
Faster Dynamic Matrix Inverse for Faster LPs

Shunhua Jiang∗ Zhao Song† Omri Weinstein‡ Hengjie Zhang§

Abstract

Motivated by recent Linear Programming solvers, we design dynamic data structures for
maintaining the inverse of an n×n real matrix under low-rank updates, with polynomially faster
amortized running time. Our data structure is based on a recursive application of the Woodbury-
Morrison identity for implementing cascading low-rank updates, combined with recent sketching
technology. Our techniques and amortized analysis of multi-level partial updates, may be of
broader interest to dynamic matrix problems.

This data structure leads to the fastest known LP solver for general (dense) linear programs,
improving the running time of the recent algorithms of (Cohen et al.’19, Lee et al.’19, Brand’20)
from O∗(n2+max{ 1

6 ,ω−2, 1−α2 }) to O∗(n2+max{ 1
18 ,ω−2, 1−α2 }), where ω and α are the fast matrix

multiplication exponent and its dual. Hence, under the common belief that ω ≈ 2 and α ≈ 1,
our LP solver runs in O∗(n2.055) time instead of O∗(n2.16).

∗sj3005@columbia.edu. Columbia University. Research supported by NSF CAREER award CCF-1844887.
†zhaos@ias.edu. Princeton University and Institute for Advanced Study.
‡omri@cs.columbia.edu. Columbia University. Research supported by NSF CAREER award CCF-1844887.
§hz2613@columbia.edu. Columbia University. Research supported by NSF CAREER award CCF-1844887.

ar
X

iv
:s

ub
m

it/
31

33
41

8
 [

cs
.D

S]
 1

6
A

pr
 2

02
0

1 Introduction

Dynamic matrix inverse problems ask to maintain the inverse of an n×n matrix M over some field
(say R), when M undergoes a long sequence of row/column updates. This data structure problem
arises in many important TCS applications, such as directed reachability in dynamic graphs and
maintaining the eigenvalues and rank of a matrix [San04], empirical risk minimization [LSZ19],
routing and electrical-flow computation (inverting Laplacians) [ST04, Mad13], and in fastest known
linear programming solvers [LS15, CLS19, BLSS20]. While many variants of this problem have been
considered over the years (depending on the specific application), the most common one requires the
data structure to support vector-queries, i.e., computing Query(h) = M−1h where h comes from
some restricted1 family of Rn, under a long sequence of low-rank updates (e.g., row/column changes
to M). Recomputing the inverse from scratch upon each update in this setting incurs a daunting
computational overhead, and therefore the goal is to optimize the tradeoff between the (amortized)
update time tu and query time tq (or the total running time). The first dynamic data structure for
this problem, tracing back to the 1950’s [Woo49, Woo50] shows how to explicitly maintain the inverse
of M in O(n2) time, which is already nontrivial. Substantial improvements to this data structure
were developed more recently, showing that row-queries (which are equivalent to answering (M>)−1h
for any 1-sparse vector h) under row/column updates, can be done in max{tu, tq} = O(n1.529) time
[San04, SM10, BNS19]. Brand et al. [BNS19] also showed a certain conditional Ω(n1.5) worst-case
lower bound for the exact version of this problem, which is important for some of the aforementioned
applications (e.g., maintaining graph properties such as directed reachability).

In this work we consider a more challenging dynamic inverse problem: The data structure needs
to support low-rank updates of the form Update(u, v) = M+uv> where u, v come from some fixed
set of vectors of size O(n), and needs to answer inverse queries M−1h(i) under a slowly changing
vector sequence (‖h(i)−h(i−1)‖0 ≤ O(1)). In contrast to row-queries (a special case ‖h(i)‖0 = 1), here
the online query vectors h may be arbitrarily dense, but their differences are sparse.2 An important
special case of this dynamic problem is “projection maintenance" [CLS19], where updates toM take
the form Update(D) = M+ADA> where A is an arbitrary fixed matrix and D is a sparse diagonal
matrix (hence rank(ADA>) ≤ rank(D) is small and can be therefore written as

∑rank(D)
i=1 Ai1A

>
i2
).

Nevertheless, an important difference between this work and the aforementioned ones on dy-
namic inverse maintenance (e.g., [San04, SM10, BNS19]), is allowing approximate answers, i.e., the
data structure needs to compute M−1h up to some small relative `∞ error. This enables the use of
randomized tools from sketching and sparse recovery literature [GLPS10, CW13, LNNT16, LSZ19].
Another point of departure is our use of very heavy amortization, augmenting the approach of
[CLS19, LSZ19, Bra20] with a novel algebraic technique and more sophisticated potential analysis
(based on “high order” martingales). A recurring theme in dynamic data structures (both upper
and lower bounds) is that amortized analysis is a different ballgame compared to worst-case perfor-
mance – Some classic examples are the amortized analysis of fully-dynamic undirected connectivity
[ST85] and its matching amortized cell-probe lower bound [PD06], which required substantially new
techniques (and another decade) compared to the worst-case lower bound [FS89]. In contrast to
dynamic graph problems, whose amortized complexity has been studied extensively, its counterpart
in dynamic matrix problems is far less understood ([HKNS15, BNS19]), and we believe our work
sheds further light on the power of amortization.

1Indeed, supporting arbitrary online queries h ∈ Rn is conjectured to be impossible in truly sub-quadratic time
even in the static case where M remains fixed, see the “oMV Conjecture” [HKNS15].

2 Note that sparsity of ∆h is not equivalent to sparsity of queries h themselves: If M were fixed, then by linearity,
computing M−1(∆h) would indeed suffice, but here M is dynamically changing so this standard trick doesn’t work.

1

Dynamic inverse in linear programming The primary application and motivation of this
work is the role of dynamic matrix inverse data structures in speeding up interior-point methods
(IPMs) for solving linear programs (LPs) in close to matrix-multiplication time.

Linear programming is one of the cornerstones of algorithm design and convex optimization,
dating back to as early as Fourier in 1827. LPs are the key toolbox for (literally hundreds of)
approximation algorithms, and a standard subroutine in convex optimization problems. Dantzig’s
1947 simplex algorithm [Dan47] was the first proposed solution for general LPs with n variables
and d constraints (minAx=b,x≥0 c

>x). Despite its impressive performance in practice, however, the
simplex algorithm turned out to have exponential worst-case running time (Klee and Minty [KM72]).
The first polynomial time algorithm for general LPs was only developed in 1980, when Khachiyan
[Kha80] introduced the Elliposid method, and showed that it runs in O(n6) time. Unfortunately,
this algorithm is very slow in practice compared to the simplex algorithm, raising a quest for LP
solvers which are efficient in both theory and practice.

This was the primary motivation behind the development of interior point methods (IPMs),
which uses a primal-dual gradient descent approach to iteratively converge to a feasible solution
(Karmarkar, [Kar84]). An appealing feature of IPM methods for solving LPs is that they are not
only guaranteed to run fast in theory, but also in practice [Str87]. In 1989, Vaidya proposed an
O(n2.5) LP solver based on a specific implementation of IPMs, known as the Central Path algorithm
[Vai87, Vai89]. Vaidya already observed that the main bottleneck of this algorithm boils down to a
dynamic data structure problem of maintaining the inverse matrix M associated with the central
path equations (see Section 3), under a sequence of updates of the form (M+A∆A>)−1, where ∆ is
a sparse diagonal matrix and A is the fixed LP constraint matrix. Since ∆ is sparse, each “gradient
descent” iteration of this algorithm induces a low-rank update toM , hence it is conceivable to avoid
recomputing the inverse matrix from scratch—which would naively cost nω time per iteration—and
gain substantially from amortization. This data structure problem was the centerpiece of the recent
line of developments on IPM solvers [CLS19, LSZ19, Bra20], which focused on designing faster
dynamic inverse structures for implementing the Central Path algorithm.

The fastest known algorithm for general (dense) LPs, based on this approach, is due to Cohen,
Lee and Song [CLS19], whose running time is

O∗(nω + n2.5−α/2 + n2+1/6),

where ω < 2.37 is the fast matrix-multiplication exponent and α > 0.31 is the dual matrix multi-
plication exponent.3 Note that nω is the minimal time for merely inverting a matrix, i.e., finding
any feasible solution (Ax = b) to the LP, hence it seems quite remarkable that solving the full op-
timization problem (minAx=b,x≥0 c

>x) may be done at virtually no extra cost. It is widely believed
that ω ≈ 2 [CKSU05, Wil12] and as such, α ≈ 1 (though the only formal connection between these
constants is ω + (ω/2)α ≤ 3 [CGLZ20]). Assuming indeed that ω < 2 + 1/6 ≈ 2.166 and α > 0.66,
the runtime of the aforementioned algorithms is n2.166. Whether the additive n2.166 term can be
improved or completely removed was explicitly posed as an open question in [CLS19] and [Son19].

Our main result is an affirmative answer to this open question, asserting that LPs can be solved
in matrix multiplication time for nearly any value of ω (i.e., so long as ω > 2.055). We design an
improved LP solver which runs in time O∗(nω + n2.5−α/2 + n2+1/18). In the most notable (ideal)
case that ω ≈ 2 and α ≈ 1, our algorithm runs in O∗(n2.055) time, instead of O∗(n2.166) time of
previous IPM algorithms [CLS19, LSZ19, Bra20]. More precisely:

3The dual exponent α is defined as the asymptotically maximum number a ≤ 1 s.t multiplying an n× na matrix
by an na × n matrix can be done is n2+o(1) time. The current best lower bound is α > 0.31389 [GU18].

2

Theorem 1.1 (Main result, Informal statement of Theorem 4.1). Let minAx=b,x≥0 c
>x be a linear

program where A ∈ Rd×n and d = Ω(n). Then for any accuracy parameter δ ∈ (0, 1), there is a
randomized algorithm that solves the LP in expected time

O∗(nω + n2.5−α/2 + n2+1/18) · log(n/δ).

We achieve this result by designing a more efficient projection maintenance data structure,
speeding up both the update and query times of previous algorithms. This is done via a new
algebraic framework for bootstrapping lazy updates (described next), combined with randomized
compression techniques and a sophisticated amortized analysis of the underlying dynamic process.

Organization In Section 2 we provide a high-level description of our main technique, which is
the centerpiece of this paper. Section 3 contains some necessary background and brief overview
of previous related work. In Section 4, we provide a detailed technical overview of the proof of
Theorem 1.1. This 10-page streamlined overview should be understood as an extended abstract of
our entire result, deferring technical proofs and calculations to the Appendix.

Appendix Organization. Section A contains preliminaries and notation. In Section B we pro-
vide an analysis of the Stochastic Central Path algorithm, postponing output-feasibility issues to
Section I. We put preliminary part of our data structure in Section C. We present our full “cas-
cading data structure” and prove its correctness in Section D, and we analyze its running time in
Sections E, F. Finally, Section G contains the final runtime analysis of our LP solver using the full
data structure. In Section H, we present more details for Section 2.

2 Bootstrapping low-rank updates via cascading lazy updates

One of the main new ideas of this work is “bootstrapping”4 the lazy updates technique of [CLS19]
by repeated application of the Woodburry-Morrison identity (Lemma A.2), allowing faster low-
rank operations via cascading lazy updates. For ease of presentation, let us focus on the following
simplified dynamic data structure problem, which we henceforth call low-rank inverse maintenance
problem (Definition. H.5). The data structure is initially given a full rank matrixM (0) = M ∈ Rn×n,
and a fixed vector h ∈ Rn. The data structure needs to support a sequence of rank-one updates and
vector-queries as follows. In the t-th Update operation, we are given two vectors u(t), v(t) ∈ Rn
and a real number c(t) ∈ R, and need to perform a rank-1 update M (t) = M (t−1) + c(t) · u(t)(v(t))>.
A Query operation asks to calculate x = (M (T))−1 · h, where T is the number of updates in the
sequence so far. Note that this setting easily captures rank-k updates invoking k consecutive rank-1
updates.

Achieving sub-quadratic update and query times for this problem requires some restriction on
the update vectors u(t), u(t) (we show in Section H that otherwise it would break the oMV Conjecture
[HKNS15]). Our technique requires one reasonable assumption, namely, that all updates u(t) and
v(t) come from a fixed set |S| = O(n). As noted in the introduction, LP projection maintenance is
a special case where M = (ADA>), A is the fixed LP matrix and D is a diagonal matrix which is
changing slowly under `0 norm. Thus, a sparse update ∆i to D corresponds toM ←M+∆i ·AiA>i .

4This term refers to a general approach for speeding up dynamic algorithms by repeating a certain technique
several times recursively [San04, BNS19]. We remark that [BNS19] uses a different kind of bootstrapping to speed up
exact inverse maintenance under simpler row-updates and row-queries (via “one more leve” of FMM). In particular,
[BNS19] has nothing to do with dynamic LU-decompositions nor recursion on Woodburry’s identity. Nevertheless, it
is noteworthy that the bottleneck in both works is maintaining certain matrix products for > 2 “levels” of recursion.

3

We also remark that the assumption that the query vector h is fixed throughout the sequence—
while natural in many streaming applications—is only for simplicity of exposition: Our data struc-
ture will actually support an online sequence of slowly-changing queries h (i.e., ‖h(t) − h(t−1)‖0 =
o(n)). Handling sparse updates to h turns out to be much easier than low-rank updates toM , hence
we focus on the latter task.

Our technique for solving the low-rank inverse maintenance problem is based on an algorithmic
generalization of Woodbury’s identity to K > 1 “levels” (to be explained below), allowing for
recursive lazy updates of these K levels using different thresholds. The basic idea is to (dynamically)
group updates into K “epochs” 0 ≤ t1 ≤ · · · ≤ tK−1 ≤ tK = T . The first “level” maintains the
first epoch t1 and M (t1). Similarly, in level k ∈ {2, · · · ,K} we group all updates u(t), v(t), c(t) for
which t ∈ (tk−1, tk], and partition the update sequence in terms of these epochs. More formally,
let Uk, Vk ∈ Rn×(tk−tk−1) and the diagonal matrix Ck ∈ R(tk−tk−1)×(tk−tk−1) be, respectively, the
concatenation of all ui, vi and ci in the kth epoch, so that

∑tk
i=tk−1+1 ci ·uiv>i = UkCkV

>
k . Let rk be

defined as the rank of UkCkV >k , the epochs are maintained under the invariant that rk ≤ nk, where
n = n1 � n2 � · · · � nK ≥ 1 are predefined thresholds that decrease exponentially and can later
be optimized. In this terminology, for any h ∈ Rn, the query answer

x :=

(
M (t1) +

T∑

i=t1+1

ciuiv
>
i

)−1

h

can be equivalently re-written as the following linear system (by adding ‘dummy’ variables ξj):




x
ξ2
ξ3
ξ4
...
ξK




=







M (t1) U2 U3 U4 · · · UK
V >2 −C−1

2 0 0 · · · 0
V >3 0 −C−1

3 0 · · · 0
V >4 0 0 −C−1

4 · · · 0
...

...
...

...
. . .

...
V >K 0 0 0 · · · −C−1

K




︸ ︷︷ ︸
D




−1

·




h
0
0
0
...
0




(1)

Note that this equation is precisely Woodbury’s identity, written in a K-block matrix form.
Indeed, Woodbury’s identity is derived as the solution x to the linear system

[
x
ξ

]
=

[
M (t1) U
V > −C−1

]−1

·
[
h
0

]
,

where here ξ, U , V , C denote the concatenation of ξk, Uk, Vk, Ck respectively, over all k ∈
{2, · · · ,K}. We now explain how the above generalization leads to an efficient data structure for
implementing low-rank updates.

LU-decomposition At update time, the data structure will maintain an LU-decomposition
(lower-upper triangular factorization) of the matrix D in (1).

D = L · U, (2)

where L and U are both K-block triangular matrices (which are uniquely defined by the Gaussian-
elimination algorithm and imposing the diagonals of L to be identity matrices, see Eq.(70) for an
example of the case K = 3). As we will explain in the next paragraph, such decomposition is useful
since the inverse of triangular matrices (L,U) can be maintained efficiently. This means that the
(slowly changing) query answers U−1L−1[h, 0]> = D−1[h, 0]> = [x, ξ]> can be maintained efficiently
with respect to the updated D.

4

Cascading lazy updates and query The key part of our data structure is performing lazy
updates recursively w.r.t different thresholds, to speed up the amortized runtime. Recall that
in the latest T -th update, we are given uT , vT , cT . In order to solve the forthcoming queries
using this framework, we need to update the epoch in the bottom level tK to reflect the up-to-
date M (T), by updating its corresponding tuple UK , VK , CK and maintain the LU-decomposition.
If the update tK ← T violates the invariant rK ≤ nK (Recall rk = tk − tk−1 is the rank of
the update UkCkV >k in the k-th epoch), we “cascade” the update to the next level by updating
tK−1 ← tK ← T and also updating UK−1, VK−1, CK−1 to include Uk, VK , CK , and recurse on the
next level tK−2 and so on, until the threshold invariant is restored. A crucial observation in the
implementation of cascading lazy updates and maintaining the LU-decomposition is that when level
k gets updated, the upper-left (k − 1) × (k − 1) blocks of L and U , which is the dominating part
compared to the entire matrix, does not change. Since L and U are triangular matrices, the upper-
left (k − 1) × (k − 1) blocks of L−1 and U−1 also remain intact. If we write the new L−1, U−1 as
(L−1)new = L−1 + ∆L and (U−1)new = U−1 + ∆U , the non-zero part of ∆L (∆U) is lower (upper)
triangular of n× nk submatrices that reside on the bottom (right). Thus, the query answer can be
maintained by computing (U−1)new(L−1)new[h, 0]> = (U−1 + ∆U)(L−1 + ∆L)[h, 0]>. (The “heavy”
part U−1L−1[h, 0]> can be reused, and the remaining components are relatively cheap to calculate).

This argument implies that, at level k, we can afford time proportional to its size rk ≤ nk to
rebuild the lower-upper triangular matrix L and U on their changed part along with the vector
U−1L−1[h, 0]>, to perform fast queries. We remark that recomputing ∆L,∆U requires certain
preprocessing which is where we exploit the assumption that updates u, v are from a fixed set.

Application to the LP setting. We now explain how the above framework can be successfully
applied to the LP setting, i.e., to efficiently implement IPM algorithms. As explained in the next
section, the goal of each iteration in IPM solvers is to (re-)calculate an approximate matrix-vector
product r of the following form, given new disposition vectors wappr and happr (see Algorithm 1):

r := P (wappr) · happr =
√
W apprA>(AW apprA>)−1A

√
W appr · happr.

We can use our cascading lazy updates technique to maintain the middle term (AW apprA>)−1 · h,
where for simplicity we assume here that h is some fixed vector. Indeed, letting wappr denote the
j-th iteration update w(j), recalculating (AW apprA>)−1 · h corresponds to maintaining a sequence
of Tj := ‖w(j) − w(j−1)‖0 of updates ui, vi, ci followed by one query such that

∑Tj
i=1 ci · uiv>i =

A(W (j) −W (j−1))A>.
Pictorially, the cascading lazy updates process resembles the following “chasing game”: Child

number tk−1 is chasing its friend tk. Once the distance between them is too large, tk−1 updates his
position to the position of tk (Figure 1). This process generalizes [CLS19], in which there’s only
one child t1 chasing its friend t2 = T . To analyze the amortized cost of this process, we exploit the
following special features of the LP problem:

1. The updates u(t), v(t) is some row of the original (fixed) LP matrix A.

2. wappr is slowly changing in each IPM iteration, which imposes nontrivial sparsity guarantees
that can be used to determine the cascading thresholds {nk}Kk=1: Informally speaking, since
wappr is roughly a martingale, the rank rk of epoch k will be typically far less than its boundary
condition (rk � tk − tk−1) – It takes about

√
nk LP-iterations for epoch k to exceed the

threshold nk, in which case we need to update epoch k − 1 and compute ∆L, ∆U which are
of size n× nk−1. (see Sections 4.2, F for more details).

5

w(0)

w(t1) w(t2)

w(t3)
. . .

w(tK−1)

w(tK)

‖w(t1) − w(0)‖0 ≤ n1

‖w(t2) − w(t1)‖0 ≤ n2 ‖w(t3) − w(t2)‖0 ≤ n3

‖w(tK) − w(tK−1)‖0 ≤ nK

Figure 1: The cascading lazy updates process with per-level invariants ‖w(tk) − w(tk−1)‖0 ≤ nk.
Updates become more expensive but less frequent as we move down the levels.

3. The robustness of the Central Path algorithm implies that queries M−1 · h can tolerate
small relative `∞ error. This allows the use of randomized compression (left-sketching R>R ·
U−1L−1[h, 0]>) to further reduce the running time (see Section 4.1 for technique overview).

Therefore, assuming ideal matrix-multiplication constants (ω = 2, α = 1) and that ∆L and
∆U can be recomputed in time linear in their sparsity O(n · nk) for every level k ∈ [K], the vector
(L−1)new[h, 0]> = (L−1 +∆L)[h, 0]> can be maintained in O(n ·nk) time. Furthermore, the solution

(U−1)new(L−1)new[h, 0]> = (U−1 + ∆U)(L−1 + ∆L)[h, 0]>

= U−1L−1[h, 0]> + ∆U
(

(L−1 + ∆L)[h, 0]>
)

+ (U−1∆L)[h, 0]>

can be maintained in the same O(n · nk) time since the non-zero part of ∆L is an (nk × n) block.
The bottom K-th level is a special one, as every level k except the last one involves extra pre-
computation to support the next (k+ 1)-th level. As we show, with some extra (non-trivial) effort,
this fact enables maintaining the K-th level in only O(nK−1 · nK) time instead of the brute-force
O(n ·nK) time. (Our algorithm implements K = 3 levels of this framework. By convention, in later
sections we refer to the third level as the “query level”; The first and second levels are referred as
“two-level” updates).

In conclusion, the ideal time per LP-iteration according to our framework is proportional to
K−1∑

k=1

(n · nk/
√
nk+1)︸ ︷︷ ︸

K − 1 levels

+nK−1 · nK︸ ︷︷ ︸
K-th level

, (3)

where n · nk/√nk+1 is the amortized update cost of level k ∈ [K − 1], and nK−1 · nK is the update
cost of the last levelK. Carefully balancing the terms by setting geometrically decreasing thresholds
nk’s (see Claim H.6), this runtime is optimized to be

Õ(K) · n2+ 1

6·(2K−1−1) = Õ(K) · n2+O(2−K), (4)

using the fact that the LP algorithm (see Algorithm 1) has Õ(
√
n) iterations. The formal calculation

can be found in Section H.3. Note that when K = 2, this running time is precisely O∗(n2+1/6),
matching [CLS19, LSZ19, Bra20]’s results. For K = 3 levels, this matches our result O∗(n2+1/18).

Achieving the runtime predicted by Eq. (4) for K = ω(1) levels would show that LPs can be
solved in the ideal time O∗(nω). The main challenge in implementing our technique beyond K > 3
levels is maintaining the LU-decomposition of (2) in the desired (∼ n · nk) time, and indeed doing
so even for K = 3 is highly nontrivial, as this paper shows. While completing this ambitious
program is beyond the reach of this paper, we believe the cascading lazy updates framework may
have applications in future developments in LP and SDP solvers, cutting plane methods, and more
generally for dynamic inverse problems, hence it is worthwhile presenting it at its full generality.

6

3 Background

This section provides a brief overview of recent developments in LP solvers, the optimization frame-
work of IPMs and its relation to dynamic inverse problems.

3.1 Recent developments in LP solvers

The recent work of [CLS19] improved the O(n2.5) LP algorithm of [Vai89] to5

O∗(nω + n2.5−a/2 + n1.5+a), (5)

where a ≤ α is a tunable parameter, and ω, α are the fast matrix multiplication exponent and its
dual, respectively. Note that for the current values of ω ≈ 2.38 and α ≈ 0.31, this running time
is already O∗(nω). However, under common belief that ω = 2 and α = 1 [CKSU05, Wil12], the
running time is O∗(n2+1/6), hence there is still a polynomial gap to the ideal running time O∗(n2).

