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Abstract.  Using data from the audit trail of an electronic medical record system, 
we examine the effects of a disruption on the clinical documentation process. We 
use process mining to construct a network that describes the process and then we 
use a latent factor selection model to analyze changes to that network. Rather 
than attempting to discover a particular process model, our goal is to identify 
theory-based factors that explain change and stability in the overall pattern of 
actions.  We conduct the analysis at two levels of granularity and we compare 
time periods with and without disruption. The paper contributes to current re-
search on routine dynamics as network dynamics by demonstrating the use of 
network science to predict the structure of an organizational routine. 
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1 Introduction 

Organizational routines (defined as recognizable, repetitive patterns of interdependent 
action carried out by multiple actors) are a foundational element in the science of or-
ganization [1]. Over the last 20 years, the field of routine dynamics has focused on the 
mechanisms of endogenous change: change that occurs in the absence of external in-
fluences.  
In this paper, we turn our attention to the effects of exogenous disruptions: When 

routines are disrupted, are how does the overall pattern of action change? Other papers 
have studied disruptions (e.g., [2]), but this is the first to apply concepts from network 
science to explain the dynamics of organizational routines. We model routines as di-
rected graphs [3], known in the process management literature as “directly follows 
graphs” [4]. Using latent factor selection models [5], we study the effects of disruptions 
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on the structure of the network. In social networks, mechanisms like reciprocity, ho-
mophily, and preferential attachment contribute to formation and dissolution of net-
work ties [6], but analogous network-based mechanisms have never been defined or 
investigated in the context of organizational routines.  
This paper offers a first step towards defining and testing mechanisms that drive 

routine dynamics. As a sophisticated tool to model and measure process change and 
theory to explain patterns of actions, process mining and routine dynamics have poten-
tial to be mutual complementary, but there has been disconnection between two areas 
[7]. In this study, we provide implications with respect to intersection of process man-
agement and routine dynamics by using a deductive method of process mining to ex-
amine dynamics of routines in organizations [8]. 

2 Background 

Routine dynamics concerns understanding the mechanisms that influence stability or 
change in action patterns [9]. When action patterns persist over time, this persistence 
can be interpreted in several ways, such as inertia [10], resistance [11], persistence [12], 
regeneration [13], or resilience [14]. Schulz [15] offers an encyclopedic list of mecha-
nisms that keeps routines "on track", ranging from very macro (institutional norms) to 
very micro (neuronal priming). Network structure does not appear in the list of mecha-
nisms because at that time, nobody was thinking about modeling routines as directed 
graphs. But as routines are repeated related actions, they can be understood in terms of 
the evolution or stability of networks representing the relationships among actions. The-
oretical explanations of routine persistence did not consider the structure of the routine 
itself.   

2.1 Routine dynamics as network dynamics  

Organizational routines can be seen as patterns of action [1, 16]. These patterns can be 
represented as a valued, directed graph where the vertices represent categories of action 
and the edges represent sequential relations between those categories [3]. In process 
mining, this is called a "directly follows graph" (DFG) [4].  Where a conventional social 
network represents relations between actors (e.g., people), a DFG represents relations 
between categories (or clusters) of actions. In research on organizational routines, these 
graphs are most often referred to as “narrative networks” [17]. 
To model network dynamics, we need to explain edge formation/dissolution, which 

is the fundamental mechanism of network dynamics [6]. The structure of the network 
changes as edges are added or deleted. In social network research, models that predict 
edge formation or deletion are often referred to as selection models because they predict 
how people select other people as interaction partners [18]. There are some well-estab-
lished selection mechanisms in social networks, such as homophily and preferential 
attachment, that drive network dynamics (edge selection).  Our goal here is to begin, 
for the first time, to identify and test mechanisms that drive routine dynamics.  
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To address this issue, we use two different levels of granularity; 1) a fine-grained 
level consisting of screens and clicks and 2) a coarse-grained level composed of touch-
point and handoffs. In this study, we use the expanded concept of handoffs as a sequen-
tial relationship between not just people, but also between events [3]. As a repetitive 
patterns of sequentially related events, we can view organizational routines as a series 
of handoffs [19, 20].   
Our main theoretical concern is the extent to which network structure itself has an 

influence on routine dynamics. If it does, it would provide a new theoretical mechanism 
to explain and predict the inertia/persistence/resilience of routines, complementary to 
existing explanations. 

