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Abstract

Learning a stable Linear Dynamical System (LDS) from data involves creating
models that both minimize reconstruction error and enforce stability of the learned
representation. We propose a novel algorithm for learning stable LDSs. Using
a recent characterization of stable matrices, we present an optimization method
that ensures stability at every step and iteratively improves the reconstruction
error using gradient directions derived in this paper. When applied to LDSs
with inputs, our approach—in contrast to current methods for learning stable
LDSs—updates both the state and control matrices, expanding the solution space
and allowing for models with lower reconstruction error. We apply our algo-
rithm in simulations and experiments to a variety of problems, including learning
dynamic textures from image sequences and controlling a robotic manipulator.
Compared to existing approaches, our proposed method achieves an orders-of-
magnitude improvement in reconstruction error and superior results in terms of
control performance. In addition, it is provably more memory efficient, with
an O(n?) space complexity compared to O(n*) of competing alternatives, thus
scaling to higher-dimensional systems when the other methods fail. The code
of the proposed algorithm and animations of the results can be found at https:
//github.com/giorgosmamakoukas/MemoryEfficientStableLDS.

1 Introduction

Linear dynamical systems arise in many areas of machine learning and time series modeling with
active research applications in computer vision [2], robotics [28], and control [8, 19, 20]. Linear
representations are often desirable because they admit closed-form solutions, simplify modeling,
and are general enough to be useful in many applications (e.g. Kalman filters). Further, there are
well-established tools for the analysis (e.g. investigating properties of a system, such as stability
and dissipativity), prediction, estimation, and control of linear systems [16]. They are, in general,
computationally more efficient than nonlinear systems and highly promising candidates for real-time
applications or data-intensive tasks. Last but not least, linear dynamical models can also be used to
capture nonlinear systems using Koopman operators, which linearly evolve nonlinear functions of the
states [22, 4, 27, 15].

LDSs are models that are learned in a self-supervised manner and are therefore promising for
data-driven applications. Consequently, with the availability of higher computational power and
the wide applicability of data-driven modeling, there is renewed interest in learning LDSs from
data. Examples include learning spatio-temporal data for dynamic texture classification [2, 10],
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video action recognition [24, 37], robotic tactile sensing [25] and nonlinear control using Koopman
operators [4, 3]. Although linear system identification is a well-studied subject [26, 29], algorithms
that learn LDSs from data have often overlooked important properties, such as stability.

Stability describes the long-term behavior of a system and is critical both for numerical computations
to converge and to accurately represent the true properties of many physical systems. When stability
is overlooked, the learned model may be unstable even when the underlying dynamics are stable [7],
in which case the long-term prediction accuracy dramatically suffers. This is why there are increasing
efforts to impose stability on data-driven models [2, 18, 21, 11, 1]. However, the available methods
do not scale well or are not applicable for control.

In this work, we present a novel method for learning stable LDSs for prediction and control. Using a
recent characterization of matrix stability [14], we derive a gradient-descent algorithm that iteratively
improves the reconstruction error of a projected stable model. Contrary to current top-performing
methods that start from the least-squares (LS) solution and iteratively push the LDSs towards the
stability region, our method enforces stability in each step. As a result, it returns a stable LDS even
after one single iteration. This feature can become crucial in online applications and time-sensitive
tasks where obtaining a stable state-transition matrix as early in the optimization process as possible
becomes of central importance. Furthermore, whereas alternative methods terminate upon reaching
stability, our method can iterate on already stable solutions to improve the reconstruction error. It can
therefore be used to further improve the solutions of other methods.

Our proposed method is provably more memory efficient, with an O(n?) space complexity—n
being the state dimension—compared to O(n?) of the competing alternative schemes for stable LDS.
For systems with inputs, we derive the gradient directions that update both state and control linear
matrices. By doing so, we expand the space of possible solutions and enable the discovery of models
achieving lower error metrics compared to searching only for a stable state matrix which, to the best
of our knowledge, is what the current top-performing algorithms do.

