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ABSTRACT
Division and label structured population models (DLSPMs) are a class of partial
differential equations (PDEs) that have been used to study intracellular dynamics in
dividing cells. DLSPMs have improved the understanding of cell proliferation assays
involving measurements such as fluorescent label decay, protein production, and
prion aggregate amplification. One limitation in using DLSPMs is the significant
computational time required for numerical approximations, especially for models
with complex biologically relevant dynamics. Here we develop a novel numerical and
theoretical framework involving a recursive formulation for a class of DLSPMs. We
develop this framework for a population of dividing cells with an arbitrary functional
form describing the intracellular dynamics. We found that, compared to previous
methods, our framework is faster and more accurate. We illustrate our approach on
three common models for intracellular dynamics and discuss the potential impact of
our findings in the context of data-driven methods for parameter estimation.
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1 Introduction
Division and label structured populationmodels have recently been investigated in the context of cell proliferation assays. These
assays yield insight into the role of cell cycle dynamics (Smith andMartin, 1973) and intercellular heterogeneity (Glauche et al.,
2009) to the overall growth of a population of cells. A widely used proliferation assay, developed by Lyons and Parish (1994),
uses the intracellular dye carboxy�uorescein succinimidyl ester (CFSE). CFSE is nonradioactive and enables a durable and su�-
ciently uniform labeling of a population of cells without adverse e�ects on proliferation and death. Label structured population
models are an ideal tool for understanding these type of data because the CFSE dye is modeled as a label that is approximately
partitioned into two equal halveswhen cells divide into two daughter cells. Flow cytometry can be used to rapidlymeasureCFSE
�uorescence intensity for each cell in a population (Lyons and Parish, 1994; Lyons et al., 2001; Parish, 1999; Quah et al., 2007;
Wallace et al., 2008; Witkowski, 2008), resulting in a population histogram. Peaks in the histogram are typically interpreted to
represent a separate generation of cells, i.e., the number of times a subpopulation of cells has divided. Prior to the application
of division and structured population models to CFSE data (Banks et al., 2011,a; Luzyanina et al., 2009a, 2007), the number
of cells in each generation was approximated using simple binning or deconvolution techniques (De Boer et al., 2006; De Boer
and Perelson, 2005; Deenick et al., 2003; Ganusov et al., 2005; Gett andHodgkin, 2000). CFSE labeling has been used to study
immune system dynamics through monitoring lymphocytes proliferation (Lyons and Parish, 1994) and is also able to track the
proliferation behavior of speci�c types of lymphocytes through the use of �uorescent antibodies with speci�city to markers on
the lymphocyte cell surface (Lyons et al., 2001). The typical response of various cell populations within the immune system is
to clonally expand when presented with foreign antigens. Thus, being able to more accurately quantify these responses, e.g., by
estimating rates of activation, proliferation, and death through coupling structured population models with data, will lead to a
more complete characterization of how various diseases and stimuli a�ect the immune system. With increasing advances in the
ability to quantify the contents in single-cells (Marx, 2019), such structured population models will become more applicable.

Previous e�orts to �t CFSE label decay experimental data with division and label structured population models used a least
squares inverse problem framework (Luzyanina et al., 2009b, 2007; Banks et al., 2011,b). The inverse problem formulation
typically involves estimating parameters by minimizing a least squares cost function that measures the discrepancy between a
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solution of the PDE system at a set of parameter values and the histogram data from �ow cytometry. Optimization routines that
have been used to solve the inverse problem with �ow cytometry data include derivative free methods (Luzyanina et al., 2007),
such as the Nelder-Mead simplex based method, and gradient based methods relying on the computation of a local gradient
of the cost function (Banks et al., 2012). Both of these optimization methods use an iterative scheme requiring thousands of
simulations of the forward solution of the label structured PDE system at di�erent parameter values. In the case where division
structure is modeled with separate compartments, i.e., one per cell division cycle, the computational requirements are exacer-
bated since one needs to solve a large system (>10) of coupled PDEs. Under simplifying assumptions on the form of the CFSE
label decay rate, such as decay that is directly proportional to the amount of intracellular label, analytical solutions to the PDEs
can be obtained through the method of characteristics. The main drawbacks to these assumptions are that the resulting decay
rate functional forms may not accurately explain the data and that they do not extend to other scenarios involving the mea-
surement of an intracellular label such as protein production (Blake et al., 2003; Flores, 2013a) or prion aggregate ampli�cation
(Banks et al., 2018). Thus, more e�cient numerical methods are needed to enable validation of division and labeled structured
population models from data across a broader range of assumptions describing the rate of change of the intracellular label.