2.2 Research setting and data 

This analysis is based on data from one outpatient dermatology clinic at the University 
of Rochester Medical Center (URMC). We compare the pattern of action before and 
after the start of flu season (September 1, 2016). From prior research on this clinic, we 
know that flu season causes a measurable change in the EHR audit trail, as shown in 
Figure 1 [7]. Figure 1 describes changes in the structure of the clinical documentation 
process over time compared to a fixed reference. In particular, it uses cosine distance 
to show how the repertoire of actions used in the process changes over time. Each point 
in Figure 1 represents one day. It shows that the repertoire of actions changes abruptly 
at the beginning of flu season. This is because a new set of actions is added to the system 
to track and support seasonal vaccination. Later, at the end of flu season, the repertoire 
of actions changes back. However, Figure 1 is purely descriptive. Our goal here is to 
move beyond description to provide a theory-based model that can help explain how 
the pattern of action responds to this exogenous disruption.  
 

 
Fig. 1: Flu season disrupts the normal clinical routine 
(Adapted from Pentland, Vaast and Wolf [7]) 

 
In this paper, we focus on three weeks of data from one clinic. We examine the pattern 
of action two weeks prior to flu season and one week after. This is a small subset of the 
data collected for the larger project, but it is adequate to demonstrate our approach. 
Unlike a typical exercise in process mining, our goal is not to discover a process model. 
Rather, we are trying to identify factors that influence changes in the process.  

Flu season 
disruption
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2.3 Two levels of granularity 

We analyze data extracted from the audit trail of the EPIC Electronic Medical Record 
(EMR) system. The subset of records used here includes detailed, time-stamped records 
of EMR utilization in 627 patient visits at one clinic from August 18, 2016 (two weeks 
before the start of flu season) to September 7, 2016 (one week after). The middle col-
umn of Figure 2 includes a brief example of the audit trail data.  
 

 
Fig. 2: EMR audit trail can be interpreted at two levels of granularity 

 
Figure 2 shows how ThreadNet (Pentland et al, 2020) can be used to convert EMR audit 
trails into networks at two different levels of granularity. At the center of Figure 2 is a 
small part of an audit trail where each row is a time-stamped action. On the left side of 
Figure 2, ThreadNet can produce a very fine-grained network by considering each 
unique row as a node. At the fine-grained level, edges represent pairs of actions within 
the EMR system.  On the right side of Figure 2, ThreadNet can produce a coarse grained 
network where each node consists of a group of actions and each edge can be interpreted 
as a handoff [3].  For example, in Figure 2, there is a handoff between the Admin Tech 
and the Nurse, and then another handoff back to the Admin Tech.  We test our theory 
of network dynamics at both of these levels.  
We examine this disruption at two levels of granularity because we expect the effects 

to be different. At the fine-grained level, flu season directly changes the repertoire of 
actions in the network.   On September 1, a set of actions was added to the network. 
Office staff were prompted to ask all incoming patients about their vaccination status 
and patients were invited to schedule (or receive) a vaccination.  This had a visible 
impact on the clinical documentation process, but the main work of the dermatology 
clinic was not otherwise affected. This would lead us to expect changes to the pattern 
of action at the fine-grained level, but not necessarily at the coarse-grained level. 
Pentland, Vaast and Wolf [7] report that the medical staff (physicians and nurses) were 
unaware of any particular changes in their work processes for the time period in ques-
tion. From their point of view, there was no disruption at all.  

EMR Audit Trail
Fine Grained network
”Screens and Clicks”

Coarse Grained network
”Touchpoints and Handoffs”

Touchpoint

Handoff

ThreadNetThreadNet
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3 Hypothesis development 

Network dynamics can be defined in terms of two basic processes: edge formation and 
edge dissolution [6]. As with models of social networks, we recognize that formation 
of new edges is a different process than dissolution of existing edges. In a network 
model of a routine, an edge represents the sequential relationship of two actions or 
events. New sequential relationships might form for a variety of reasons that seem dif-
ficult to predict and generalize (experimentation, workaround, error, etc.) Therefore, 
we focus on mechanisms that influence the persistence (or dissolution) of existing 
edges.  For brevity, we discuss and phrase the hypotheses in terms of handoffs, in the 
general sense of the term used by Pentland, Recker and Wyner [3]. A handoff is simply 
an edge in a narrative network.  

