangent line to the concave curve log(+) and the curves meet
aty = 1. And therefore log(7)/(1 — ) > —1. Putting these observation together,

d log(y)y#+! log(v)
) =14 2T S 28 S 1=
i ~(1) + T > +1_7> ,

concluding the proof. O

F Grid World Experiments

Basic experiment The environment is a 10 x 10 grid with 4 discrete actions that take the agent in
the 4 cardinal directions unless blocked by a wall or the edge of the grid. The agent policy is learned
using soft Q-learning [32], with an entropy coefficient of 0.1 and a discount factor of v = 0.99. We
do not use hindsight goals for this experiment, and use a single buffer with size 5000 for both the
policy as well as the discriminator training. The results are discussed in the main text. The compute
used to conduct these experiments was a personal laptop with an Intel i7 Processor and 16 GB of
RAM.
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Figure 4: Windy grid world (Figure 4a) experiments. The columns with arrows at the top and bottom

have stochastic and asymmetric transitions induced by wind blowing from the top. Learned reward

function (Figure 4b). Reward at each state of the grid world after training for 50 iterations with ATM.

Hollow red circle indicates the goal state. White lines indicate the walls the agent cannot transition

through. The agent’s state visitation (Figure 4c): The hollow blue circle indicates agent’s start state.

The hollow red circle is the goal. Blue bubbles indicate relative time the agent’s policy causes it to
spend in respective states. Black lines indicate walls.

Additional experiments We conducted variations form the basic experiment in the grid world to
show that AIM and its novel regularization can learn a reward function which guides the agent to the
goal even in the presence of stochastic transitions as well as transitions where the state features vary
wildly from one step to the next.

First, we evaluate AIM’s ability to learn in the presence of stochastic and asymmetric transitions in a
windy version (Figure 4a) of the above grid world. Transitions in the last six columns of the grid are
affected by a wind blowing from the top. Actions that try to move upwards only succeed 60% of the
time, and actions attempting to move sideways cause a transition diagonally downwards 40% of the
time. Movements downwards are unaffected. The rest of the experiment is carried out in the same
way as above, but with 128 hidden units in the hidden layer of the agent’s Q function approximator
(the reward function architecture is unchanged from the previous experiment). In Figure 4 we see
that AIM learns a reward function that is still useful and interpretable, and leads to a policy that can
confidently reach the goal, regardless of these stochastic and asymmetric transitions. Notice the effect
of the stochastic transitions in the increased visitation in the sub-optimal states in the bottom two
rows of column number 4.

The next experiment tests what happens when the transition function causes the agent to jump between
states where the state features vary sharply. As an example consider a toroidal grid world, where
if an agent steps off one side of the grid it is transported to the other side. The distance function
here should be smooth across such transitions, but might be hampered by the sharp change in input
features. In Figure 5 we see show the policy and reward for a 10 x 10 toroidal grid world with start
state at (2, 2) and goal at (7, 7). Transitions are deterministic but wrap around the edges of the grid
as described above: a down action in row 0 will transport the agent to the same column but row 9.
The start and the goal state are set up so that there are multiple optimal paths to the goal. The entropy
maximizing soft Q-learning algorithm should take these paths with almost equal probability. From
Figure 5 it is evident that AIM learns a reward function that is smooth across the actual transitions in
the environment and allows the agent to learn a Q-function that places near equal mass on multiple
trajectories.

Finally, we compare learning with AIM to the baselines mentioned in Section 6. RND, SMiRL, and
MC were implemented and debugged on the grid world domain with a goal that is easier to reach
before being used on the Fetch robot tasks. Hyper-parameters for the algorithms in both domains were
determined through sweeps. In the Fetch domains, the hyperparameters for all three new baselines
were decided on through sweeps on the FetchReach task, similar to how they were evaluated for AIM
and the other baselines.
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Figure 6 shows the results of executing these additional baselines on the grid world domain we use
to motivate ATM. All the plots are taken after the techniques have had the same number of training
iterations. However none of the baselines reach the goal even after providing additional time. We
show the negative L2 distance to goal as a reward in the grid world domain to highlight that the
DiscoRL [50] objective should not be considered equivalent to an oracle of the distance to goal.
Note that RND (Figure 6¢) explores most of the larger room early on, and then converges to the
state distribution seen in the figure when it does not encounter the task reward. The SMiRL reward
encourages the agent to minimize surprise, and the policy trained with this reward keeps the agent in
the bottom left near its start state (Figure 6d).

