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Abstract

Learning with an objective to minimize the mismatch with a reference distribution
has been shown to be useful for generative modeling and imitation learning. In
this paper, we investigate whether one such objective, the Wasserstein-1 distance
between a policy’s state visitation distribution and a target distribution, can be
utilized effectively for reinforcement learning (RL) tasks. Specifically, this paper
focuses on goal-conditioned reinforcement learning where the idealized (unachiev-
able) target distribution has full measure at the goal. This paper introduces a
quasimetric specific to Markov Decision Processes (MDPs) and uses this quasimet-
ric to estimate the above Wasserstein-1 distance. It further shows that the policy
that minimizes this Wasserstein-1 distance is the policy that reaches the goal in
as few steps as possible. Our approach, termed Adversarial Intrinsic Motivation
(AIM), estimates this Wasserstein-1 distance through its dual objective and uses it
to compute a supplemental reward function. Our experiments show that this reward
function changes smoothly with respect to transitions in the MDP and directs the
agent’s exploration to find the goal efficiently. Additionally, we combine AIM with
Hindsight Experience Replay (HER) and show that the resulting algorithm acceler-
ates learning significantly on several simulated robotics tasks when compared to
other rewards that encourage exploration or accelerate learning.

1 Introduction

Reinforcement Learning (RL) [70] deals with the problem of learning a policy to accomplish a given
task in an optimal manner. This task is typically communicated to the agent by means of a reward
function. If the reward function is sparse [4] (e.g., most transitions yield a reward of 0), much random
exploration might be needed before the agent experiences any signal relevant to learning [11, 2].

Some of the different ways to speed up reinforcement learning by modifying or augmenting the reward
function are shaped rewards [51], redistributed rewards [2], intrinsic motivations [8, 65, 67, 68, 53, 56],
and learned rewards [77, 53]. Unfortunately, the optimal policy under such modified rewards might
sometimes be different than the optimal policy under the task reward [51, 18]. The problem of
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learning a reward signal that speeds up learning by communicating what to do but does not interfere
by specifying how to do it is thus a useful and complex one [78].

This work considers whether a task-dependent reward function learned based on the distribution
mismatch between the agent’s state visitation distribution and a target task (expressed as a distribution)
can guide the agent towards accomplishing this task. Adversarial methods to minimize distribution
mismatch have been used with great success in generative modeling [28] and imitation learning
[38, 24, 75, 72, 27]. In both these scenarios, the task is generally to minimize the mismatch with a
target distribution induced by the data or expert demonstrations. Instead, we consider the task of
goal-conditioned RL, where the ideal target distribution assigns full measure to a goal state. While
the agent can never match this idealized target distribution perfectly unless starting at the goal,
intuitively, minimizing the mismatch with this distribution should lead to trajectories that maximize
the proportion of the time spent at the goal, thereby prioritizing transitions essential to doing so.

The theory of optimal transport [74] gives us a way to measure the distance between two distributions
(called the Wasserstein distance) even if they have disjoint support. Previous work [3, 31] has shown
how a neural network approximating a potential function may be used to estimate the Wasserstein-1
distance using its dual formulation, but assumes that the metric space this distance is calculated on is
Euclidean. A Euclidean metric might not be the appropriate metric to use in more general RL tasks
however, such as navigating in a maze or environments where the state features change sharply with
transitions in the environment.

This paper introduces a quasimetric tailored to Markov Decision Processes (MDPs), the time-step
metric, to measure the Wasserstein distance between the agent’s state visitation distribution and the
idealized target distribution. While this time-step metric could be an informative reward on its own,
estimating it is a problem as hard as policy evaluation [30]. Instead, we show that the dual objective,
which maximizes difference in potentials while utilizing the structure of this quasimetric for the
necessary regularization, can be optimized through sampled transitions.

We use this dual objective to estimate the Wasserstein-1 distance and propose a reward function
based on this estimated distance. An agent that maximizes returns under this reward minimizes
this Wasserstein-1 distance. The competing objectives of maximizing the difference in potentials
for estimating the Wasserstein distance and minimizing it through reinforcement learning on the
subsequent reward function leads to our algorithm, Adversarial Intrinsic Motivation (AIM).

Our analysis shows that if the above Wasserstein-1 distance is computed using the time-step metric,
then minimizing it leads to a policy that reaches the goal in the minimum expected number of steps. It
also shows that if the environment dynamics are deterministic, then this policy is the optimal policy.

In practice, minimizing the Wasserstein distance works well even when the environment dynamics
are stochastic. Our experiments show that AIM learns a reward function that changes smoothly with
transitions in the environment. We further conduct experiments on the family of goal-conditioned
reinforcement learning problems [1, 61] and show that AIM when used along with hindsight experience
replay (HER) greatly accelerates learning of an effective goal-conditioned policy compared to learning
with HER and the sparse task reward. Further, our experiments show that this acceleration is similar
to the acceleration observed by using the actual distance to the goal as a dense reward.

2 Related Work

We highlight the related work based on the various aspects of learning that this work touches, namely
intrinsic motivation, goal-conditioned reinforcement learning, and adversarial imitation learning.