The three main ingredients in [CLS19]’s algorithm are: (i) considering a stochastic version of the
Central Path algorithm (see Algorithm 1 below), and then leveraging the robustness of this algorithm
to design a more efficient matrix maintenance data structure via subsampling (sparsification of the
“gradient” vector) yielding o(n2) query time per iteration. (ii) Lazy updates: Delaying updates to the
projection matrix (associated with the central path equation) via “soft thresholding” and analyzing
their amortized performance via martingale-based potential analysis. (iii) Using fast rectangular
matrix multiplication to gain extra speedup. Our data structure will also take advantage of these
building blocks.

3.2 Optimization: The stochastic central-path algorithm

We use a similar optimization framework as that of [CLS19] (see Section 2.1 for a more detailed
explanation and context). Roughly speaking, the Central Path (CP) algorithm maintains a primal-
dual pair of vectors, x(i) and s(i), and iteratively shrinks the duality gap µ(i) :=

∑n
j=1 x

(i)
j s

(i)
j by

∼ (1 − 1/
√
n) in each iteration, until converging to a feasible point (µ(i) ≈ 0). Hence, the Central

Path algorithm has a total of O(
√
n) iterations. In matrix notation, this algorithm essentially boils

down to implementing the following iterative algorithm [CLS19]:

Algorithm 1 Stochastic Central Path
1: i← 1, initialize x, s ∈ Rn
2: while i <

√
n do . In each iteration, we hope µ ≈ t

3: t← t · (1− 1/
√
n) . target decrease of duality gap

4: µ← x · s . actual decrease in duality gap
5: Compute δµ based on − µ√

n
and the gradient −∇Ψ(µ/t− 1).

6: P ←
√

X
S A
>(AX

S A
>)−1A

√
X
S . matrix inverse, matrix-matrix mult.

7: δx ← X√
XS

(I − P) 1√
XS

δµ, δs ← S√
XS

P 1√
XS

δµ . matrix-vector mult.
8: x← x+ δx, s← s+ δs, i← i+ 1
9: end while

Here, X = diag(x), S = diag(s) are the primal and dual vectors, and A ∈ Rn×n is the (fixed) LP
constraint matrix. Ψ is a potential function measuring how close µ is from t (the “target” duality

5The running time is actually O∗(nω + n2.5−a/2 + n1.5+a + nωa+0.5 + n2a+0.5), and the nωa+0.5 and n2a+0.5 terms
also come from query time. But they are dominated by other terms. In our paper we improved not only the n1+a

term, but also these other two terms.

7

gap), and the vector δµ has two purposes: decreasing µ by a (1 − 1/
√
n) factor while keeping the

potential function bounded. The vectors δx, δs compute the disposition of the primal and dual
vectors in each iteration. P is an orthogonal projection matrix (P 2 = P and P = P>), and the
formulas X√

XS
, S√

XS
, 1√

XS
, and X

S ∈ Rn×n are the diagonal matrices of the corresponding vectors.
A key observation in [CLS19] is that this algorithm is robust to small perturbations along the

central path: Denoting by w the vector x/s, and by h the vector δµ√
XS

, [CLS19] shows that in the
above algorithm, is enough to approximately maintain wappr ≈εmp w, h

appr ≈εmp h, where εmp < 1/4
and ≈εmp denotes coordinate-wise approximation.

3.3 Data structures: Projection maintenance

The main bottleneck of Algorithm 1 is to efficiently maintain the approximate projection matrix

P (wappr) =
√
W apprA>(AW apprA>)−1A

√
W appr, (6)

recalculating the queries r := P (wappr)h on line 7, where h := δµ/
√
XS. There areO(

√
n) iterations.

Lazy updates. It was already observed in [Vai89] that since each iteration only changes the `2
mass of w by a small amount (which can be turned into an `0 sparsity guarantee by “rounding” and
absorbing a small error), most of the time the queries can be answered efficiently by computing the
low-rank incremental change in P , amortizing away the rare cases where too many coordinates of
w have changed, which are handled using brute force fast matrix multiplication. As noted above,
[CLS19] further used the power of fast rectangular matrix multiplication: By definition of α, for
any threshold parameter a ≤ α, the complexity of multiplying an n× na rectangular matrix by an
na × n rectangular matrix is the same as multiplying an n× 1 vector with a 1× n vector, so they
only update P when at least na coordinates of w have changed. [CLS19] further make a clever use
of soft thresholding on na, which combined with a potential function analysis, yields an amortized
O(nω−1/2 +n2−a/2) update time per iteration. Note that the n2−a/2 term needs to be balanced with
query time. [LSZ19] and [Bra20] both follow the same update scheme.

Fast queries. Computing the queries r = P (wappr)h in each iteration from scratch takes n2 time
since the projection matrix may be very dense. The three papers [CLS19, LSZ19, Bra20] proposed
different techniques for speeding up this matrix-vector multiplication to o(n2). In [CLS19, LSZ19],
the authors use the idea of “iterating and sketching” [Son19], an adaptive version of the classic
“sketch and solve” paradigm [CW13]. In [Bra20], the author maintains the query answer r directly,
exploiting the observation that the vector h is also slowly changing (and not just updates w). Both
techniques ([CLS19, Bra20]) are essentially using sparsification of the vector h, hence involve a “right
hand side” linear operation. In contrast, [LSZ19] uses a “left-hand side” operation by sketching the
projection matrix itself, effectively making it smaller.

Sampling on the right [CLS19]. Here the idea is to apply a O(
√
n)-sparse diagonal sampling

matrix D ∈ Rn×n on the right hand side of the maintained matrix:
√
W apprA>(AW apprA>)−1A

√
W appr D︸︷︷︸

sample right

h.

After this sampling, the vector Dh becomes O(
√
n)-sparse, so computing the multiplication of a

matrix with Dh takes O(n1.5) time. Also, since the rank of the change in W is guaranteed to be at
most na, there is also a O(n1+a) term in the query time.

8

Sketching on the left [LSZ19]. The idea here is to apply a (subsampled) Hadamard/Fourier
transform matrix [LDFU13, PSW17] R ∈ R

√
n×n, by sketching on the left hand side:

R>R︸ ︷︷ ︸
sketch left

√
W apprA>(AW apprA>)−1A

√
W apprh.

In this way the matrix RM has size
√
n×n,6 so multiplying this matrix with a vector takes O(n1.5)

time. So the final query time is also O(n1.5 + n1+a). [LSZ19] algorithm is also maintaining some
extra vectors, e.g., the explicit/implicit version of x, s.

Maintaining query answers [Bra20]. Brand observed that is possible to maintain not only the
inverse matrix P (wappr) via lazy updates, but also the previously computed query answers r, by
observing that the vector h it also changes slowly. In each iteration, the new r is computed as:

r +
√
W apprA>(AW apprA>)−1A

√
W appr ∆h︸︷︷︸

change in h

.

[Bra20] chooses a similar sparsity threshold na for the vector and updates the maintained r when ∆h
exceeds na, so ∆h is guaranteed to be na-sparse at query time. As such, the query time is O(n1+a).
It is noteworthy that this algorithm is deterministic, as it avoids sketching/sampling altogether.
Indeed, the main motivation of [Bra20] was derandomizing [CLS19].

Our approach. We show how to break the O(n1+a) barrier for query time, by combining both
left-hand and right-hand linear transformations on P , together with the cascading lazy updates
technique from Section 2. Such combination is needed to further “compress” the matrix-vector
multiplication when (re)calculating r. It turns out that using two sources of randomness—sampling
on the right [CLS19] + sketching on the left [LSZ19]—obliterates the error analysis (which needs to
be controlled to ensure convergence), and this is intuitively where [Bra20]’s deterministic alternative
is useful for us as a substitute to right-hand-sampling.

4 Detailed Technical Overview

This section provides a detailed, streamlined technical overview of the proof of Theorem 1.1, which
we restate formally below. This section should be understood as a self-contained extended abstract
of our entire algorithm. Formal proofs of all technical claims can be found in the Appendix.

Theorem 4.1 (Main result). Given a linear program minAx=b,x≥0 c
>x with no redundant con-

straints. Assume that the polytope has diameter R in `1 norm, namely, for any x ≥ 0 with Ax = b,
we have ‖x‖1 ≤ R.

Then, for any δ ∈ (0, 1], Main(A, b, c, δ, a, ã) (Algorithm 17) outputs x ≥ 0 such that

c>x ≤ min
Ax=b,x≥0

c>x+ δ‖c‖∞R, and ‖Ax− b‖1 ≤ δ · (R‖A‖1 + ‖b‖1)

in expected time

O(nω+o(1) + n2.5−a/2+o(1) + n1.5+a−ã/2+o(1) + n0.5+a+(ω−1)ã) · log(n/δ)

for any 0 < a ≤ α and 0 < ã ≤ αa. In particular, so long as the constants of fast matrix
multiplication satisfy ω > 2.055 and α > 5− 2ω, general LPs can be solved in O(nω+o(1)) time. In
the ideal case that ω = 2 and α = 1, the running time is n2+1/18 = n2.055.

6Intuitively, O(
√
n) rows is the minimal sketch size one can hope for, as this ensures that with O(

√
n) CP iterations,

every coordinate i ∈ [n] has a constant chance to be sampled

9

The first two terms nω and n2.5−a/2 of our running time are the same as [CLS19], stemming
from the amortized cost of lazy updates (for K = 1 levels). The n1.5+a−ã/2 term comes from the
amortized cost of our cascading lazy updates algorithm for the K = 2nd level update. Finally, the
n0.5+a+(ω−1)ã term is the worst-case cost of the query algorithm. We note that a prerequisite for
achieving the runtime of Theorem 1.1 is removing the explicit n1+a term as well as the two (implicit)
naω, n2a terms in the query time of all previous works. Below we elaborate on how this is achieved
step by step, as shown in Table 1.

Statement Technique Time Ideal Choice
[CLS19] Sec. 3 n2.5−a/2 + n0.5+2a + n0.5+ωa + n1.5+a n2+1/6 a = 2/3

Thm. 4.2 Sec. 4.1.1 n2.5−a/2 + n0.5+2a + n0.5+ωa n2+1/10 a = 4/5

Thm. 4.3 Sec. 4.1.2 n2.5−a/2 + n0.5+2a n2+1/10 a = 4/5

Thm. 4.1 Sec. 4.1.3 n2.5−a/2 + n1.5+a−ã/2 + n0.5+a+(ω−1)ã n2+1/18 a = 8/9, ã = 2/3

Table 1: We ignore the nω term, and also ignore all the no(1) terms. Ideal denotes the resulting running
time when ω = 2 and α = 1. (Note that the current values are ω ∼ 2.38 and α ∼ 0.31).

v

wappr wnew

‖v − wappr‖0 ≤ na

εmp−approx

(a) CLS19 (b) Ours

v

ṽ
wappr wnew

‖v − ṽ‖0 ≤ na

‖ṽ − wappr‖0 ≤ nã

εmp−approx

Figure 2: (a): In each iteration, we are given wnew which is changing slowly. The algorithm will find wappr

such that wappr is coordinate-wise εmp close to wnew(pink wave line), and it is also close to v in `0 norm(blue
solid line). (b): Based on (a), we add an intermediate level ṽ, such that in the query, ‖v − ṽ‖0 ≤ na(blue
solid line) and ‖ṽ − wappr‖0 ≤ nã(green dashed line).

We note that, although our better running time is achieved by breaking the three bottlenecks
of the query time of previous works, it actually requires non-trivial design of both the query part
and the update part. Indeed, our data structure involves an entirely new update subroutine for
second-level of updates.

In the next Section 4.1, we walk through the techniques for removing the three Query bottlenecks
one by one, while introducing the data structure members that must be maintained in order to make
queries faster. At a high level, these members correspond to maintaining the components appearing
in the LU-decomposition part of our cascading framework for K = 2 levels (described in Section 2,
see Figure 2 for illustration). In Section 4.2 we describe and analyze the Update algorithm of
our data strucutre. This part uses a combination of “soft thresholding” for two levels of updates
(Figure 6), capturing the cascading lazy updates process. We remark that this type of analysis may
be of independent interest to “bootstrapping” techniques in dynamic matrix problems.

4.1 Our Query Algorithm

Our dynamic data structure relies on the following three main ingredients, for removing each of the
three bottlenecks shown in Table 1 respectively:

1. “Compressing” the projection matrix using linear operations on both sides (Section 4.1.1): We
show that by combining a sketching on the left to reduce the matrix size from n×n to

√
n×n,

10

with the direct maintenance of the previous query answer that makes the new query vector
sparse, already breaks the n1+a query time barrier of previous works.

2. Faster queries through the “cascading lazy updates” framework (Section 4.1.2): The core
technique of previous works is exploiting the fact that the inverse matrix and the query vector
are both changing slowly over iterations, hence the data structure can maintain all intermediate
values from previous iterations, and only re-compute the differences. As explained in the last
part of Section 2, we show that even the “derivative” of updates and queries is slowly changing
(these are the “sparsity thresholds” we allude to in Section 2). It is therefore natural to
maintain a second-level of values (“changes” of the inverse matrix and the query vector),
where each new iteration only computes the changes in these second-level values. We update
both levels according to the cascading lazy updates framework (recall Figure 1). We show this
technique removes the naω term in the query time of previous data structures (Table 1).

3. Maintaining the components of the second-level structure efficiently (Section 4.1.3): This is
done by essentially recursing the approach of maintaining the first-level to the second-level, by
carefully designing the maintained objects (matrix-products, vectors, sets). This removes the
n2a term in the query time, which in fact appeared in multiple places in previous algorithms.

We now turn to a detailed description of the query algorithm, using [CLS19] as a baseline. Recall
that each iteration of the CP algorithm generates two vectors w and h from the previous outputs
of the data structure. The data structure needs to re-calculate

√
WA>(AWA>)−1A

√
Wh.

By robustness of the stochastic CP algorithm, it suffices to output an approximated value

r = (R)>︸ ︷︷ ︸
de−sketch

·R
√
W apprA>(AW apprA>)−1A

√
W apprhappr

︸ ︷︷ ︸
sketch

,

where for some fixed parameter εmp < 1/4 the data structure guarantees that wappr ≈εmp w and
happr ≈εmp h. We use the same sketching matrix R as that of [LSZ19] which satisfies E[R>R] = I
and a guarantee that the variance and `∞ error of (R>RPh−Ph) are both small. R has size

√
n×n

– this value is natural, since we have ∼ √n CP iterations, hence using o(
√
n) linear measurements

would fail to even detect changes in all n coordinates. Also, the size of R allows us to pre-batch
O(
√
n) copies of sketching matrices in the beginning, which only takes O(nω) time.
As in [CLS19, Bra20], our data structure maintains a member v that serves as a proxy for w,

and a member g that serves as a proxy for h. If the new value wappr is too far from v, then in
addition to computing the new displacement r, the data structure also updates v along with all
of its members that depend on v. An analogous scheme is used for g w.r.t happr. Since the new
values wappr and hsample show up in three places in the output r, from now on we will refer to these
three places as the left part, the middle part, and the right part, and label them as anew ∈ R

√
n×n,

bnew ∈ Rn×n, cnew ∈ Rn for ease of presentation. Accordingly, we use a ∈ R
√
n×n, b ∈ Rn×n, c ∈ Rn

to denote the values that depend on v and g:

R
√
W appr︸ ︷︷ ︸
anew

A>(AW apprA>)−1A︸ ︷︷ ︸
bnew

√
W apprhappr

︸ ︷︷ ︸
cnew

, R
√
V︸ ︷︷ ︸

a

A>(AV A>)−1A︸ ︷︷ ︸
b

√
V g︸ ︷︷ ︸
c

.

We also denote ∂a := anew − a, ∂b := bnew − b, ∂c := cnew − c.
For a tunable parameter a ∈ (0, α], the worst case query time per iteration of [CLS19]’s data

structure for implementing this process is tq = n2a + nωa + n1+a, the three terms come from the

11

cost of recomputing the query r. In the remainder of this subsection, we describe how this query
time can be improved to

tq = na+(ω−1)ã (7)

for any a ∈ (0, α] and ã ∈ (0, αa]. We show this in three steps, removing the terms n1+a, nωa , and
n2a one by one.

4.1.1 Technique for removing n1+a

We combine the “sketching on the left” technique of [LSZ19] and the “query maintenance” technique
of [Bra20] to remove this term. In [Bra20] the query is computed as

r =
√
W appr

︸ ︷︷ ︸
anew

(
β2︸︷︷︸
bc

+ M︸︷︷︸
b

(√
W apprhappr −

√
V g
)

︸ ︷︷ ︸
∂c

+
(
−MS(∆−1

S,S +MS,S)−1(MS)>
)

︸ ︷︷ ︸
∂b

√
W apprhappr

︸ ︷︷ ︸
cnew

)
,

where M := A>(AV A>)−1A, β2 := M
√
V g ∈ Rn are members that the data structure maintains,

∆ := W appr − V , and S := supp(wappr − v). The subscript MS means taking the sub matrix of
columns of M in the set S. Note that this output is anew(bc+ b · ∂c+ ∂b · cnew) = anewbnewcnew.

The n1+a term shows up in three places when computing different terms:

• In anew · b · ∂c, multiplying a n× n matrix M with a na-sparse vector
(√
W apprhappr−

√
V g
)
.

• In anew·∂b·cnew, multiplying a n×na matrixMS with a na×1 vector (∆−1
S,S+MS,S)−1(MS)>

√
W apprhappr.

• In anew · ∂b · cnew, multiplying a na × n matrix (MS)> with a n× 1 vector
√
W apprhappr.

The last one is easy, and we deal it by splitting cnew ∈ Rn into c+ ∂c again:

(MS)>
√
W apprhappr

︸ ︷︷ ︸
cnew

= (β2)S + (MS)> (
√
W apprhappr −

√
V g)︸ ︷︷ ︸

∂c

.

Since the ∂c term is na-sparse, this computation only takes n2a time now.
We deal with the first two n1+a terms by adding the sketching matrix R on the left, and

splitting anew into a + ∂a. Aside from maintaining M = A>(AV A>)−1A and β2 = M
√
V g, we

further maintain their sketched versions:

Q = R
√
VM ∈ R

√
n×n, β1 = R

√
V β2 ∈ R

√
n.

In addition to the temporary variables S = supp(wappr − v) and ∆ = W appr − V , we also define
Γ :=

√
W appr−

√
V . We have the guarantee that ∆, Γ and (

√
W apprhappr−

√
V g) are all na-sparse

and |S| ≤ na, because otherwise the algorithm would first update V and g. The query part of our
new data structure becomes

r1 := β1︸︷︷︸
abc

, r2 := (QS︸︷︷︸
ab

+RΓM︸ ︷︷ ︸
∂a·b

) (
√
W apprhappr −

√
V g)︸ ︷︷ ︸

∂c

, r3 := RΓ︸︷︷︸
∂a

· β2︸︷︷︸
bc

r4 := ︸ ︷︷ ︸
anew·MS

(QS +RΓ ·

∂b︷ ︸︸ ︷
MS)(−(∆−1

S,S +MS,S)−1)
︸ ︷︷ ︸

(MS)>·cnew

(
(MS)> ·

(√
W apprhappr −

√
V g
)

+ β2,S

)

12

Note that this output is

r := abc︸︷︷︸
r1

+ (a+ ∂a)b · ∂c︸ ︷︷ ︸
r2

+ ∂a · bc︸ ︷︷ ︸
r3

+ anew · ∂b · cnew
︸ ︷︷ ︸

r4

= anewbnewcnew.

Recall that the n1+a term stemmed from multiplying an n × n matrix by an na-sparse vector
when computing anew · b · ∂c. We split this term as anew · b · ∂c := a · b · ∂c + ∂a · b · ∂c (see the
formula for r2). The data structure will now maintain ab := QS , whose size is only

√
n× na, hence

computing ab · ∂c only takes n1/2+a < n1.5 time now. Note that when computing ∂a · b · ∂c, the
n×n matrix M is “sandwiched” by a na-sparse diagonal matrix Γ on the left and a na-sparse vector
(
√
W apprhappr −

√
V g) on the right, thus computing the product ΓM(

√
W apprhappr −

√
V g) takes

n2a time.
The last n1+a bottleneck from [CLS19] is removed in a similar way, yielding the following

intermediate result:

Theorem 4.2 (Informal, first improvement). For any a ≤ α, there is a randomized algorithm for
solving general LPs in expected time O∗(nω + n2.5−a/2 + n0.5+aω).

Note that for ω = 2 and α = 1, this approach already yields an improved n2+1/10 LP algorithm.

4.1.2 Technique for removing nωa

The nωa term in previous data structures came from computing the inverse of an na × na matrix
(∆−1

S,S+MS,S), and this inverse is still present in the intermediate algorithm described in Section 4.1.1
(see the formula for r4). This is where the cascading lazy updates technique comes useful – we shall
remove the nωa by showing how to implement it for K = 2 “levels”. We now provide the details of
this data structure.

Once again, the main observation is that since we’ve already computed (∆−1
S,S + MS,S)−1 in

previous iterations, we do not need to re-compute it from scratch. Instead, we only need to compute
the difference between the new inverse matrix and the old one. More concretely, we maintain a
second-level data structure member ṽ. ṽ keeps a closer distance with wappr than v, and is therefore
updated more frequently. We update v whenever ‖ṽ − v‖0 > na (for some a ≤ α) and update ṽ
whenever ‖wappr − ṽ‖ > nã (for some ã ≤ αa). By abuse of notation, we define

S := supp(ṽ − v), Snew := supp(wappr − v), ∂S := supp(wappr − ṽ). (8)

In this overview we can think of Snew = S ∪ ∂S. Later we also handle the possibly non-empty set
S′ = (S ∪ ∂S)\Snew, but the key ideas are the same. The updates guarantee that in the query we
always have that |Snew| ≤ na and |∂S| ≤ nã. Our data structure maintains a second-level member

B := (∆−1
S,S +MS,S)−1 ∈ Rn

a×na .

Observe that the new matrix ((∆new)−1
Snew,Snew +MSnew,Snew) only differs from B−1 = (∆−1

S,S +MS,S)
on entries in Snew × ∂S and ∂S × Snew. (See the left part of Figure 3.)

So we have the following decomposition that can be computed in O(nã+a) time:

U ′CU> = ((∆new)−1
Snew,Snew +MSnew,Snew)− (∆−1

S,S +MS,S),

where U ′, U ∈ Rna×nã , and C ∈ Rnã×nã . In fact U ′ and U are both constructed by taking a
submatrix from M and concatenate it with two identity matrices (see Figure 3), this will be useful
in the next section where we remove the n2a term. Now we can use Woodbury identity to compute

((∆new)−1
Snew,Snew +MSnew,Snew)−1 = (B−1 + U ′CU>)−1 = B −BU ′(C−1 + U>BU ′)−1U>B.

13

N
S
\∂

S
,∂

S

N∂S,S\∂S N∂S,∂S

S\∂S ∂S

Snew

=

|∂S| |∂S| |∂S|

S\∂S

∂SI I

N
S
\∂

S
,∂

S

×

|∂S| |∂S| |∂S|

|∂S|

|∂S|

|∂S|

I

N∂S,∂S

I ×

S\∂S ∂S

|∂S|

|∂S|

|∂S|

NS\∂S,∂S

I

I

N U ′ C U>

Figure 3: An illustration of the construction of U ′, C, U>. N is defined as ((∆new)−1
Snew,Snew +

MSnew,Snew)− (∆−1
S,S +MS,S). I denotes the identity matrix.

The most expensive part of this formula is to compute the multiplication U>B and BU ′, and the
inverse (C−1 +U>BU ′)−1. Since ã ≤ αa, using fast rectangular matrix multiplication, multiplying
a nã × na matrix U> with a na × na matrix B takes O(n2a) time. Computing BU ′ takes the same
time. Computing the inverse of a nã × nã matrix (C−1 + U>BU ′) takes nãω = Tmat(n

ã, nã, nã) ≤
Tmat(n

a, na, nã) = n2a. All other parts of the query algorithm remain the same as in Section 4.1.1.
Hence, so far, the running time is upper bounded by O(n2a):

Theorem 4.3 (informal, second improvement). For any a ≤ α, there is a randomized algorithm
for solving general LPs in expected time O∗(nω + n2.5−a/2 + n0.5+2a).