To demonstrate the superior performance of our method, we test it on the task of learning dynamic
textures from videos (using benchmark datasets that have been used to assess models that learn stable
LDSs), as well as learning and controlling (in simulation and experiment) the Franka Emika Panda
robotic arm [12]. When compared to the current top-performing models, a constraint generation
(CG) [2] and a weighted least squares (WLS) [18] approach, our method achieves an orders-of-
magnitude lower reconstruction error, robustness even in low-resource settings, and better control
performance. Notably, our approach is the first that tests the control performance of stable LDS; CG
has been formulated but not evaluated for control tasks and it is not straightforward that WLS can be
implemented for such applications, as the results in this paper suggest.

The paper is structured as follows. In Section II, we review linear systems and stability. In Section III,
we introduce and derive the proposed algorithm for learning stable LDSs. In Section IV, we compare
our method to competing alternative algorithms that learn stable LDSs in prediction and control. In
Section V, we discuss our findings and point to areas for future research.

2 Linear Dynamical Systems

We consider states z € RY, controls u € RM and discrete time LDSs modeled as
Yt = It+1 = A,It —+ B’LLt7 (1)

where A € RV*N and B € RV*M are the state and control matrices, respectively. For systems
without inputs, one can simply set B = 0. We use Sa,5 = {(4, B) | 441 = Az + Bu} to
denote the solution space of the matrices A and B that describe a LDS of the form (1). Further, let
{Xi(A)}Y | be the eigenvalues of an N x N matrix A in decreasing order of magnitude, p(A4) =
[A1(A)| be the spectral radius of A, and S be the set of all stable matrices of size N x N.

2.1 Learning Data-Driven LDSs

Next, we provide an overview of data-driven learning of LDSs. First, we consider systems without
control for which CG and WLS were developed. Later, in Section 3, we modify the learning objective
to include control terms and learn stable representations for LDSs with inputs.



Given p pairs of measurements (¢, y; ), learning LDSs from data typically takes the form
.1 )
A_lgf §||Y_AX||F’ (2)

where Y = [y1ya ... yp] € RV*P, X = [z1 25 ... xp] € RV*P and || - || is the Frobenius norm.
The LS solution is then computed as

A =YX 3)
where X T denotes the Moore-Penrose inverse of X . The optimization problem in (2) does not impose
stability constraints on A. To learn stable LDSs, the learning objective is typically formulated as

A 1
A=inf Z|lY — AX|3
inf 5| [ “)
and is highly nonconvex.

The current top-performing methods for computing stable LDSs are a constraint generation [2] and
a weighted least squares [18] approach. CG formulates the optimization as a quadratic program
without constraints, which is an approximation to the original problem. It then iterates on the solution
to the approximate optimization by adding constraints and terminates when a stable solution is
reached. WLS determines the components of the LS transition matrix that cause instability and uses a
weight matrix to enforce stability, while minimizing the reconstruction error. Note that both methods
consider an entire sequence of observations, say D € RY*P, such that X = Dig.p—1yand Y = Dy,
thereby making the assumption that all measurements belong to a unique time-series dataset. In the
case of the WLS method, this assumption is necessary and the method fails dramatically for datasets
with disjoint windows of time, as we demonstrate later in Section 4.3. CG and our proposed method,
on the other hand, do not require contiguous observations.

2.2 Subspace Methods

For high-dimensional LDSs, as is the case with image reconstruction, it is computationally prohibitive
to learn a state transition matrix. Even for small images of size 100 x 100 pixels, the dimensionality
of the state transition matrix A would be 100*. For such high-dimensional systems, models are
obtained using subspace methods that reduce the dimensionality of the learning task. Subspace
methods for learning LDSs typically apply singular value decomposition (SVD) on the original
dataset [17] decomposing the observation matrix D ~ ULV T, where Y € RV*" V € RPX" are
orthonormal matrices, ¥ = {o1,...,0,} € R"*" contains the r largest singular values, and r < N
is the subspace dimension. Then, the learning optimization is performed on the reduced observation
matrix D, = V7T, with X, = Dyjg.p—1) and Y, = Dy1.p). U is used to project the solutions back
to the original state space. For a more complete description of standard subspace methods, the reader
can refer to [6, 30, 33, 36, 35].

3 The Algorithm

The optimization problem for finding stable LDSs has traditionally only considered solving for a
stable matrix A that minimizes the reconstruction loss. In this work, we formulate the objective as

| )
A,B]= it S|IY - AX - BUJ, )

to expand the solution space and solve both for a stable state matrix A and a matrix B. We denote the
least-square solution for the control system by [A;, Bs] = Y - [X; U]T.