2.1 Intrinsic Motivation

Intrinsic motivations [8, 56, 55] are rewards presented by an agent to itself in addition to the external
task-specific reward. Researchers have pointed out that such intrinsic motivations are a characteristic
of naturally intelligent and curious agents [29, 5, 6]. Intrinsic motivation has been proposed as a way
to encourage RL agents to learn skills [10, 9, 64, 60] that might be useful across a variety of tasks,
or as a way to encourage exploration [11, 63, 7, 23]. The optimal reward framework [65, 68] and
shaped rewards [51] (if generated by the agent itself) also consider intrinsic motivation as a way to
assist an RL agent in learning the optimal policy for a given task. Such an intrinsically motivated
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reward signal has previously been learned through various methods such as evolutionary techniques
[53, 62], meta-gradient approaches [67, 77, 78], and others. The Wasserstein distance has been used
to present a valid reward for imitation learning [75, 19] as well as program synthesis [26].

2.2 Goal-Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning [42] can be considered a form of multi-task reinforcement
learning [17] where the agent is given the goal state it needs to reach at the beginning of every
episode, and the reward function is sparse with a non-zero reward only on reaching the goal state.
UVFA [61], HER [1], and others [76, 20] consider this problem of reaching certain states in the
environment. Relevant to our work, Venkattaramanujam et al. [73] learns a distance between states
using a random walk that is then used to shape rewards and speed up learning, but requires goals to
be visited before the distance estimate is useful. DisCo RL [50] extends the idea of goal-conditioned
RL to distribution-conditioned RL.

Contemporaneously, Eysenbach et al. [21, 22] has proposed a method which considers goals and
examples of success and tries to predict and maximize the likelihood of seeing those examples under
the current policy and trajectory. For successful training, this approach needs the agent to actually
experience the goals or successes. Their solution minimizes the Hellinger distance to the goal, a form
of f -divergence. AIM instead uses the Wasserstein distance which is theoretically more informative
when considering distributions that are disjoint, and does not require the assumption that the agent has
already reached the goal through random exploration. Our experiments in fact verify the hypothesis
that AIM induces a form of directed exploration in order to reach the goal.

2.3 Adversarial Imitation Learning and Minimizing Distribution Mismatch

Adversarial imitation learning [38, 24, 75, 72, 27] has been shown to be an effective method to
learn agent policies that minimize distribution mismatch between an agent’s state-action visitation
distribution and the state-action visitation distribution induced by an expert’s trajectories. In most
cases this distribution that the expert induces is achievable by the agent and hence these techniques
aim to match the expert distribution exactly. In the context of goal-conditioned reinforcement learning,
GoalGAIL [20] uses adversarial imitation learning with a few expert demonstrations to accelerate the
learning of a goal-conditioned policy. In this work, we focus on unrealizable target distributions that
cannot be completely matched by the agent, and indeed, are not induced by any trajectory distribution.

FAIRL [27] is an adversarial imitation learning technique which minimizes the Forward KL diver-
gence and has been shown experimentally to cover some hand-specified state distributions, given
a smoothness regularization as used by WGAN [31]. f -IRL [52] learns a reward function where
the optimal policy matches the expert distribution under the more general family of f -divergences.
Further, techniques beyond imitation learning [45, 36] have looked at matching a uniform distribution
over states to guarantee efficient exploration.

3 Background

In this section we first set up the goal-conditioned reinforcement learning problem, and then give a
brief overview of optimal transport.

3.1 Goal-Conditioned Reinforcement Learning

Consider a goal-conditioned MDP as the tuple 〈S,A,G, P, ρ0, σ, γ〉 with discrete state space S,
discrete action space A, a subset of states which is the goal set G ⊆ S, and transition dynamics
P : S×A× G 7 −→ ∆(S) (∆(·) is a distribution over a set) which might vary based on the goal (see
below). ρ0 : ∆(S) is the starting state distribution, and σ : ∆(G) is the distribution a goal is drawn
from. γ ∈ [0, 1) is the discount factor. We use discrete states and actions for ease of exposition, but
our idea extends to continuous states and actions, as seen in the experiments.

At the beginning of an episode, the starting state is drawn from ρ0 and the goal for that episode
is drawn from σ. The reward function r : S × A × S × G 7 −→ R is deterministic, and
r(st, at, st+1|sg) : = I[st+1 = sg]. That is, there is a positive reward when an agent reaches the
goal (st+1 = sg), and 0 everywhere else. Since the goal is given to the agent at the beginning of
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Consider the grid world shown in Figure 1, where a wall (bold line) marks an impassable barrier
in part of the state space. If the states are specified by their Cartesian coordinates on the grid, the
Manhattan distance between the states specified by the blue and red circles is not representative of the
optimal cost to go from one to the other. This mismatch would lead to an underestimation of the work
involved if the two distributions compared were concentrated at those two circles. Similarly, there
will be errors in estimating the Wasserstein distance if the grid world is toroidal (where an agent is
transported to the opposite side of the grid if it walks off one side) or if the transitions are asymmetric
(windy grid world [70]).

To estimate the work needed to transport measure in an MDP when executing a policy π, we consider
a quasimetric – a metric that does not need to be symmetric – dependent on the number of transitions
experienced before reaching the goal when executing that policy.