We remark that the second-level members B and the local variables U , C and U ′ that the
data structure maintains, correspond to the variables in the cascading lazy update framework of
Section 2: The matrix B here is exactly the same inverse B as defined in Section 2 for K = 2 (see
Eq.(70)). In the same vein, the block C−1 here corresponds to the term −C−1

2 − V >2 M−1U2, U>

corresponds to V >2 M−1U1, and U ′ corresponds to V >1 M−1U2 of Eq.(70). That said, since Section 2
deals with a simplified version of our actual inverse problem, we will need to maintain several other
ad-hoc members to achieve the claimed running time. We turn to describe those next.

4.1.3 Technique for removing n2a

Now we show how to remove the n2a term from the current algorithm as described in Section 4.1.1,
with the inverse matrix of r4 computed as described in Section 4.1.2). The n2a term appears in
the computation of both r2 and r4. Since removing the n2a terms in r4 is more difficult, we mainly
focus on the r4 term in this section. In analogy to the second-level member ṽ, we also maintain g̃,
and update it whenever ‖happr− g̃‖0 > nã. Similar to the definition of Snew, S, ∂S (Eq. 8), we shall
use the following three variants of notations:

∆new = W appr − V, ∆ = Ṽ − V, ∂∆ = W appr − Ṽ ,

Γnew =
√
W appr −

√
V , Γ =

√
Ṽ −

√
V , ∂Γ =

√
W appr −

√
Ṽ ,

ξnew =
√
W apprhappr −

√
V g, ξ =

√
Ṽ g̃ −

√
V g, ∂ξ =

√
W apprhappr −

√
Ṽ g̃.

Intuitively, for X ∈ {S,∆,Γ, ξ}, Xnew represents the difference between wappr and the first-level
proxy v, this is the real “first derivative”, and it is what we need to compute the output; X represents
the difference between the first-level proxy v and the second-level proxy ṽ, this is what we maintain

14

wappr − v ṽ − v wappr − ṽ

Figure 4: The three variants of notations. The left vector wappr−v corresponds to the notations Xnew, and
| supp(wappr − v)| ≤ na. The middle vector ṽ − v corresponds to the notations X, and | supp(ṽ − v)| ≤ na.
The right vector wappr − ṽ corresponds to the notations ∂X, and | supp(wappr − ṽ)| ≤ nã.

in the data structure, and we can think of it as an out-of-date “first derivative”; ∂X represents the
difference between wappr and the second-level proxy ṽ. This term is very sparse, and should be
thought of as the “second derivative”. The actual “first derivative” is the sum of the outdated “first
derivative” plus the “second derivative”. We can therefore split Xnew as X + ∂X when computing
the output. In this way we exploits both the maintained members of the data structure and the
sparsity of ∂X, compares to computing Xnew from scratch.

We now turn to formalize the above intuition. Our data structure maintains the second-level
members S ⊆ [n],∆ ∈ Rn×n,Γ ∈ Rn×n, ξ ∈ Rn. By design, our update algorithm ensures that

|Snew|, ‖∆new‖0, ‖Γnew‖0, ‖ξnew‖0, |S|, ‖∆‖0, ‖Γ‖0, ‖ξ‖0 ≤ na; |∂S|, ‖∂∆‖0, ‖∂Γ‖0, ‖∂ξ‖0 ≤ nã.

Now, recall that from Section 4.1.1 and Section 4.1.2, r4 is computed as follows

r4 = −
(
QSnew +RΓnewMSnew

)
·
(

︸ ︷︷ ︸
3

BU ′︸︷︷︸
2

(C−1 + U>BU ′︸︷︷︸
2

)−1U> − I
)
·B
(

(β2)Snew + (MSnew)>ξnew
)

︸ ︷︷ ︸
1

,

where B = ((∆S,S)−1 + MS,S)−1 and U ′CU> = ((∆new)−1
Snew,Snew + MSnew,Snew)−1 − B. Observe

that in the above formula the n2a term appears in the following places:

1. Multiplying a na × na matrix B with a na × 1 vector (β2)Snew + (MSnew)>ξnew.

2. Multiplying a na × na matrix B with a na × nã matrix U ′.

3. Multiplying a na-sparse diagonal matrix Γnew with a n × na matrix MSnew and then with a
na × 1 vector that comes from later terms.

To remove these n2a terms, we maintain additional second-level data structure members (precom-
puted matrix products):

r4 = −
(
QSnew + RΓMS︸ ︷︷ ︸

F : member

+R(ΓM∂S\S + ∂ΓMSnew)
)
·
(

(BU ′︸︷︷︸
Utmp

(C−1 + U>BU ′︸︷︷︸
Utmp

)−1U>)− I
)
·

(
B(β2)S +B(MS)> · ξ︸ ︷︷ ︸

γ1: member

+B(β2)∂S\S +B(M∂S\S)>ξnew + B(MS)>︸ ︷︷ ︸
E: member

∂ξ
)

Each of the previous n2a terms are removed as follows.

1. We maintain γ1 := B(β2)S +B(MS)>ξ ∈ Rna so that we only need to compute the difference

(B(β2)Snew +B(MSnew)>ξnew)− γ1 = B(β2)∂S\S +B(M∂S\S)>ξnew +B(MS)>∂ξ.

Since (β2)∂S\S is nã-sparse, and (M∂S\S)> only has nã non-zero rows, the first two terms
B(β2)∂S\S and B(M∂S\S)>ξnew can both be computed in O(na+ã) time. For the third term,
we also maintain E := B(MS)> ∈ Rna×na . Since ∂ξ is also nã-sparse, it takes O(na+ã) time
to compute this term as well.

15

2. The construction of U ′ has the following property: BU ′ = [B(∂S\S), B∂S , BMS,(∂S\S)]. Since we
already maintainE := B(MS)> ∈ Rna×n, we define a local variable U tmp := [B(∂S\S), B∂S , E(∂S\S)] ∈
Rna×3nã . Then U tmp = BU ′, and it can be computed in the same time as its size, which is
O(na+ã).

3. We maintain F := RΓMS ∈ R
√
n×na , and the difference is RΓnewMSnew − F = R(ΓM∂S\S +

∂ΓMSnew).Multiplying F with a na×1 vector that comes from later terms only takes n1/2+a <
n1.5 time. Also sinceM∂S\S only has nã non-empty columnns, and ∂Γ is nã-sparse, multiplying
(ΓM∂S\S + ∂ΓMSnew) with the na × 1 vector that comes from later terms takes na+ã time.

A full list of all the second-level members that we maintain is as follows:

1.S = supp(ṽ − v), 2.∆ = Ṽ − V, 3.Γ =
√
Ṽ −

√
V , 4.ξ =

√
Ṽ g̃ −

√
V g,

5.B = (∆−1
S,S +MS,S)−1, 6.E = B(MS)>, 7.F = RΓMS , 8.γ1 = B(β2)S +B(MS)>ξ.

Now whenever our data structure needs to multiply an na × na matrix with a na × 1 vector, it
is always the case that either the vector is nã-sparse, or the matrix only has nã rows, so in both
cases this operation takes O(na+ã) time. We also avoid multiplying the na × na matrix B with the
nã × na matrix U ′ directly by maintaining E = B(MS)>, and we can now extract U tmp = BU ′

from E efficiently. But still we need to multiply a nã × na matrix U> with a na × nã matrix U tmp,
which takes time Tmat(n

ã, na, nã) ≤ na−ã · Tmat(n
ã, nã, nã) = na+(ω−1)ã. This is our final running

time for query, as presented in the last line of Table 1.
Finally we remark that removing the last n2a term that stems from computing r2, can be done in

an analogous way to the usage of γ1 for r4 (i.e., by maintaining an additional member γ2 := ΓMξ).
We omit the formal details here.

Thus we finished the proof of how to get the O(na+(ω−1)ã) query time of Theorem 4.1.

4.2 Our Update Algorithm

Bounding the running time of our two-level update scheme requires both algorithmic modifications
and a more sophisticated amortized analysis than that of [CLS19], in order to capture the cascading
lazy updates process (as a random process under the sketching of the CP). This section is organized
as follows. In Section 4.2.1 we describe the four update subroutines for maintaining the two-level
members for both w and h, and present their worst-case running time per call in Table 2. These
subroutines correspond to maintaining the LU-decomposition of the cascading updates algorithm
for a K = 3 block matrix, described in Section 2 (see Figure 2). Section 4.2.2 describes the main al-
gorithm deciding when to call each of these four subroutines, using “two-level soft thresholding” (see
Figure 6). In order to synchronize two levels of soft thresholding, we introduce a new Adjust func-
tion. Finally, Section 4.2.3 describes a potential-based amortized analysis of our update algorithm,
and the final amortized running time of the four update subroutines is presented in Table 3.

4.2.1 Cascading updates subroutines

We now describe the four subroutines required to efficiently implement the cascading lazy updates
process for K = 3 levels as described in the previous section. Recall our data structure maintains
two levels of proxies v and ṽ for the input w: v is the first-level proxy, and ṽ is the second-level
proxy. v keeps a larger distance of na with w and is updated less frequently, while ṽ keeps a smaller
distance of nã with w and is updated more frequently. We define two subroutines to update v and
ṽ (see Figure 5 for illustration).

16

Level Name Time per call Rank/Sparsity Comment
1 Matrix Tmat(n, n, k) k := ‖vnew − v‖0 Update v and ṽ if ‖wappr − v‖0 ≥ na
2 PartialMatrix Tmat(n, n

a, k̃) k̃ := ‖ṽnew − ṽ‖0 Update ṽ if ‖wappr − ṽ‖0 ≥ nã
1 Vector pn+ n2a p := ‖gnew − g‖0 Update g and g̃ if ‖happr − g‖0 ≥ na
2 PartialVector p̃n+ n2a p̃ := ‖g̃new − g̃‖0 Update g̃ if ‖happr − g̃‖0 ≥ nã

Table 2: Four update procedures

The first subroutine is PartialMatrixUpdate, which corresponds to second-level updates we
alluded to in Section 2: so long as the rank of the updates is smaller than the second level threshold
nã, it suffices to only update the second level members as defined in Section 4.1.3. These members
are relatively cheap to update, and thus PartialMatrixUpdate has a cost of Tmat(n, n

a, k̃) per
call (third column of Table 2). When the algorithm has exceeded the allowable changes in w, we
cascade to the first level update subroutine MatrixUpdate. This subroutine must update all data
structure members, and consequently is more expensive: it has has a cost of Tmat(n, n, k) per call
(third column of Table 2). The subroutines VectorUpdate and PartialVectorUpdate play
an analogous role for updating h. We proceed to describe when to execute each of these subroutines.

v

ṽ

wappr

nã

na

(a). No update.

.

v

ṽ

wappr

nã

na

(b). Matrix update.

.

v

ṽ

wappr

nã

na

(c). Par. Matrix update.

.

Figure 5: An illustration of the two types of updates in our Update algorithm. The blue leash connects v
with ṽ and wappr and is of length na. The pink leash connects ṽ with wappr and is of length nã. (a) When all
leashes are loose, no update is performed. (b) The leash on v is tight. In this case we call MatrixUpdate.
(c) The leash on ṽ is tight. In this case we call PartialMatrixUpdate.

4.2.2 Synchronizing two-level soft thresholding

For simplicity, we only focus on MatrixUpdate and PartialMatrixUpdate (VectorUpdate
and PartialVectorUpdate are analogous).

In order to bound the amortized cost of the two level updates, we use the “soft thresholding”
implicit7 in [CLS19] to determine when to invoke each update. The basic idea is to use a smooth
threshold (see Algorithm 7) to approximate the discrete threshold shown in the last column of
Table 2. Soft thresholding ensures that there is a gap between errors of coordinates that are updated
and the errors of other coordinates, and is essential to guarantee a proper decrease in potential.
Our update algorithm invokes this subroutine SoftThreshold twice – once for ṽ and once for v
(see Figure 6). We now explain the 3 main components of combining the two SoftThreshold
subroutines (see Algorithm 2):

Restoring threshold gaps via Adjust. Our algorithm first computes ṽnew to update all the
coordinates i for which |wnew

i /ṽi − 1| exceeds the threshold εmp. It then calls the Adjust function
7The soft thresholding is proposed by [CLS19], and note that they embed it inside their update function since

they only have one update function. Since we use it four times, we give it an explicit name SoftThreshold.

17

Algorithm 2 When to execute MatrixUpdate and PartialMatrixUpdate

1: ṽnew ← SoftThreshold(y ← |wnew/ṽ − 1|, wnew, ṽ, εmp, n
ã)

2: Adjust(ṽnew, εmp/(100 log n))
3: if ‖ṽnew − v‖0 ≥ na then
4: vnew ← SoftThreshold(y ← |wnew/v − 1|+ |wnew/ṽ − 1|, wnew, v,

εmp

100 log2 n
, na)

5: wappr ← vnew

6: MatrixUpdate()
7: else
8: wappr ← ṽnew

9: if ‖ṽnew − ṽ‖0 ≥ nã then
10: PartialMatrixUpdate()
11: end if
12: end if

to restore all updated coordinates ṽnew
i whose new value ṽnew

i is within a distance of εmp/(100 log n)
from vi, back to the original value vi. Since ṽnew is the new value of ṽ, in this way we ensure that
|ṽi − vi| > εmp/(100 log n) for all i ∈ supp(ṽ− v). Hence when ‖ṽ− v‖0 exceeds its threshold, there
is a large enough decrease in our potential function (≈ ‖ṽ − v‖0 · εmp/(100 log n)) for “charging”
the update cost (of v ← ṽ). The purpose of using a smaller threshold-error of εmp/(100 log n) here
ensures that even when ṽnew

i (which is the new value of ṽ) is vi instead of wnew
i , the error still

decreases by at least a (1− 1/ log n) factor after updating ṽ ← ṽnew.

Synchronizing the error function. When updating v, we define the error as |wnew/v − 1| +
|wnew/ṽ − 1| which is a function of both v and ṽ. This is because as long as one of vi and ṽi is too
far from wnew

i , we need to update both variables to be the same as wnew
i .

Two error thresholds. When updating v, we use a smaller error threshold of εmp/(100 log2 n)
than that of the Adjust threshold. This is because Adjust guarantees that vi−ṽi ≥ εmp/(100 log n)
on all coordinates i for which vi 6= ṽi, hence using an even smaller threshold when updating v ensures
that all such coordinates are counted as “error larger than threshold”. As such, after MatrixUp-
date, ṽ is set back to be the same as v on all coordinates.

4.2.3 Amortized analysis based on high-order martingales

As noted in Section 2, the main source of amortization in the update algorithm comes from the fact
that the maintained variables in all levels are changing slowly. More formally, the j-th iteration of
the CP algorithm calls our data structure with the following inputs: A vector w(j+1) ∈ Rn and a
vector h(j+1) ∈ Rn satisfying the following relative error bounds (where the randomness is over the
sketching matrix used to generate w(j+1) and h(j+1)):

‖E[w(j+1)|w(j)]/w(j) − 1‖2 ≤ O(1), ‖E[h(j+1)|h(j)]/h(j) − 1‖2 ≤ O(1). (9)

The “evolution” of w(j) and h(j) is essentially a martingale process with the above guarantee.
Informally, this is true because we are using independent random sketches in each iteration. We
analyze these random processes by defining four different potential functions to capture our four
different update subroutines, as shown in Table 3. We next elaborate on the careful design of
potentials and what they aim to measure.

1. MatrixUpdate. The potential function for this subroutine is defined in row 1 of Table 3.
Instead of splitting the change in the potential function into “w move” and “v move” as [CLS19],

18

k 1.5k

Soft Threshold

y1.5k < (1− 1/ log(n))yk

i

yi

O ︸ ︷︷ ︸
Matrix

y(2)

(a) CLS19

k 1.5kk̃ 1.5k̃

Two-level Soft Threshold

ỹ1.5k̃ < (1− 1/ log(n))ỹk̃

y1.5k < (1− 1/ log(n))yk

ỹ
y

i

yi

ỹi

O ︸ ︷︷ ︸
PartialMatrix︸ ︷︷ ︸

Matrix
(b) Ours

Figure 6: Two-level vs. one-level soft thresholding: (a). [CLS19] has a single level update scheme, im-
plemented via one level of soft thresholding. (b). Our Update algorithm has two cascading subroutines
(MatrixUpdate, PartialMatrixUpdate), each requires its own potential function and soft threshold.

Level Name Φ ∈ R φ ∈ Rn, i > na (resp. i > nã) Amortized

1 Matrix
∑n
i=1 φi · (|wi/vi − 1|+ |wi/ṽi − 1|) φi = i

ω−2
1−a−1 · n−

a(ω−2)
1−a n2−a/2 + nω−1/2

2 PartialMatrix
∑n
i=1 φi · (|wi/ṽi − 1|) φi = i

a(ω−2)
a−ã −1 · n−

aã(ω−2)
a−ã n1+a−ã/2

1 Vector
∑n
i=1 φi · (|hi/gi − 1|+ |hi/g̃i − 1|) φi = 1 n1.5

2 PartialVector
∑n
i=1 φi · (|hi/g̃i − 1|) φi = i−1 n1.5 + n2a−ã/2

Table 3: The four different potential functions Φ are shown in the third column. We always assume that
the coordinates are sorted in decreasing order, e.g., for PartialMatrix, we assume that |wi/ṽi − 1| ≥
|wi+1/ṽi+1 − 1|. The vector φ ∈ Rn is non-increasing (in i): for level-1 subroutines, φi := n−a when i ≤ na,
and for level-2 subroutines, φi := n−ã for i ≤ nã. The definition of φi for i > na (level 1) or nã (level 2) are
shown in the fourth column. The vectors φ are designed to upper bound the worst-case running time of the
update procedures. The last column shows the amortized cost of our four update subroutines.

we split the change into a “w move” part and a “v and ṽ move” part:

Φmat
j+1 − Φmat

j = (w move)− (v and ṽ move)

where the “w move” part measures how much the potential can increase due to the input changes
from w(j) to w(j+1), and the “v and ṽ move” part measures how much we can decrease the potential
by updating v(j), ṽ(j) to v(j+1), ṽ(j+1). The formal details can be found in Section F.

Using Eq. (9) which upper bounds the expected relative error of w(j+1) with w(j), it is possible
to upper bound the “w move” term by O(‖φ‖2) = O(nω−5/2 + n−a/2).

When entering MatrixUpdate, for some coordinate i ∈ [k] (recall that k := ‖vnew − v‖0, see
Table 2), by design v(j+1)

i and ṽ(j+1)
i are both reset to w(j+1)

i , hence the potential φi(|w(j+1)
i /v

(j+1)
i −

1|+ |w(j+1)
i /ṽ

(j+1)
i − 1|) decreases to 0. This fact can be used to show that the “v move” term in Φ

decreases by at least

Ω(k · φk) ≥ n−2 · Tmat(n, n, k).

19

We also prove that PartialMatrixUpdate can only further decrease the “v move” term. Since
the “v and ṽ move” term is upper bounded by the “w move” term, and the cost per call of Ma-
trixUpdate is Tmat(n, n, k), the amortized cost of MatrixUpdate per iteration is bounded by
O(nω−1/2+o(1) + n2−a/2+o(1)).

2. PartialMatrixUpdate. The potential function for this subroutine is defined in row 2
of Table 3. Once again, we split the change in the potential function, this time into a “w move”
part and a “ ṽ move” part:

Φj+1 − Φj = (w move)− (ṽ move)

The “w move” term is upper bounded by O(‖φ‖2) = O(naω−5ã/2 + n−ã/2). To lower bound the
“ ṽ move” term, we observe that when entering PartialMatrixUpdate, for any i ∈ [k̃] (recall
that k̃ := ‖ṽnew − ṽ‖0, see Table 2), the term |wnew

i /ṽnew
i − 1| is decreased by at least a factor of

(1 − 1/ log n). This is where we use the guarantees (and smaller threshold parameter) of Adjust
and SoftThreshold for v. Using this, we show that the “ ṽ move” term decreases by at least

Ω(k̃ · φ
k̃
) ≥ n−1−a · Tmat(n, n

a, k̃).

Therefore, the amortized cost of PartialMatrixUpdate is O(n1+(ω+1)a−5ã/2 + n1+a−ã/2) =
O(n1+a−ã/2) since the cost per call of PartialMatrixUpdate is Tmat(n, n

a, k̃).

3. VectorUpdate. The potential function for this subroutine is defined in row 3 of Table 3.
Note that the dominating term in the worst-case cost (per call) of this subroutine is the pn term
(recall p := ‖gnew − g‖0, see Table 2). Again, after amortization in each iteration we have

√
n = ‖φ‖2 ≥ Ω(p · φp) ≥ n−1(pn).

Therefore, the amortized cost of VectorUpdate per iteration is O(n1.5).

4. PartialVectorUpdate. The potential function for this subroutine is defined in row 4
of Table 3. Here, the dominating term in the worst-case cost (per call) is the n2a term (Table 2).
Since PartialVectorUpdate is invoked only when p̃ ≥ nã (recall that p̃ := ‖g̃new − g̃‖0, see
Table 2), the amortized cost of the j-th iteration is n2a · 1p̃j>nã . Once again, after amortization in
each iteration we have

n−ã = ‖φ‖2 ≥ Ω(p · φp) ≥ 1p̃j>nã .

Thus the amortized cost of VectorUpdate per iteration is n2a ·O(‖φ‖2) = O(n2a−ã/2).

4.3 Putting it all together

Combining the query time tq = na+(ω−1)ã (Eq. (7) in Section 4.1) and the update time tu =
nω−1/2 + n2−a/2 + n1+a−ã/2 (see the last column of Table 3), and since there are O(

√
n) iterations

in total, we have that the final running time of our LP algorithm is
√
n · (tq + tu) = n0.5+a+(ω−1)ã + nω + n2.5−a/2 + n1.5+a−ã/2,

matching the statement of Theorem 4.1.
Also note that in the ideal case where ω = 2 and α = 1, we can choose a = 8

9 and ã = 2
3 , and

this leads to an O(n2+1/18) algorithm.

20

References

[BCRL79] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity for n×n approx-
imate matrix multiplication. 8(5):234–235, 1979.

[Ber24] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula
of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In STOC. https://arxiv.org/pdf/2002.02304.pdf,
2020.

[BNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pages 456–480.
IEEE, 2019.

[Bra20] Jan van den Brand. A deterministic linear program solver in current matrix multiplica-
tion time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 259–278. SIAM, 2020.

[CGLZ20] Matthias Christandl, François Le Gall, Vladimir Lysikov, and Jeroen Zuiddam. Barriers
for fast rectangular matrix multiplication. In arXiv preprint. https://arxiv.org/pdf/
2003.03019.pdf, 2020.

[CKSU05] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. Group-
theoretic algorithms for matrix multiplication. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 379–388. IEEE, 2005.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In STOC. https://arxiv.org/pdf/1810.07896, 2019.

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on
Computing, 11(3):467–471, 1982.

[Cop97] Don Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity,
13(1):42–49, 1997.

[CW82] Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix
multiplication. SIAM Journal on Computing, 11(3):472–492, 1982.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. In Proceedings of the nineteenth annual ACM symposium on Theory of computing
(STOC), pages 1–6. ACM, 1987.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Symposium on Theory of Computing Conference (STOC), pages
81–90. https://arxiv.org/pdf/1207.6365, 2013.

[Dan47] George B Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation, 13:339–347, 1947.

21

https://arxiv.org/pdf/2002.02304.pdf
https://arxiv.org/pdf/2003.03019.pdf
https://arxiv.org/pdf/2003.03019.pdf
https://arxiv.org/pdf/1810.07896
https://arxiv.org/pdf/1207.6365

[FS89] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 345–354, 1989.

[GLPS10] Anna C Gilbert, Yi Li, Ely Porat, and Martin J Strauss. Approximate sparse recovery:
optimizing time and measurements. SIAM Journal on Computing 2012 (A preliminary
version of this paper appears in STOC 2010), 41(2):436–453, 2010.

[GU18] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms(SODA), pages 1029–1046. https://
arxiv.org/pdf/1708.05622.pdf, 2018.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing (STOC), pages 21–30, 2015.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing (STOC),
pages 302–311. ACM, 1984.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KM72] Victor Klee and George J Minty. How good is the simplex algorithm. Inequalities,
3(3):159–175, 1972.