G Statistical Analysis of the Results on Fetch Robot Tasks

To compare the performance of each method with statistical rigor, we used a repeated measures
ANOVA design for binary observation where an observation is successful if an agent reaches the goal
within an episode. We then conducted a Tukey test to compare the effects of each method, i.e., the
estimated odds of reaching the goal given the algorithm. The goal of the statistical analysis presented
here is twofold

1. Separate the uncertainty on the performance of each method from the variation due to
random seeds.

2. Adjust the probability of making a false discovery due to multiple comparisons. This extra
step is necessary to avoid detecting a large fraction of falsely “significant” differences since
typical tests are designed to control the error rate of only one experiment.

The data for statistical analysis comes from Nepisoges = 100 evaluation episodes per each one of
Ngeeqs = 6 seeds. For all environments but FetchReach, these data is collected after 1 million
environment interactions; and for FetchReach it is taken after 2000 interactions.

The repeated measures ANOVA design is formulated as a mixed effects generalized linear model and
fitted separately for each one of the four environments

Yijk :Ej’ Bernouui(pij)v ke {]-a ) Nepisodes}
logit(pij) = Tseed; + ﬂalgorithmj 1€ {]-; R Nseeds}aj S {]-7 v 7Nalgorithms}
T'seed; e Normal(0, 02)

The variation due to the seed effects is measured by o2, whereas the uncertainty about the odds of
reaching the goal using each algorithm is measured by the standard errors of the coefficients 5a1gomhmj .
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Figure 5: The reward function (Figure 5a) learned with ATM and subsequent policy distribution
(Figure 5b) in a toroidal grid world, where an agent can transition from one edge of the grid across to
the other. The hollow blue circle denotes the start state and the hollow red circle is the goal state. The
reward function respects the sharp transitions from one end of the grid to the other. Conversely, if the

reward function is learned using the WGAN objective [31] (Figure 5c¢), it does not respect the
environment dynamics.
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Figure 6: The state of the state visitation and reward functions for the new baselines. For camparison,
Figure 2a shows the state visitation of policy trained using AIM. All algorithms are compared after
100 training iterations.

The Tukey test evaluates all null hypotheses Hy: ﬂalgorithmj = ﬁalgorithmj, for all combinations of j, j'.
To adjust for multiple comparisons each Tukey tests uses the Holm method. Since we are also doing
a Tukey test for each environment, we further apply a Bonferroni adjustment with a factor of four.
These types of adjustments are fairly common for dealing with multiple comparison in the literature
of experimental design; the interested reader may consult [49].

The results, shown in Table 1, signal strong statistical evidence of the improvements from using
the AIM learned rewards. In three of the four environments AIM and AIM+ R have similar odds of
reaching the goal as the dense shaped reward (H|, is not rejected,) and in all four environments AIM
and AIM+ R have statistically significant higher odds of reaching the goal than the sparse reward (H
is rejected and (3 is higher.)

Contrast | Slide | Push | PickAndPlace | Reach
Banisr — Brer+dense 0.34 (0.14) | -1.74 (0.77) -0.10 (0.45) | *-3.43 (0.34)
Bamt — Brer+dense 0.21 (0.14) | -2.19(0.75) *-1.50 (0.37) | *-5.01 (0.35)
Bam+r — Buprasparse | ¥0.69 (0.13) | #5.32 (0.35) *4.71 (0.33) *4.75 (0.25)
Bamt — Brerssparse *0.57 (0.13) | *4.86 (0.30) *3.31 (0.19) *3.17 (0.24)

Table 1: Results of the Tukey test on the evaluation of Fetch tasks. The table entries are log odds
ratios with standard deviations shown in parentheses. Positive values mean that AIM or AIM+R
perform better than the method with negative sign in the contrast and viceversa. Asterisks mark

statistical significance at 95%. If there is no asterisk, then Hy is not rejected in which case the
differences could be due to random chance.
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Figure 7: Comparing [AIM + HER] with an additional baseline which also uses the external task
reward [AIM + R + HER]. The additional grounding provided by the external task reward allows the
agent’s learning to accelerate even further.