Definition 1. The time-step metric dπT in an MDP with state space S, action space A, transition
function P , and agent policy π is a quasimetric where the distance from state s ∈ S to state sg ∈ S is
based on the expected number of transitions under policy π.

dπT (s, sg) : =E [T (sg|π, s)]

where T (sg|π, s) is the random variable for the first time-step that state sg is encountered by the
agent after starting in state s and following policy π.

This quasimetric has the property that the per step cost is uniformly 1 for all transitions except ones
from the goal to the absorbing state (and the absorbing state to itself), which are 0. Thus, it can be
written recursively as:

dπT (s, sg) =

{

0 if s = sg
1 + Ea∼π(·|s,sg) Es′∼P (·|s,a,sg) [d

π
T (s

′, sg)] otherwise
(3)

Recall that in order to estimate the Wasserstein distance using the dual (Equation 2) in a metric space
where the ground metric d is this time-step metric, the potential function f : S 7 −→ R needs to be
1-Lipschitz with respect to dπT . In Appendix C we prove that L-Lipschitz continuity can be ensured
by enforcing that the difference in values of f on expected transitions from every state are bounded
by L, implying

Lip(f) ≤ sup
s∈S

{

E
a∼π(·|s,sg)

E
s′∼P (·|s,a,sg)

[|f(s)− f(s′)|]

}

. (4)

Note that finding a proper way to enforce the Lipschitz constraint in adversarial methods remains
an open problem [48]. However, for the time-step metric considered here, equation 4 is one elegant
way of doing so. By ensuring that the Kantorovich potentials do not drift too far from each other
on expected transitions under agent policy π in the MDP, the conditions necessary for the potential
function to estimate the Wasserstein distance can be maintained [74, 3]. Finally, the minimum
distance d�T from state s to a given goal state sg (corresponding to policy π�) is defined by the
Bellman optimality condition (Equation 16 in Appendix D).

Consider how the time-step distance to the goal and the value function for goal-conditioned RL relate
to each other. When the reward is 0 everywhere except for transitions to the goal state, the value
becomes V π(s|sg) = E

[

γT (sg|π,s)
]

. dπT (s0, sg) and V (s0|sg) are related as follows.

Proposition 1. A lower bound on the value of any state under a policy π can be expressed in terms
of the time-step distance from that state to the goal: V (s0|sg) ≥ γdπ

T (s0,sg).

The proofs for all theoretical results are in Appendix D. The Jensen gap ∆π
Jensen(s) := V π(s|sg)−

γdπ
T (s,sg) describes the sharpness of the lower bound in the proposition above and it is zero if and

only if Var(T (sg|π, s)) = 0 [46]. From this line of reasoning, we deduce the following proposition:

Proposition 2. If the transition dynamics are deterministic, the policy that maximizes expected return
is the policy that minimizes the time-step metric (π∗ = π�).

5 Wasserstein-1 Distance for Goal-Conditioned Reinforcement Learning

In this section we consider the problem of goal-conditioned reinforcement learning. In Section 5.1 we
analyze the Wasserstein distance computed under the time-step metric dπT . Section 5.2 proposes an
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algorithm, Adversarial Intrinsic Motivation (AIM), to learn the potential function for the Kantorovich-
Rubinstein duality used to estimate the Wasserstein distance, and giving an intrinsic reward function
used to update the agent policy in tandem.

5.1 Wasserstein-1 Distance under the Time-Step Metric

From Sections 3.2 and 4 the Wasserstein distance under the time-step metric dπT of an agent policy π
with visitation measure ρπ to a particular goal sg and its distribution ρg can be expressed as:

Wπ
1 (ρπ, ρg) =

∑

s∈S
ρπ(s|sg)d

π
T (s, sg) (5)

where Wπ
1 refers to the Wasserstein distance with the ground metric dπT .

The following proposition shows that the Wasserstein distance decreases as dπT (s, sg) decreases,
while also revealing a surprising connection with the Jensen gap.

Proposition 3. For a given policy π, the Wasserstein distance of the state visitation measure of that
policy from the goal state distribution ρg under the ground metric dπT can be written as

Wπ
1 (ρπ, ρg) = E

s0∼ρ0

[

h(dπT (s0, sg)) +
γ

1− γ
(∆π

Jensen(s0)− 1)

]

(6)

where h is an increasing function of dπT .

The first component in the above analytical expression shows that the Wasserstein distance depends on
the expected number of steps, decreasing if the expected distance decreases. The second component
shows the risk-averse nature of the Wasserstein distance. Concretely, the bounds for the Jensen
inequality given by Liao and Berg [46] imply that there are non-negative constants C1 = C1(d

π
T , γ)

and C2 = C2(d
π
T , γ) depending only on the expected distance and discount factor such that

C1Var(T (sg|π, s)) ≤ ∆π
Jensen(s) ≤ C2Var(T (sg|π, s)).

From the above, we can deduce that a policy with lower variance will have lower Wasserstein distance
when compared to a policy with same expected distance from the start but higher variance. The
relation between the optimal policy in goal-conditioned RL and the Wasserstein distance can be made
concrete if we consider deterministic dynamics.

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein
distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.

5.2 Adversarial Intrinsic Motivation to minimize Wasserstein-1 Distance

The above section makes it clear that minimizing the Wasserstein distance to the goal will lead to a
policy that reaches the goal in as few steps as possible in expectation. If the dynamics of the MDP
are deterministic, this policy will also be optimal. Note that the dual form (Equation 2) can be used
to estimate the distance, even if the ground metric dπT is not known. The smoothness requirement on
the potential function f can be ensured with the constraint in Equation 4 on all states and subsequent
transitions expected under the agent policy.

