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Abstract: Camera systems in motion are subject to significant blurring effects that lead to a
loss of information during the image capture. This is especially damaging for optical character
recognition for which edge preservation is critical to achieving a high recognition rate. Using non-
blind motion deblurring, a trajectory and point spread function can be designed to maximize the
recognition rate while meeting endpoint constraints. Optimization through the use of radial basis
function networks can therefore be used as a way to find ideal trajectories to reduce blurring
effects and preserve text sharpness. This paper investigates this problem using simulation of a
blurred image capture process. The simulation is automated using radial basis function network
optimization and a genetic algorithm to determine trajectories with the best recognition rate.
Optimized trajectories yielded recognition scores with up to 65% improvement compared to a
comparable linear profile. Results are then analyzed using spectral analysis to understand why
the chosen trajectories preserve text edges. These findings can be applied to a wide variety
of controlled mobile camera platforms, such as autonomous automobiles or unmanned aerial
vehicles, to improve their ability to gather information from their environment.
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1. INTRODUCTION

Cameras allow systems to extract visual information from
their environment but can be subject to many types of
error and degradation. One such form is motion blur,
which can occur either as movement of the camera or
movement of objects in the scene (Cai et al., 2016).
Due to the nature of a limited exposure window, blur
occurs as a result of light being captured across multiple
photosensitive elements. In some cases, the trajectory of
the camera may be known due to its positioning on a
controlled mobile platform, such as an autonomous vehicle
or unmanned aerial vehicle (Balaji et al., 2017). If the
motion of the camera is known, it is possible to calculate a
blur kernel that can be used with traditional deconvolution
methods to restore the image (Su and Heidrich, 2015;
Yadav et al., 2016). There has been significant work
in this area on using dynamics-based motion deblurring
for reducing image noise (Dengel et al., 2016; Kurimo
et al., 2009; Tai et al., 2011), which is best suited for
object recognition. Text recognition, as is relevant for
this study, depends less on image noise and significantly
more on edge preservation in order for text features to be
extracted by text recognition engines (Katoch and Ueda,
2019). The known work completed specifically for text
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recognition has only used polynomial functions to generate
trajectories for camera motion. This is inherently limiting
as it sets a maximum complexity that the trajectory can
achieve. This paper instead proposes the use of radial
basis function networks for trajectory generation as a
way to create highly tunable motion profiles without
knowledge of a particular function form. These trajectories
are optimized for text character recognition through an
automated simulation.

2. PROBLEM STATEMENT

The goal of this work is to establish an optimal, one-
dimensional camera trajectory that, compared to other
trajectories with the same motion and endpoint con-
straints, can be used to plan the motion of a mobile
camera, such as in Figure 1, that will allow for the greatest
rate of correct text recognition in natural images after
image reconstruction. Trajectories are generated using ra-
dial basis function networks in a one-dimensional space
and subject to optimization via a cost function based on
the correct text recognition rate. Numerical optimization
is used to attempt motion deblurring in an automated
fashion against a library of text-based natural images.

3. RADIAL BASIS FUNCTION NETWORKS

Previous work in dynamics based motion deblurring uti-
lized linear, inverse error, and fourth order polynomial
functions as proposed trajectories for improving image
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Fig. 1. Vehicle application of a mobile camera platform for
street sign text recognition

sharpness (Katoch and Ueda, 2019). However, these func-
tions are limited in shape variation given position and
velocity endpoint constraints. Linear and inverse error
functions with constrained endpoints only have a single
possible trajectory, and polynomial functions can change
coeflicients, but are limited in function variation at specific
points in the trajectory. This paper instead proposes the
use of radial basis function (RBF) networks as a way to
increase the complexity of the function form while main-
taining trajectory constraints. An RBF is any real valued
function in which the value is solely dependent on the dif-
ference between the input and some given center, defined
as o(x) = ¢(||lr — ¢||) where x is the primary function
variable and ¢ is the RBF center (Gutmann, 2000). The
most common RBF used is the Gaussian function:

p(r) = e, (1)
where 7 is the primary function variable and € is the
Gaussian shape factor. The shape factor is directly related
to the standard deviation of the Gaussian and therefore
controls each function’s spread around a particular center.
It is typically fixed for a given set of RBFs. Radial basis
function networks use multiple RBFs and an equal number
of weights and function offsets to generate a weighted sum
of the functions:

n
s(t) =Y wrp([[t — til]), (2)

k=0
where s(t) is the RBF network function, n is the number
of RBF functions used, wy is the function weight, t; is
the function offset, and ¢ is the trajectory timescale. An
example of the formation of an RBF network is shown in
Figure 2.