H Details of Experiments on Fetch Robot

The Fetch robot domain in OpenAl gym has four tasks available for testing. They are named Reach,
Push, Slide, and Pick And Place. The Reach task is the simplest, with the goal being the 3-d
coordinates where the end effector of the robot arm must be moved to. The Push task requires pushing
an object from its current position on the table to the given target position somewhere else on the
table. Slide is similar to Push, except the coefficient of friction on the table is reduced (causing
pushed objects to slide) and the potential targets are over a larger area, meaning that the robot needs
to learn to hit objects towards the goal with the right amount of force. Finally, Pick And Place is the
task where the robot actuates it’s gripper, picks up an object from its current position on the table and
moves it through space to a given target position that could be at some height above the table. The
goal space for the final three tasks are the required position of the object, and the goal the current
state represents is the current position of that object.

Next, we note the hyperparameters used for various baselines as well as our implementation. The
names of the hyperparameters are as specified in the stable baselines repository and used in the RL
Zo0 [59] codebase which we use for running experiments. Both the stable baselines repository and
RL Zoo are available under the MIT license. These experiments were run on a compute cluster with
each experiment assigned an Nvidia Titan V GPU, a single CPU and 12 GB of RAM. Each run of the
TD3 baseline HER + R or HER + dense required 18 hours to execute, and each run which included
AIM required 24 hours to complete execution.

TD3 [25], like its predecessor DDPG [47], suffers from the policy saturating to extremes of its
parameterization. Hausknecht and Stone [35] have suggested various techniques to mitigate such
saturation. We use a quadratic penalization for actions that exceed 80% of the extreme value at
either end, which is sufficient to not hurt learning and prevent saturation. Assuming the policy
network predicts values between —1 and 1 (as is the case when using the tanh activation function),
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the regularization loss is:

N
Z maz(|mg(s;)|—0.8,0)]°

where N is the mini-batch size and s; is the state for the i transition in the batch.

The other modification made to the stable baselines code is to use the Huber loss instead of the

squared loss for Q-learning.

For evaluation, in the Reach domain the agent policy is evaluated for 100 episodes every 2000 steps.
For the other three domains, the experiment is run for 1 million timesteps, and evaluated at every

20,000 steps for 100 episodes.

H.1 TD3 and HER (R + HER)

H Hyperparameter Value H
n_sampled_goal 4
goal_selection_strategy future
buffer_size 10°
batch_size 256
~ (discount factor) 0.95
random_exploration 0.3
target_policy_noise 0.2
learning_rate 173
noise_type normal
noise_std 0.2
MLP size of agent policy and Q function | [256, 256, 256]
learning_starts 1000
train_freq 10
gradient_steps 10
T (target policy update rate) 0.05

H.2 Dense reward TD3 and HER (dense + HER)

H Hyperparameter ‘ Value H
n_sampled_goal 4
goal_selection_strategy future
buffer_size 106
batch_size 256
~ (discount factor) 0.95
random_exploration 0.3
target_policy_noise 0.2
learning_rate 173
noise_type normal
noise_std 0.2
MLP size of agent policy and Q function | [256, 256, 256]
learning_starts 1000
train_freq 100
gradient_steps 200
policy_delay 5
T (target policy update rate) 0.05
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H.3 TD3 and HER with AIM (AIM + HER) and (AIM + R + HER)

Hyperparameter ‘ Value H
n_sampled_goal 4
goal_selection_strategy future
buffer_size 10°
batch_size 256
~ (discount factor) 0.9
random_exploration 0.3
target_policy_noise 0.2
learning_rate 173
noise_type normal
noise_std 0.2
MLP size of agent policy and Q function | [256, 256, 256]
learning_starts 1000
train_freq 100
gradient_steps 200
disc_train_freq 100
disc_steps 20
T (target policy update rate) 0.1
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