In this work, we develop a novel numerical and theoretical framework for a class of division and label structured population
models. We develop our framework in the more general context of population of dividing cells that is structured by the concen-
tration of a single intracellular species evolving under its own dynamics (rather than a decaying label). In Section 2, we derive
a recursive relation allowing the density of the (i + 1)-generation to be solved in terms of the i th generation. In Section 3 we
apply our recursive formulation to three common models for intracellular dynamics. In Section 3.3.2 we demonstrate that our
recursive framework facilitates rapid and accurate numerical solutions through recursive numerical integration. In Section 4 we
summarize our �ndings and discuss their implications in the context of parameter inference and uncertainty quanti�cation.

2 Solutions to Division and Label Structured Population Model
We seek to model the concentration of a single intercellular constituent in a population of actively dividing cells. Let a(t) be
the concentration of an intracellular species in a cell t hours after the start of an experiment. In the absence of division, the
intracellular dynamics are governed by the following ordinary di�erential equation

da
dt

= I (a; θ), (1)

where I is assumed to be a known smooth function of possibly unknown parameters (θ). When cells divide, the intracellular
constituent is divided between daughter cells. Let Yi (t, a) represents the constituent density of cells that have undergone i cell
divisions since the beginning of the experiment. The dynamics of each generation in the dividing cellular population evolves
according to the following system of coupled partial di�erential equations:

𝜕

𝜕t
Y0 (t, a) +

𝜕

𝜕a
(I (a; θ)Y0 (t, a)) = −(α0 (t) + β0 (t))Y0 (t, a),

𝜕

𝜕t
Y1 (t, a) +

𝜕

𝜕a
(I (a; θ)Y1 (t, a)) = −(α1 (t) + β1 (t))Y1 (t, a) + 2γα0 (t)Y0 (t, γa),

...
𝜕

𝜕t
YM (t, a) + 𝜕

𝜕a
(I (a; θ)YM (t, a)) = −(αM (t) + βM (t))YM (t, a) + 2γαi−1 (t)Yi−1 (t, γa),

(2)

whereαi (t) andβi (t) represent thedivision anddeath rates respectively. Asmentioned above i represents thenumberof divisions
since the beginning of the experiment (not the generational age) and so our problem formulation includes the following initial
conditions:

Y0 (0, a) = Υ(a) and Yi (0, a) = 0 for i ≥ 1. (3)

Where Υ(a) is the initial constituent density of cells at the start of an experiment. Following previous convention we refer to
this system as the Division and Label Structured PopulationModel (DLSPM).

In this study, we derive solutions to the DLSPM (Equations (2) & (3)) through recursive integration of the previous genera-
tion. The decomposition approach for �nding solutions to Yi (t, a) in terms ofΥ(a), used in Theorem 2.1 of Banks et al. (2016)
and �rst presented in Hasenauer et al. (2012), is valid only for functions of the form I (a; θ) = v(t; θ)a. Theorem 1 stated below
is valid for a broader set of �ux functions, namely those which allow for solution via the method of characteristics, and whose
characteristics are invertible. This includes the �ux functions considered by Hasenauer et al. (2012).
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Theorem 1. The solution of the system defined by Equation (2) with initial conditions in Equation (3), is given by an analytic
solution and a recursive integral equation:

Y0 (t, a) = Υ(s(t, a))µ0 (t, s(t, a))−1 and

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ for 1 ≤ i ≤ M

(4)

in which

1. s(t, a) comes from solving the characteristic equation:

da
dt

= I (a; θ) (5)

with the parametric initial condition a(0, s) = s and

2. µi (t, s) is an integration factor of the form

µi (t, s) = exp
(∫ t

0
αi (τ) + βi (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
. (6)

Before presenting the proof of Theorem 1 we o�er two comments on its use. First, we note it is possible to write Yi (t, a) as an
explicit highdimensional integral equationofΥ; however, because the notation is cumbersomeweomit it from thepresentation.
Second, the integral form of the solution requires being able to explicitly solve for and invert the characteristic equation (1).

Proof. To determine the solution of the linear system de�ned by Equation (2) with initial conditions, Equation (3), we solve
these using the method of characteristics following Pinchover and Rubinstein (2005). For the initial generation Y0 (t, a), we
solve the characteristic equations

da
dt

= I (a; θ) and
dY0
dt

+
(
α0 (t) + β0 (t) +

dI (a; θ)
da

)
Y0 = 0 (7)

with parametric initial conditions a(0, s) = s and Y0 (0, s) = Υ(s), respectively. Note that solution to the second characteristic
equation can be written using an integrating factor. Then combining the solutions to the ODEs (Equations (7)) and the initial
conditions, the solution to the initial generation Y0 (t, a), is given by

Y0 (t, a) = µ0 (t, s(t, a))−1Υ(s(t, a)) where µ0 (t, s) = exp
(∫ t

0
α0 (τ) + β0 (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
.