[KN12] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In SODA,
pages 1195–1206, 2012.

[LDFU13] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized hadamard transform. In Advances in neural information
processing systems, pages 369–377, 2013.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th international symposium on symbolic and algebraic computation (ISSAC), pages
296–303. ACM, https://arxiv.org/pdf/1401.7714.pdf, 2014.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyen, and Mikkel Thorup. Heavy hit-
ters via cluster-preserving clustering. In 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 61–70. IEEE, https://arxiv.org/pdf/1604.01357,
2016.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solv-
ing linear programs in O(

√
rank) iterations and faster algorithms for maximum flow. In

55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 424–
433. https://arxiv.org/pdf/1312.6677.pdf, https://arxiv.org/pdf/1312.6713.
pdf, 2014.

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 230–249. https://arxiv.org/pdf/1503.01752.pdf, 2015.

22

https://arxiv.org/pdf/1708.05622.pdf
https://arxiv.org/pdf/1708.05622.pdf
https://arxiv.org/pdf/1401.7714.pdf
https://arxiv.org/pdf/1604.01357
https://arxiv.org/pdf/1312.6677.pdf
https://arxiv.org/pdf/1312.6713.pdf
https://arxiv.org/pdf/1312.6713.pdf
https://arxiv.org/pdf/1503.01752.pdf

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the
current matrix multiplication time. In COLT. https://arxiv.org/pdf/1905.04447,
2019.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), pages 253–262. IEEE, 2013.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13. Siam, 1994.

[Pan78] V Ya Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting
and canceling for constructing fast algorithms for matrix operations. In 19th Annual
Symposium on Foundations of Computer Science (FOCS), pages 166–176. IEEE, 1978.

[PD06] Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

[PSW17] Eric Price, Zhao Song, and David P. Woodruff. Fast regression with an `∞ guarantee. In
International Colloquium on Automata, Languages, and Programming (ICALP). https:
//arxiv.org/pdf/1705.10723.pdf, 2017.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear
programming. Mathematical Programming, 40(1-3):59–93, 1988.

[Rom82] Francesco Romani. Some properties of disjoint sums of tensors related to matrix multi-
plication. SIAM Journal on Computing, 11(2):263–267, 1982.

[San04] Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse. In 45th Annual
IEEE Symposium on Foundations of Computer Science, pages 509–517. IEEE, 2004.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random pro-
jections. In Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[Sch81] Arnold Schönhage. Partial and total matrix multiplication. SIAM Journal on Computing,
10(3):434–455, 1981.

[SM10] Piotr Sankowski and Marcin Mucha. Fast dynamic transitive closure with lookahead.
Algorithmica, 56(2):180, 2010.

[Son19] Zhao Song. Matrix Theory : Optimization, Concentration and Algorithms. PhD thesis,
The University of Texas at Austin, 2019.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing (STOC), pages 81–90, 2004.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356, 1969.

23

https://arxiv.org/pdf/1905.04447
https://arxiv.org/pdf/1705.10723.pdf
https://arxiv.org/pdf/1705.10723.pdf

[Str86] Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix mul-
tiplication. In 27th Annual Symposium on Foundations of Computer Science (FOCS),
pages 49–54. IEEE, 1986.

[Str87] Gilbert Strang. Karmarkar’s algorithm and its place in applied mathematics. The
Mathematical Intelligencer, 9(2):4–10, 1987.

[Str91] Volker Strassen. Degeneration and complexity of bilinear maps: some asymptotic spec-
tra. J. reine angew. Math, 413:127–180, 1991.

[Vai87] Pravin M Vaidya. An algorithm for linear programming which requires O(((m+n)n2 +
(m+n)1.5n)L) arithmetic operations. In 28th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 1987.

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In
30th Annual Symposium on Foundations of Computer Science (FOCS), pages 332–337.
IEEE, 1989.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing
(STOC), pages 887–898. ACM, 2012.

[Woo49] Max A Woodbury. The stability of out-input matrices. Chicago, IL, 9, 1949.

[Woo50] Max A Woodbury. Inverting modified matrices. ., 1950.

[YTM94] Yinyu Ye, Michael J. Todd, and Shinji Mizuno. An O(
√
nL)-iteration homogeneous and

self-dual linear programming algorithm. Math. Oper. Res., 19(1):53–67, 1994.

24

Contents

1 Introduction 1

2 Bootstrapping low-rank updates via cascading lazy updates 3

3 Background 7
3.1 Recent developments in LP solvers . 7
3.2 Optimization: The stochastic central-path algorithm 7
3.3 Data structures: Projection maintenance . 8

4 Detailed Technical Overview 9
4.1 Our Query Algorithm . 10

4.1.1 Technique for removing n1+a . 12
4.1.2 Technique for removing nωa . 13
4.1.3 Technique for removing n2a . 14

4.2 Our Update Algorithm . 16
4.2.1 Cascading updates subroutines . 16
4.2.2 Synchronizing two-level soft thresholding . 17
4.2.3 Amortized analysis based on high-order martingales 18

4.3 Putting it all together . 20

References 21

A Preliminaries 27

B Optimization 29
B.1 Definitions . 29
B.2 Facts . 32
B.3 Bounding δs, δx, δt, δΦ and δµ . 34
B.4 Bounding µnew − µ . 38
B.5 Potential martingale . 41
B.6 Bounding the movement of w . 44
B.7 Bounding the movement of µ . 45
B.8 One step of central path . 47

C Data structure : preliminary 48
C.1 Preliminary and Definitions . 48
C.2 Facts . 50
C.3 Main result . 55

D Data structure : correctness 56
D.1 Correctness of Query . 63
D.2 Correctness of UpdateV and UpdateG . 68
D.3 Correctness of MatrixUpdate . 69
D.4 Correctness of PartialMatrixUpdate . 71
D.5 Correctness of VectorUpdate . 73
D.6 Correctness of PartialVectorUpdate . 74
D.7 Correctness of Initialize . 76

25

E Data structure : time per call 76
E.1 Sparsity guarantees . 76
E.2 Running time of Query . 78
E.3 Running time of MatrixUpdate . 83
E.4 Running time of PartialMatrixUpdate . 85
E.5 Running time of VectorUpdate . 89
E.6 Running time of PartialVectorUpdate . 90
E.7 Running time of Initialize . 92

F Data structure : amortized time 92
F.1 Definitions and Preliminaries . 92
F.2 Facts based on Adjust and two level of SoftThreshold 93
F.3 Amortized analysis for MatrixUpdate . 99

F.3.1 Definitions . 99
F.3.2 Main result . 100
F.3.3 w move . 101
F.3.4 v, ṽ move . 104
F.3.5 `2-norm of g . 105

F.4 Amortized analysis for PartialMatrixUpdate . 106
F.4.1 Definitions . 106
F.4.2 Main result . 106
F.4.3 w move . 108
F.4.4 ṽ move . 108
F.4.5 `2-norm of g . 110

F.5 Amortized analysis for VectorUpdate . 110
F.6 Amortized analysis for PartialVectorUpdate . 111
F.7 Potential function ψ . 112

G Combining data structure with optimization 113

H Multi-level with more details 117
H.1 LU-decomposition of Woodbury identity when K = 3 117
H.2 Online low-rank inverse and the oMV conjecture. 117
H.3 Optimizing the parameters of Eq. (3) . 119

I A feasible algorithm 119
I.1 Analysis . 122
I.2 Correctness of feasible algorithm . 126
I.3 Bounding x and x . 130
I.4 Running time of feasible data structure . 132

J History of Matrix Multiplication and LP 135

26

Appendix

A Preliminaries

Throughout this paper when considering the linear program minAx=b,x≥0 c
>x, we always assume

that the input matrix A ∈ Rd×n is full-rank, and d = Ω(n), d ≤ n. For convenience we also assume
that n ≥ 10. In our algorithm we use the standard transformation of LP by [YTM94] such that it
is easy to obtain the initial x and s for the transformed LP. We refer the readers to [YTM94] and
[CLS19] for more details.

Standard notations. For a positive integer n, we denote [n] = {1, 2, · · · , n}.
For a positive integer n, we use In to denote the identity matrix of size n× n. We use standard

definitions of hyperbolic functions sinh(x) = ex−e−x
2 , cosh(x) = ex+e−x

2 .
For a vector v ∈ Rn, we use the standard definition of `p norms: ∀p ≥ 1, ‖v‖p = (

∑n
i=1 |vi|p)1/p.

Specially, ‖v‖∞ = maxi∈[n] |vi|.
A vector v ∈ Rn is called k−sparse if at most k entries in v is non-zero.
For any random variable x, we use E[x] to denote its expectation, and we use Var[x] to denote

its variance. We define Sup[x] to be the deterministic maximum of x.

Approximations. For any function f , we define Õ(f) = f · poly log(f), and O∗(f) = f · fo(1).
For vectors a, b ∈ Rn and accuracy parameter ε ∈ (0, 1), we use a ≈ε b to denote that (1− ε)bi ≤

ai ≤ (1 + ε)bi, for any i ∈ [n]. For constant t, we use a ≈ε t to denote that (1− ε)t ≤ ai ≤ (1 + ε)t,
for any i ∈ [n].

Coordinate-wise operations. For a vector x ∈ Rn and s ∈ Rn, we denote xs ∈ Rn as a length-
n vector whose i-th coordinate is (xs)i = xisi, ∀i ∈ [n]. Similarly, we also define other scalar
operations on vectors as coordinate-wise operations.

For a scalar function f : R→ R and a vector x ∈ Rn, we define f(x) = [f(x1), f(x2), . . . , f(xn)]>.

Upper case as diagonal matrix. Given vectors x, s ∈ Rn, we use X ∈ Rn×n and S ∈ Rn×n
to denote the diagonal matrix of those two vectors. We use X/S to denote the diagonal matrix
there the i-th entry on the diagonal is (X/S)i,i = xi/si, ∀i ∈ [n]. Similarly, we extend other scalar
operations to diagonal matrix.

Matrix and vectors with subscripts. For any matrix M ∈ Rm×n where m > 1 and n > 1, and
any subset S ⊆ [n], we define MS ∈ Rm×|S| to be the submatrix of M that only has columns in S.

For any subsets S1 ⊆ [m], S2 ⊆ [n], we also define MS1,S2 ∈ R|S1|×|S2| to be the submatrix of M
that only has rows in S1 and columns in S2.

For any vector v ∈ Rn×1 where n > 1, and any subset S ⊆ [n], we define vS ∈ R|S|×1 to be the
subvector of M that only has the entries in S.

Fast Matrix Multiplication. We use ω to denote the exponent of matrix multiplication, which
is defined as the infimum number such that the multiplication of two n×n matrices can be done in
O(nω) time. We use α to denote the the dual exponent of matrix multiplication, which is defined
as the supremum over all a ≥ 0 such that the multiplication of a n×na matrix with another na×n
matrix can be done in O(n2+o(1)) time.

27

We denote Tmat(n, k, r) to be the time needed to multiply a n× k matrix with a k × r matrix.
Tmat(n, k, r) has the following property.

Lemma A.1 ([Str91, GU18, CGLZ20]).

Tmat(n, k, r) = O(Tmat(n, r, k)) = O(Tmat(k, n, r)).

Woodbury identity. We use the Woodbury matrix identity to calculate the inverse of a matrix
M under low-rank updates.

Fact A.2 (Woodbury matrix identity, [Woo49, Woo50]). For matrices M ∈ Rn×n, U ∈ Rn×k,
C ∈ Rk×k, V ∈ Rk×n,

(M + UCV)−1 = M−1 −M−1U(C−1 + VM−1U)−1VM−1.

Probability tools. We use the following well-known probability tools.

Lemma A.3 (Bernstein Inequality, [Ber24]). Let X1, · · · , Xn be independent zero-mean random
variables. Suppose that |Xi| ≤M almost surely, for all i. Then, for all t > 0,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j] +Mt/3

)
.

Central Path Method. The stochastic central path method of [CLS19] consider the following
LP with A ∈ Rd×n: minAx=b,x≥0 c

>x, and its dual: maxA>y≤c b
>y. By defining s ∈ Rn as the slack

variables, the optimal solution of the above LP must satisfy the following constraints:

xisi = 0, ∀i,
Ax = b,

A>y + s = c,

xi, si ≥ 0, ∀i.
where

∑n
i=1 xisi is the duality gap, and the other three equations are the feasibility constraints.

In the central path method, the duality gap is parameterized by t that decreases by a factor of
1 − O(1√

n
) in each iteration. Let µ := xs. [CLS19] designed a potential function Ψ(µ/t − 1) such

that as long as Ψ(µ/t− 1) ≤ poly(n), µ ≈ t is satisfied. The change δµ of µ has two parts: a term
− µ√

n
to decrease µ, and a term −∇Ψ(µ/t− 1) to bound the potential function.

Given δµ, the changes δx and δs should satisfy the following constraints (the second-order term
δx · δs is ignored):

Xδs + Sδx = δµ, (10)
Aδx = 0,

A>δy + δs = 0.

The unique solution of the above linear equations is

δx =
X√
XS

(I − P)
1√
XS

δµ,

δs =
S√
XS

P
1√
XS

δµ,

where P =
√

X
S A
>(AX

S A
>)−1A

√
X
S is a projection matrix. Thus the stochastic central path

method is summarized as the Algorithm 1 presented in Section 3.2.

28

Lemma Section Comment
Lemma B.16 Section B.3 Bounding δx, δs, δµ, δt, δΦ

Lemma B.21 Section B.4 Bounding µnew − µ
Lemma B.27 Section B.5 Bounding the expectation of potential function
Lemma B.28 Section B.6 Bounding the movement of w
Lemma B.29 Section B.7 Bounding the movement of µ

Table 4: Summary of this section

B Optimization

In this section we provide the error analysis of central path method. The meaning of x, s, and the
deviation of δx, δs are standard (see the Central Path Method paragraph of Section A).

The proof of this whole paper is induction based. The induction hypothesis ensures that at
the beginning of each iteration Assumption B.5 is satisfied. In this section we use this induction
hypothesis to prove the guarantees of the central path method. Later in Section G we combine the
central path guarantees with the data structure guarantees to prove that Assumption B.5 is still
satisfied at the end of each iteration. More specifically in this section we prove the following:

1. Two guarantees Lemma B.28 and B.29 that are needed by the data structure given in Sec-
tion D. Then the properties of the data structure prove that Part 1 of Assumption B.5 is still
satisfied.

2. An upper bound on the potential function (Lemma B.27) which proves that Part 2 of As-
sumption B.5 is still satisfied.

B.1 Definitions

Some of the definitions are used as variables in the algorithm, some of the definitions are used only
for analysis, and some of the definitions are used for both.

Assumption B.1. We use the following two error parameters ε and εmp:

ε ∈ (0, 10−4), and εmp ∈ (0, 10−4).

We use the same potential function as [CLS19, LSZ19, Bra20],

Definition B.2 (Potential function). For a parameter λ > log n, we define function Φλ : Rn → R:

Φλ(r) :=
n∑

i=1

cosh(λri).

Definition B.3 (Overline version of parameters). At the beginning of each iteration, we have t ∈ R,
and x, s ∈ Rn from last iteration. tnew ∈ R is the new value of t. We define w ∈ Rn and µ ∈ Rn:

w := x/s, µ := x · s.

We define overline version of projection matrix P ∈ Rn×n:

P :=
√
WA>(AWA>)−1A

√
W.

29

The change in µ consists of two parts δt and δΦ:

δt :=
(tnew

t
− 1
)
µ, δΦ := − ε

2
tnew · ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2
, δµ := δt + δΦ.

The changes to x and s is computed from δµ:

δx :=
X√
XS

(I − P)
1√
XS

δµ, δs :=
S√
XS

P
1√
XS

δµ.

The data structure will take w ∈ Rn and µ ∈ Rn as inputs, and output some w̃ ∈ Rn and µ̃ ∈ Rn
such that w̃ ≈εmp w, µ̃ ≈εmp µ.

Definition B.4 (Tilde version of parameters). For a given w̃ ∈ Rn and µ̃ ∈ Rn that is returned by
the data structure, we define x̃ ∈ Rn and s̃ ∈ Rn:

x̃ :=
√
w̃µ̃, s̃ :=

√
µ̃/w̃.

Note that x̃/s̃ = w̃, and x̃s̃ = µ̃. We define tilde version of projection matrix P̃ ∈ Rn×n:

P̃ :=
√
W̃A>(AW̃A>)−1A

√
W̃ .

Further, we define δ̃t, δ̃Φ, δ̃µ ∈ Rn:

δ̃t := (
tnew

t
− 1)µ̃, δ̃Φ := − ε

2
tnew · ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
, δ̃µ := δ̃t + δ̃Φ.

And we define δ̃x, δ̃s ∈ Rn:

δ̃x :=
X̃√
X̃S̃

(I − P̃)
1√
X̃S̃

δ̃µ, δ̃s :=
S̃√
X̃S̃

P̃
1√
X̃S̃

δ̃µ.

Given these definitions, we state the following important assumptions. We assume they are
satisfied in the beginning of each iteration, and use them to prove the correctness of the algorithm
in this iteration. Later we will verify that these assumptions are always satisfied by induction on
iterations. Note that the second assumption is true if the potential function is bounded by poly(n).

Assumption B.5. We make the following assumptions:

1. µ̃ ≈εmp µ, w̃ ≈εmp w, where µ̃ and w̃ are returned by the data structure, and µ, w are the
input to the data structure.

2. µ ≈0.1 t.

We further make the following definitions that make use of sketching matrices:

Definition B.6 (Hat version of parameters). Let b = o(n). For any x̃ ∈ Rn, s̃ ∈ Rn, P̃ ∈ Rn×n,
δ̃µ ∈ Rn, and a sketching matrix R ∈ Rb×n, we define δ̂x, δ̂s ∈ Rn:

δ̂x :=
X̃√
X̃S̃

(I −R>RP̃)
1√
X̃S̃

δ̃µ, δ̂s :=
S̃√
X̃S̃

R>RP̃
1√
X̃S̃

δ̃µ.

30

Remark B.7. In our case, R ∈ Rb×n is a subsampled randomized Hadamard matrix. See more
details in Definition B.10.

Definition B.8 (New versions of definition). We use a superscript “new” to denote the corresponding
variables at the beginning of the next iteration. Specifically, we define tnew ∈ R as follows:

tnew := (1− ε

3
√
n

)t.

We define µnew, wnew ∈ Rn as follows:

µnew := (x+ δ̂x) · (s+ δ̂s), wnew := (x+ δ̂x)/(s+ δ̂s).

The following facts directly follow from the definitions and Assumption B.5.

Fact B.9. We have the following properties:

1. X̃δ̂s + S̃δ̂x = δ̃µ = δ̃t + δ̃Φ,

2. x̃ ≈2εmp x, s̃ ≈2εmp s,

3. ‖δ̃t‖2 ≤ 0.5εt, ‖δ̃Φ‖2 ≤ 0.5εt, ‖δ̃µ‖2 ≤ εt.
Proof. Part 1. From the definition of δ̂x and δ̂s (Definition B.6) we have that

X̃δ̂s + S̃δ̂x =
X̃S̃√
X̃S̃

R>RP̃
1√
X̃S̃

δ̃µ +
S̃X̃√
X̃S̃

(I −R>RP̃)
1√
X̃S̃

δ̃µ

=
X̃S̃√
X̃S̃

I
1√
X̃S̃

δ̃µ = δ̃µ = δ̃t + δ̃Φ.

Part 2. By part 1 and part 2 of Assumption B.5, we have that µ̃ ≈εmp µ and w̃ ≈εmp w, so we have

x̃ =
√
w̃ · µ̃ ≈2εmp

√
w · µ =

√
(x/s) · (x · s) = x,

where the first step follows from Definition B.4, the second step follows from the fact that if a ≈εmp a
′

and b ≈εmp b
′, then ab ≈2εmp a

′b′, and the third step follows from Definition B.3.
Using a similar argument, we also have that s̃ ≈2εmp s.

Part 3. We upper bound ‖δ̃t‖2 as follows:

‖δ̃t‖2 =
∥∥∥
(tnew

t
− 1
)
µ̃
∥∥∥

2
=
∥∥∥ ε

3
√
n
µ̃
∥∥∥

2
≤ (1 + εmp)

∥∥∥ ε

3
√
n
µ
∥∥∥

2
≤ 1.1(1 + εmp)

∥∥∥ εt

3
√
n
1
∥∥∥

2
≤ 0.5εt.

where the first step follows from the definition of δ̃t (Definition B.4), the second step follows from the
definition of tnew (Definition B.8), the third step follows from µ̃ ≈εmp µ (Part 1 of Assumption B.5),
the forth step follows from µ ≈0.1 t (Part 2 of Assumption B.5), and the last step follows from
εmp ≤ 10−4 (Assumption B.1).

Then we upper bound ‖δ̃Φ‖2 as follows:

‖δ̃Φ‖2 = ‖ ε
2
tnew · ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
‖2 =

ε

2
tnew =

ε

2
(1− ε

3
√
n

)t ≤ 0.5εt,

where the first step follows from the definition of δ̃Φ (Definition B.4), and the third step follows
from the definition of tnew (Definition B.8).

Finally, we can use triangle inequality to upper bound

‖δ̃µ‖2 ≤ ‖δ̃t‖2 + ‖δ̃Φ‖2 ≤ 0.5εt+ 0.5εt ≤ εt.

31

B.2 Facts

Random sketching matrices are usually used to give subspace embedding and approximate matrix
product. Instead of using subspace embedding [Sar06] and approximate matrix product [KN12],
LP solver requires a different version of embedding, it was from [PSW17] implicitly and defined in
[LSZ19] explicitly.

Definition B.10 (Coordinate-wise embedding). Let Π denote a distribution on b× n matrices R.
We say Π is an (α, β, δ)-coordinate-wise embedding if for any fixed vector h ∈ Rn, the following
properties hold:

1. E
R∼Π

[R>Rh] = h,

2. E
R∼Π

[(R>Rh)2
i] ≤ h2

i +
α

b
‖h‖22,

3. Pr
R∼Π

[
|(R>Rh)i − hi| > ‖h‖2

β√
b

]
≤ δ.

Lemma B.11 (Lemma A.1 in [CLS19]). Let x and y be (possibly dependent) random variables such
that |x| ≤ cx and |y| ≤ cy almost surely. Then, we have

Var[xy] ≤ 2c2
x ·Var[y] + 2c2

y ·Var[x].

Fact B.12 (Gradient and Hessian of potential function). Let Φλ(r) =
∑n

i=1 cosh(λri) for some
λ > 0. The gradient and the Hessian of Φλ(r) are

∇Φλ(r) = λ ·
(

sinh(λr1), sinh(λr2), · · · , sinh(λrn)
)> ∈ Rn,

∇2Φλ(r) = diag
(
λ2 cosh(λr1), λ2 cosh(λr2), · · · , λ2 cosh(λrn)

)
∈ Rn×n.

Lemma B.13 (Basic properties of potential function, Lemma 4.12 in [CLS19]). Let Φλ(r) =∑n
i=1 cosh(λri) for some λ > 0. For any vector r ∈ Rn,

1. For any vector ‖v‖∞ ≤ 1/λ, we have that

Φλ(r + v) ≤ Φλ(r) + 〈∇Φλ(r), v〉+ 2‖v‖2∇2Φλ(r).

2. ‖∇Φλ(r)‖2 ≥ λ√
n

(Φλ(r)− n).

3.
(∑n

i=1 λ
2 cosh2(λri)

)1/2 ≤ λ√n+ ‖∇Φλ(r)‖2.

Lemma B.14 (Appendix E in [LSZ19]). Let R ∈ Rb×n denote a subsample randomized Hadamard
transform, then it gives (α = 1, β = O(log(n/δ)), δ)-Coordinate-wise Embedding (Definition B.10).

We state another property of potential function

Lemma B.15 (Basic properties of potential function, general version of Lemma 5.14 of [Bra20]).
Let Φλ(r) =

∑n
i=1 cosh(λri) for some λ > 0. If ‖v‖∞ ≤ 1/(30λ), then we have

〈
∇Φλ(r),− ∇Φλ(r + v)

‖∇Φλ(r + v)‖2

〉
≤ −0.9‖∇Φλ(r)‖2 + 0.1λ

√
n.