One advantage of RBF networks is the ability to easily
and predictably vary their shape using the weight and
offset values (Mirinejad and Inanc, 2015). Given an RBF
network of n RBF functions, parameters to fully describe
the network can be formed as a series of n [wg,t)] pairs.
This set of parameters can be used as inputs for a number
of optimization or search methods to determine optimal
sets with a given cost function. It is also known that any
combination of values is guaranteed to produce a smooth
function.

4. DYNAMICS BASED MOTION DEBLURRING AND
POINT SPREAD FUNCTION DETERMINATION

4.1 Image Formation
Images are formed based on the intensity of light exposed

onto the photosensitive elements of the camera sensor. For
a camera undergoing one-dimensional motion, an exposure
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Fig. 2. An example five function symmetric RBF network
with e = 3 and individual functions shown

time

position z. is established as the average or center position
during the entire exposure window 7¢:

7o = 5 /T 2(t)dt, 3)

where T, is the exposure timescale, AT is the total
exposure time and z(t) is camera position.

During this image capture process, two types of noise are
introduced: shot noise and thermal noise (Katoch et al.,
2018). Shot noise is the result of variance in the number
of photons received by each photosensitive element over
time. Thermal noise N is created within the camera sensor
via variation in the electrical signal due to changes in
temperature and is modeled as an additive zero-mean
Gaussian .4~ with variance o2. Shot noise can be modeled
as a blurry image B generated by a stationary Poisson
process & with intensity \:

B~2 (A/ L(x(t))dt) N~ H(0,0%),  (4)

where L is the latent image. The captured image I can
then be defined as:

I =B(z(t),T.,\)+ N, (5)
or as:
I=K®L+N, (6)
where K is the blur kernel or Point Spread Function (PSF)
and ® is the convolution operator.

4.2 Residence Time Distribution and Point Spread
Function

Knowledge of the camera’s motion is critical as it is needed
to generate a residence time distribution (RTD). An RTD
describes the amount of time the camera spends over a
certain section of the image (Katoch et al., 2018). These
image sections evenly divide the image based upon a set
step size, image capture exposure time, and linear capture
distance. The RTD is represented graphically in Figure 3
and in the equation below:
1

L 7
EGIE @
where 2 (x) is the velocity of the camera at a given point
over the image and 7(x) is the RTD. For this paper,
it is assumed that the trajectory is one-dimensional as
the vertical motion is negligible relative to the horizontal
velocity. In the case that the camera is stationary, the

7(z) =



result is a Dirac delta function centered on the trajectory
center point with a value of the image exposure time. The
sum of the RTD is equal to the exposure time AT for any
given trajectory.
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Fig. 3. Residence time distribution across a non-stationary
trajectory

Using the RTD found via the known trajectory, the PSF
can be determined. This PSF is used as the blur kernel
for any deconvolution method as it describes the light
energy distribution for a pixel in a captured image. For this
one dimensional case, the PSF is represented by the RTD
normalized and equally sampled to the size of the blur
kernel imposed on the center row with all other elements
equal to zero.

4.3 Non-Blind Motion Deblurring

The reconstruction of a blurred image via non-blind de-
blurring is based upon the formation of the captured image
described in (6). Richardson-Lucy deconvolution is a well-
known iterative approach that is computationally slower
and more intensive than other methods, but produces
more accurate results and is therefore used here. It can
be modeled as:

F*''=Bo(I'eoK)K)o I, (8)

where I’ is the image estimate at the j-th iteration, K
is the blur kernel flipped along the central horizontal and
central vertical axes, ® is the Hadamard product, and @ is
the Hadamard divide (Kim and Ueda, 2016). In this one-
dimensional case, the K matrix is the same as K as this
matrix is a single row of symmetric values along the center
row with all other values equal to zero.