For generations 1 ≤ i ≤ M, we solve the characteristic equations

da
dt

= I (a; θ) and
dYi
dt

+
(
αi (t) + βi (t) +

dI (a; θ)
da

)
Yi = 2γαi−1 (t)Yi−1 (t, γa(t, s)) (8)

with parametric initial conditions a(0, s) = s andYi (0, s) = 0. Solving the second equation using an integrating factor and using
the solution on the �rst equation in the system of ODEs (Equations (8)), the solution to the i th generation Yi (t, a), is given by

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ, (9)

where
µi (t, s) = exp

(∫ t

0
αi (τ) + βi (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
. �

3 Analytic and Numerical Solutions
In this sectionwe apply Theorem 1 to three biologically relevant intracellular models: (1) linear growth, (2) constant growth and
linear decay, and (3) logistic growth. In each case, we �rst derive the problem speci�c recursive integral formulation and then
compare the stability of numerical solutions using recursive numerical integration (RNI) (Ammon et al., 2016) to the explicit
Lax-Wendro� (LxW) method (Shampine, 2005), a standard numerical approach for hyperbolic PDEs.
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Flux Term Average Runtime (s)
LxW1 LxW2 RNI Exact

Linear Growth 11.1620 870.7137 0.3205 0.0559
Constant Growth and Linear Decay 0.09089 7.0570 180.6480 —

Logistic 0.4466 31.9893 0.2792 —

Table 1: Average runtimes for numerical solutions and evaluation time of the analytic solution with a linear growth, using two
numerical methods Lax-Wendro� (LxW) and Recursive Numerical Integration (RNI), for three di�erent �ux terms: Linear
Growth (Section 3.1), Constant Growth with Linear Decay (Section 3.2), and Logistic Growth (Section 3.3). These averages
were computed over four di�erent model evaluation times T = 1, 2, 3, and 4 hours.

Theorem 1 gives an analytic solution for the initial generation, however iterative substitution of previous generations to
determine the following generation in the recursive formulation leads to high dimensional integral solutions that need to be
numerically estimated, which requires high computational overhead. The application of RNI takes advantage of the recursive
formulation in Theorem 1 and allows for numerical estimations of the structured population density by recursively iterating
through previous generations until the initial generation (analytic solution) is reached. In what follows, we compare our nu-
merical solutions for both each generation Yi (t, a) and, when informative, the “total population” which we de�ne as the sum
of densities up to some generationM:

ZM (t, a) =
M∑︁
i=0

Yi (t, a). (10)

Note that Theorem 1 combined with RNI leads to a meshfree method that allows for the evaluation of each generation at
a single point in terms of intracellular constituent level and time (t, a), which is not possible with methods, such as LxW, that
require a spatial grid. In this implementation ofRNI,Guass-Legendre quadrature (vonWinckel, 2004) is applied for solving the
integral equations. In order to compare RNI to LxW numerical solutions, the number of Gauss-Legendre quadrature points
were determined systematically as we detail in the Appendix. Brie�y, the number of quadrature points were increased until the
addition of a new quadrature point did not lead to an appreciable change in the solution. Also, the same number of quadrature
points were used for integration at every level of recursion.

Intriguingly, for our third example the number of quadrature points needed per generation decreased while for our second
example the number of points increased. Therefore, in this work, RNI outperformed LxW with intracellular dynamic models
with a linear and logistic growth�ux terms, but not in the case of a �ux that consisted of constant synthesis and linear degradation
(Table 1). Because of this, we conjecture that using Theorem 1 and RNI will outperform LxW in terms of accuracy and speed
when the �ux term, Equation (1), does not have a constant non-zero additive or degradation term.

3.1 Linear Growth
We �rst consider linear growth of an intracellular constituent:

I (a; θ) = v(t; θ)a. (11)

In this case, an analytic solution is known from the decompositionmethod �rst presented inHasenauer et al. (2012). We recover
the same solution in our recursive integral formulation and use the analytic solution to compare to our numerical solutions with
RNI and LxW.

3.1.1 Recursive Integral Formulation

We present the general solution to Equation (2) with initial conditions stated in Equation (3) and I (a; θ) as in Equation (11).
To apply Theorem 1 we solve the following equation:

da
dt

= v(t; θ)a (12)

with the parametric initial condition a(0, s) = s. This yields a(t, s) = s exp
(∫ t

0 v(t; θ)dt
)
and s(t, a) = a exp

(
−
∫ t
0 v(t; θ)dt

)
.

We then solve

µi (t, s) = exp
(∫ t

0
αi (τ) + βi (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
.
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This is simply µi (t, s) = exp
(∫ t

0 αi (τ) + βi (τ) + v(τ; θ)dτ
)
. Then the analytic solution to the initial generation, Y0 (t, a), is

Y0 (t, a) = µ0 (t, s(t, a))−1Υ
(
a exp

(
−
∫ t

0
v(τ; θ)dτ

))
. (13)

Then from Theorem 1, we have that Yi (t, a) is given by

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ. (14)

For simplicity we consider constant cell division and constant cell death rates, αi (t) = α and βi (t) = β, where α, β ≥ 0, for
0 ≤ i ≤ M, and we have µi (t, s) = µ(t, s) = exp((α + β)t) exp

(∫ t
0 v(τ; θ)dτ

)
. We drop the subscript notation because there is

no longer a dependence on the generation i. We can then write the initial solution

Y0 (t, a) = µ(t, s(t, a))−1Υ
(
a exp

(
−
∫ t

0
v(τ; θ)dτ

))
.