3.1 Optimization Objective and Gradient Descents

The proposed algorithm uses a recent characterization of stable matrices [14]. Specifically, a matrix
A is stable if and only if it can be written as A = S —10CS, where S is invertible, O is orthogonal,
and C' is a positive semidefinite contraction (that is, C'is a positive semidefinite matrix with norm
less than or equal to 1). By constraining the norm of C, one bounds the eigenvalues of A and ensures
stability. Using this property, we formulate the optimization problem as

1

[A,B] = in -
50,0 orthogonal,C>=0,||C||<1 2

|y —S~'OCSX — BU|%, (6)



where A = S~10CS. Then, for f(S,0,C, B) = Y — S~'OCSX — BU|/%, we derive the
gradient directions with respect to the four matrices .S, O, C, and B as follows:

Vsf(S,0,0,B) =S~ TEXTSTcToTs~T - cTOoTS TEXT (7)
Vof(S,0,0,B)=— S TEXTSTCT (8)
Vef(S,0,C,B)=—- 0TS TEXTST )
Vsf(S,0,0,B)=—EUT (10)

where E = Y — S~1OCSX — BU. Due to space constraints, the derivation of the gradients is
presented in the supplementary material. We then use the fast projected gradient descent optimization
from [13] to reach a local minimum of the reconstruction cost. The algorithmic steps are presented
in Algorithm 1. The proposed algorithm enforces stability in every iteration step by projecting the
solution onto the feasible set. For more details, the reader can refer to [13] or the provided code.

Henceforth, we refer to our proposed algorithm as SOC. Note that, contrary to CG and WLS that
search stable LDSs in S4 p,, by iterating over only A, SOC updates both linear matrices A and B,
thereby expanding the feasible solution space to S4 g, where S4 g O S4,p,.. Further, SOC does
not assume time continuity of the training measurements, contrary to WLS. The novelty of SOC with
respect to [14] is the derivation of new gradient directions that not only account for control inputs,
but that are also calculated so as to best fit training measurements instead of finding the nearest stable
solution to an initial unstable matrix.

Algorithm 1 SOC Algorithm using Fast Gradient Method (FGM) with restart from [13]

Input: XY, U > State and control measurements
Output: A €S, B > Stable LDS
1: Tnitialize Z = (S, 0, C, B), kmazsYo» A € (0,1), a; € (0,1)
2. L =7
3: while £ < kzmAax do .
4: Zy =P(Z —=Vf(Z)); v=" > P is the projection to the feasible set
5: while f(Z,) > f(Z) and y > 7, do > Line search to find gradient step size
6 Zy =P(Z -V f(Z))
7 Y =M\
8: end while
9: if v < vnin then > If line search fails, FGM restarts
10: \ Z:Z;ak:al
11: else > If cost is decreased, the solution is stored
ap(l—ay
122 | | apgr = 3(Vap +403 —al); B, = M
13: ‘ ZZZ}C-i-ﬂk(Zk—Z);Z:Zk
14: end if

15: end while
16: A=8"10CS
17: return A € S, B

4 Experiments

We implement LS, CG, WLS, and the proposed SOC method for learning LDSs and compare their
performance on dynamical systems with and without control inputs. We omit the seminal work of
[23] in our comparisons as it has been outperformed in terms of error, scalability, and execution time
by both CG and WLS. For systems without inputs, we focus on learning dynamic texture from frame
sequences extracted from videos using standard benchmark datasets [32, 5, 31]. For systems with
inputs, we use experimental data from the Franka Emika Panda robotic manipulator and illustrate the
learning and control performance of all the methods considered. We split the results in three parts:
memory requirements, reconstruction error performance, and control performance. For an impartial
assessment, we perform all comparisons in MATLAB using the publicly available code of the CG
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Figure 1: Memory usage as a function of dimensions r, where ¢; = 8/22°. CG and WLS scale
proportionately to 74, whereas SOC scales proportionately to 72. For r = 150, SOC uses about 5.04
MB, whereas CG and WLS about 3.78 GB. Due to memory limits, WLS and CG failed to run at
higher dimensions.

and WLS algorithms'. All simulations are performed using MATLAB R2019b on a machine with a
14-core Intel E5-2680v4 2.4-GHz CPU with 20GB RAM.