Now consider the full problem. The reinforcement learning algorithm aims to learn a goal-conditioned
policy with parameters θ ∈ Θ whose state visitation distribution ρθ minimizes the Wasserstein
distance to a goal-conditioned target distribution ρg for a given goal sg ∼ σ. AIM leverages the
presence of the set of goals that the agent should be capable of reaching with a goal-conditioned
potential function fφ : S × G 7 −→ R with parameters φ ∈ Φ. These objectives of the potential
function and the agent can be expressed together using the following adversarial objective:

min
θ∈Θ

max
φ∈Φ

E
sg∼σ

[

fφ(sg, sg)− E
s∼ρθ

[fφ(s, sg)]

]

(7)

where the potential function fφ is 1-Lipschitz over the state space. Combining the objectives in
Equations 7 and 4, the loss for the potential function fφ then becomes:

Lf : = E
sg∼σ

[

−fφ(sg, sg) + E
s∼ρθ

[fφ(s, sg)]

]

+

λ E
(s,a,s′,sg)∼D

[

(max(|fφ(s, sg)− fφ(s
′, sg)|−1, 0))2

]

(8)
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Where the distribution D should ideally contain all states in S, expected goals in G, and the transitions
according to the agent policy πθ and transition function P . Such a distribution is difficult to
obtain directly. AIM approximates it with a small replay buffer of transitions from recent episodes
experienced by the agent, and relabels these episodes with achieved goals (similar to HER [1]). Such
an approximation does not respect the discounted measure of states later on in an episode, but is
consistent with how other approaches in deep reinforcement learning tend to approximate the state
visitation distribution, especially for policy gradient approaches [54]. While it does not include all
states and all goals, we see empirically that the above approximation works well.

Now we turn to the reward function that should be presented to the agent such that maximizing the
return will minimize the Wasserstein distance. The Wasserstein discriminator is a potential function
[51] (its value depends on the state). It can thus be used to create a shaped reward r̂(s, a, s′, sg) =
r(s, a, s′|sg)+ γfφ(s

′, sg)− fφ(s, sg) without risk of changing the optimal policy. Alternatively, we
can explicitly minimize samples of the Wasserstein distance: r̂(s, a, s′, sg) = fφ(s

′, sg)− fφ(sg, sg).
Finally, instead of the second term fφ(sg, sg), we can just use a constant bias term. In practice, all
these choices work well, and the experiments use the latter (with b = maxs∈S fφ(s, sg)) to reduce
variance in r̂.

r̂(s, a, s′, sg) = fφ(s
′, sg)− b (9)

The basic procedure to learn and use adversarial intrinsic motivation (AIM) is laid out in Algorithm
1, and also includes how to use this algorithm in conjunction with HER. If not using HER, Line 23
where hindsight goals are added to the replay buffer can be skipped.

6 Experiments

Our experiments evaluate the extent to which the reward learned through AIM is useful as a proxy for
the environment reward signal, or in tandem with the environment reward signal. In particular, we
ask the following questions:

• Does AIM speed up learning of a policy to get to a single goal compared to learning with a sparse
reward?

• Does the learned reward function qualitatively guide the agent to the goal?
• Does AIM work well with stochastic transition dynamics or sharp changes in the state features?
• Does AIM generalize to a large set of goals and continuous state and action spaces?

Our experiments suggest that the answer to all 4 questions is “yes”, with the first three questions
tested in the grid world presented in Figure 1 where the goal is within a room, and the agent has to go
around the room from its start state to reach the goal. Goal-conditioned tasks in the established Fetch
robot domain show that AIM also accelerates learning across multiple goals in continuous state and
action spaces.

This section compares an agent learning with a reward learned through AIM with other intrinsic
motivation signals that induce general exploration or shaped rewards that try to guide the agent to the
goal. The experiments show that AIM guides the agent’s exploration more efficiently and effectively
than a general exploration bonus, and adapts to the dynamics of the environment better than other
techniques we compare to. As an overview, the baselines we compare to are:

• RND: with random network distillation (RND) [16] used to provide a general exploration bonus.
• MC: with the distance between states learned through regression of Monte Carlo rollouts of the

agent policy, similar to Hartikainen et al. [34].
• SMiRL: SMiRL [13] is used to provide a bonus intrinsic motivation reward that minimizes the

overall surprise in an episode.
• DiscoRL The DiscoRL [50] approach presents a reward to maximize the likelihood of a target

distribution (normal distribution at the goal). In practice this approach is equivalent to a negative
L2 distance to the goal, which we compare to in the grid world domain.

• GAIL: additional GAIL [38] rewards using trajectories relabeled with achieved goals considered
as having come from the expert in hindsight. This baseline is compared to in the Fetch robot
domain, since that is the domain where we utilize hindsight relabeling.

Grid World In this task, the goal is inside a room and the agent’s starting position is such that it
needs to navigate around the room to find the doorway and be able to reach the goal. The agent can
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We did not find any configuration in the Fetch Reach domain where [SMiRL + R + HER] was able to
accomplish the task in the given training budget. Since SMiRL did not work on the grid world or
Fetch Reach, we did not try it out on any of the other domains.