Now we can write the �rst generation as

Y1 (t, a) =
2γα

µ(t, s(t, a))

∫ t

0
µ(τ, s(t, a))Y0 (τ, γa(τ, s(t, a)))dτ.

When we substitute Y0 (t, a) we see that

Y1 (t, a) =
2γα

µ(t, s(t, a))

∫ t

0
Υ(γs(t, a))dτ =

2γαt
µ(t, s(t, a))Υ(γs(t, a)),

where the integrand termΥ(γs(t, a)) does not depend on τ sowe can perform the integration. Further replacement of the terms
s(t, a) and µ(t, a), we have an analytic solution for the �rst generation

Y1 (t, a) = 2γαt exp(−(α + β)t) exp
(
−
∫ t

0
v(τ; θ)dτ

)
Υ

(
γa exp

(
−
∫ t

0
v(τ; θ)dτ

))
. (15)

Continuing iteratively by substitution of the previous solution in the recursive integral form of Equation (14) to determine the
following generation we �nd that

Yi (t, a) =
(2γαt)i

i!
exp(−(α + β)t) exp

(
−
∫ t

0
v(τ; θ)dτ

)
Υ

(
γia exp

(
−
∫ t

0
v(τ; θ)dτ

))
, (16)

for 1 ≤ i ≤ M. As expected we have reproduced the solution to this problem presented in Hasenauer et al. (2012). Note that
in this case, iterative substitutions of previous generations to compute the following generations leads to an explicit analytic
solution and not high dimensional integral equations as we will see in Sections 3.2 and 3.3 with di�erent intracellular dynamics
models.

3.1.2 Numerical Solution

Numerically solving the DLSPM with a linear �ux (Equation (11)) requires specifying several parameters in our model. For
these numerical experiments we assumed that there is no cell death (βi (t) = 0) and a time-independent rate of cell division
(αi (t) = log(2)/1.5). We solved the DLSPM up to generationM = 7 on spatial grids of intracellular constituents that range
from zero to one-hundred (a ∈ [0, 100]). The spatial discretizations for Lax-Wendro� for comparison with RNI are Δa = 0.1
(LxW1) and Δa = 0.01 (LxW2). Recursive numerical integration is applied on the same intracellular constituent values as
LxW1. For simplicity, we consider a �ux term that is linear in intracellular concentration I (a; λ) = λa with λ = 1.5. The
number of initial cells was set equal to 1 and the initial intracellular density,Υ(a), was set to a normal distribution with mean 1
and variance 0.1.

For the LxWmethod, the CFL condition for stability that requires that Δt < Δa
(M+1) ·maxa {λa}

= Δa
(M+1)λamax

. Here amax is the
largest concentration of intracellular constituent considered in the spatial discretization. The number of quadrature points used
in our implementation of RNI and our systematic way of determining them are presented in the Appendix. In this case, at most
four quadrature points were applied in this implementation of RNI.

We now compare numerical solutions with RNI using Theorem 1 and the application of LxW on the original DLSPM,
Equation (2), to the known analytic solution to this system. As shown in Figures 1 and 2, using Theorem 1 and RNI leads
greater accuracy than a LxWmethod at equal mesh size with a signi�cantly faster runtime. Figure 2 and Table 2 show that RNI
and the exact model evaluation signi�cantly outperform both applications of LxW in terms of runtime.
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 1: Numerical Solutions Linear Growth: Separate Generations. We compare numerical solutions (RNI, LxW) of
the DLSPM, (Equations (2)–(3)) with Linear Flux Term (Equation (12)) to the exact solution. (Top) We separately plot each
generation at di�erent points in time T = 1, 2, 3, and 4 hours. For the LxW method we used a uniform mesh with Δa = 0.1
(LxW1) and a = 0.01 (LxW2), and we used Δa = 0.01 for the RNI method. (Bottom): The error between the exact solution
and each of the two numerical methods LxW and RNI. (See Section 3.1 for further details).

Method Runtime (s)
T = 1 T = 2 T = 3 T = 4

LxW1 5.528 8.812 13.17 17.14
LxW2 350.6 706.6 1043.0 1383.0
RNI 0.3545 0.3636 0.2853 0.2784
Exact 0.07435 0.0435 0.04969 0.05625

Table 2:Numerical Runtimes Linear Growth. Runtimes for numerical solutions and evaluation time of the analytic solution
for the DLSPM, (Equations (2)–(3)) with a linear �ux term (Equation (11)) at four di�erent model evaluation times T = 1, 2,
3, and 4 hours.
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Figure 2: Numerical Runtimes Linear Growth. Comparison of runtimes for numerical solutions (LxW and RNI) and the
exact solution (Hasenauer et al., 2012) for the DLSPM (Equations (2)–(3)) with a linear �ux term (Equation (11)) at four dif-
ferent model evaluation times T = 1, 2, 3, and 4 hours.