3.1 Frequency of handoffs 

Handoffs that occur frequently represent the stereotypical "ruts in the road" [13] that 
define routinized patterns of action. For example, in Figure 2, the patient checks into 
the clinic with the Admin Tech, who hands off to the nurse to record vital signs, etc. 
We operationalize frequency of handoffs by counting the edges between touchpoints in 
the network. Some handoffs are reinforced more frequently and may also be enabled or 
constrained by technological, material or organizational structures. We expect frequent 
handoffs to persist after a disruption to the network.  

H1: More frequent handoffs are more likely to persist after a disruption.  

3.2 Speed of handoffs 

Handoffs can also be weighted according to how long they take to perform, on average, 
using time-stamp data from the event log. Faster handoffs represent quicker ways of 
getting things done. The speed of handoffs is operationalized as how long it takes for 
an actor to perform handoffs. In other words, we compute mean duration of each 
handoff  in the network.  Clinics are busy places, so we hypothesize that faster handoffs 
(with shorter mean duration), are more likely to persist after a disruption.  

H2: Faster handoffs are more likely to persist after a disruption.  

3.3 Paths and betweenness 

The edge betweenness is defined as the number of shortest paths going through an edge 
in the network [21]. In a narrative network, paths represent ways of doing things. An 
edge that has greater betweenness is on more paths [22]. If a disruption changes how 
things get done, handoffs with high betweenness are less likely to dissolve (and more 
likely to persist or "bounce back") than handoffs with low betweenness: 

H3: Handoffs with higher betweenness are more likely to persist after a disruption.  
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3.4 Coherence 

Coherence represents the number of nodal attributes that remain the same across an 
edge [3]. For example, do both actions occur in the same place? Are they performed by 
the same actor? Do they require the same tools or technology? This can be easily oper-
ationalized in a narrative network, where each node is defined by a number of contex-
tual factors, such as place, actor and technology. When more factors change, the context 
is less coherent. The logic of this hypothesis is similar to the logic for effects of ho-
mophily in social networks ("birds of a feather…"), but the mechanism is different. 

H4: More coherent handoffs are more likely to persist after a disruption.  

4 Formal model 

Our goal is to predict the frequency of all edges in the DFG that represents the clinical 
documentation process. To do so, we use the previous state of the process (at time t-1) 
to predict the current state of the process (at time t).  We can express our four hypoth-
eses in terms of the formal model shown in equation (1):  
 

𝑤!"# =		𝛽$%𝑤!"#%$& +	𝛽&%𝑠𝑝𝑒𝑒𝑑,,,,,,,,!"#%$& +
	𝛽'	%𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠!"#%$&	+	𝛽(%𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒!"#%$& + 𝜃! +	𝜃" + 𝑢!𝑣" + 𝑒       (1) 
 

In this model, the time period t represents one week. This time scale makes sense be-
cause the pattern of action is generally very stable and the disruption from the start of 
flu season occurs on a specific day (September 1). The dependent variable in this model 
is 𝑤!"# ,  which represents the frequency of each edge in the network (between actions i 
and j) during time period t.    
The term 𝑤!"#%$represents the frequency of edges from the previous time period, as 

in H1.  𝑠𝑝𝑒𝑒𝑑,,,,,,,,!"#%$ reflects the average speed or duration of the edge 𝑤!", as in H2.  
𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠!")#%$ represents the number of network paths that pass through 𝑤!"), as 
in H3. 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒!"#%$ represents the extent to which actions i and j share a coherent 
material context, as in H4.   
𝜃! and 𝜃" are random effects relating to the base rate of actions i and j. If i and j occur 

more or less often, that will directly influence how often 𝑤!" occurs. In terms of this 
model, they function like control variables.  As we apply the model here, 𝜃! and 𝜃" 
reflect the change in the repertoire of actions described in Figure 1.   
Lastly, 𝑢!𝑣" represents the similarity between pairs of nodes on each dimension (ac-

tion i and j) of latent space and 𝑒!," is the error term.  
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5 Results 