FAIRL [27] (which has been shown to learn policies that cover hand-specified state distributions) was
also applied on these 4 domains but it failed to learn at all. Interestingly, scaling the reward such that
it is always negative led to similar performance to (but not better than) AIM. We hypothesize that
FAIRL, as defined and presented, fails in these domains because the environments are episodic, and
the episode ends earlier if the goal is reached. Since the FAIRL reward is positive closer to the target
distribution, the agent can get close to the target, but refrain from reaching it (and ending the episode)
to collect additional positive reward.

The domain where AIM does not seem to have a large advantage (Slide) is one where the agent strikes
an object initially and that object has to come to rest near the goal. In fact, AIM-learned rewards,
the vanilla environment reward R, and the oracle −L2 rewards all lead to similar learning behavior,
indicating that this particular task does not benefit much from shaped rewards. The reason for this
invariance might be that credit assignment has to propagate back to the single point when the agent
strikes the object regardless of how dense the subsequent reward is.

7 Discussion and Future Work

Approaches for estimating the Wasserstein distance to a target distribution by considering the dual of
the Kantorovich relaxation have been previously proposed [3, 31, 75], but assume that the ground
metric is the L2 distance. We improve upon them by choosing a metric space more suited to the MDP
and notions of optimality in the MDP. This choice allows us to leverage the structure introduced by
the dynamics of the MDP to regularize the Kantorovich potential using a novel objective.

Previous work [12] has pointed out that the gradients from sample estimates of the Wasserstein
distance might be biased. This issue is mitigated in our implementation through multiple updates of
the discriminator, which they found to be empirically useful in reducing the bias. Additionally, recent
work has pointed out that the discriminator in WGAN might be bad at estimating the Wasserstein dis-
tance [69]. While our experiments indicate that the potential function in AIM is learned appropriately,
future work could look more deeply to verify possible inefficiencies in this estimation.

The process of learning the Wasserstein distance through samples of the environment while simultane-
ously estimating the cost of the full path is reminiscent of the A∗ algorithm [33], where the optimistic
heuristic encourages the agent to explore in a directed manner, and adjusts its estimates based on
these explorations.

The discriminator objective (Equation 8) also bears some resemblance to a linear program formulation
of the RL problem [58]. The difference is that this formulation minimizes the value function on states
visited by the agent, while AIM additionally maximizes the potential at the goal state. This crucial
difference has two main consequences. First, the potential function during learning is not equivalent
to the value of the agent’s policy (verified by using this potential as a critic). Second, increasing the
potential of the goal state in AIM directs the agent exploration in a particular direction (namely, the
direction of sharpest increase in potential).

In the goal-conditioned RL setting, AIM seems to be an effective intrinsic reward that balances
exploration and exploitation for the task at hand. The next step is to consider whether the Wasserstein
distance can be estimated similarly for more general tasks, and whether minimizing this distance in
those tasks leads to the optimal policy. A different potential avenue for future work is the problem
of more general exploration [36, 45] by specifying a uniform distribution as the target, or using this
directed exploration as an intermediate step for efficient exploration [41].

Finally, reward design is an important aspect of practical reinforcement learning. Not only do
properly shaped reward speed up learning [51], but reward design can also subtly influence the kinds
of behaviors deemed acceptable for the RL agent [44] and could be a potential safety issue keeping
reinforcement learning from being deployed on real world problems. Learning-based approaches that
can assist in specifying reward functions safely given alternative approaches for communicating the
task could be of value in such a process of reward design, and an avenue for future research.
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A Metrics and Quasimetrics

A metric space (M, d) is composed of a set M and a metric d : M×M 7 −→ R
+∪{∞} that compares

two points in that set. Here R
+ is the set of non-negative real numbers.

Definition 2. A metric d : M×M 7 −→ R
+ ∪ {∞} compares two points in set M and satisfies the

following axioms ∀m1,m2,m3 ∈ M:

• d(m1,m2) = 0 ⇐⇒ m1 = m2 (identity of indiscernibles)

• d(m1,m2) = d(m2,m1) (symmetry)

• d(m1,m2) ≤ d(m1,m3) + d(m3,m2) (triangle inequality)

A variation on metrics that is important to this paper is quasimetrics.

Definition 3. A quasimetric [66] is a function that satisfies all the properties of a metric, with the
exception of symmetry d(m1,m2) 6= d(m2,m1).

As an example, consider an MDP where the actions and transition dynamics allow an agent to navigate
from any state to any other state. Let T (s2|π, s1) be the random variable for the first time-step that
state s2 is encountered by the agent after starting in state s1 and following policy π. The time-step
metric dπT for this MDP can then be defined as

dπT (s1, s2) : =E [T (s2|π, s1)]

dπT is a quasimetric, since the action space and transition function need not be symmetric, meaning the
expected minimum time needed to go from s1 to s2 need not be the same as the expected minimum
time needed to from s2 to s1. The diameter of an MDP [39, 43] is generally calculated by taking
the maximum time-step distance between over all pairs of states in the MDP either under a random
policy or a policy that travels from any state to any other state in as few steps as possible.