3.2 Constant Synthesis and Linear Degradation
Nowwe consider solutions to Equation (2) with initial conditions from Equation (3) and a constant synthesis and linear degra-
dation model

I (a; θ) = λ − δa. (17)

Flux functions of this formhave been previously used inmodeling cellular populations (Flores, 2013b). In this case theDLSPM,
Equation (2), no longer admits analytic solutions.

3.2.1 Recursive Integral Formulation

Applying Theorem 1, we �rst solve the characteristic equation

da
dt

= λ − δa, (18)

with the parametric initial condition a(0, s) = s. Using an integrating factor, Equation (18) has solutions

a(t, s) = λ
δ
+ exp(−δt)

(
s − λ

δ

)
and s(t, a) = λ

δ
+ exp(δt)

(
a − λ

δ

)
.

Then we solve

µi (t, s) = exp
(∫ t

0
αi (τ) + βi (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
.

This is simply µi (t, s) = exp
(∫ t

0 αi (τ) + βi (τ) − δdτ
)
. The dynamics of the initial generation are then given by the equation

Y0 (t, a) = µ0 (t, s(t, a))−1Υ
(
λ
δ
+ exp(δt)

(
a − λ

δ

))
. (19)

Continuing with Theorem 1, Yi (t, a) is then given by the recursive equation

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ, (20)
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Method Runtime (s)
T = 1 T = 2 T = 3 T = 4

LxW1 0.04184 0.07266 0.1037 0.1451
LxW2 2.926 5.497 8.533 11.27
RNI 106.1 109.3 252.6 254.6

Table 3:Numerical Runtimes Constant Growth and Linear Decay. Comparison of runtimes for numerical solutions (LxW
and RNI) for the DLSPM (Equations (2)–(3)) with constant growth and linear decay (Equation (17)) at four di�erent model
evaluation times T = 1, 2, 3, and 4 hours.

for i > 0. Thus, the �rst generation dynamics are given by the equation

Y1 (t, a) =
2γα1 (t)

exp
(∫ t

0 α1 (τ) + β1 (τ) − δdτ
) ∫ t

0
exp

(∫ t

0
α1 (τ) + β1 (τ) − δdτ

)
Y0 (τ, γa(τ, s(t, a)))dτ. (21)

Here, substitution of the term γa(τ, s(t, a)) inY0 (t, a) for a leads to an integral formwhere the existence of an analytic solution
to the integral in τ depends on the form of the initial distribution Υ. Therefore, continuing inductively to determine solu-
tions for Yi (t, a) leads to high dimensional integral equations whose dimensionality (number of nested integrals) scales with
the generation (i). The formulation in Equation (20) allows for the estimate of Yi (t, a) for a particular value of intracellular
constituents (a) at any time (t), without explicit knowledge of Yi−1 (t, a).

3.2.2 Numerical Solutions

As in the linear �ux case, we specify parameter values used to numerically solve our model. It is assumed that there is no cell
death (βi (t) = 0) and a time-independent rate of cell division (αi (t) = log(2)/1.5). The �ux term parameter values used are
λ = 1.5 and δ = 20

1.5 . We solved our system up to the seventh generation, M = 7. We set initial intracellular density Υ(a) to
follow a normal distribution with mean 10 and a variance 1, and we begin with 10 cells in the initial population.

We compare solutions with RNI using Theorem 1 to application of LxW on the original DLSPM, Equation (2). The CFL
condition for stability of the LxWmethod requires that our timestep be Δt < Δa

(M+1) ·maxa {λ−δa}
= Δa

(M+1)λ . The spatial discretiza-
tions for Lax-Wendro� for comparison with RNI are Δa = 0.1 (LxW1) and Δa = 0.01 (LxW2). The number of quadrature
points used in our implementation of RNI and our systematic way of determining them are presented in the Appendix. Recur-
sive numerical integration is applied on the same intracellular constituent values as LxW1.

We show our numerical solutions in two contexts, �rst as each generation separately plotted (Figure 3) and then as the sum
over all generations (Figure 4), which is consistent with what would be obtained with an experimental assay. While we can no
longer compare with an exact solution, we see that RNI achieves results comparable to a higher order LxWmethod at the cost
of longer runtimes than both LxW implementations. These longer runtimes for RNI are due to an increasing trend in necessary
quadrature points as we estimate later generations, see the Appendix. We hypothesize that this increase in quadrature points
is necessary due to the constant synthesis term in Equation (17), which adds to the recursive computational complexity of the
problem.