The proof is very similar to that of [Bra20], we put it here for completeness.

32

Proof. We have

〈∇Φλ(r),−∇Φλ(r + v)〉 = − 〈∇Φλ(r + v),∇Φλ(r + v)〉+ 〈∇Φλ(r + v)−∇Φλ(r),∇Φλ(r + v)〉
≤ − ‖∇Φλ(r + v)‖22 + ‖∇Φλ(r)−∇Φλ(r + v)‖2 · ‖∇Φλ(r + v)‖2

where the last step follows from 〈a, b〉 ≤ ‖a‖2 · ‖b‖2. Then we have that

〈
∇Φλ(r),− ∇Φλ(r + v)

‖∇Φλ(r + v)‖2

〉

≤ − ‖∇Φλ(r + v)‖2 + ‖∇Φλ(r)−∇Φλ(r + v)‖2
≤ −

(
‖∇Φλ(r)‖2 − ‖∇Φλ(r)−∇Φλ(r + v)‖2

)
+ ‖∇Φλ(r)−∇Φλ(r + v)‖2

≤ − ‖∇Φλ(r)‖2 + 2‖∇Φλ(r)−∇Φλ(r + v)‖2, (11)

where the second step follows from the fact that ‖a‖2 ≥ ‖b‖2 − ‖b− a‖2.
Now we need to upper bound the norm ‖∇Φλ(r) − ∇Φλ(r + v)‖2. Note that ∇Φλ(x)i =

λ sinh(λxi) and sinh(x) = (ex− e−x)/2. We have the following property for | sinh(x+ y)− sinh(x)|:

| sinh(x+ y)− sinh(x)| = |ex · ey − e−x · e−y − (ex − e−x)|/2
= |ex · (ey − 1) + e−x · (1− e−y)|/2
≤ (ex · |ey − 1|+ e−x · |1− e−y|)/2
≤ (ex + e−x)/2 ·max{|ey − 1|, |1− e−y|}
≤ (ex + e−x)/2 · (e|y| − 1) = cosh(x)(e|y| − 1), (12)

where the first and the last step follows from the definitions of sinh and cosh, the third step follows
from the triangle inequality of absolute values, and the fifth step follows from ey + e−y ≥ 2.

Thus we can upper bound the difference as follows

‖∇Φλ(r)−∇Φλ(r + v)‖2 = λ‖ sinh(λ(r + v))− sinh(λr)‖2
≤ λ‖ cosh(λr)(e|λv| − 1)‖2
≤ λ‖ cosh(λr)‖2(eλ‖v‖∞ − 1)

≤ (λ
√
n+ ‖∇Φλ(r)‖2)(eλ‖v‖∞ − 1), (13)

where the second step follows from Eq. (12), the third step follows from the fact that ‖a · b‖2 ≤
‖a‖2‖b‖∞, and the last step follows from Part 3 of Lemma B.13.

We then have

(eλ‖v‖∞ − 1) < e1/30 − 1 ≤ 0.05, (14)

where the first step follows from ‖v‖∞ ≤ 1/(30λ).
Finally, this allows us to obtain

〈
∇Φλ(r),− ∇Φλ(r + v)

‖∇Φλ(r + v)‖2

〉
≤ − ‖∇Φλ(r)‖2 + 2‖∇Φλ(r)−∇Φλ(r + v)‖2

< − ‖∇Φλ(r)‖2 + 0.1(λ
√
n+ ‖∇Φλ(r)‖2)

≤ − 0.9‖∇Φλ(r)‖2 + 0.1λ
√
n

where the first step follows from Eq. (11), and the second step follows from Eq. (13) and Eq. (14).

33

Quantity Bound Stated in Lem. B.16 Used by Lem. B.21
‖s−1δ̃s‖2, ‖x−1δ̃x‖2 ε Part 1 Part 1
‖E[s−1δ̂s]‖2, ‖E[x−1δ̂x]‖2 ε Part 1 Part 1
‖µ−1(δ̃t − δt)‖2 εmp · ε Part 1 Part 1
‖µ−1(δt + δ̃Φ)‖2 ε Part 1 Part 4
Var[x−1

i δ̂x,i],Var[s−1
i δ̂s,i] ε2/b Part 2 Part 1, 2

‖x−1(x− x̃)‖∞, ‖s−1(s− s̃)‖∞ εmp Part 3 /
‖x−1δ̃x‖∞, ‖s−1δ̃s‖∞ ε Part 3 /
‖µ−1δ̃µ‖∞ ε Part 3 Part 3
‖x−1δ̂x‖∞, ‖s−1δ̂s‖∞ ε Part 4 Part 2, 3

Table 5: Summary of Lemma B.16. We ignore the constants. Note that the Part 4 (last row of this
table) holds with probability 1− 1/poly(n) and requires b ≥ 1000 log2 n.

B.3 Bounding δs, δx, δt, δΦ and δµ

The goal of this section is to prove Lemma B.16.

Lemma B.16 (A deep version of Lemma 4.3 in [CLS19]). Under Assumption B.5, and given that
b ≥ 1000 log2 n, we have the following:
1. ‖s−1δ̃s‖2 ≤ 2ε, ‖x−1δ̃x‖2 ≤ 2ε,

‖E[s−1δ̂s]‖2 ≤ 2ε, ‖E[x−1δ̂x]‖2 ≤ 2ε,

‖µ−1(δ̃t − δt)‖2 ≤ εmp · ε,
‖µ−1(δt + δ̃Φ)‖2 ≤ 5ε.

2. Var[x−1
i δ̂x,i] ≤ 2ε2/b, Var[s−1

i δ̂s,i] ≤ 2ε2/b.

3. ‖x−1(x− x̃)‖∞ ≤ 2εmp, ‖s−1(s− s̃)‖∞ ≤ 2εmp,

‖x−1δ̃x‖∞ ≤ 2ε, ‖s−1δ̃s‖∞ ≤ 2ε,

‖µ−1δ̃µ‖∞ ≤ 5ε.

4. ‖x−1δ̂x‖∞ ≤ 3ε, ‖s−1δ̂s‖∞ ≤ 3ε hold with probability 1− 1/n4.

Claim B.17 (Part 1 of Lemma B.16, bounding the `2 norm).

(1) ‖s−1δ̃s‖2 ≤ 2ε, ‖x−1δ̃x‖2 ≤ 2ε,

(2) ‖E[s−1δ̂s]‖2 ≤ 2ε, ‖E[x−1δ̂x]‖2 ≤ 2ε,

(3) ‖µ−1(δ̃t − δt)‖2 ≤ εmp · ε,
(4) ‖µ−1(δt + δ̃Φ)‖2 ≤ 5ε.

Proof. Proof of (1). We first upper bound the `2 norm of P̃ δ̃µ√
X̃S̃

in the following way:

∥∥∥P̃ 1√
X̃S̃

δ̃µ

∥∥∥
2
≤
∥∥∥ 1√

X̃S̃
δ̃µ

∥∥∥
2
≤ Sup

[1√
µ̃

]
· ‖δ̃µ‖2 ≤ Sup

[1√
(1− εmp)µ

]
· εt

≤ 1√
0.9(1− εmp)t

· εt ≤ 1.1ε
√
t, (15)

where the first step holds since P̃ is an orthogonal projection matrix, the second step is because
x̃s̃ = µ̃ (Definition B.4) and ‖a · b‖2 ≤ Sup[a]‖b‖2, the third step follows from µ̃ ≈εmp µ (Part 1 of

34

Assumption B.5) and ‖δ̃µ‖2 ≤ εt (Part 3 of Fact B.9), the fourth step follows from µ ≈0.1 t (Part 2
of Assumption B.5), and the last step follows from εmp ≤ 10−4 (Assumption B.1).

Then we can upper bound ‖s−1δ̃s‖2 as follows:

‖s−1δ̃s‖2 =

∥∥∥∥∥
S
−1
S̃√

X̃S̃
P̃

1√
X̃S̃

δ̃µ

∥∥∥∥∥
2

≤ Sup

[
S
−1
S̃√

X̃S̃

]∥∥∥∥∥P̃
1√
X̃S̃

δ̃µ

∥∥∥∥∥
2

≤ 1 + 2εmp√
(1− εmp)0.9t

·
∥∥∥∥∥P̃

1√
X̃S̃

δ̃µ

∥∥∥∥∥
2

≤ 1 + 2εmp√
(1− εmp)0.9t

· 1.1ε
√
t ≤ 2ε,

where the first step follows by definition of δ̃s (Definition B.4), the second step follows from ‖a·b‖2 ≤
Sup[a] · ‖b‖2, the third step follows from s̃ ≈2εmp s (Part 2 of Fact B.9) and x̃s̃ = µ̃ ≈εmp µ ≈0.1 t
(Definition B.4, Assumption B.5), the fourth step follows from Eq. (15), the last step follows from
εmp ≤ 10−4 (Assumption B.1).

The proof for ‖x−1δ̃x‖2 ≤ 2ε is similar since I − P̃ is also an orthogonal projection matrix.
Proof of (2). Note that from Lemma B.14 and definition of δ̂s and δ̃s we have E[δ̂s] = δ̃s, therefore,

‖E[s−1δ̂s]‖2 = ‖s−1δ̃s‖2 ≤ 2ε.

Similarly, we can prove ‖x−1δ̃x‖2 ≤ 2ε.
Proof of (3).

‖µ−1(δ̃t − δt)‖2 =

∥∥∥∥µ−1

((
tnew

t
− 1

)
µ̃−

(
tnew

t
− 1

)
µ

)∥∥∥∥
2

=

∥∥∥∥µ−1 ε

3
√
n

(µ̃− µ)

∥∥∥∥
2

≤ εmp · ε,

where the first step is by definition of δ̃t and δt (Definition B.4 and B.3), the second step is by
tnew

t − 1 = (1−ε/3√n)t
t − 1 = − ε

3
√
n
, and the last step is by µ̃ ≈εmp µ (Part 1 of Assumption B.5).

Proof of (4). We use triangle inequality to upper bound

‖µ−1(δt + δ̃Φ)‖2 = ‖µ−1((δt − δ̃t) + (δ̃t + δ̃Φ))‖2 ≤ ‖µ−1(δt − δ̃t)‖2 + ‖µ−1(δ̃t + δ̃Φ)‖2.

The first term is upper bounded in Part (3): ‖µ−1(δ̃t − δt)‖2 ≤ εmp · ε.
For the second term, we have

‖µ−1(δ̃t + δ̃Φ)‖2 = ‖µ−1δ̃µ‖2 = ‖µ−1(x̃δ̃s + s̃δ̃x)‖2 ≤ ‖µ−1x̃δ̃s‖2 + ‖µ−1s̃δ̃x‖2
≤ (1 + 2εmp)‖s−1δ̃s‖2 + (1 + 2εmp)‖x−1δ̃x‖2 ≤ 4ε(1 + 2εmp) ≤ 5ε,

where the first step follows from δ̃µ = δ̃t + δ̃Φ (Definition B.4), the second step follows from

x̃δ̃s + s̃δ̃x =
S̃X̃√
X̃S̃

(I − P̃)
1√
X̃S̃

δ̃µ +
X̃S̃√
X̃S̃

P̃
1√
X̃S̃

δ̃µ = δ̃µ,

the third step follows from triangle inequality, the forth step follows from x̃ ≈2εmp x, s̃ ≈2εmp s (Part
2 of Fact B.9) and x · s = µ (Definition B.3), the fifth step follows from Part (1) that ‖x−1δ̃x‖2 ≤ 2ε
and ‖s−1δ̃s‖2 ≤ 2ε, and the sixth step follows from εmp ≤ 10−4 (Assumption B.1).

Claim B.18 (Part 2 of Lemma B.16, bounding the variance per coordinate).

Var[x−1
i δ̂x,i] ≤ 2ε2/b, Var[s−1

i δ̂s,i] ≤ 2ε2/b.

35

Proof. For each i ∈ [n], we can rewrite the expectation of s−1
i δ̂s,i as follows:

E[s−1
i δ̂s,i] =E

[
s̃i

si
√
x̃is̃i

(
R>RP̃

1√
X̃S̃

δ̃µ

)

i

]
=

s̃i

si
√
x̃is̃i

(
P̃

1√
X̃S̃

δ̃µ

)

i

= s−1
i δ̃s,i, (16)

where the first step follows from the definition of δ̂s (Definition B.6), the second step follows from
the property of matrix R (Part 1 of Definition B.10 and Lemma B.14), and the third step follows
from the definition of δ̃s (Definition B.4).

We then upper bound the expectation of (s−1
i δ̂s,i)

2 as follows:

E[(s−1
i δ̂s,i)

2] =
s̃2
i

s2
i · x̃is̃i

E
[
(R>RP̃

1√
X̃S̃

δ̃µ)2
i

]
≤ s̃2

i

s2
i · x̃is̃i

(
(P̃

1√
X̃S̃

δ̃µ)2
i +

1

b

∥∥∥P̃ 1√
X̃S̃

δ̃µ

∥∥∥
2

2

)

= (s−1
i δ̃s,i)

2 +
s̃2
i

s2
i · x̃is̃i

· 1

b

∥∥∥P̃ 1√
X̃S̃

δ̃µ

∥∥∥
2

2
, (17)

where the first step follows from definition of δ̂s (Definition B.6), the second step follows from Part
2 of Definition B.10, and the third step follows from the definition of δ̃s (Definition B.4).

Now we have

Var[s−1
i δ̂s,i] = E[(s−1

i δ̂s,i)
2]− (E[s−1

i δ̂s,i])
2 =

1

b

s̃2
i

s2
i · x̃is̃i

‖P̃ 1√
X̃S̃

δ̃µ‖22 ≤
1

b

(1 + 2εmp)2

µ̃i
‖P̃ 1√

X̃S̃
δ̃µ‖22

≤ 1

b

(1 + 2εmp)2

µ̃i
(1.1ε)2t ≤ 1

b
(1 + 2εmp)2(1.1ε)2(1.1 + εmp) ≤ 2ε2

b
,

where the first step follows from definition of variance, the second step follows from Eq. (16) and
Eq. (17), the third step follows from s̃i ≈2εmp si (Part 2 of Fact B.9) and µ̃ = x̃·s̃ (Definition B.4), the
forth step follows from ‖P̃ 1√

X̃S̃
δ̃µ‖2 ≤ 1.1ε

√
t (Eq. (15)), and the sixth step follows from µ̃ ≈0.1+εmp t

(Part 1 and 2 of Assumption B.5), the last step follows from εmp ≤ 10−4 (Assumption B.1).
The other part that Var[x−1

i δ̂x,i] ≤ 2ε2/b follows from a similar argument.

Claim B.19 (Part 3 of Lemma B.16, bounding the infinity norm).

(1) ‖x−1(x− x̃)‖∞ ≤ 2εmp, ‖s−1(s− s̃)‖∞ ≤ 2εmp,

(2) ‖x−1δ̃x‖∞ ≤ 2ε, ‖s−1δ̃s‖∞ ≤ 2ε,

(3) ‖µ−1δ̃µ‖∞ ≤ 5ε.

Proof. Proof of (1). From Part 2 of Fact B.9, we have that x̃ ≈2εmp x and s̃ ≈2εmp s. Therefore
‖x−1(x− x̃)‖∞ ≤ 2εmp, ‖s−1(s− s̃)‖∞ ≤ 2εmp,

Proof of (2). From Part 1 of Claim B.17, we have ‖x−1δ̃x‖2 ≤ 2ε. Therefore, ‖x−1δ̃x‖∞ ≤
‖x−1δ̃x‖2 ≤ 2ε. Similarly, we have ‖s−1δ̃s‖∞ ≤ ‖s−1δ̃s‖2 ≤ 2ε.
Proof of (3). Now, the last term follows by

|µ−1
i δ̃µ,i| = |x−1

i s−1
i (x̃iδ̃s,i + s̃iδ̃x,i)| ≤ (1 + 2εmp)|s−1

i δ̃s,i|+ (1 + 2εmp)|x−1
i δ̃x,i|

≤ (1 + 2εmp)2ε+ (1 + 2εmp)2ε = 5ε,

where the first step is by x̃δ̃s + s̃δ̃x = δ̃µ (Definition B.4), the second step is by x ≈2εmp x̃ and
s ≈2εmp s̃ (Part 2 of Fact B.9), the third step follows from Part (2) that ‖s−1δ̃s‖∞ ≤ 2ε and
‖x−1δ̃x‖∞ ≤ 2ε, and the last step follows from εmp ≤ 10−4 (Assumption B.1).

36

Claim B.20 (Part 4 of Lemma B.16, bounding the infinity norm with high probability). Given
b ≥ 1000 log2 n,8 we have

‖x−1δ̂x‖∞ ≤ 3ε, ‖s−1δ̂s‖∞ ≤ 3ε,

holds with probability 1− 1/n4.

Proof. By triangle inequality, we have

‖s−1δ̂s‖∞ ≤ ‖s−1δ̃s‖∞ + ‖s−1(δ̂s − δ̃s)‖∞.

The first term is upper bounded by ‖s−1δ̃s‖∞ ≤ 2ε (Part 2 of Claim B.19). The second part
involves randomness, therefore we need to prove that it holds with high probability. Note that δ̂s is
the unbiased estimation of δ̃s, i.e. E[δ̂s] = δ̃s. We have

δ̂s − δ̃s =
S̃√
X̃S̃

(
R>RP̃

1√
X̃S̃

δ̃µ − P̃
1√
X̃S̃

δ̃µ

)
=

S̃√
X̃S̃

(
R>Rh− h

)
, (18)

where the first steps is by definition of δ̂s(Definition B.6) and δ̃s (Definition B.4), and in the second
step we define h := P̃ 1√

X̃S̃
δ̃µ. And by Eq.(15), we have ‖h‖2 ≤ 1.1ε

√
t.

Definition B.10 and Lemma B.14 guarantee that for any vector h ∈ Rn, a subsample randomized
Hadamard transform matrix R ∈ Rb×n satisfies

Pr
R

[
|(R>Rh)i − hi| > ‖h‖2 ·

log(n/δ)√
b

]
≤ δ.

In every iteration we use a fresh subsample Hadamard matrix R which is independent of h, therefore
we can apply this bound using the same h and failure probability δ = 1/n4, and we have that with
probability at least 1− 1/n4, |(R>Rh)i − hi| ≤ 5.5ε

√
t logn√
b

. Therefore,

∣∣∣s−1
i (δ̂s − δ̃s)i

∣∣∣ =

∣∣∣∣
s−1
i s̃i√
x̃is̃i

(
R>Rhi − hi

)∣∣∣∣ ≤
∣∣∣∣∣

1 + 2εmp√
0.9(1− εmp)t

(
R>Rhi − hi

)∣∣∣∣∣

≤
∣∣∣∣∣

1 + 2εmp√
0.9(1− εmp)t

5.5ε
√
t log n√
b

∣∣∣∣∣ ≤ ε, (19)

where the first step is by Eq. (18), the second step is because s̃ ≈2εmp s (Part 2 of Fact B.9) and
x̃s̃ = µ̃ ≈εmp µ ≈0.1 t (Part 1 and 2 of Assumption B.5), and the third step is by the upper bound
on |(R>Rh)i − hi|, the last step follows by b ≥ 1000 log2 n and εmp ≤ 10−4 (Assumption B.1).

Finally, we have

‖s−1δ̂s‖∞ ≤ ‖s−1δ̃s‖∞ + ‖s−1(δ̂s − δ̃s)‖∞ ≤ 2ε+ ‖s−1(δ̂s − δ̃s)‖∞ ≤ 3ε,

where the second step is by ‖s−1δ̃s‖∞ ≤ 2ε (Part 2 of Claim B.19), the third step is by Eq.(19).
Similarly, we can show ‖x−1δ̂x‖∞ ≤ 3ε with probability 1− 1/n4.

37

Quantity Bound Part Prob. Use Lem. B.16
‖E[µ−1(µnew − µ− δt − δ̃Φ)]‖2 εmpε+ ε2 + ε2

√
n/b Part 1 1 Part 1,2

Var[µ−1
i µnew

i] ε2mpε
2/b+ ε4/b Part 2 1− 1/poly(n) Part 2,4

‖µ−1(µnew − µ)‖∞ ε Part 3 1− 1/poly(n) Part 3,4
‖E[µ−1(µnew − µ)]‖2 ε+ ε2

√
n/b Part 4 1 Part 1

Table 6: Summary of Lemma B.21. We ignore the constants.

B.4 Bounding µnew − µ
The goal of this section is to prove Lemma B.21.

Lemma B.21 (A deep version of Lemma 4.8 in [CLS19]). Let µ and µnew be defined as that of
Definition B.3 and Definition B.8: µ = x · s, and µnew = (x+ δ̂x)(s+ δ̂s). We have
1. ‖E[µ−1(µnew − µ− δt − δ̃Φ)]‖2 ≤ 9εmpε+ 4ε2 + 2ε2

√
n/b,

2. Var[µ−1
i µnew

i] ≤ 16ε2mpε
2/b+ 320ε4/b holds with probability at least 1− 1/poly(n) for all i ∈ [n],

3. ‖µ−1(µnew − µ)‖∞ ≤ 6ε,
4. ‖E[µ−1(µnew − µ)]‖2 ≤ 6ε+ 2ε2

√
n/b.

Claim B.22 (Part 1 of Lemma B.21). ‖E[µ−1(µnew − µ− δt − δ̃Φ)]‖2 ≤ 9εmpε+ 4ε2 + 2ε2
√
n/b.

Proof. From the definition of µnew, we have

µnew =(x+ δ̂x)(s+ δ̂s) = µ+ xδ̂s + sδ̂x + δ̂xδ̂s

=µ+ (x̃δ̂s + s̃δ̂x) + (x− x̃)δ̂s + (s− s̃)δ̂x + δ̂xδ̂s

=µ+ (δ̃t + δ̃Φ) + (x− x̃)δ̂s + (s− s̃)δ̂x + δ̂xδ̂s

=µ+ (δt + δ̃Φ) + (δ̃t − δt) + (x− x̃)δ̂s + (s− s̃)δ̂x + δ̂xδ̂s, (20)

where in the forth step we use the fact x̃δ̂s + s̃δ̂x = δ̃µ = δ̃t + δ̃Φ (Part 1 of Fact B.9). Subtracting
µ+ (δt + δ̃Φ) on both sides and taking the expectation, we have

E[µnew − µ− δt − δ̃Φ] = (δ̃t − δt) + (x− x̃)E[δ̂s] + (s− s̃)E[δ̂x] + E[δ̂xδ̂s].

Hence, we have that

‖µ−1 E[µnew − µ− δt − δ̃Φ]‖2
≤ ‖µ−1(δ̃t − δt)‖2 + ‖µ−1(x− x̃)s · s−1 E[δ̂s]‖2 + ‖µ−1(s− s̃)x · x−1 E[δ̂x]‖2 + ‖µ−1 E[δ̂xδ̂s]‖2
≤ εmp · ε+ ‖µ−1(x− x̃)s · s−1 E[δ̂s]‖2 + ‖µ−1(s− s̃)x · x−1 E[δ̂x]‖2 + ‖µ−1 E[δ̂xδ̂s]‖2
≤ εmp · ε+ ‖µ−1(x− x̃)s‖∞ · ‖s−1 E[δ̂s]‖2 + ‖µ−1(s− s̃)x‖∞ · ‖x−1 E[δ̂x]‖2 + ‖µ−1 E[δ̂xδ̂s]‖2
≤ εmp · ε+ 2εmp · ‖s−1 E[δ̂s]‖2 + 2εmp · ‖x−1 E[δ̂x]‖2 + ‖µ−1 E[δ̂xδ̂s]‖2
≤ 9εmp · ε+ ‖µ−1 E[δ̂xδ̂s]‖2, (21)

where the first step follows by triangle inequality, the second step follows by Part 1 of Lemma B.16,
the third step follows by ‖ab‖2 ≤ ‖a‖∞ · ‖b‖2, the forth step follows by ‖µ−1(x − x̃)s‖∞ ≤ 2εmp

and ‖µ−1(s − s̃)x‖∞ ≤ 2εmp (since x̃ ≈2εmp x, s̃ ≈2εmp s by Part 2 of Fact B.9, and µ = x · s
8This assumption is added in Part 3 of Assumption B.26.