5. OPTIMIZATION

Proposed RBF based trajectories must be assessed and
continually modified in order to find the ideal trajectory
for planned deblurring. To do this, an optimization prob-
lem can be created using weights of the RBF as an input
and the assigned score as output to minimize. The RBF
offsets are not modified, and instead are equally spaced
across the timescale. This is because with a sufficiently
large number of functions and sufficiently large shape fac-
tor, the RBF network summation can still achieve a wide
range of trajectories. Constraints are also imposed on the
position endpoints zp and xf, velocity endpoints vy and
vy via a chosen velocity v, and acceleration a(t) through a
maximum allowable acceleration aq;0,, determined by the
performance limit of a mobile camera platform actuator.
The optimization problem formation is shown below:

minimize Rocr(w) (9.1)
wER™

subject to g =0 (9.2)

xf = dexp (9'3)

Vv =vp =T (9.4)

max(a(t)) < alow, ¥t € [0, T¢] (9.5)

where w is the RBF weights vector:

w = (wy, wy, ..wy) T (9.6)

The position vector is calculated as the numerical integral

of the velocity vector z(t) = OAT v(t)dt while the acceler-
ation is the numerical derivative a(t) = £v(t). Maximum
acceleration is defined as the largest acceleration value
over [0,T,]. aaiiow 1S chosen based upon the limits of the
physical system for which the trajectory optimization is
to be applied and imposes a non-linear constraint in this
problem.

The velocity profile is the function generated by the RBF
network so that the position endpoints can be easily
constrained. The total distance traveled for any RBF is the
area under the given function (in this case, the Gaussian)
multiplied by the sum of all weights. From (2):

n
dexp = / 4N wy | +5AT. (10)
T. k=1

This can be used as a linear constraint to ensure the
intended distance traveled is always met. The cost function
Rocr(w) is the percent of incorrect characters in the text
recognized string compared to the correct string measured
by the Levenshtein distance algorithm.

5.1 Image Fvaluation

Determination of an image evaluation method is a common
issue for problems involving image restoration (Narwaria
et al., 2012). For this experiment, the returned character
recognition text is compared to the ground truth text to
form the rate of incorrect text recognition as determined
by the Levenshtein distance algorithm (Priambada and
Widyantoro, 2017). This algorithm determines the number
of insertions, deletions, or character changes needed to be
applied to a string in order to make it match the goal.
The number of changes is divided by the recovered string
length to create an incorrect text recognition rate:
ny,

Rocr(w) = T (11)
ext

where Rocr is the rate, ny, is the number of string changes
according to the Levenshtein distance algorithm, and lpeyy
is the length of the text recovered from the optical charac-
ter recognition. One issue with this evaluation metric is the
possibility of a significant difference in returned and actual
string length, which may cause Rocr to be significantly
greater than 1. For this reason, a response of no text being
recognized in the image is given a score of 3 to encourage
the simulation to move towards any text recognition even if
it contains many extra or missing characters. Any Rocr
over 3 are also reduced to 3 as well. Finally, any score
values under 3 are scaled based on the mean Rocr value
of the ground truth image as a correction for some images
being inherently more difficult to extract text from.



5.2 Optical Character Recognition

Optical Character Recognition (OCR) is the process of
converting text within images into machine-encoded text.
A well known and widely used OCR software is Google’s
open source Tesseract (Smith, 2007), which was used
within MATLAB’s optimization process. Although many
OCR algorithms exist, this experiment required the use of
one that could be automated to run continuously without
user input, making Tesseract an obvious choice. This en-
gine performs well and is primarily used for document text,
but preprocessing and adjustments should be introduced
in order to use it for natural scene images with text.
This preprocessing includes first converting the image to
a binary image, then subjecting it to simple morphologi-
cal operations to clean up small noise. Maximally stable
extremal regions (MSER) regions are then detected in
an attempt to identify potential text shapes (Greenhalgh
and Mirmehdi, 2015; Islam et al., 2016). These regions
are subjected to property restrictions, such as area and
solidity, to filter out likely non-text regions. The bounding
boxes of these regions are then slightly expanded to find
likely candidates for words and individual lines of text.
Segmented portions of the image can then be cut from
the overall image and given to Tesseract to return the
identified text. This process is done automatically for every
image during the optimization cycle.