B Optimal Transport and Wasserstein-1 Distance

The theory of optimal transport [74, 14] considers the question of how much work must be done to
transport one distribution to another optimally. More concretely, suppose we have a metric space
(M, d) where M is a set and d is a metric on M. See the definitions of metrics and quasimetrics
in Appendix A. For two distributions µ and ν with finite moments on the set M, the Wasserstein-p
distance is denoted by:

Wp(µ, ν) : = inf
ζ∈Z(µ,ν)

E(X,Y )∼ζ [d(X,Y )p]
1/p (10)

where Z is the space of all possible couplings between µ and ν. Put another way, Z is the space of
all possible distributions ζ ∈ ∆(M ×M) whose marginals are µ and ν respectively. Finding this
optimal coupling tells us what is the least amount of work, as measured by d, that needs to be done to
convert µ to ν. This Wasserstein-p distance can then be used as a cost function (negative reward) by
an RL agent to match a given target distribution [75, 19].

Finding the ideal coupling (meaning finding the optimal transport plan from one distribution to the
other) which gives us an accurate distance is generally considered intractable. However, if what we
need is an accurate estimate of the Wasserstein distance and not the optimal transport plan (as is the
case when we mean to use this distance as part of our intrinsic reward) we can turn our attention
to the dual form of this distance. The Kantorovich-Rubinstein duality [74] for the Wasserstein-1
distance on a ground metric d is of particular interest and gives us the following equality:

W1(µ, ν) = sup
Lip(f)≤1

Ey∼ν [f(y)]− Ex∼µ [f(x)] (11)
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where the supremum is over all 1-Lipschitz functions f : M 7 −→ R in the metric space, and the
Lipschitz constant of a function f is defined as:

Lip(f) : = sup

{

|f(y)− f(x)|

d(x, y)
∀(x, y) ∈ M2, x 6= y

}

(12)

That is, the Lipschitz condition of this function f (called the Kantorovich potential function) is
measured according to the metric d. Recently, Jevtić [40] has shown that this dual formulation where
the constraint on the potential function is a smoothness constraint extends to quasimetric spaces as
well. If defined over a quasimetric space, the Wasserstein distance also has properties of a quasimetric
(specifically, the distances are not necessarily symmetric).

If the given metric space is a Euclidean space (d(x, y) = ‖y − x‖2), the Lipschitz bound in Equation
2 can be computed locally as a uniform bound on the gradient of f .

W1(µ, ν) = sup
‖∇f‖≤1

Ey∼ν [f(y)]− Ex∼µ [f(x)] (13)

meaning that f is the solution to an optimization objective with the restriction that ‖∇f(x)‖≤ 1 for
all x ∈ M. This strong bound on the dual in Euclidean space is the one that has been used most in
recent implementations of the Wasserstein generative adversarial network [3, 31] to regularize the
learning of the discriminator function. Such regularization has been found to be effective for stability
in other adversarial learning approaches such as adversarial imitation learning [27].

Practically, the Kantorovich potential function f can be approximated using samples from the two
distributions µ and ν, regularization of the potential function to ensure smoothness, and an expressive
function approximator such as a neural network. A more in depth treatment of the Kantorovich
relaxation and the Kantorovich-Rubinstein duality, as well as their application in metric and Euclidean
spaces using the Wasserstein-1 distance we lay out above, is provided by Peyré and Cuturi [57].

Now consider the problem of goal-conditioned reinforcement learning. Here the target distribution ν
is the goal-conditioned target distribution ρg which is a Dirac at the given goal state. Similarly, the
distribution to be transported µ is the agent’s goal-conditioned state distribution ρπ .

The Wasserstein-1 distance of an agent executing policy π to the goal sg can be expressed in a fairly
straightforward manner as:

W1(ρπ, ρg) =
∑

s∈S

ρπ(s|sg)d(s, sg) (14)

The above is a simplification of Equation 1, where p = 1 and the joint distribution is easy to specify
since the target distribution ρg is a Dirac distribution.

C Lipschitz constant of Potential function

For a given goal sg and all states s0 ∈ S, recall that function f is L-Lipschitz if it follows the
Lipschitz condition as follows.

|f(sg)− f(s0)| ≤ LdπT (s0, sg) ∀s0 ∈ S (15)

Proposition 4. If transitions from the agent policy π are guaranteed to arrive at the goal in finite
time and f is L-bounded in expected transitions, i.e.,

sup
s∈S

E
s′∼π,P

[|f(s′)− f(s)|] ≤ L,

then f is L-Lipschitz.

Proof. Since f(sg)−f(s0) is a scalar quantity, we may write f(sg)−f(s0) = Eπ,P [f(sg)−f(s0)].
Using this fact and that P (T (s0) < ∞) = 1 where T (s0) = Tπ(sg|π, s0) for notation simplicity,

17



the LHS of the expression above becomes a telescopic sum

|f(sg)− f(s0)| = E
π,P

[f(sg)− f(s0)]

= E
π,P





∣

∣

∣

∣

∣

∣

T (s0)−1
∑

t=0

(f(st+1)− f(st))

∣

∣

∣

∣

∣

∣



 .

≤ E
π,P





T (s0)−1
∑

t=0

|f(st+1)− f(st)|



 .