3.3 Logistic Growth
Finally, we consider solutions to Equation (2) with initial conditions from Equation (3) with intracellular dynamics driven by
logistic growth

I (a; λ,K) = λa
(
1 − a

K

)
. (22)

The logistic equation is a standard model in mathematical biology and considers growth within a resource limited environment
(Edelstein-Keshet, 2005; Segel and Edelstein-Keshet, 2013). It is characterized by two parameters λ, the maximum growth rate,
and K , the maximum possible concentration. As in our previous example, Equation (2) does not admit analytic solutions.
Therefore, we begin by solving for the recursive formulation and then compare numerical solutions with RNI to LxW.

3.3.1 Recursive Integral Formulation

We consider solutions to Equation (2) with initial conditions given in Equation (3) under logistic growth (Equation (22)). As
before, following Theorem 1, we �rst solve the characteristic equation

da
dt

= λa
(
1 − a

K

)
,
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(a) T = 1 hour of experimental time. (b) T = 2 hours of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hour of experimental time.

Figure 3:Numerical Solutions Constant Growth and Linear Decay: Separate Generations.We compare numerical solu-
tions (RNI, LxW) of the DLSPM, (Equations (2)–(3)) with Flux Term (Equation (17)). (Top) We separately plot each genera-
tion at di�erent points in time T = 1, 2, 3, and 4 hours. For the LxWmethod we used a uniform mesh with Δa = 0.1 (LxW1)
and a = 0.01 (LxW2), and we used Δa = 0.01 for the RNI method. (Bottom) The error between the RNI and LxW solutions.
(See Section 3.2 for further details).
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(a) T = 1 hour of experimental time. (b) T = 2 hours of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hour of experimental time.

Figure 4:Numerical Solutions Constant Growth and Linear Decay: Total Population.We compare numerical solutions
(RNI, LxW) of the DLSPM, (Equations (2)–(3)) with Flux Term (Equation (17)). (Top) We plot the sum of all generations at
di�erent points in time T = 1, 2, 3, and 4 hours. For the LxW method we used a uniform mesh with Δa = 0.1 (LxW1) and
a = 0.01 (LxW2), and we used Δa = 0.01 for the RNI method. (Bottom) The error between the RNI and LxW solutions. (See
Section 3.2 for further details).
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Figure 5: Numerical Runtimes Constant Growth and Linear Decay. Comparison of runtimes for numerical solutions
(LxW and RNI) for the DLSPM (Equations (2)–(3)) with constant growth and linear decay (Equation (17)) at four di�erent
model evaluation times T = 1, 2, 3, and 4 hours.

with the parametric initial condition a(0, s) = s. This has solutions

a(t, s) =
Ks exp(λt)

K − s + s exp(λt) and s(t, a) =
Ky

a − a exp(λt) + K exp(λt) .

Secondly, we solve for µi (t, s(t, a)) by

µi (t, s(t, a)) = exp
(∫ t

0
αi (τ) + βi (τ) +

dI (a; θ)
da

���
a=a(τ,s)

dτ
)
,

so that

µi (t, s(t, a)) =
(

K
K + s(t, a) (exp(λt) − 1)

)2
exp

(
λt +

∫ t

0
αi (τ) + βi (τ)dτ

)
.

We have an analytic solution for the initial generation, Y0 (t, a) = µ0 (t, s(t, a))−1Υ
(

Ky
a−a exp(λt)+K exp(λt)

)
. Then, continuing

with Theorem 1, Yi (t, a) is given by the recursive equation

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ, (23)

for i > 0. However, we no longer obtain non-integral solutions for Yi (t, a) for any initial distribution Υ by inductively using
the previous solution Yi−1 (t, a) by substituting the term Yi−1 (t, γa(t, s(t, a))) in the integral form of Yi (t, a). In this case,
substitution of Yi−1 (t, γa(t, s(t, a))) leads to high dimensional integral solutions for Yi (t, a), whose dimension depends on the
generation (i). The advantage to numerically solving the formulation in Equation (23), over numerically solving the system in
Equation (2), is that for later generations, we can estimate this solution for a particular value of intracellular constituents (a) at
any time (t).

3.3.2 Numerical Solutions

In our numerical solutions, we assume there is no cell death (βi (t) = 0) and a time-independent rate of cell division (αi (t) =
log(2)/1.5). We �x the parameters in the logistic model: λ = 1.5 andK = 20. The number of initial cells was set equal to 1 and
the initial population density,Υ(a) was set to a normal distribution with mean 1 and variance 0.1. We solved our system up to
generationM = 7.
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Method Runtime (s)
T = 1 T = 2 T = 3 T = 4

LxW1 0.2158 0.358 0.5186 0.6939
LxW2 13.71 26.52 37.91 49.82
RNI 0.1069 0.2391 0.1237 0.6472

Table 4: Numerical Runtimes Logistic Growth. Comparison of runtimes for LxW and RNI for numerical solutions (LxW
and RNI) for for the DLSPM (Equations (2)–(3)) with logistic growth dynamics (Equation (22)) at four di�erent model eval-
uation times T = 1, 2, 3, and 4 hours.