5.8 Spectral Analysis

Spectral analysis is the process of deconstructing a signal
in the time domain into components in the frequency
domain. For the purposes of this experiment, a two-
dimensional Discrete Fourier Transform is used to view
and analyze frequency information within the deblurred
images. Specifically, edges, such as those formed by text,
tend to appear as high frequency values in the direction
perpendicular to the edge in the two-dimensional power
spectrum (Narwaria et al., 2012). In the case of this
one-dimensional, horizontal motion, the appearance and
retention of high frequency values in the center horizontal
region is critical to OCR’s performance.

6. SIMULATION SETUP

Determining an ideal trajectory for character recogni-
tion requires an automated optimization process that can
quickly evaluate many sets of RBF weights. A simulation
of the process of capturing an image, deblurring it based
on a known trajectory, and evaluating it was created in
MATLAB. For simplicity, all blur kernels are aligned to
the horizontal axis of the blur kernel as this does not affect
overall results and other blur directions can be produced
through a simple transformation

For any single iteration, a ground truth image, in this
case, an image from the provided data set, is supplied and
subjected to horizontal linear motion blur determined by
the motion of an RBF trajectory with arbitrary weights.
Noise is added to the blurred image, and the image is
then deblurred with Richardson-Lucy deconvolution using
the same blur kernel as the original blurring. OCR is
then completed on the image, and the extracted text
is compared to a correct text string using Levenshtein

distance. The final score is calculated using (11). The
entire scoring process is completed for each image in the
set using the same trajectory, and each individual image
score is averaged for the set to form the epoch score. The
epoch score is returned to MATLAB’s genetic algorithm to
determine the next suitable trajectory parameters to test.
This process is repeated until a trajectory is found that
satisfies the constraints in (9) as well as the optimization
parameters. Figure 4 shows this optimization algorithm in
flowchart form.

For this experiment, due to computing restraints, the
simulation would exit upon the completion of 200 epochs.
From these trajectories, the best five were pulled and run
again as single tests for five trials in order to prevent im-
proper scoring due to randomness in the OCR, algorithm.
Linear and inverse error trajectories were also tested as a
comparison method.

Because individual natural images have only a small por-
tion of text, a set of images is used for the optimization.
For this experiment, a combination of the training and
test set of images from the ICDAR 2015 OCR competition
was used (Karatzas et al., 2013). This comprises a library
of 462 images, however, this was reduced down to 20 by
filtering for images that scored an average of no greater
than 0.5 in Rocr value when evaluated as static images.
The final set contains 524 total characters.

Table 1 shows the simulation parameters used for the
optimization. The number of RBFs and ¢ value were
chosen based upon what combination could reasonably
be used to fully represent almost any trajectory between
endpoints while reducing computation time. v is based
upon the linear velocity needed to meet position endpoint
constraints and a,,q,; was chosen as a high upper limit of
what could be achieved with a future hardware setup.

Table 1. Simulation parameters

| Simulation Parameter | Value |
Number of Images 20
Maximum Epoch Iterations 200
Blur Kernel to Image Ratio 10%

Number of RBF Functions 13 (7 unique)

€ 4
v 0.3 m/s
Amaz 100g
AT 0.017 s (60FPS)
dexp 5 mm
7. RESULTS

The five RBF-based trajectories, as well as the tested
linear and inverse error trajectories, are shown in Figure
5 with a sample of a deblurred image, the velocity profile,
and the residence time distribution. The performance of
each of these trajectories is shown in Table 2. All of
the RBF trajectories show significant improvement over
the linear and inverse error trajectories with p < 0.05
statistical significance. This is apparent from the data as
well as from qualitative observation of the sample images.
This improvement ranges from 59-65% compared to the
linear and inverse error trajectories, with the second and
fourth RBF trajectories performing the best overall.
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Fig. 4. Flowchart of the simulation’s optimization algorithm
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Table 2. Simulation score mean pocr and
standard deviation opcg over five trials