Now let us assume that for all transitions (s, a, s′), E[|f(s′)− f(s)|] ≤ L. Then

E
π,P





T (s0)−1
∑

t=0

|f(st+1)− f(st)|



 = E
T (s0)



 E
π,P





T (s0)−1
∑

t=0

|f(st+1)− f(st)|
∣

∣

∣
T (s0)









≤ E
T (s0)





T (s0)−1
∑

t=0

L





= L E
T (s0)

[T (s0)]

= LdπT (s0, sg),

showing that |f(sg)− f(s0)|≤ LdπT (s0, sg) as desired.

D Proofs of Claims

The Bellman optimality condition gives us the following optimal distance to goal:

d�T (s, sg) =

{

0 if s = sg
1 + mina∈A

∑

s′∈S
P (s′|s, a, sg)d

�
T (s

′, sg) otherwise
(16)

Proposition 1. A lower bound on the value of any state under a policy π can be expressed in terms
of the time-step distance from that state to the goal: V (s0|sg) ≥ γdπ

T (s0,sg).

Proof.

V π(s|sg) = E

[

γT (sg|π,s)
]

≥ γdπ
T (s,sg) ∀ s ∈ S

where the inequality follows as a consequence of Jensen’s inequality and the convex nature of the
value function.

Proposition 2. If the transition dynamics are deterministic, the policy that maximizes expected return
is the policy that minimizes the time-step metric (π∗ = π�).

Proof. Consider the value of a state s given goal sg . If the transitions are deterministic and the agent
policy π is deterministic (as is the case for the optimal policy), then the time to reach the goal satisfies
Var(T (sg|π, s)) = 0, implying that ∆Jensen vanishes and therefore

V π(s|sg) = γdπ
T (s,sg).

Since γ ∈ [0, 1), V π is monotonically decreasing with dπT

argmax
π

V π(s|sg) = argmin
π

dπT (s, sg) ∀ s ∈ S

That is, in the deterministic transition dynamics scenario, π∗ = π�.
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Proposition 3. For a given policy π, the Wasserstein distance of the state visitation measure of that
policy from the goal state distribution ρg under the ground metric dπT can be written as

Wπ
1 (ρπ, ρg) = E

s0∼ρ0

[

h(dπT (s0, sg)) +
γ

1− γ
(∆π

Jensen(s0)− 1)

]

(6)

where h is an increasing function of dπT .

Proof. The first step of the proof is to obtain an analytical expression for the the expected distance to
the goal after t steps as a function of the expected distance at t = 0. To reduce the notation burden,
denote T (s0) = T (sg|π, s0) and let st(s0) be the state after t steps conditional on some starting state
s0 where actions are taken according to π. We have excluded sg and π from the notation since they
are fixed for the purpose of this proposition. Using the law of total expectation we have that for every
initial s0

Est [d(st(s0), sg)] = ET (s0)[Est [d(st(s0), sg) | T (s0)]] = ET (s0)[max(T (s0)− t, 0)],

Now, by expanding the definition of ρπ(s | sg) in equation 5, exchanging the order of summation,
and using the previous equation we may write

Wπ
1 (ρπ, ρg) =

∑

s∈S

∞
∑

t=0

(1− γ)γt
Es0 [P (st = s | π, sg)]d

π
T (s, sg)

= Es0

[

(1− γ)

∞
∑

t=0

γt
Est [d(st(s0), sg) | s0]

]

= Es0

[

ET (s0)

[

(1− γ)

∞
∑

t=0

γt max(T (s0)− t, 0)
∣

∣

∣
s0

]]

Standard but tedious algebraic manipulations given in Lemma 1 in the Appendix show that

∞
∑

t=0

(1− γ)γt max(T (s0)− t, 0) = T (s0)−
γ

1− γ
(1− γT (s0)).

Combining the two identities above we arrive at

Wπ
1 (ρπ, ρg) = Es0

[

ET (s0)

[

T (s0)−
γ

1− γ
(1− γT (s0))

∣

∣

∣
s0

]]

= Es0

[

d(s0, sg)−
γ

1− γ
(1− E[γT (s0) | s0])

]

= Es0

[

d(s0, sg) +
γ

1− γ
γd(s0,sg) −

γ

1− γ
(1− E[γT (s0) | s0] + γd(s0,sg))

]

= Es0

[

d(s0, sg) +
γ

1− γ
γd(s0,sg) +

γ

1− γ
(∆π

Jensen(s0)− 1)

]

.

(17)

To finalize the proof, we only need to show that the function h(µ) = µ+ γ
1−γ γ

µ is monotonically

increasing for every γ ∈ [0, 1). This is a standard calculus exercise that we show in Lemma 2 in
Appendix E.

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein
distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.