As before, we compare solutions with RNI to LxW. The CFL condition for stability of the explicit LxW method requires
that our timestep be Δt < Δa

(M+1) ·maxa {λa(1− a
K ) }

= 4Δa
(M+1)λK . The spatial discretizations for Lax-Wendro� for comparison with

RNI areΔa = 0.1 (LxW 1) andΔa = 0.01 (LxW2). The number of quadrature points used in our implementation of RNI and
our systematic way of determining them are presented in the Appendix. Recursive numerical integration is applied on the same
intracellular constituent values as LxW1.

As in the previous example, we show our solutions in two ways: each generation separately (Figure 6) and the sum of all
generations to be more consistent with experimental results (Figure 7). Notice that our implementation of Theorem 1 with
RNI achieves an accuracy that is comparable to LxW at a higher re�nement (Δa = 0.01) with a much faster runtime than both
LxW implementations (Figure 8 and Table 4). These also show that while LxW with Δa = 0.1 and RNI take a fraction of a
second of computational time, LxW with Δa = 0.01 takes more than 100 times longer to run. We also observe that unlike in
the case of constant synthesis and linear degradation (Section 3.2), application of Theorem 1 with RNI required a decreasing
number of quadrature points to estimate later generations, see the Appendix.

4 Discussion & Conclusions
In this work, we presented a new theorem that gives a recursive solution to the label structured populationmodels. This theorem
applies to more general functional forms of the �ux term for DLSPMs than addressed by previous work in Banks et al. (2016);
Hasenauer et al. (2012) whose aims were to speed up computation of the forward solution to the PDE system with decomposi-
tion techniques. Our recursive solution structure allows us to de�ne Y1 (t, a), by using the solution Y0 (t, a), then Y2 (t, a) can
be written by assuming that Y1 (t, a) has already been de�ned, and so on for i ≥ 2. For some examples, an analytic solution
for each generation can be determined, as in the case of Section 3.1. In other cases our formulation allows for novel numerical
solutions. We provided examples for applying this theorem with RNI to functional forms of the �ux term which have been
previously used to describe the production or decay of intracellular constituents, including linear growth, constant growthwith
linear degradation, and logistic growth. Numerical results for a DLSPMwith linear �ux, in which we can also compute an exact
solution for a baseline comparison, showed that the RNImethod was signi�cantly more e�cient than the Lax-Wendro� (LxW)
�nite di�erence method, a standard numerical technique for approximating the solution of �rst order hyperbolic PDE systems.
We found that application of Theorem 1 with RNI was more accurate than �nite di�erences even when a very small step size
was employed with the LxWmethod. We observed that RNI was between 900 to 5,000 times faster than the LxWmethod for
this base case. For �ux terms with constant growth and linear degradation, we found that RNI was 36 times slower than the
LxWmethod. However, with the more complex �ux term of logistic growth, RNI was between 77 to 300 times faster than the
LxW. We believe that in the case of �ux terms with constant synthesis, the additive term adds to the computational complexity
when applying RNI methods to evaluate the DLSPM. However, the LxWmethod can e�ciently handle �rst order hyperbolic
PDE systems with a constant �ux term.

An advantage of using Theorem 1 and RNI is in that this leads to a meshfree method for evaluating the DLSPM for an
individual point in time and an intracellular constituent amount for a particular generation. The runtimes presented in Figures
2, 5, and 8 are the result of applying RNI on the coarse spatial grid for LxW, so evaluation of the DLSPMwith Theorem 1 using
RNI at one point takes less time thanwas reported. We also explored a forwardmethod (iterative approach) of using Theorem 1,
by saving the solution to the previous generation (i) to approximate the next generation (i+1) in hopes that this would lead to a
speedup in runtime; however, we found that this is not the case because in saving the solution to the previous generationwe incur
two costs. First, we incur an overhead cost from storing the previous solution by discretizing in time and space. Second, we incur
additional overhead in having to use an interpolation method on previous generation in order to produce the next generation.
The need for an interpolation method can be seen in the form of Equation (4) in Theorem 1 because of the γa(τ, s(t, a)) in the
integrand

Yi (t, a) =
2γαi−1 (t)

µi (t, s(t, a))

∫ t

0
µi (τ, s(t, a))Yi−1 (τ, γa(τ, s(t, a)))dτ.
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 6:Numerical Solutions Logistic Growth: Separate Generations.We compare numerical solutions from (RNI and
LxW) of theDLSPM (Equations (2)–(3)) with FluxTerm (Equation (22)). (Top)We separately plot each generation at di�erent
points in time T = 1, 2, 3, and 4 hours. For the LxW method we used a uniform mesh with Δa = 0.1 (LxW1) and a = 0.01
(LxW2), andweusedΔa = 0.01 for theRNImethod. (Bottom)The error between theRNI andLxWsolutions. (See Section 3.3
for further details).
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(a) T = 1 hour of experimental time. (b) T = 2 hour of experimental time.