[ Trajectory [ wocr | cocr |

Static 0.2793 | 0.03963
Linear 2.428 0.2034
Inverse 2.447 0.1717
RBF1 0.9517 | 0.07508
RBF2 0.8534 | 0.1131
RBF3 0.9945 0.2702
RBF4 0.8821 | 0.09565
RBF5 0.9824 | 0.08133

Spectral analysis was performed using the two-dimensional
Discrete Fourier Transform on an image formed by the
mean of all final images for the five trials of each trajectory.
Figure 5 shows the power spectrum of the sample image for
each trajectory as well as the power spectrum difference
of each trajectory from the static image power spectrum.
On the difference power spectrum, lines are imposed to
show the central third of the image that most represents
the relevant horizontal frequencies. The static image power
spectrum shows high frequency components in both the

purely vertical and horizontal directions representing the
edges of the box in the image as well as the edges of the
letters in these directions, especially for characters such as
“N”, “d”, and “1”. There is also a large amount of lower
frequency information in all directions representing the
curved and slanted edges of the letters. For the linear and
inverse error trajectory plots, there is a significant removal
of these regions as this information has been distorted
by the blur. The subtraction plots show loss of both the
high frequency horizontal components as well as lower
frequency near-horizontal regions. This loss is much less
prevalent in all of the RBF trajectory power spectra. In
addition, the presence of deblurring artifacts in the third
and fifth images are shown in bands throughout the power
spectrum that interrupt the horizontal component. The
sum of the differences offset to a minimum of zero for
the central horizontal third of each image is calculated
in Table 3. This shows a very close correlation between
the maintenance of these image frequencies and the text
recognition rate undergoing one-dimensional blur. Again,
RBF trajectories two and four performed the best here as
well.



Table 3. Power spectra difference plot value-
sum mean pps and standard deviation opg

| Trajectory | wps | ops |

Static 0 0

Linear 4.181E5 | 5.829E3
Inverse 4.206E5 | 6.408E3
RBF1 3.327E5 | 3.472E4
RBF2 3.315E5 | 3.383E4
RBF3 3.822E5 | 1.482E4
RBF4 3.186E5 | 3.103E4
RBF5 3.804E5 | 1.833E4

8. DISCUSSION

The simulation results in Figure 5 show an interesting
trend; all RTDs for the RBF-based trajectories show either
a single spike or two spikes in residence time at the center
of the trajectory. This makes sense, as this translates to
a blur kernel with the highest values very close to the
center that generates less blur to begin with. A single peak
RTD, such as in RBF 1, 2, and 4, maximizes the residence
time around the center of the image, while a double peak
RTD, shown in RBF 3 and 5, is likely a consequence of
the optimization attempting to lower the maximum accel-
eration while also minimizing the OCR cost function. This
creates multiple phase distortions in the image that can be
stitched together during the deblurring process which leads
to strong artifacts, but still produces high contrast edges
for text recognition. The concentration of residence time at
the trajectory center is directly related to the overall OCR
performance and indicates a possible attempt of saccade
motion. Further investigation is needed to determine the
relationship between the RTD, maximum allowable accel-
eration, and effect on the OCR performance.

9. CONCLUSION

This paper has proposed a novel optimization method
for determining ideal, endpoint-constrained trajectories for
maximizing recognition of text in natural images. RBF
networks provide the ability to automatically generate
smooth functions with a high degree of variability while
being controlled by a small set of tunable parameters that
can be easily mapped to the character recognition-based
output score. It was found that trajectories with a high
central residence time performed best at maintaining edge
features while still meeting all physical constraints. Future
work will seek to validate these results through hardware
experimentation using a camera-mounted voice coil linear
stage with results to be published in a journal paper.
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