Proof. Proposition 2 shows that the Jensen gap vanishes for the optimal policy of an MDP with
deterministic transitions and that it minimizes the expected distance from start for all initial states.
Proposition 3, on the other hand, implies that when the Jensen gap vanishes, the Wasserstein distance
is monotonically increasing in the expected distance from the start. Together, the two propositions
show that π∗ minimizes the Wasserstein distance.
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Algorithm 1: AIM + HER

Input: Agent policy πθ, discriminator fφ, environment env,
number of Epochs N , number of time-steps per epoch K,
policy update period k, discriminator update period m, episode length T ,
replay buffer (for HER), smaller replay buffer (for discriminator)

1 Initialize discriminator parameters φ;
2 Initialize policy parameters θ;
3 for n = 0, 1, . . . , N − 1 do
4 t = 0;
5 goal_reached = True;
6 while t < K do
7 if goal_reached or episode_over then
8 Sample goal sg ∼ σ(G);
9 Sample start state s ∼ ρ0(S);

10 goal_reached = False;
11 episode_over = False;
12 tstart = K;
13 end
14 Sample action a ∼ πθ(·|s, sg);
15 s′ = env.step(a);
16 if s′ = sg then
17 goal_reached = True;
18 end

// end episode if goal not reached in T steps

19 if t− tstart = T then
20 episode_over = True;
21 end
22 Add (s, a, s′, sg, goal_reached) to replay buffer and smaller replay buffer;
23 if goal_reached or episode_over then
24 Add hindsight goals to both buffers;
25 end

// Update policy parameters θ every k steps

26 if t%k = 0 then
27 Sample tuples (s, a, s′, sg, goal_reached) from replay buffer;
28 Get intrinsic reward (Equation 9);
29 Update policy parameters θ using any off-policy learning algorithm;
30 end

// Update discriminator parameters φ every m steps

31 if t%m = 0 then
32 Sample tuples (s, a, s′, sg, goal_reached) from smaller replay buffer;
33 Update discriminator parameters φ using Equation 8;
34 end
35 t = t+ 1;
36 end
37 Evaluate agent policy;
38 end

E Auxiliary results for Proposition 3

Lemma 1. Let T be a positive integer. Then

∞
∑

t=0

(1− γ)γt max(T − t, 0) = T −
γ

1− γ
(1− γT ).
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Proof. Direct computation gives

(1− γ)
∞
∑

t=0

γt max(T − t, 0) = (1− γ)
T−1
∑

t=0

γt(T − t)

= (1− γ)T

T−1
∑

t=0

γt − (1− γ)

T−1
∑

t=0

tγt

We will now simplify the two terms of the last expression. For the first one, have

(1− γ)T

T−1
∑

t=0

γt = (1− γ)T
1− γT

1− γ
= T − TγT .

For the second one, the computations are a bit more involved

(1− γ)

T−1
∑

t=0

tγt = (1− γ)γ

T−1
∑

t=1

tγt−1

= (1− γ)

T−1
∑

t=1

γ
d

dγ
γt

= γ(1− γ)
d

dγ

T−1
∑

t=0

γt

= γ(1− γ)
d

dγ

1− γT

1− γ

=
γ

(1− γ)

(

−TγT−1(1− γ) + (1− γT )
)

= −TγT +
γ

(1− γ)
(1− γT ).

When combining the two simplified expressions the terms with TγT will cancel out, yielding the
desired expression.

Lemma 2. The function hγ(µ) = µ+ γ
1−γ γ

µ is monotonically increasing for every γ ∈ [0, 1).

Proof. We must show that d
dµhγ(µ) > 0 for every γ ∈ [0, 1) and every µ > 0. Computing the

derivative directly we obtain

d

dµ
hγ(µ) = 1 +

log(γ)γµ+1

1− γ
.

Thus, it will suffice to show that the second term above is greater than -1. For this purpose, first note
that log(γ)γµ+1 > log(γ) since γ < 1. Now, we use the fact that log(γ) < 1− γ for γ < 1. This
can be verified noting that 1− γ is the tangent line to the concave curve log(γ) and the curves meet
at γ = 1. And therefore log(γ)/(1− γ) > −1. Putting these observation together,

d

dµ
hγ(µ) = 1 +

log(γ)γµ+1

1− γ
> 1 +

log(γ)

1− γ
> 1− 1 = 0,

concluding the proof.

F Grid World Experiments

Basic experiment The environment is a 10× 10 grid with 4 discrete actions that take the agent in
the 4 cardinal directions unless blocked by a wall or the edge of the grid. The agent policy is learned
using soft Q-learning [32], with an entropy coefficient of 0.1 and a discount factor of γ = 0.99. We
do not use hindsight goals for this experiment, and use a single buffer with size 5000 for both the
policy as well as the discriminator training. The results are discussed in the main text. The compute
used to conduct these experiments was a personal laptop with an Intel i7 Processor and 16 GB of
RAM.
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the regularization loss is:

La =
1

N

N
∑

i=1

[max(|πθ(si)|−0.8, 0)]
2

where N is the mini-batch size and si is the state for the ith transition in the batch.

The other modification made to the stable baselines code is to use the Huber loss instead of the
squared loss for Q-learning.

For evaluation, in the Reach domain the agent policy is evaluated for 100 episodes every 2000 steps.
For the other three domains, the experiment is run for 1 million timesteps, and evaluated at every
20,000 steps for 100 episodes.

H.1 TD3 and HER (R + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 10
gradient_steps 10

τ (target policy update rate) 0.05

H.2 Dense reward TD3 and HER (dense + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
policy_delay 5

τ (target policy update rate) 0.05
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H.3 TD3 and HER with AIM (AIM + HER) and (AIM + R + HER)

Hyperparameter Value

n_sampled_goal 4
goal_selection_strategy future

buffer_size 106

batch_size 256
γ (discount factor) 0.9

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1−3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
disc_train_freq 100

disc_steps 20
τ (target policy update rate) 0.1
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