38

by Definition B.3), the last step follows by ‖E[s−1δ̂s]‖2 ≤ 2ε and ‖E[x−1δ̂x]‖2 ≤ 2ε (Part 1 of
Lemma B.16).

To bound the last term of Eq. (21), using E[δ̂s] = δ̃s and E[δ̂x] = δ̃x, we have that

E[δ̂x,iδ̂s,i] = δ̃x,iδ̃s,i + E[(δ̂x,i − δ̃x,i)(δ̂s,i − δ̃s,i)].

Hence, we have

‖µ−1 E[δ̂xδ̂s]‖2 ≤ ‖µ−1δ̃xδ̃s‖2 +

(
n∑

i=1

(
E
[
x−1
i (δ̂x,i − δ̃x,i) · s−1

i (δ̂s,i − δ̃s,i)
])2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

(
Var[x−1

i δ̂x,i] + Var[s−1
i δ̂s,i]

)2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

2(Var[x−1
i δ̂x,i])

2 + 2(Var[s−1
i δ̂s,i])

2

)1/2

≤ 4ε2 + 2
√
n · ε4/b2 = 4ε2 + 2ε2

√
n/b, (22)

where the first step follows from triangle inequality and µ = xs, the second step follows by
‖µ−1δ̃xδ̃s‖2 ≤ ‖x−1δ̃x‖2 ·‖s−1δ̃s‖2 ≤ 4ε2 (Part 1 of Lemma B.16) and 2ab ≤ a2+b2, the third step fol-
lows by (a+b)2 ≤ 2a2+2b2, the fourth step follows byVar[x−1

i δ̂x,i] ≤ 2ε2/b andVar[s−1
i δ̂s,i] ≤ 2ε2/b

(Part 2 of Lemma B.16).
Finally, we have that

‖µ−1(E[µnew − µ− δt − δ̃Φ])‖2 ≤ 9εmpε+ ‖µ−1 E[δ̂xδ̂s]‖2 ≤ 9εmpε+ 4ε2 + 2ε2
√
n/b.

where the first step follows from Eq. (21), and the last step follows from Eq. (22).

Claim B.23 (Part 4 of Lemma B.21). We have

‖E[µ−1(µnew − µ)]‖2 ≤ 6ε+ 2ε2
√
n/b.

Proof. From Part 1 of Lemma B.16, we know that ‖µ−1(δt + δ̃Φ)‖2 ≤ 5ε. Thus using triangle
inequality and Part 1 of Lemma B.21, we know

‖µ−1(E[µnew − µ])‖2 ≤ ‖µ−1(E[µnew − µ− δt − δ̃Φ])‖2 + ‖µ−1(δt + δ̃Φ)‖2
≤ 9εmpε+ 4ε2 + 2ε2

√
n/b+ 5ε ≤ 6ε+ 2ε2

√
n/b,

where the last step follows by εmp < 10−4 and ε < 10−4 (Assumption B.1).

Claim B.24 (Part 2 of Lemma B.21). Var[µ−1
i µnew

i] ≤ 16ε2mpε
2/b+ 320ε4/b holds with probability

at least 1− 1/ poly(n) for all i ∈ [n].

Proof. Recall that we showed in Eq. (20) that

µnew = µ+ δ̃µ + (x− x̃)δ̂s + (s− s̃)δ̂x + δ̂xδ̂s.

We compute the variance of each of the terms in this formula. For (x− x̃)δ̂s we have

Var[µ−1
i (xi − x̃i)δ̂s,i] = Var[x−1

i (xi − x̃i)s−1
i δ̂s,i] ≤ 4ε2mp Var[s−1

i δ̂s,i] ≤ 8ε2mpε
2/b (23)

39

where the second step is by x ≈2εmp x̃ (Part 2 of Fact B.9), and the third step is by Var[s−1
i δ̂s,i] ≤

2ε2/b (Part 2 of Lemma B.16).
And similarly for (s− s̃)δ̂x we can show

Var[µ−1
i (si − s̃i)δ̂x,i] ≤ 8ε2mpε

2/b. (24)

Now we can upper bound the variance of µ−1
i µnew

i ,

Var[µ−1
i µnew

i] ≤ 4Var[µ−1
i δ̃µ,i] + 4Var[µ−1

i (xi − x̃i)δ̂s,i] + 4Var[µ−1
i (si − s̃i)δ̂x,i] + 4Var[µ−1

i δ̂x,iδ̂s,i]

≤ 4 · 0 + 8ε2mpε
2/b+ 8ε2mpε

2/b+ 4Var[µ−1
i δ̂x,iδ̂s,i]

= 16ε2mpε
2/b+ 4Var[x−1

i δ̂x,i · s−1
i δ̂s,i]

≤ 16ε2mpε
2/b+ 8Sup[(x−1

i δ̂x,i)
2] ·Var[s−1

i δ̂s,i] + 8Sup[(s−1
i δ̂s,i)

2] ·Var[x−1
i δ̂x,i]

≤ 16ε2mpε
2/b+ 8 · (3ε)2 · 2ε2

b
+ 8 · (3ε)2 · 2ε2

b
≤ 16ε2mpε

2/b+ 320ε4/b,

where the first step follows from triangle inequality and the fact that Var[1] = 0, the second step
follows by Var[µ−1

i δ̃µ,i] = 0 (since µ−1
i and δ̃µ,i don’t involve randomness) and plugging in Eq. (23)

and Eq. (24), the third step follows by µ = x·s (Definition B.3), the fourth step follows byVar[xy] ≤
2Sup[x2]Var[y] + 2Sup[y2]Var[x] (Lemma B.11) with Sup denoting the deterministic maximum
of the random variable, the fifth step follows by Var[s−1

i δ̂s,i] ≤ 2ε2/b and Var[x−1
i δ̂x,i] ≤ 2ε2/b

(Part 2 of Lemma B.16) and ‖x−1δ̂x‖∞ ≤ 3ε and ‖s−1δ̂s‖∞ ≤ 3ε (Part 4 of Lemma B.16).

Claim B.25 (Part 3 of Lemma B.21). ‖µ−1(µnew − µ)‖∞ ≤ 6ε holds with probability at least
1− 1/ poly(n).

Proof. We again note that from Eq. (20) we have

µnew = µ+ δ̃µ + (x− x̃)δ̂s + (s− s̃)δ̂x + δ̂xδ̂s.

Hence, we have that with probability at least 1− 1/n4 the following is true:

|µ−1
i (µnew

i − µi − δ̃µ,i)| ≤ |(x− x̃)iµ
−1
i δ̂s,i|+ |(s− s̃)iµ−1

i δ̂x,i|+ |µ−1
i δ̂x,iδ̂s,i|

= |(x− x̃)ix
−1
i | · |s−1

i δ̂s,i|+ |(s− s̃)is−1
i | · |x−1

i δ̂x,i|+ |x−1
i δ̂x,i| · |s−1

i δ̂s,i|
≤ 2εmp|s−1

i δ̂s,i|+ 2εmp|x−1
i δ̂x,i|+ |x−1

i δ̂x,i| · |s−1
i δ̂s,i|

≤ 2εmp · 3ε+ 2εmp · 3ε+ (3ε)2

≤ 20εmp · ε+ 10ε2, (25)

where the first step follows by triangle inequality, the second step follows by µi = xisi (Defini-
tion B.3), the third step follows by x ≈2εmp x̃ and s ≈2εmp s̃ (Part 2 of Fact B.9), the forth step
follows by |s−1

i δ̂s,i| ≤ 3ε and |x−1
i δ̂x,i| ≤ 3ε holds with 1− 1/n4 (Part 4 of Lemma B.16).

Finally, we have

|µ−1
i (µnew

i − µi)| ≤ |µ−1
i (µnew

i − µi − δ̃µ,i)|+ |µ−1
i δ̃µ,i| ≤ 20εmp · ε+ 10ε2 + |µ−1

i δ̃µ,i|
≤ 20εmp · ε+ 10ε2 + 5ε ≤ 6ε,

where the first step follows from triangle inequality, the second step follows from Eq.(25), and
the third step follows from |µ−1

i δ̃µ,i| ≤ 5ε (Part 3 of Lemma B.16), and fourth step follows from
ε, εmp ≤ 10−4 (Assumption B.1).

40

Notation ε εmp λ b

Choice 10−7/ log n 10−5/ log n 40 log n 1022
√
n log10 n

Table 7: Choice of ε, εmp, λ and b that satisfies all constraints in Assumption B.5 and Assump-
tion B.26. These parameters are assigned in Main procedure (Algorithm 17). Later they are used
to prove Theorem G.3.

B.5 Potential martingale

We first state the constraints of the parameters.

Assumption B.26. Let parameters b, λ, ε, εmp satisfying the following constraints:

1. b ≥ 20000 · (λε2mpε
√
n+ ε3

√
n), 2. λ ≥ 30 log n,

3. b ≥ 1000 log2 n, 4.
1

30λ
≥ ε√

n
+ 8ε,

5. b ≥ 20000ε
√
n, 6. λε < 10−5,

7. λ ≤ 60 log n, 8. 1.2εmp < 1/30λ.

Now we are ready to prove the main lemma for bounding the potential function. The goal of
this section is to prove Lemma B.27.

Lemma B.27 (A deep version of Lemma 4.13 in [CLS19]). Under the Assumptions B.1, B.5,
and B.26, we have

E
[
Φλ

(
µnew

tnew
− 1

)]
≤ Φλ

(
µ

t
− 1

)
− λε

15
√
n

(
Φλ

(
µ

t
− 1

)
− 10n

)
.

Proof. Let εµ = µnew − µ− δt − δ̃Φ. From this definition, we have

µnew − tnew = µ+ δt + δ̃Φ + εµ − tnew,

which implies

µnew

tnew
− 1 =

µ

tnew
+

1

tnew
(δt + δ̃Φ + εµ)− 1 =

µ

t
+
µ

t
(
t

tnew
− 1) +

1

tnew
(δt + δ̃Φ + εµ)− 1

=
µ

t
− 1 +

µ

t
(
t

tnew
− 1) +

1

tnew
(δt + δ̃Φ + εµ)

︸ ︷︷ ︸
v

. (26)

To apply Lemma B.13 with r = µ/t− 1 and r + v = µnew/tnew − 1, we first compute E[v]:

E[v] =
µ

t
(
t

tnew
− 1) +

1

tnew
(δt + δ̃Φ + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew

(
(
tnew

t
− 1)µ− ε

2
tnew ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
+ E[εµ]

)

= − ε

2

∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
+

1

tnew
E[εµ], (27)

where the second step follows by definition of δt (Definition B.3) and δ̃Φ (Definition B.4).

41

Next, we bound ‖v‖∞ as follows:

‖v‖∞ ≤
∥∥∥∥
µ

t
(
t

tnew
− 1)

∥∥∥∥
∞

+

∥∥∥∥
1

tnew
(µnew − µ)

∥∥∥∥
∞
≤ ε√

n
+
‖µ−1(µnew − µ)‖∞

0.9

≤ ε√
n

+ 8ε ≤ 1

30λ
,

where the second step follows from tnew = (1− ε/(3√n)) · t (Definition B.8) and µ ≈0.1 t (Part 2 of
Assumption B.5), the third step follows from Part 3 of Lemma B.21, and the last step follows from
Part 4 of Assumption B.26 that 1

30λ ≥ ε√
n

+ 8ε.
Since ‖v‖∞ ≤ 1

30λ , we can apply Part 1 of Lemma B.13 and get

E[Φλ(µ/t+ v − 1)] ≤ Φλ(µ/t− 1) + 〈∇Φλ(µ/t− 1),E[v]〉+ 2E[‖v‖2∇2Φλ(µ/t−1)]

= Φλ(µ/t− 1) +
(
− ε

2

〈
∇Φλ(µ/t− 1),

∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2

〉)

︸ ︷︷ ︸
a1

+
t

tnew
〈∇Φλ(µ/t− 1),E[t−1εµ]〉

︸ ︷︷ ︸
a2

+ 2E[‖v‖2∇2Φλ(µ/t−1)]︸ ︷︷ ︸
a3

, (28)

where the second step follows by Eq. (27).
We have ‖(µ̃ − µ)/t‖ ≤ 1.1εmp ≤ 1

30λ since µ̃ ≈εmp µ and µ ≈0.1 t (Assumption B.5) and
1.2εmp < 1/30λ (Part 8 of Assumption B.26). So we can use Lemma B.15 and let r ← µ/t− 1 and
v ← (µ̃− µ)/t− 1 in the lemma statement to upper bound the a1 term in Eq. (28):

a1 ≤ −0.45ε‖∇Φλ(µ/t− 1)‖2 + 0.1λε
√
n. (29)

We upper bound a2 term in Eq. (28) as follows:

a2 =
t

tnew
〈∇Φλ(µ/t− 1),E[t−1εµ]〉 ≤ t

tnew
‖∇Φλ(µ/t− 1)‖2 · ‖E[t−1εµ]‖2

≤ 1.1‖∇Φλ(µ/t− 1)‖2 · ‖E[t−1εµ]‖2 ≤ 2(9εmpε+ 4ε2 + 2ε2
√
n/b)‖∇Φλ(µ/t− 1)‖2 (30)

where the second step follows by 〈a, b〉 ≤ ‖a‖2 · ‖b‖2, the third step follows from definition of
tnew (Definition B.8), the forth step follows by ‖E[µ−1εµ]‖2 ≤ 9εmpε + 4ε2 + 2ε2

√
n/b (Part 1 of

Lemma B.21) and µ ≈0.1 t (Part 2 of Assumption B.5).
We still need to bound a3 = 2E[‖v‖2∇2Φλ(µ/t−1)] term in Eq. (28). Before bounding it, we first

bound E[v2
i],

E[v2
i] ≤ 2E

[(
µi
t

(
t

tnew
− 1)

)2
]

+ 2E

[(
1

tnew
(µnew
i − µi)

)2
]
≤ ε2/n+ 3E

[
((µnew

i − µi)/µi)2
]

= ε2/n+ 3Var[(µnew
i − µi)/µi] + 3(E[(µnew

i − µi)/µi])2

≤ ε2/n+ 40ε2mpε
2/b+ 1000ε4/b+ 3(E[(µnew

i − µi)/µi])2, (31)

where the first step follows by definition of v (see Eq. (26)), the second step follows by µ ≈0.1 t
(Part 2 of Assumption B.5) and (t/tnew − 1)2 ≤ ε2/(4n) (Definition B.8), the third step follows by
E[x2] = Var[x] + (E[x])2, the fourth step follows by Part 2 of Lemma B.21.

Now, we are ready to bound a3/2 = E[‖v‖2∇2Φλ(µ/t−1)]:

E[‖v‖2∇2Φλ(µ/t−1)]

42

= λ2
n∑

i=1

E[Φλ(µ/t− 1)iv
2
i]

≤ λ2
n∑

i=1

Φλ(µ/t− 1)i · (ε2/n+ 40ε2mpε
2/b+ 1000ε4/b+ 3(E[(µnew

i − µi)/µi])2

= (ε2/n+ 40ε2mpε
2/b+ 1000ε4/b)λ2 · Φλ(µ/t− 1)

+ 3λ2
n∑

i=1

Φλ(µ/t− 1)i · (E[(µnew
i − µi)/µi])2, (32)

where the first step follows by defining Φλ(x)i = cosh(λxi), the second step follows from Eq. (31).
For the second term in Eq. (32), we can upper bound it in the following way:

3λ2
n∑

i=1

Φλ(µ/t− 1)i · (E[(µnew
i − µi)/µi])2 ≤ 3λ

(n∑

i=1

λ2Φλ(µ/t− 1)2
i

)1/2
· ‖E[µ−1(µnew − µ)]‖24

≤ 3λ
(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (6ε+ 2ε2

√
n/b)2

≤ 3λ
(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (100ε2 + 10ε4n/b2)

(33)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from Part 3
of Lemma B.13 and the fact that ‖E[µ−1(µnew − µ)]‖24 ≤ ‖E[µ−1(µnew − µ)]‖22 ≤ (6ε + 2ε2

√
n/b)2

(Part 4 of Lemma B.21), the last step follows by (a+ b)2 ≤ 2a2 + 2b2.
Combining Eq. (32) and Eq. (33), we have

a3 = 2E[‖v‖2∇2Φλ(µ/t−1)]

≤ 2(ε2/n+ 40ε2mpε
2/b+ 1000ε4/b)λ2 · Φλ(µ/t− 1)

+ 6λ
(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (100ε2 + 10ε4n/b2) (34)

Then, loading Eq. (29), (30), (34) back into Eq. (28)

E[Φλ(µ/t+ v − 1)] ≤ Φλ(µ/t− 1) + a1 + a2 + a3

≤ Φλ(µ/t− 1) + (Eq. (29)) + (Eq. (30)) + (Eq. (34))
= Φλ(µ/t− 1) + Φλ(µ/t− 1) · (b1,Φ + b2,Φ + b3,Φ)

+ ‖∇Φλ(µ/t− 1)‖2 · (b1,∇ + b2,∇ + b3,∇)

+ λε
√
n · (b1,√n + b2,

√
n + b3,

√
n)

where we define terms that come from a1:

b1,Φ = 0, b1,∇ = −0.45ε, b1,
√
n = 0.1,

and terms that come from a2:

b2,Φ = 0, b2,∇ = 2(9εmpε+ 4ε2 + 2ε2
√
n/b) = ε · 2(9εmp + 4ε+ 2ε

√
n/b), b2,

√
n = 0,

and terms that come from a3:

b3,Φ = 2(ε2/n+ 40ε2mpε
2/b+ 1000ε4/b)λ2 = (λε/

√
n) · 2(λε/

√
n+ 40ε2mpλε

√
n/b+ 1000λε3

√
n/b),

b3,∇ = 6λ(100ε2 + 10ε4n/b2) = ε · 6(100λε+ 10λε · ε2n/b2),

43

b3,
√
n = 6(100λε+ 10λε3n/b2).

Note that, if b ≥ 20000ε
√
n (Part 5 of Assumption B.26), εmp < 1/1000 (Assumption B.1),

λε < 10−5 (Part 6 of Assumption B.26), we have

b1,∇ + b2,∇ + b3,∇ < −0.4ε (35)

Thus, using Eq. (35) and Part 2 of Lemma B.13, we have

E[Φλ(µ/t+ v − 1)] ≤ Φλ(µ/t− 1) + Φλ(µ/t− 1) · (b1,Φ + b2,Φ + b3,Φ)

+ ‖∇Φλ(µ/t− 1)‖2 · (−0.4ε)

+ λε
√
n · (b1,√n + b2,

√
n + b3,

√
n)

≤ Φλ(µ/t− 1) + Φλ(µ/t− 1) · (b1,Φ + b2,Φ + b3,Φ)

+
λ√
n

(Φλ(µ/t− 1)− n) · (−0.4ε)

+ λε
√
n · (b1,√n + b2,

√
n + b3,

√
n)

= Φλ(µ/t− 1) · (1 + b1,Φ + b2,Φ + b3,Φ − 0.4λε/
√
n)︸ ︷︷ ︸

cΦ

+ λε
√
n · (b1,√n + b2,

√
n + b3,

√
n + 0.4)

︸ ︷︷ ︸
c√n

,

where the first step follows from Eq. (35) and the second step follows from Part 2 of Lemma B.13.
If b ≥ 20000 · (λε2mpε

√
n + ε3

√
n) (Part 1 of Assumption B.26) and λε < 10−5 (Part 6 of

Assumption B.26), we have cΦ ≤ 1− 0.2λε/
√
n.

If λε < 10−5 (Part 6 of Assumption B.26) and b ≥ 20000ε
√
n (Part 5 of Assumption B.26), we

have c√n ≤ 0.6.
Thus, we obtain

E[Φλ(µ/t+ v − 1)] ≤ Φλ(µ/t− 1) · (1− 0.2λε/
√
n) + 0.6λε

√
n

≤ Φλ(µ/t− 1)− λε

15
√
n

(Φλ(µ/t− 1)− 10n).

B.6 Bounding the movement of w

The goal of this section is to prove Lemma B.28

Lemma B.28 (Bounding the movement of w). Let xnew = x + δ̂x, snew = s + δ̂s, w = x
s , and

wnew = xnew

snew (same as Definition B.8). Let b denote the size of sketching matrix. Then we have

1.

n∑

i=1

(E[wnew
i]/wi − 1)2 ≤ 100ε2,

2.
n∑

i=1

(
E
[
(wnew

i /wi − 1)2
])2
≤ 103 · ε4n/b2 + 4 · 104 · ε4,

3. |wnew
i /wi − 1| ≤ 10ε.

44

Proof. From the definition, we know that

wnew
i

wi
=

1

s−1
i xi

xi + δ̂x,i

si + δ̂s,i
=

1 + x−1
i δ̂x,i

1 + s−1
i δ̂s,i

.

Part 1. For each i ∈ [n], we have

E[wnew
i]

wi
− 1 = E

[
1 + x−1

i δ̂x,i

1 + s−1
i δ̂s,i

]
− 1 = E

[
x−1
i δ̂x,i − s−1

i δ̂s,i

1 + s−1
i δ̂s,i

]
≤ 2|E[x−1

i δ̂x,i − s−1
i δ̂s,i]|

≤ 2|E[x−1
i δ̂x,i]|+ 2|E[s−1

i δ̂s,i]|,

where the third step follows from |s−1
i δ̂s,i| ≤ 3ε (Part 4 of Lemma B.16), the last step follows from

triangle inequality. Then summing over all the coordinates we have

n∑

i=1

(E[wnew
i]/wi − 1)2 ≤

n∑

i=1

8(E[x−1
i δ̂x,i])

2 + 8(E[s−1
i δ̂s,i])

2 ≤ 100ε2.

where the first step follows by (a+b)2 ≤ 2a2+2b2, the last step follows by ‖E[s−1δ̂s]‖22, ‖E[x−1δ̂x]‖22 ≤
4ε2 (Part 1 of Lemma B.16).
Part 2. For each i ∈ [n], we have

E

[(
wnew
i

wi
− 1

)2
]

= E



(
x−1
i δ̂x,i − s−1

i δ̂s,i

1 + s−1
i δ̂s,i

)2

 ≤ 2E[(x−1

i δ̂x,i − s−1
i δ̂s,i)

2]

≤ 2E[2(x−1
i δ̂x,i)

2 + 2(s−1
i δ̂s,i)

2] = 4E[(x−1
i δ̂x,i)

2] + 4E[(s−1
i δ̂s,i)

2]

= 4Var[x−1
i δ̂x,i] + 4(E[x−1

i δ̂x,i])
2 + 4Var[s−1

i δ̂s,i] + 4(E[s−1
i δ̂s,i])

2

≤ 16ε2/b+ 4(E[x−1
i δ̂x,i])

2 + 4(E[s−1
i δ̂s,i])

2,

where the last step follows by Var[x−1
i δ̂x,i],Var[s−1

i δ̂s,i] ≤ 2ε2/b (Part 2 of Lemma B.16).
Thus summing over all the coordinates

n∑

i=1

(
E
[
(wnew

i /wi − 1)2
])2
≤ 103ε4n/b2 + 64

n∑

i=1

(
(E[x−1

i δ̂x,i])
4 + (E[s−1

i δ̂s,i])
4
)

≤ 103ε4n/b2 + 4 · 104 · ε4,

where the last step follows by ‖E[s−1δ̂s]‖22, ‖E[x−1δ̂x]‖22 ≤ 4ε2(Part 1 of Lemma B.16).
Part 3. For each i ∈ [n]

∣∣∣∣
wnew
i

wi
− 1

∣∣∣∣ =

∣∣∣∣∣
1 + x−1

i δ̂x,i

1 + s−1
i δ̂s,i

− 1

∣∣∣∣∣ ≤
∣∣∣∣
1 + 3ε

1− 3ε
− 1

∣∣∣∣ ≤ 10ε,

where the second step follows by |x−1
i δ̂x,i| ≤ 3ε and |s−1

i δ̂s,i| ≤ 3ε (Part 4 of Lemma B.16).