4.1 Memory Usage

First, we compare the three algorithms on their memory demands. For an objective comparison, we
only measure the size of all MATLAB workspace variables created by the algorithms. That is, we
consider a matrix with 4 double-precision cells to use 32 bytes. We compare the algorithms on a
sequence of frames extracted from a coffee cup video downloaded from Youtube?. We use this video
because it exhibits dynamical motion and has a sufficient number of frames to allow for relatively
higher subspace dimensions (the SVD decomposition limits the subspace dimension to be no larger
than the number of frames).

The results are shown in Figure 1. SOC scales proportionately to r2, whereas both CG and WLS scale
proportionately to 74, This is because CG and WLS both rely on solving a quadratic programming
problem with a state dimension n2, which generates matrices of dimension n*, whereas SOC uses
a gradient descent approach that employs only matrix inversion, transposition, multiplication and
addition, all of which are operations of space complexity O(n?). Atr = 150, SOC uses about 5.04
MB of memory; CG and WLS use about 3.78 GB of memory and fail to run at higher dimensions
due to memory constraints. Though such high dimensions may perhaps seem out of scope for the
image reconstruction examples demonstrated next, they can typically occur in the field of robotics.
For example, a recent study [3] used a linear data-driven Koopman representation with dimensions
r = 330 to identify and control a pneumatic soft robotic arm. For this dimension, WLS and CG
would require about 88 GB of memory and SOC would need about 25 MB. As a result, only SOC
would be able to successfully train a stable Koopman model on a standard personal laptop and, as we
show in the control performance section, failing to impose stability on the learned model can lead to
unsafe robot movements.

4.2 Error Performance

To measure the predictive accuracy of the learned representations, we use three benchmark datasets:
UCLA [32], UCSD [5], and DynTex [31]. The UCLA dataset consists of 200 gray-scale frame
sequences that demonstrate 50 different categories of dynamic motion (e.g. flame flickering, wave
motion, flowers in the wind), each captured from 4 different viewpoints. Every frame sequence
contains 75 frames of size 48 x 48 pixels. The UCSD dataset consists of 254 frame sequences
showing highway traffic in different environmental conditions. Each sequence contains between 42
and 52 frames of size 48 x 48 pixels. For the DynTex dataset, we use 99 sequences from 5 groups of

"https://github.com/huangwb/LDS-toolbox
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Figure 2: Learning performance of CG, WLS, and SOC for varying subspace dimensions performed
on three datasets: UCLA, UCSD, and DynTex. In all cases, SOC has the highest best error frequency,
has lower average error and, in terms of execution time, scales better than the other methods.

dynamic texture (smoke and rotation from the Beta subset and foliage, escalator, and flags
from the Gamma subset) that exhibit periodic motion. The frames are of size 352 x 288 pixels.
We convert the frames to grayscale and use the bicubic interpolation algorithm implemented in the
Python library pillow to scale down the frames without ratio distortion down to 48 x 39 pixels.
Each DynTex sequence contains between 250 and 1576 frames.

As explained in Section 2, the dimensionality of images can be prohibitively high and cause slow
computations or memory failures: the transition matrix for an image of size as small as 48 x 48 pixels
would require hundreds of TBs for CG and WLS to run. For this reason, we use subspace methods
to reduce the problem dimensionality. For each dataset, we consider a set of subspace dimensions
r € {3,30}. Then, for each dimension, we use the four methods (LS, CG, WLS, and SOC) to obtain
a LDS for each of the frame sequences. To compare the performance of the four algorithms, we use

the reconstruction error relative to the LS solution: e(A4) = % x 100.

(< Als

We report the results in Figure 2 and focus on three metrics: best error frequency, average reconstruc-
tion error, and execution time. The best error graphs plot the percentage of frame sequences for a
given dimension for which an algorithm computes the best relative error (that is, lower than or equal
to the other two methods). This metric credits all schemes that achieve the lowest error and so curves
may add up to more than 100%. The average error and time graphs show the average reconstruction
error and average execution time of all frame sequences for each dimension, respectively.