We estimate this model using a latent factor model including random effects [23, 24] 
to control for unobserved network effects. This model has the advantage of estimating 
all of the edges in the network at once, rather than treating them as independent. This 
model is implemented in the R package amen (https://cran.r-project.org/web/pack-
ages/amen/amen.pdf) which uses an MCMC (Markov Chain Monte Carlo) procedure 
for model estimation. This package provides regression coefficients, standard errors 
and significance levels, but does not provide an R2 for the model.   
We conduct four different versions of the analysis. First, as mentioned above, we 

examine two different levels of granularity: the fine-grained “screens and clicks” level 
and the coarse-grained “touchpoints and handoffs” level. At the fine-grained level, the 
nodes are defined by a single attribute – actions -- so there is no way to compute coher-
ence or test H4. At the coarse-grained level, nodes are defined by two attributes – actor 
and workstation – so we can compute coherence and test H4. 
Second, we compare two different time periods: one where there is a disruption and 

one where there is not.  While a more elaborate analysis could be conducted, this pro-
vides an indication of how the disruption compares to the normal, steady state opera-
tions. The results of these analyses are shown in Table 1. 
 

Table 1:  Results of analysis at two level of granularity2 

 Not Disrupted Disrupted 
Fine-grained 
(clicks/screens) 

t-1: Aug 18 – Aug 24 
t: Aug 25 – Aug 31 

t-1: Aug 25 – Aug 31 
t: Sept 01 – Sept 07 

     H1: Frequency 1.912*** 0.975*** 
 (0.060) (0.039) 
H2: Duration -0.044 0.014 
 (0.024) (0.025) 
H3: Betweenness 0.213*** 0.469*** 
 (0.037) (0.039) 
   
Random Effect:	𝜃! 0.405 

(0.065) 
0.507 
(0.082) 

Random Effect: 𝜃" 0.389 
(0.063) 

0.430 
(0.067) 

   
# nodes (unique action) 146 137 
# edges (pairs of actions) 1,848 1,800 
  
 Coarse-grained 
(touchpoints/handoffs) 

   

H1: Frequency 1.052*** 1.063*** 
 (0.086) (0.088) 
H2: Duration 0.008 0.064* 

 
2 The values for the random effects (𝜃! , 𝜃") indicate variances.   
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 (0.027) (0.032) 
H3: Betweenness 0.108 0.141 
 (0.071) (0.075) 
H4: Coherence 0.499*** 0.608*** 
 (0.124) (0.146) 
   
Random Effect: 𝜃! 0.684 

(0.162) 
0.575 
(0.145) 

Random Effect: 𝜃" 0.602 
(0.109) 

0.571 
(0.148) 

   
# nodes (touchpoints) 86 80 
# edges (handoffs) 919 838 

5.1 Frequency of handoffs (H1) 

It should be no surprise that the frequency of an edge (handoff) in one time period is a 
good predictor of its frequency in the next time period. At both levels of granularity, 
with or without disruption, H1 is supported. Metaphorically, the ruts in the road today 
predict where the traffic will go tomorrow.  
However, at the fine-grained level, the disruption appears to change the strength of 

this effect.  Even when we control for other factors (such as the base rate of actions,	𝜃! 
and 𝜃"), the influence of handoff frequency is decreased by more than 50% from the 
prior week. Perhaps we should say: the ruts in the road today predict where the traffic 
will go tomorrow unless the road is blocked.   

5.2 Duration of handoffs (H2) 

Contrary to expectations, the average duration of the handoff does not influence persis-
tence, except perhaps at the coarse-grained level.  Faster handoffs are slightly more 
likely to persist after disruption.  Even in a very busy clinic, where time is presumably 
valuable, the waiting time from one action to the next appears to have a very minor 
influence on persistence. Conceptually, this could be interpreted as undermining the 
idea that routines enhance efficiency, but it would be worth testing this hypothesis on 
a larger, more diverse set of processes.  

5.3 Betweenness of handoffs (H3) 

Betweenness provides different results at different levels of granularity. It is significant 
at the fine-grained level, but not at the coarse-grained level.  We do not have an expla-
nation for this difference, so further investigation is needed. However, at the fine-
grained level, we can see that the magnitude of this effect is more than doubled when 
there is a disruption.  In a narrative network, betweenness means that an edge (or a 
node) is on more paths; it is a useful for performing a larger variety of tasks. When 
there is a disruption, the useful handoffs are more likely to persist.  