B.7 Bounding the movement of µ

The goal of this section is to prove Lemma B.29

45

Lemma B.29 (Bounding the movement of µ). Let xnew = x + δ̂x, snew = s + δ̂s, µ = x · s, and
µnew = xnew · snew. Let b denote the size of sketching matrix. Then we have

1.
n∑

i=1

(E[µnew
i]/µi − 1)2 ≤ 100ε2,

2.
n∑

i=1

(
E
[
(µnew
i /µi − 1)2

])2
≤ 4 · 104ε4n/b2 + 105 · ε4,

3. |µnew
i /µi − 1| ≤ 10ε.

Proof. From the definition, we know that

µnew
i /µi = (xisi)

−1 · (xi + δ̂x,i)(si + δ̂s,i) = (1 + x−1
i δ̂x,i)(1 + s−1

i δ̂s,i).

Part 1. For each i ∈ [n], we have

E[µnew
i]/µi − 1 = E[(1 + x−1

i δ̂x,i)(1 + s−1
i δ̂s,i)]− 1 = E[x−1

i δ̂x,i + (1 + x−1
i δ̂x,i) · s−1

i δ̂s,i]

≤ 2E[x−1
i δ̂x,i + s−1

i δ̂s,i] = 2E[x−1
i δ̂x,i] + 2E[s−1

i δ̂s,i]

where the third step follows by |x−1
i δ̂x,i| ≤ 3ε (Part 4 of Lemma B.16).

Thus, summing over all the coordinates gives us
n∑

i=1

(E[µnew
i]/µi − 1)2 ≤

n∑

i=1

8(E[x−1
i δ̂x,i])

2 + 8(E[s−1
i δ̂s,i])

2 ≤ 100ε2,

where the first step follows by (a+b)2 ≤ 2a2+2b2, the last step is by ‖E[x−1δ̂x]‖22, ‖E[s−1δ̂s]‖22 ≤ 4ε2

(Part 1 of Lemma B.16).
Part 2. For each i ∈ [n], we have

E[(µnew
i /µi − 1)2] = E[(x−1

i δ̂x,i + (1 + x−1
i δ̂x,i) · s−1

i δ̂s,i)
2]

≤ 4E[(x−1
i δ̂x,i + s−1

i δ̂s,i)
2]

≤ 4E[2(x−1
i δ̂x,i)

2 + 2(s−1
i δ̂s,i)

2]

= 8Var[x−1
i δ̂x,i] + 8(E[x−1

i δ̂x,i])
2 + 8Var[s−1

i δ̂s,i] + 8(E[s−1
i δ̂s,i])

2

≤ 32ε2/b+ 8(E[x−1
i δ̂x,i])

2 + 8(E[s−1
i δ̂s,i])

2,

where the second step follows by |x−1
i δ̂x,i| ≤ 3ε (Part 4 of Lemma B.16), and the last step follows

by Var[x−1
i δ̂x,i], Var[s−1

i δ̂s,i] ≤ 2ε2/b (Part 2 of Lemma B.16).
Thus summing over all the coordinates

n∑

i=1

(
E[(µnew

i /µi − 1)2]
)2 ≤ 4 · 104ε4n/b2 + 256

n∑

i=1

(
(E[x−1

i δ̂x,i])
4 + (E[s−1

i δ̂s,i)
4
)

≤ 4 · 104ε4n/b2 + 105ε4

where the second step follows by ‖E[x−1δ̂x]‖22, ‖E[s−1δ̂s]‖22 ≤ 4ε2 (Part 1 of Lemma B.16).
Part 3. For each i ∈ [n],

|µnew
i /µi − 1| = |(1 + x−1

i δ̂x,i)(1 + s−1
i δ̂s,i)− 1| ≤ |(1 + 3ε)2 − 1| ≤ 10ε,

where the second step follows by |x−1
i δ̂x,i| ≤ 3ε and |s−1

i δ̂s,i| ≤ 3ε (Part 4 of Lemma B.16).

46

Algorithm 3 One step central path
1: procedure OneStepCentralPath(mpt,mpΦ, x, s, t, t

new) . Lemma B.30, Lemma B.37
2: w ← x/s
3: µ← xs
4: (w̃, g̃t, pt)← mpt.UpdateQuery(w, µ) . Algorithm 8
5: . mpt works with function ft(x) =

√
x

6: . w̃ ≈εmp w, g̃t ≈εmp µ, pt = P (w̃)ft(g̃t)
7: (w̃, g̃Φ, pΦ)← mpΦ.UpdateQuery(w, µ/t) . Algorithm 8
8: . mpΦ works with function fΦ(x) = ∇Φ(x− 1)/

√
x

9: . w̃ ≈εmp w, g̃Φ ≈εmp µ/t, pΦ = P (w̃)fΦ(g̃Φ)
10: . Two data structures will return the same w̃
11: qΦ ← fΦ(g̃Φ)
12: µ̃← g̃Φ · t
13: x̃←

√
µ̃w̃

14: s̃←
√
µ̃/w̃ . x̃ and s̃ satisfies µ̃ = x̃s̃ and w̃ = x̃/s̃

15: δ̃t ← (t
new

t − 1)µ̃

16: δ̃Φ ← − ε
2 · tnew ·

√
µ̃/t·qΦ

‖∇Φλ(µ̃/t−1)‖2
17: δ̃µ ← δ̃t + δ̃Φ

18: pµ ← (t
new

t − 1)pt − ε
2 · tnew · pΦ√

t‖∇Φλ(µ̃/t−1)‖2
19: δ̂s ← s̃√

µ̃
pµ

20: δ̂x ← 1
s̃ δ̃µ − x̃√

µ̃
pµ

21: return (δ̂x, δ̂s)
22: end procedure

B.8 One step of central path

The central path method is implemented as Algorithm 3. In this section we prove that the output
of this algorithm indeed matches the definitions of previous sections. First note that the x, s, w,
and µ matches Definition B.3, and x̃, s̃, w̃, µ̃ matches Definition B.4.

Lemma B.30 (Correctness of one step central path). The δ̂s and δ̂x returned by Algorithm 3
matches the definition in Definition B.6, that

δ̂x =
X̃√
X̃S̃

(I − (R[l])>R[l]P̃)
1√
X̃S̃

δ̃µ, δ̂s =
S̃√
X̃S̃

(R[l])>R[l]P̃
1√
X̃S̃

δ̃µ,

where l is the parameter maintained in the data structure, note that the two data structures mpt
and mpΦ use the same l and R[l].

We have the following claims from Algorithm 3.

Claim B.31. δ̃t (Line 15) matches Definition B.4, that δ̃t = (t
new

t − 1)µ̃.

Claim B.32. δ̃Φ (Line 16) matches Definition B.4, that δ̃Φ = − ε
2 · tnew · ∇Φλ(µ̃/t−1)

‖∇Φλ(µ̃/t−1)‖2 .

Proof. We have

δ̃Φ = − ε
2
· tnew ·

√
µ̃/t · qΦ

‖∇Φλ(µ̃/t− 1)‖2
= − ε

2
· tnew ·

√
µ̃/t · fΦ(g̃Φ)

‖∇Φλ(µ̃/t− 1)‖2
= − ε

2
· tnew · ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
,

47

where the first step is by definition of δ̃Φ (Line 16of Algorithm 3), the second step is by definition
of qΦ (Line 11 of Algorithm 3), the third step is by definition of fΦ (Line 11 of Algorithm 17) and
definition of µ̃ (Line 12 of Algorithm 3) which implies g̃φ = µ̃/t.

Claim B.33. δ̃µ (Line 17) matches Definition B.4, that δ̃µ = δ̃t + δ̃Φ.

Claim B.34. pµ (Line 18) satisfies pµ = (R[l])>R[l]P̃ 1√
X̃S̃

δ̃µ, where P̃ is defined in Definition B.4.

Proof.

pµ =

(
tnew

t
− 1

)
pt −

ε

2
· tnew · pΦ√

t‖∇(Φλ(µ̃/t− 1)‖2

=

(
tnew

t
− 1

)
(R[l])>R[l]P̃

√
µ̃+

ε

2
· tnew · (R[l])>R[l]P̃∇Φλ(µ̃/t− 1)/

√
µ̃/t√

t‖∇(Φλ(µ̃/t− 1)‖2

= (R[l])>R[l]P̃
1√
µ̃

(
tnew

t
− 1

)
µ̃+

ε

2
· tnew · (R[l])>R[l]P̃∇Φλ(µ̃/t− 1)/

√
µ̃

‖∇(Φλ(µ̃/t− 1)‖2

= (R[l])>R[l]P̃
1√
X̃S̃

((
tnew

t
− 1

)
µ̃+

ε

2
· tnew · ∇Φλ(µ̃/t− 1)

‖∇(Φλ(µ̃/t− 1)‖2

)

= (R[l])>R[l]P̃
1√
X̃S̃

(δ̃t + δ̃Φ) = (R[l])>R[l]P̃
1√
X̃S̃

δ̃µ,

where the first step is by definition of pµ (Line 18), the second step is by definitions of pt (Line 4) and
pΦ (Line 7) and the correctness of UpdateQuery(Part 2 of Theorem D.6), the fourth step is by µ̃ =
x̃s̃ (Line 13 and 14), and the last two steps are by definitions of δ̃t, δ̃Φ and δ̃µ (Definition B.4).

Claim B.35. δ̂s (Line 19) matches Definition B.6, that δ̂s = S̃√
X̃S̃

(R[l])>R[l]P̃ 1√
X̃S̃

δ̃µ.

Proof. δ̂s = S̃√
X̃S̃

pµ = S̃√
X̃S̃

(R[l])>R[l]P̃ 1√
X̃S̃

δ̃µ by Claim B.34.

Claim B.36. δ̂x (Line 20) matches Definition B.6, that δ̂x = X̃√
X̃S̃

(I − (R[l])>R[l]P̃) 1√
X̃S̃

δ̃µ.

Proof. δ̂x = 1
s̃ δ̃µ − x̃√

µpµ = X̃√
X̃S̃

1√
X̃S̃

δ̃µ − X̃√
X̃S̃

(R[l])>R[l]P̃ 1√
X̃S̃

δ̃µ by Claim B.34.

Proof of Lemma B.30. Combine Claim B.35 and B.36.

We also have the following lemma about the running time of Algorithm 3:

Lemma B.37 (Running time of one step central path). The cost of every operation except data
structure calls in Algorithm 3 is linear in n, so the bottleneck is the two calls to the data structure.

C Data structure : preliminary

C.1 Preliminary and Definitions

For ease of presentation, we define the following L operator that extends the size of a matrix. This
L operator determines the way that our algorithm stores matrices, and executes matrix additions
and multiplications.

48

Procedure Algorithm Type Correctness Time/Call Amortized
Initialize Algorithm 5 public Lemma D.33 Lemma E.37 /
UpdateQuery Algorithm 8 public Theorem D.6 / Theorem C.9
Query Algorithm 12 private Lemma D.7 Lemma E.3 /
UpdateV Algorithm 9 private Lemma D.13 / /
UpdateG Algorithm 10 private Lemma D.14 / /
MatrixUpdate Algorithm 13 private Lemma D.17 Lemma E.12 Lemma F.19
PartialMatrixUpdate Algorithm 14 private Lemma D.21 Lemma E.18 Lemma F.30
VectorUpdate Algorithm 15 private Lemma D.25 Lemma E.27 Lemma F.35
PartialVectorUpdate Algorithm 16 private Lemma D.29 Lemma E.33 Lemma F.36
ComputeLocalVariables Algorithm 11 private Definition D.2 Remark D.3 /

Table 8: Summary of the improved data structure. Amortized denotes the “amortized time”.

Definition C.1 (Operator Lc, Lr, L). The operator Lc can only be applied to some sub-columns
of a matrix. For a matrix MS where M ∈ Rk1×k2, S ⊆ [k2] with |S| ≤ 6na, Lc[MS] means to store
the matrix MS in a k1×6na block by appending extra 0s. The algorithm executes Lc operator in the
following way:

1. Addition: The Lc operator supports storing two disjoint submatrices of the same matrix in the
same block. For a matrix M ∈ Rk1×k2 and two subsets S1, S2 ⊆ [k2] with S1 ∩ S2 = ∅ and
|S1 ∪ S2| ≤ 6na, Lc[MS1] + Lc[MS2] := Lc[MS1∪S2].

2. Multiplication: When we multiply a matrix Lc[MS] with column subscript S with another
matrix (or vector) (BS)> with row subscript S, if their subscripts are the same, the algorithm
will align columns of Lc[MS] and rows of (BS)> before doing multiplication.

In the same way, we define Lr as the row operator, and we define L = Lr ◦ Lc.

Similarly, we define L∗ that extends a square matrix to 6na by appending an identity matrix.
The motivation of appending identity matrix instead of appending 0s is to let the matrix inverse
being well-defined.

Definition C.2 (Operator L∗). For any square matrix M ∈ Rk×k and S ⊆ [k] with |S| ≤ 6na,
we define the operator L∗ such that L∗[MS,S] is stored in a 6na × 6na block by appending 1 in the
diagonal (so we have 6na − |S| extra 1s) and appending 0 otherwise. We do the same alignment as
what we did for L. The extra 1s are also involved in addition and multiplication.

Note that in our algorithm whenever we use Lr, Lc, L or L∗ on a matrix, we always ensure that
the size of the extended rows or columns is no larger than 6na. From their definitions, we directly
have the following properties.

Remark C.3. The operators Lr, Lc, L and L∗ satisfy the following properties:

1. Non-zero entries: For any A ∈ Rk1×k2 and two subsets S1, S2 ⊆ [k2] where S1 ⊆ S2 and
|S2| ≤ 6na, if A only has non-zero entries on columns in S1, then

Lc[AS2] = Lc[AS1],

Lr[(AS2)>] = Lr[(AS1)>].

49

2. Addition: For any A ∈ Rk1×k2 and two subsets S1, S2 ⊆ [k2] with S1∩S2 = ∅ and |S1∪S2| ≤
6na,

Lc[AS1] + Lc[AS2] = Lc[AS1∪S2],

Lr[(AS1)>] + Lr[(AS2)>] = Lr[(AS1∪S2)>].

3. Multiplication 1: For any A ∈ Rk2×k1 , B ∈ Rk2×k3, and S1 ⊆ [k1], S2 ⊆ [k3] where
|S1|, |S2| ≤ 6na, we have

Lr[(AS1)> ·B] = Lr[(AS1)>] ·B,
Lc[A> ·BS2] = A> · Lc[BS2].

4. Multiplication 2: For any A ∈ Rk1×k2 , B ∈ Rk3×k2, C ∈ Rk2×k2, and S1, S2 ⊆ [k2] where
S1 ⊆ S2 and |S2| ≤ 6na, we have

Lc[AS1] · Lr[(BS2)>] = AS1 · (BS1)>

Lc[AS2] · Lr[(BS1)>] = AS1 · (BS1)>

Lc[AS1] · L∗[CS1,S1] · Lr[(BS1)>] = AS1 · CS1,S1 · (BS1)>.

5. Inverse: For any C ∈ Rk2×k2, and S ⊆ [k2] where |S| ≤ 6na, we have

L∗[(CS,S)−1] = (L∗[CS,S])−1.

C.2 Facts

We first prove the following facts that are the cornerstones of the correctness of our data structure.
The first lemma shows that we can efficiently decompose low-rank matrices with certain structure.

N
S
1
,S

2

NS2,S1 NS2,S2

S1 S2

=

|S2| |S2| |S2|

U1 U1 U2

S1

S2I I

N
S
1
,S

2

×

|S2| |S2| |S2|

|S2|

|S2|

|S2|

I

NS2,S2

I ×

S1 S2

|S2|

|S2|

|S2|

U2

U1

U1

NS1,S2

I

I

N U ′ C U>

(a) (b) (c) (d)

Figure 7: A visualization of the decomposition N = U ′CU> constructed by the Decompose
function. (See Lemma C.4.)

Lemma C.4 (U ′CU> Decomposition). If all the non-zero entries of the 6na × 6na symmetric
matrix N can be split into three parts: NS1,S2, NS2,S1, and NS2,S2, where S1, S2 ⊆ [n], S1 and S2

are disjoint, and |S1∪S2| ≤ 2na. Then there exist matrices U ′, U ∈ R6na×3|S2|, C ∈ R3|S2|×3|S2| such
that the following decomposition holds:

U ′CU> = N.

50

Also, we can compute this decomposition in O(|S1| · |S2|) time. We define a function Decompose()
such that Decompose(N) = (U ′, C, U).

Proof. We explicitly give a construction of U ′, C and U . See Figure 7(a) for an illustration of the
structure of N , and see Figure 7(b),(c),(d) for an illustration of the construction of U ′, C, and U .

First note that from Part 1 and 2 of Remark C.3, we have

N = L[NS1,S2] + L[NS2,S1] + L[NS2,S2].

We define U1 ∈ R6na×|S2| such that ((U>1)S2)> = I|S2| and all other entries of U1 are 0. We let
U2 = Lr[NS1,S2] ∈ R6na×|S2|. We construct U ′ as U ′ = [U1, U1, U2], note that U ′ has size 6na×3|S2|.
And we construct U as U = [U2, U1, U1], note that U also has size 6na × 3|S2|.

We construct C as



I|S2| 0 0

0 NS2,S2 0
0 0 I|S2|


. Note that C has size 3|S2| × 3|S2|.

It is easy to check that this decomposition is correct:

U ′CU> =
[
U1 U1 U2

]
·



I|S2| 0 0

0 NS2,S2 0
0 0 I|S2|


 ·



U>2
U>1
U>1




= U1U
>
2 + U1 ·NS2,S2 · U>1 + U2U

>
1

= L[((U>1)S2)> · U>2] + L[((U>1)S2)> ·NS2,S2 · (U>1)S2] + L[U2 · (U>1)S2]

= L[U>2] + L[NS2,S2] + L[U2]

= L[NS2,S1] + L[NS2,S2] + L[NS1,S2] = N,

where the third step follows from the fact that U1 only has non-zero entries on the rows in S2 and
Part 1 of Remark C.3, the fourth step follows from ((U>1)S2)> = (U1)S2,S2 = I, the fifth step follows
from U2 only has one block of non-zero entries: (U2)S1,S2 = NS1,S2 and Part 1 of Remark C.3.

Finally, since U ′, C, U are all constructed by copying certain entries of N , the running time
of this decomposition is the sum of the sizes of the three matrices. Thus we can compute this
decomposition in O(|S1| · |S2|) time.

The next lemma shows that a particular matrix satisfies the constraints of the previous lemma.

Lemma C.5 (Structure of the change in inverse matrix). For v, ṽ, wappr ∈ Rn, and a symmetric
matrix M ∈ Rn×n, let S = supp(ṽ − v), ∂S = supp(wappr − ṽ), Snew = supp(wappr − v), and
S′ = (S ∪ ∂S)\Snew. Let ∆ = Ṽ − V , ∆new = W appr − V . Let N = L∗[(∆new

Snew,Snew)−1 +

MSnew,Snew]− L∗[∆−1
S,S +MS,S].

Then the non-zero entries of N can be split into three parts: N(S\∂S),∂S, N∂S,(S\∂S), and N∂S,∂S,
as shown in Figure 8(a). And N(S\∂S),∂S has the following structure (as shown in Figure 8(b)):

• For columns in ∂S\S, N(S\∂S),(∂S\S) = M(S\∂S),(∂S\S).

• For columns in S′, N(S\∂S),S′ = −M(S\∂S),S′.

• For other columns, N(S\∂S),(S∩∂S)\S′ = 0.

Proof. Note that N is a symmetric matrix. It is easy to see that Snew ⊆ S ∪ ∂S and S′ ⊆ S ∩ ∂S.
We also have the following observations:

• ∀i ∈ S\∂S, vi 6= ṽi, and ṽi = wappr
i .

51

N
S
1
,S

2

NS2,S1 NS2,S2

S1 = S\∂S S2 = ∂S

1

2

3

3

N

(a)

−(M(S\∂S),S′)>

(0(S\∂S),(S∩∂S)\S′)>

(M(S\∂S),∂S\S)>

S\∂S

S′

(S ∩ ∂S)\S′

∂S\S

(NS1,S2
)> = (N(S\∂S),∂S)

>

(b)

Figure 8: A visualization of the matrices involved in Decompose function. Figure (a) illustrates
the structure of the input matrix N (see Lemma C.4 and Lemma C.5). Figure (b) illustrates the
structure of NS1,S2 = N(S\∂S),∂S . (See Lemma C.5.) For clarity we show its transpose here.

• ∀i ∈ ∂S\S, vi = ṽi, and ṽi 6= wappr
i .

• ∀i ∈ S′, vi 6= ṽi, and vi = wappr
i .

• ∀i ∈ (S ∩ ∂S)\S′, vi 6= ṽi, vi 6= wappr
i , and ṽi 6= wappr

i .

Using the above observations and the definition of L∗, N has the following properties:

• ∀i, j ∈ S\∂S, we have Ni,j = (∆new
i,j +Mi,j)− (∆i,j +Mi,j) = 0, where the second step follows

from the fact that ∆new
i,i = wappr

i − vi = ṽi − vi = ∆i,i. This means the block with label 1 in
Figure 8(a) only has zeroes.

• ∀i, j /∈ S ∪ ∂S, if i = j, we have Ni,j = 1 − 1 = 0, otherwise we have Ni,j = 0 − 0 = 0. This
means the block with label 2 in Figure 8(a) only has zeroes.

• ∀i ∈ S ∪ ∂S, j /∈ S ∪ ∂S, we have Ni,j = 0 − 0 = 0, then we also have Nj,i = Ni,j = 0. This
means the two blocks with label 3 in Figure 8(a) only has zeroes.

Thus we prove the first statement of this lemma: the non-zero entries of N can be split into three
parts: N(S\∂S),∂S , N∂S,(S\∂S), and N∂S,∂S . Using the above observations we also have the following
properties for entries in N(S\∂S),∂S . For any i ∈ S\∂S, note that i ∈ S and i ∈ Snew.

• ∀j ∈ (S∩∂S)\S′, note that i 6= j, and j ∈ S and j ∈ Snew. SoNi,j = (0+Mi,j)−(0+Mi,j) = 0.

• ∀j ∈ S′, note that i 6= j, and j ∈ S and j /∈ Snew. So Ni,j = (0 + 0)− (0 +Mi,j) = −Mi,j .

• ∀j ∈ ∂S\S, note that i 6= j, and j /∈ S and j ∈ Snew. So Ni,j = (0 +Mi,j)− (0 + 0) = Mi,j .

Thus N(S\∂S),∂S has the structure as described in lemma statement.

The next lemma shows that we can use Woodbury identity together with the previous U ′CU>

decomposition to efficiently maintain the inverse of a matrix.

Lemma C.6 (Correctness of B using Woodbury Identity). For v, ṽ, wappr ∈ Rn, and a symmetric
matrix M ∈ Rn×n, let S = supp(ṽ − v), ∂S = supp(wappr − ṽ), Snew = supp(wappr − v), and
S′ = (S ∪ ∂S)\Snew. Let ∆ = Ṽ − V , ∆new = W appr − V . Let B = L∗[(∆−1

S,S +MS,S)−1], and let

N = L∗[(∆new
Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1

S,S +MS,S].

52

Suppose |S∪∂S| ≤ 2na, and let (U ′, C, U) := Decompose(N), where Decompose() is the function
of Lemma C.4, note that U ′, U ∈ R6na×(3|∂S|), C ∈ R(3|∂S|)×(3|∂S||), then we have

B −BU ′(C−1 + U>BU ′)−1U>B = L∗[
(
(∆new

Snew,Snew)−1 +MSnew,Snew

)−1
].

Proof. From Lemma C.5, we know that the non-zero entries of N can be split into three parts:
N(S\∂S),∂S , N∂S,(S\∂S), and N∂S,∂S . S\∂S and ∂S are disjoint, and |S ∪ ∂S| ≤ 2na, so N satisfies
the requirements of Lemma C.4. And in the lemma statement of Lemma C.4, S1 corresponds to
S\∂S here, S2 corresponds to ∂S here. Thus U ′, C, U are well-defined, and we have U ′CU> = N .