Across the three datasets, SOC computes the best error for more frame sequences than the other
methods across any dimension. In the UCLA and UCSD datasets, the SOC best error frequency
reaches 100% for the majority of the dimensions contrary to less than 80% (for UCLA) and 40% (for
UCSD) attained by CG and WLS. This means that, for the aforementioned datasets, CG and WLS
only rarely find a better solution than SOC. While for the DynTex dataset the differences are not as
pronounced, SOC still computes the best error for most of the frame sequences for any dimension



Table 1: Performance on the steam, fountain, and coffee cup sequences. Results that did not
converge to a stable solution are indicated with —.

SOC CG WLS SOC CG WLS SOC CG WLS
(r=20) (r=40) (r=280)
steam
1] 1 1 1 1 1 1 1 1 1
o1 1.06 1.03 1.07 1.10 1.03 1.10 2.03 1.05 4.64
e(/l) 12.32 28.05 2494 5.59 2490 21.27 6.38 25.21 10.98
time (s) | 0.36 0.22 0.53 1.48 9.76 15.82 5.45 1146.23  456.11
fountain
1] 1 1 1 1 1 1 1 - -
ol 1.11 1.00 1.11 1.43 1.01 1.43 1.04 - -
e(A) 0.001 1.07 0.004 | 0.0005 2.97 0.0007 | 169.38 - -
time 1.52 0.48 0.18 3.18 15.40 0.84 5.96 - 63.85

coffee cup
1] 1 1 1 1 1 1 1 1 1
o1 1.02 1 1.21 1.04 1.01 1.79 1.11 1.07 1.09

e(4) 285 620 32121 | 3.30 5.84 56217 | 0.36 1.08 2.14
time 0.27 30.71 044 0.95 2.99 9.28 38.30 24.25 6.44

f=25 f=50 f=75

f=75

Data

f— 1000

E500,
ol

Figure 3: Synthesized sequences generated by LS, SOC, CG, and WLS for = 40. Supporting videos
can be found at https://github.com/giorgosmamakoukas/MemoryEfficientStablelDS.

and about 20% more often than the other methods. Second, SOC has orders-of-magnitude lower
average relative error across all dimensions and datasets. Last, in terms of the execution time, SOC
is slower than CG and WLS for low dimensions (r < 20). However, it scales better than the other
two methods, such that it becomes faster than CG for > 20. For the UCSD dataset, SOC and WLS
become comparable in terms of average execution time near n = 30. This observation is in line with
the fact that CG and WLS are high space-complexity algorithms that may even fail to perform at high
dimensions due to memory limitations.

Next, we compare the three methods on the steam sequence (composed of 120 x 170 pixel images)
and the fountain sequence (composed of 150 x 90 pixel images) from the MIT temporal texture
database [34], together with the coffee cup sequence used in Figure 1. Results are shown in Table
1. To show the effect on the predictive quality of the solutions, we plot the frames reconstructed
from the learned LDS for each method in Figure 3. Note that the LS solution degrades over time and
generates unrealistic frames.

4.3 Control

In this section, we demonstrate the superior performance of our approach in control systems. Using
experimental data gathered from the robotic arm Franka Emika Panda, we illustrate the improvement
in both the reconstruction error of the learned model and the control performance. To use CG and
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Figure 4: From left to right: simulation environment, physical robot, and experimental training data.

Table 2: Errors of stable LDS using experimental data from the Franka Emika Panda manipulator.

Measurements 50 75 100 150 200 300 500
SOC 0.01 0.56 | 0.0001 0.06 0.05 0.09 0.05

CG 50.14 | 32.77 | 11.66 - - 1.40 0.23
WLS 17.00 - - 124.01 | 36.63 | 25.17 | 42.01

WLS to compute a stable A, we use the LS solution for the control matrix and modify the objective to
i 1 / 2
A=inf S|V~ AX|F, (11)

where Y’ =Y — B U. The learning performance is then measured as the % error increase when

compared to the LS solution (A5, B;s). Note that this error depends both on Aand B ; for WLS and
CG, we use the LS solution for the control matrix (B = Bj;), whereas SOC computes both A and B.

We collected training data on the experimental platform at 50 Hz, using a controller to manually move
the robotic arm. We gathered 400 measurements (8 seconds) in eight separate runs. The training
data, along with the experimental and simulation environments used in this section are shown in
Figure 4. Table 2 compares the performance of the SOC, CG, and WLS algorithms on learning stable
models for the Franka Emika Panda robotic manipulator using experimental data. The performance is
compared for different numbers of measurements p. As the data show, SOC is the only algorithm that
never fails to find stable solutions, regardless of the amount of training data. As more measurements
are used, the LS solution itself becomes more stable and CG and WLS are both able to converge to
stable solutions. Further, the quality of CG solutions improves with more training measurements; the
performance of SOC remains robust throughout the testing cases.