9 

5.4 Coherence of handoffs (H4) 

Because of the way coherence is defined, we are only able to test its effect at the coarse-
grained level. At that level, coherence is a strong predictor of edge persistence.  When 
a pair of actions is more coherent (performed by the same actor, or performed in the 
same location), it is more likely to persist (with or without a disruption). This finding 
is interesting because this effect is significant even when we control for the effect of 
frequency.  Coherence appears to influence the persistence of network structure over 
and above the more familiar effect of repetition.   

5.5 Changes in the base rate of actions 

In a sense, we are interpreting random effects in equation (1) (𝜃! and 𝜃") as control 
variables: Controlling for changes in base rates of the actions, what drives changes in 
the pairs of actions?  The magnitude of these effects is far greater than their standard 
error in all four conditions (the amen package does not provide p-values for these pa-
rameters, so we rely on the eyeball test for significance). Thus, we can safely say that 
in all four conditions, there is considerable variation among actions in the tendency to 
be part of a chain of actions defining a routine. However, when we compare the coeffi-
cients in Table 1, with and without disruption, they are of similar magnitude and sign 
in all four conditions (with or without the disruption at both levels of granularity). 

6 Discussion 

This paper represents a first step towards a theory of routine dynamics as network dy-
namics. The empirical foundation for this theory is generated through process mining, 
which is usually used to discover a stationary model of a process. Here, we are using 
process mining to help build theory about stability and change in routines. The contri-
bution here goes beyond the specific findings about a particular dermatology clinic. 
The main contribution concerns the general idea of using network models to develop 
new theory about routine dynamics.  
This approach to routine dynamics requires the analysis of network time-series data, 

as discussed in [25]. Here, we have limited our analysis to three time periods because 
we wanted to focus on the disruption of flu season. In a more elaborate model, we could 
extend the analysis to a longer time series. While increasingly sophisticated network 
time series models are available [26], they need to be carefully adapted to narrative 
networks. As of this writing, we are working on how to apply the amen R-package to 
multi-period time series analysis.  
Even with the limited analysis we present here, there still some substantive insights. 

For example, the strongest predictor of edge persistence from one time period to the 
next is the frequency (weight) of that edge. In other words, routines tend to be repetitive. 
It would be disingenuous to count this well-established fact as a contribution, but it 
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does lend face validity to the approach. The more interesting finding is that the magni-
tude of this effect is reduced by roughly 50% after a disruption.  Likewise, the influence 
of betweenness is more than doubled after a disruption.  
While these effects are interesting, the first key contribution here is not the specific 

magnitude of these effects. It is the overall approach to estimating them in the first 
place.  This approach depends on using process mining to construct narrative networks 
of the process. While this class of network (a kind of directly follows graph, or DFG) 
has severe limitations as a process model [4], it provides a sensitive indicator of process 
stability and change. If the DFG is stationary, so is the process. Given these graphs, we 
are able to begin testing hypotheses about the factors that drive their stability and 
change using analytical tools like latent factor models [24].  
The second key contribution here is theoretical.  Hypotheses 1-4 represent a first 

attempt at defining formal, generalizable mechanisms that govern the dynamics of nar-
rative networks. The analysis presented here is the first time that the effects of fre-
quency, duration, betweenness or coherence on routine dynamics have been investi-
gated empirically. These mechanisms may seem simplistic, but so do some of the key 
mechanisms that drive the dynamics of social networks (“birds of feather...”, “the rich 
get richer...”, “the friend of my friend...”).  Perhaps simplicity is a virtue.   
The last contribution of the study concerns the possible implications of this line of 

inquiry for process management and the BPM life cycle [27]. Routines are hard to 
change, as they tend to resist intervention and snap back into their old shapes. This 
study suggests that it may be possible to identify what aspects of routines contribute 
most to inertia and resistance.  

7 Conclusion 

Findings from a single case should be regarded as preliminary.  We cannot build a 
generalizable theory from three weeks of data in one dermatology clinic. However, the 
findings do provide a variety of encouraging mysteries.  For example, why does be-
tweenness influence persistence at the fine-grained level but not the coarse-grained 
level?  Where there is mystery, there is an opportunity for learning, so it seems that 
there may be more to learn from network models of routines.  
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