(c) T = 3 hours of experimental time. (d) T = 4 hours of experimental time.

Figure 7:Numerical Solutions Logistic Growth: Total Population.Wecompare numerical solutions from (RNI andLxW)
of the DLSPM (Equations (2)–(3)) with Flux Term (Equation (22)). (Top) We plot the sum of generation at di�erent points
in time T = 1, 2, 3, and 4 hours. di�erent points in time. For the LxWmethod we used a uniformmesh with Δa = 0.1 (LxW1)
and a = 0.01 (LxW2), and we used Δa = 0.01 for the RNI method. (Bottom) The error between the RNI and LxW solutions.
(See Section 3.3 for further details).
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Figure 8:Numerical Runtimes Logistic Growth. Comparison of runtimes for LxW and RNI for numerical solutions (LxW
and RNI) for for the DLSPM (Equations (2)–(3)) with logistic growth dynamics (Equation (22)) at four di�erent model eval-
uation times T = 1, 2, 3, and 4 hours.

The RNI method on the other hand takes advantage of the recursive formulation in Theorem 1.
There are ways in which application of the RNI method can be sped up that were not considered in this work. We used

Gaussian quadrature to approximate the integrals observed in the recursion formulation in Theorem 1, but there are other
methods and problem speci�c quadrature rules that lead to greater stability and faster integration times (Weideman and Laurie,
2000). In our work, we found that generating the quadrature points during each recursive integration using the scripts from
vonWinckel (2004) was another limiting factor. While we do not address these problems in our work, we believe that these are
problem speci�c details that open up other research directions.

Our results are signi�cant because the increased e�ciency will drastically speed up the ability to perform inverse problems,
e.g., for parameter estimation, inwhich thousands of forward solutions of the entire PDE system are typically required. Thereby,
Theorem 1 combined with the RNI method will enable model comparisons (Banks and Tran, 2009; Banks et al., 2018), i.e.,
the testing of many di�erent model structures including more detailed molecular processes, which may have previously been
unexplored due to computational burden. Moreover, RNI will enable researchers to perform uncertainty quanti�cation for
DLSPMs, since methods such asMarkov ChainMonte Carlo Bayesian estimation or frequentist bootstrapping techniques can
require several orders of magnitude more forward solves than parameter estimation with gradient based optimization (Kenz
et al., 2013; Smith, 2014).

Code and Data

Open-source code for both RNI and LxWmethods are available at https://github.com/biomathlab/DLSPM_solver.
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Appendix: Determining Number of Quadrature Points
In the analysis presented in themain text, in the implementation ofRecursiveNumerical Integration, the number of quadrature
points used (RNIq) were chosen such that the addition of a quadrature point (RNIq+1) no longer led to an improvement in the
solution with a tolerance of tol = 10−1, using an adjusted∞-norm (see Figure 9). That is the number of quadrature points (q)
used in the text satisfy | |RNIq − RNIq+1 | |∞/max(RNIq,q+1) < tol, for each generation and point in time presented. Here the
norm adjustment termmax (RNIq,q+1) allows dynamically adapting the norm to each generation.

Tables 5–7 present the number of quadrature points used for each �ux term at each point in time. Note that we have an
analytic solution for the initial generation (Y0) and so we do not use RNI to approximate this solution.
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(a) Numerical solutions using Lax-Wendro� and three examples of
RNI using a di�erent number of quadrature points

(b) The convergence of RNI as we increase the number of quadra-
ture points

Figure 9: Number of Quadrature Points and Convergence. Using a logistic �ux term, the concentration of intracellular
constituents is determined for the second generation at four hours into the experiment. The parameter values used here are the
same as in the text.

Time Generation
Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 3 3 3 3 4 4
T = 2 3 3 3 3 3 4 4
T = 3 3 3 3 3 3 4 4
T = 4 3 3 3 3 3 4 4

Table 5: Linear Growth Flux Term.Number of quadrature points by generation for each model evaluation time.

Time Generation
Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 4 6 8 10 12 14
T = 2 3 6 9 11 13 14 14
T = 3 4 7 11 13 14 14 16
T = 4 6 9 13 13 14 14 16

Table 6: Constant Synthesis Linear Degradation Flux Term. Number of quadrature points by generation for each model
evaluation time.

Time Generation
Y1 Y2 Y3 Y4 Y5 Y6 Y7

T = 1 3 3 3 3 4 3 4
T = 2 5 4 4 4 4 3 5
T = 3 18 13 7 5 5 5 4
T = 4 54 33 22 13 7 7 5

Table 7: Logistic Flux Term.Number of quadrature points by generation for each model evaluation time.
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