In Figure 5, we plot the reconstruction error for the three methods for different training data sizes. In
this setting, however, measurement sets (z;, ¥, u+) are randomly drawn from the training data such
that the matrices Y and X have discontiguous measurements. Note how such a choice worsens the
performance of WLS that assumes continuity in the observation matrices. On the other hand, CG and
SOC are similar in learning performance.

With regard to controlling the system, we use LQR control computed using the models from each
algorithm and simulate tracking a figure-8 pattern. The states are the x, y, z coordinates of the end
effector, the 7 joint angles of the arm, and the 7 joint angular velocities and the applied control is the
joint velocities. The trajectory is generated in the y — z plane for the end effector; the desired angle
configurations of the robotic arm are solved offline using inverse kinematics; the desired angular joint
velocities are set to 0. LQR control is generated using Q = diag([c;]) € R17*'7, where ¢; = 1 for
i € {1,10} and O elsewhere and R = 0.1 x I7x7.

The LS model is unstable and fails at the task. Similarly, WLS—despite the stable model—performs
poorly, highlighting the need for both stability and fidelity of the learned representation. On the other
hand, CG and SOC are similar in performance.

To measure robustness across the initial conditions, we run 50 trials, varying both the y and z initial
positions with displacements sampled uniformly in 2/(—0.1,0.1). Across all trials, LS has an average
error of 7556, WLS scores 38.73, CG scores 0.0810 and SOC scores 0.0799.
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shows the performance of the controllers after training with 100 measurements sampled randomly
(2 seconds worth of data); the right figure shows the control performance of SOC after manually
introducing disturbances to the position of the end effector.
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Figure 6: Experimental tracking of a figure-8 pattern using the Franka Emika Panda robotic manipu-
lator. The left figure shows, from top to bottom, snapshots of the control maneuver; the rest figures
show the trajectories of three trials. The three trials are almost identical, showing the robustness
of the method. The applied control is computed with an LQR policy using the stable LDS system
obtained from the SOC algorithm. The training data are obtained using 600 measurements.

Then, we test LQR control computed on the LDS obtained from the SOC algorithm in an experiment
to demonstrate that the simulation results are indicative of the performance in a physical experiment.
Figure 6 shows the control performance of three trials tracking a figure-8 pattern. Due to COVID-19
limitations, we were unable to extend the experimental tests. However, these results serve primarily
to experimentally validate our approach and illustrate that the simulation results are an accurate
prediction of the experimental behavior as well.

5 Conclusion

In this work, we introduce a novel algorithm for computing stable LDSs. Compared to the current
top-performing alternatives, the proposed scheme is significantly more memory efficient and, as a
result, scales better for high-dimensional systems often encountered in image processing and robotic
applications. Further, the suggested method outperforms the alternatives in terms of error and control
performance, as demonstrated on three benchmark datasets and the Franka Emika Panda robotic
arm experiments. These features make it a promising tool for compression and data-driven system
identification tasks.

Coupled with the ongoing research around Koopman-operator-based nonlinear control, this algorithm
can be a promising candidate for high-dimensional nonlinear control and other machine learning
applications, as well. Indeed, recent work in [9] uses Koopman operators to optimize training of
neural network methods; also work in [38] learns deep neural network models for Koopman operators
of nonlinear dynamical systems. Imposing stability on Koopman operators represented using basis
functions learned via deep learning will combine the benefits of linear representations with the
predictive power of neural networks.



Broader Impact

Our methods can improve robotic tasks that are safety-critical, particularly those that include a
human-in-the-loop (such as rehabilitation devices and prosthetics) where the human-robot interaction
dynamics are not known ahead of time. For such tasks, a robotic platform prioritizes stability and
safety during operation. Unstable data-driven models may lead to catastrophic robotic behavior, as
we demonstrate in our simulations with the Franka Emika Panda robotic arm. Our work provides a
mechanism for online learning of models that satisfy stability constraints, improving the safety and
reliability of closed-loop control of those systems.
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