Also note that from the property of L∗ operator (Part 5 of Remark C.3) we have

B = L∗[(∆−1
S,S +MS,S)−1] = (L∗[∆−1

S,S +MS,S])−1.

Using Woodbury identity (Fact A.2), we have that

L∗[
(
(∆new

Snew,Snew)−1 +MSnew,Snew

)−1
] =

(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]
)−1

=
(
L∗[∆−1

S,S +MS,S] + U ′CU>
)−1

=
(
B−1 + U ′CU>

)−1

= B −BU ′(C−1 + U>BU ′)−1U>B

where the first step follows from Part 5 of Remark C.3, the second step follows from U ′CU> = N ,
the third step follows from the fact that B = (L∗[∆−1

S,S +MS,S])−1, and the forth step follows from
Woodbury identity.

We can exploit the fact that the output matrices U and U ′ of Decompose resembles the input
matrix, and we have the following corollary:

Corollary C.7 (Correctness of U tmp). Given v, ṽ, wappr ∈ Rn, and a symmetric matrix M ∈ Rn×n.
Let S, ∂S, Snew, S′, ∆, ∆new, B, N , U , U ′, and C be defined the same way as in Lemma C.5 and
C.6. Let E = B · Lr[(MS)>]. Define ∂E ∈ R6na×|∂S| such that

(∂E)(∂S\S) = E(∂S\S) −B(∂S∩S)M(∂S∩S),(∂S\S)

(∂E)S′ = − ES′ +B∂S∩SM(∂S∩S),S′

and other entries of ∂E are all zero. Define U tmp ∈ R6na×3|∂S| as

U tmp = [B∂S , B∂S , ∂E] ,

then we have U tmp = BU ′. Note that ∂E is the same one as defined on Line 12 and 12 of Algo-
rithm 12, and U tmp is the same one as defined on Line 15.

Proof. From Lemma C.5 we know that N can be split into three parts: N(S\∂S),∂S , N∂S,(S\∂S), and
N∂S,∂S . From the proof of Lemma C.4, we have that U ′ = [U1, U1, U2], where

1. U1 ∈ R6na×|∂S| such that ((U>1)∂S)> = I|∂S| and all other entries are 0,

2. U2 ∈ R6na×|∂S| and U2 = Lr[N(S\∂S),∂S].

53

Since BU ′ = [BU1, BU1, BU2], it suffices to prove that BU1 = B∂S and BU2 = ∂E. We have

BU1 = B∂S · ((U>1)∂S)> = B∂S ,

where the first step follows from U1 only has non-zero rows in ∂S, and the second step follows from
((U>1)∂S)> = I|∂S|. For BU2 we first prove the following:

E(∂S\S) = B · Lr[MS,(∂S\S)] = B · Lr[M(∂S∩S),(∂S\S)] +B · Lr[M(S\∂S),(∂S\S)]

= B(∂S∩S) ·M(∂S∩S),(∂S\S) +B · Lr[M(S\∂S),(∂S\S)],

where the first step follows from E = B · Lr[(MS)>], the second step follows from Part 2 of
Remark C.3, and the third step follows from Part 4 of Remark C.3. So we have

B · Lr[M(S\∂S),(∂S\S)] = E(∂S\S) −B(∂S∩S) ·M(∂S∩S),(∂S\S),

and similarly we also have B · Lr[M(S\∂S),S′] = ES′ −B(∂S∩S) ·M(∂S∩S),S′ .
Thus combining with the structure of N(S\∂S),∂S proved in Lemma C.5, we have
1. For columns in ∂S\S,

(BU2)∂S\S = B · Lr[N(S\∂S),(∂S\S)] = B · Lr[M(S\∂S),(∂S\S)] = E(∂S\S) −B(∂S∩S) ·M(∂S∩S),(∂S\S).

2. For columns in S′,

(BU2)S′ = B · Lr[N(S\∂S),S′] = B · Lr[−M(S\∂S),S′] = −ES′ +B(∂S∩S) ·M(∂S∩S),S′ .

3. For all other columns, (BU2)(S∩∂S)\S′ = 0.
Thus we have BU2 = ∂E, and therefore BU ′ = U tmp.

We also have the following lemma that shows how to use Woodbury identity to update the
inverse of a matrix directly.

Lemma C.8 (Correctness of M using Woodbury Identity). Let A ∈ Rn×n, and let Ṽ , V ∈ Rn×n
be two diagonal matrices. Let M = A>(AV A>)−1A ∈ Rn×n, and let ∆ = Ṽ − V ∈ Rn×n, let
S = supp(ṽ − v) ⊆ [n], then we have

M −MS ·
(
(∆S,S)−1 +MS,S

)−1 · (MS)> = A>(AṼ A>)−1A (36)

Proof. We have

(AṼ A>)−1 = (A(V + ∆)A>)−1 = (AV A> +A∆A>)−1 = (AV A> +AS∆S,S(AS)>)−1

= (AV A>)−1 − (AV A>)−1 ·AS ·
(

(∆S,S)−1 + (AS)>(AV A>)−1AS

)−1

· (AS)> · (AV A>)−1

= (AV A>)−1 − (AV A>)−1 ·AS ·
(
(∆S,S)−1 +MS,S

)−1 · (AS)> · (AV A>)−1,

where the first step follows from the definition of ∆, the third step follows from ∆ only has non-zero
entries on (i, i)-th entries where i ∈ S, the fourth step follows from Woodbury identity, and the fifth
step follows from the definition of M . Then from the definition of M we have Eq. (36).

54

Notation MatrixUpdate P.MatrixUpdate VectorUpdate P.VectorUpdate
v

√

ṽ
√ √

g
√

g̃
√ √

M
√

Q
√

β1
√ √

β2
√ √

S
√ √

T
√ √

∆
√ √

Γ
√ √

ξ
√ √ √ √

B
√ √

E
√ √

F
√ √

γ1
√ √ √ √

γ2
√ √ √ √

Goal v, ṽ ṽ g, g̃ g̃
Algorithm Algorithm 13 Algorithm 14 Algorithm 15 Algorithm 16
Correctness Lemma D.17 Lemma D.21 Lemma D.25 Lemma D.29
Time Lemma E.12 Lemma E.18 Lemma E.27 Lemma E.33

Table 9: Summary of things got changed over different updates. List of members in Algorithm 4.

C.3 Main result

The goal of this section is to present Theorem C.9.

Theorem C.9 (Main data structure theorem). Given a full rank matrix A ∈ Rd×n with d ≤ n, two
error parameters 0 < εmp < 1/4 and εfar ≤ εmp

100 logn , two threshold parameters a ≤ α and ã ≤ α · a
where α is the dual exponent of matrix multiplication, a parameter of sketching size b ∈ (0, 1).
Let f : R → R be some pre-defined function which can be computed in O(1) time, and extend the
definition of f on vector v with f(v)i := f(vi). Let ω denote the exponent of matrix multiplication.
There is a data structure (in Algorithm 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) that approximately
maintains the vector √

WA>(AWA>)−1A
√
Wf(h).

The data structure uses n2+o(1) space and supports the following operations:

1. Initialize(f, εmp, b, L,A,w0, h0, R): Initialize all data structure members including L = n1−b+o(1)

sketching matrices R1, R2, . . . , RL ∈ Rnb×n. This operation takes O(nω) time.

2. UpdateQuery(w, h): On the j-th call to this function, it outputs the following three vectors
(see Theorem D.6):

(a) A vector wappr ∈ Rn such that wappr ≈εmp w.

(b) A vector happr ∈ Rn such that happr ≈εmp h.

(c) A vector r ∈ Rn such that

r = R>l Rl
√
W apprA>(AW apprA>)A

√
W apprf(happr).

55

Furthermore, if the initial vectors (w(0), h(0)) and the update sequence (w(1), h(1)), . . . , (w(T), h(T)) ∈
(Rn,Rn) satisfy the following constraints:

1.

n∑

i=1

(
E[w

(j+1)
i]− w(j)

i

w
(j)
i

)2

≤ C2
1 ,

n∑

i=1


E



(
w

(j+1)
i − w(j)

i

w
(j)
i

)2





2

≤ C2
2 ,

∣∣∣∣∣
w

(j+1)
i − w(j)

i

w
(j)
i

∣∣∣∣∣ ≤ C3,

2.
n∑

i=1

(
E[µ

(j+1)
i]− µ(j)

i

µ
(j)
i

)2

≤ C2
4 ,

n∑

i=1


E



(
µ

(j+1)
i − µ(j)

i

µ
(j)
i

)2





2

≤ C2
5 ,

∣∣∣∣∣
µ

(j+1)
i − µ(j)

i

µ
(j)
i

∣∣∣∣∣ ≤ C6,

for j = 0, 1, . . . , T − 1, where the expectation is conditioned on w(j) for Part 1, and conditioned
on h(j) for Part 2, and the parameters C1, C2, C3, C4, C5, C6 satisfy that C1, C2, C4, C5 > 0 and
0 < C3, C6 ≤ 1

4 . Then the worst-case running time of Query per iteration is

O∗(Tmat(n
ã, na, nã) + n1+b),

and the expected amortized running time per iteration of the other procedures are

1. MatrixUpdate: O∗
((
C1εmp/ε

2
far + C2/ε

2
far

)
· (n2−a/2 + nω−1/2)

)
,

2. PartialMatrixUpdate: O∗
(

(C1/εmp + C2/ε
2
mp) · (n1+a−ã/2 + n1+(ω−3/2)a)

)
,

3. VectorUpdate: O∗
(

(C4εmp/ε
2
far + C5/ε

2
far) · n1.5

)
,

4. PartialVectorUpdate: O∗
(

(C4εmp/ε
2
far + C5/ε

2
far) · (n1.5 + n2a−ã/2)

)
,

where O∗ notation hides all no(1) terms.

Proof. The properties of the output of UpdateQuery follow from Theorem D.6. The running time
of Initialize is by Lemma E.37, the running time of Query is by Lemma E.3. The amortized
running time of MatrixUpdate is by Lemma F.19, the amortized running time of PartialMa-
trixUpdate is by Lemma F.30, the amortized running time of VectorUpdate is by Lemma F.35,
and the amortized running time of PartialVectorUpdate is by Lemma F.36.

We prove the correctness of the data structure in Section D. We give the worst-case analysis of
the running time per call for all procedures in Section E, and the amortized analysis in Section F.

D Data structure : correctness

The purpose of this section is to show the correctness of our data structure, stated in Theorem D.6.
We start with the invariants that we maintain for data structure members.

Assumption D.1 (Invariants). The following invariants are maintained in the data structure:

56

Algorithm 4 Data structure : members
1: data structure . Theorem C.9
2:
3: members . Table 9
4: A ∈ Rd×n
5: Function f : R→ R
6: εmp, εfar ∈ R
7: v, ṽ, g, g̃ ∈ Rn
8: a, ã, b ∈ (0, 1]
9: L ∈ N . number of sketching matrices
10: l ∈ N . count of iterations
11: ∀i ∈ [L], Ri ∈ Rnb×n

12: R = [R>1 , R
>
2 , · · · , R>L]> ∈ Rn1+o(1)×n . We have the guarantee that Lnb = n1+o(1)

13: . Below are the invariant variables
14: M ∈ Rn×n
15: Q ∈ Rn1+o(1)×n

16: β1 ∈ Rn+o(1)

17: β2 ∈ Rn
18: Set S ⊆ [n]
19: Set T ⊆ [n]
20: ∆ ∈ Rn×n
21: Γ ∈ Rn×n
22: ξ ∈ Rn
23: B ∈ R6na×6na

24: F ∈ Rn1+o(1)×6na

25: E ∈ R6na×n

26: γ1 ∈ R6na

27: γ2 ∈ Rn
28: end members
29: end data structure

1. M = A>(AV A>)−1A,

2. Q = R
√
VM ,

3. β1 = Q
√
V f(g),

4. β2 = M
√
V f(g),

5. S = supp(ṽ − v),

6. T = supp(g̃ − g),

7. ∆ = Ṽ − V ,

8. Γ =
√
Ṽ −

√
V ,

9. ξ =
√
Ṽ f(g̃)−

√
V f(g),

10. B = L∗[(∆−1
S,S +MS,S)−1],

11. E = B · Lr[(MS)>],

12. F = RΓ · Lc[MS],

13. γ1 = B · Lr[β2,S] +B · Lr[(MS)>] · ξ,

14. γ2 = ΓM · ξ.

We will prove that if these invariants are true before we enter a procedure, they are still true
when the proecedure returns. Thus the correctness of the invariants can be proved by induction.

The following local variables are used in procedures Query (Algorithm 12), MatrixUpdate
(Algorithm 13), and PartialMatrixUpdate (Algorithm 14). For clarity of the presentation, we
write their definitions here.

Definition D.2 (Local variables). Given inputs wappr and happr, we define these local variables:

57

Algorithm 5 Data structure : Initialize()
1: data structure . Theorem C.9
2:
3: procedure initialize(f, εmp, εfar, a, ã, b, L,A,w0, h0, R) . Lemma D.33, Lemma E.37
4: f ← f . f : R→ R
5: εmp ← εmp . εmp ∈ (0, 1)
6: εfar ← εfar . εfar ∈ (0, 1)
7: a← a . a ∈ (0, 1]
8: ã← ã . ã ∈ (0, 1]
9: b← b . b ∈ (0, 1]
10: L← L . L ∈ N
11: A← A . A ∈ Rd×n
12: R← R . R = [R>1 , R

>
2 , · · · , R>L]> ∈ Rn1+o(1)×n

13: l← 1 . count of iterations
14: v ← ṽ ← w0 . v, ṽ ∈ Rn
15: g ← g̃ ← h0 . g, g̃ ∈ Rn
16: . Below are the invariant variables
17: M ← A>(AV A>)−1A . M ∈ Rn×n

18: Q← R
√
VM . Q ∈ Rn1+o(1)×n

19: β1 ← Q
√
V f(g) . β1 ∈ Rn1+o(1)

20: β2 ←M
√
V f(g) . β2 ∈ Rn

21: S ← ∅ . S ⊆ [n]
22: T ← ∅ . T ⊆ [n]
23: ∆← 0 . ∆ ∈ Rn×n is a diagonal matrix
24: Γ← 0 . Γ ∈ Rn×n is a diagonal matrix
25: ξ ← 0 . ξ ∈ Rn
26: B ← I . B ∈ R6na×6na

27: E ← 0 . E ∈ R6na×n

28: F ← 0 . F ∈ Rn1+o(1)×6na

29: γ1 ← 0 . γ1 ∈ R6na

30: γ2 ← 0 . γ2 ∈ Rn
31: end procedure
32:
33: end data structure

Algorithm 6 Data structure : Adjust()
1: data structure
2: . This procedure doesn’t use any members in the memory of data structure.
3: procedure Adjust(ṽtmp, ṽ, v, εfar)
4: . ṽtmp is the temporary new update of ṽ. ṽtmp is adjusted to ṽadj.
5: ṽadj ← ṽtmp

6: for i = 1 to n do
7: if ṽtmp

i 6= ṽi and ṽ
tmp
i ∈ [(1− εfar)vi, (1 + εfar)vi] then

8: ṽadj
i ← vi

9: end if
10: end for
11: return ṽadj

12: end procedure
13: . If in coordinate i, ṽtmp

i 6= ṽi and ṽ
tmp
i is close to vi, then ṽ

tmp
i should move back to vi.

14: end data structure

58

Algorithm 7 Data structure : SoftThreshold()
1: data structure
2: . This procedure doesn’t use any members in the memory of data structure.
3: procedure SoftThreshold(y, wnew, v, ε, na)
4: Let π : [n]→ [n] be a sorting permutation such that yπ(i) ≥ yπ(i+1)

5: k ← the number of indices i such that yi ≥ ε
6: if k ≥ na then
7: repeat
8: k ← min{d1.5ke, n}
9: until k = n or yπ(k) < (1− 1/ log n) · yπ(k/1.5)

10: end if

11: vnew
π(i) ←

{
wnew
π(i), i ∈ {1, 2, · · · , k};

vπ(i), i ∈ {k + 1, · · · , n}.
12: return vnew, k
13: end procedure
14:
15: end data structure

Algorithm 8 Data structure : UpdateQuery()
1: data structure . Theorem C.9
2:
3: procedure UpdateQuery(wnew, hnew) . Theorem D.6
4: wappr, k, k̃ ← UpdateV(wnew) . Algorithm 9, k and k̃ are only used for analysis.
5: happr, p, p̃← UpdateG(hnew) . Algorithm 10, p and p̃ are only used for analysis.
6: r ← Query(wappr, happr) . Algorithm 12, Lemma D.7, Lemma E.3
7: . Compute r = R[l]>R[l]

√
W apprA>(AW apprA>)−1A

√
W apprf(happr)

8: return wappr, happr, r
9: end procedure
10:
11: end data structure

1. ∂∆←W appr − Ṽ ,

2. ∂Γ←
√
W appr −

√
Ṽ ,

3. ∂ξ ←
√
W apprf(happr)−

√
Ṽ f(g̃),

4. ∂S ← supp(wappr − ṽ),

5. ∆new ← ∆ + ∂∆,

6. Γnew ← Γ + ∂Γ,

7. ξnew ← ξ + ∂ξ,

8. Snew ← supp(wappr − v),

9. S′ ← (S ∪ ∂S)\Snew.

Remark D.3 (Compute local variables). The private procedure ComputeLocalVariables (Al-
gorithm 11) computes these local variables (defined in Definition D.2) correctly.

Remark D.4 (Temporary variables). All variables with super-script “tmp” are temporary local
variables that are only used in update procedures.

Remark D.5 (Properties of S′ and Snew). Note that Snew ⊆ S ∪ ∂S, and S′ ⊆ S ∩ ∂S.
In this section we prove the following main theorem using lemmas proved in later sections.

Theorem D.6 (Correctness of UpdateQuery). On the j-th call to the procedure UpdateQuery
(Algorithm 8), the output satisfies the following:

59

Algorithm 9 Data structure : UpdateV()
1: data structure . Theorem C.9
2:
3: procedure UpdateV(wnew) . Return (wappr, k, k̃). Lemma D.13
4: ṽtmp, k̃ ← SoftThreshold(yi ← ψ(wnew

i /ṽi − 1), wnew, ṽ, εmp/2, n
ã) . Algorithm 7

5: ṽnew ← Adjust(ṽtmp, ṽ, v, εfar) . Algorithm 6
6: if | supp(ṽnew − v)| ≥ na then
7: vnew, k ← SoftThreshold(yi ← (ψ(wnew

i /vi − 1) + ψ(wnew
i /ṽi − 1)), wnew, v,

ε2far
32εmp

, na)

8: . If | supp(ṽnew − v)| ≥ na, then k ≥ na. See Fact F.10
9: MatrixUpdate(vnew) . Algorithm 13, Lemma D.17, Lemma E.12, Lemma F.19
10: . Update v, ṽ to be vnew.
11: . Update invariants M , Q, β1, β2, S, ∆, Γ, ξ, B, γ1, γ2, E, F .
12: return (vnew, k, 0)
13: else
14: if | supp(ṽnew − ṽ)| ≥ nã then
15: . If | supp(ṽnew − ṽ)| ≥ nã, then k̃ ≥ nã. See Fact F.11.
16: PartialMatrixUpdate(ṽnew) . Algorithm 14, Lemma D.21, Lemma E.18, Lemma F.30
17: . Update ṽ to be ṽnew.
18: . Update invariants S, ∆, Γ, ξ, B, γ1, γ2, E, F .
19: return (ṽnew, 0, k̃)
20: end if
21: end if
22: return (ṽnew, 0, 0)
23: end procedure
24:
25: end data structure

1. wappr ≈εmp w
new, happr ≈εmp h

new,

2. r = R[l]>R[l]
√
W apprMnew

√
W apprf(happr), where Mnew = A>(AW apprA>)−1A.

Proof. Part 1. The output wappr is returned by UpdateV, it can be vnew returned from Line 12,
or it can be ṽnew returned from Line 19 and 22 (in Algorithm 9).

In the case of wappr = vnew, the properties of vnew are given in Fact F.7. According to Part 2
and 3 of Fact F.7, there exists a permutation π : [n] → [n] and a number k such that ∀i ∈ π([k]),
vnew
i = w

(j+1)
i and ∀i /∈ π([k]), vnew

i ≈εmp w
(j+1)
i , where w(j+1) is defined as wnew in the j-th

iteration. So vnew ≈εmp w
new in this case.

If wappr = ṽnew, the properties of ṽnew are given in Fact F.6. According to Part 3 and 4
of Fact F.6, there exists a permutation π : [n] → [n] and a number k̃ such that ∀i ∈ π([k̃]),
ṽnew
i ≈εfar

w
(j+1)
i and ∀i /∈ π([k̃]), ṽnew

i ≈εmp w
(j+1)
i , where w(j+1) is defined as wnew in the j-th

iteration. Using the assumption that εfar < εmp, we get wappr ≈εmp w
new.

happr ≈εmp h
new follows by similar reasons.

Part 2. First we prove by induction that all invariants of Assumption D.1 hold all the time. In the
beginning, the data structure calls Initialize. By Lemma D.33, all invariants hold.

In the following iterations, the data structure is only accessed via calls to its procedure Up-
dateQuery by OneStepCentralPath (Line 4 and 7 in Algorithm 3). UpdateQuery calls
UpdateV, UpdateG and Query(Line 4, 5, 6 in Algorithm 8). The procedure Query does not
modify any data structure member, so it won’t violate any invarint. By Part 2 of Lemma D.13
and D.14, if all invariants are satisfied before entering the procedure UpdateV (or UpdateG),

60

Algorithm 10 Data structure : UpdateG()
1: data structure . Theorem C.9
2:
3: procedure UpdateG(hnew) . Return (happr, p, p̃). Lemma D.14
4: g̃tmp, p̃← SoftThreshold(yi ← ψ(hnew

i /g̃i − 1), hnew, g̃, εmp/2, n
ã) . Algorithm 7

5: g̃new ← Adjust(g̃tmp, g̃, g, εfar) . Algorithm 6
6: if | supp(g̃new − g)| ≥ na then
7: gnew, p← SoftThreshold(yi ← (ψ(hnew

i /gi − 1) + ψ(hnew
i /g̃i − 1)), hnew, g,

ε2far
32εmp

, na)

8: . Similarly, if | supp(g̃new − g)| > na, then p > na.
9: VectorUpdate(gnew) . Algorithm 15, Lemma D.25, Lemma E.27, Lemma F.35
10: . Update g, g̃ to be gnew. Update invariants β1, β2, ξ, γ1, γ2, T .
11: return (gnew, p, 0)
12: else
13: if | supp(g̃new − g̃)| ≥ nã then
14: . Similarly, if | supp(g̃new − g̃)| > nã, then p̃ > nã.
15: PartialVectorUpdate(g̃new) . Algorithm 16, Lemma D.29, Lemma E.33, Lemma F.36
16: . Update g̃ to be g̃new. Update invariants ξ, γ1, γ2, T .
17: return (g̃new, 0, p̃)
18: end if
19: end if
20: return (g̃new, 0, 0)
21: end procedure
22:
23: end data structure

Algorithm 11 Data structure : ComputeLocalVariables()
1: data structure . Theorem C.9
2:
3: procedure ComputeLocalVariables(wappr, happr)
4: ∂∆←W appr − Ṽ
5: ∂Γ←

√
W appr −

√
Ṽ

6: ∂S ← supp(wappr − ṽ)
7: ∆new ← ∆ + ∂∆
8: Γnew ← Γ + ∂Γ
9: Snew ← supp(wappr − v)
10: S′ ← (S ∪ ∂S)\Snew

11: . If the input happr is null, we don’t need to compute the following two local variables.
12: ∂ξ ←

√
W apprf(happr)−

√
Ṽ f(g̃)

13: ξnew ← ξ + ∂ξ
14: return (∂∆, ∂Γ, ∂ξ, ∂S,∆new,Γnew, ξnew, Snew, S′)
15: end procedure
16:
17: end data structure

then after executing the procedure UpdateV (or UpdateG), all invariants are still satisfied. By
induction, all invariants of Assumption D.1 hold all the time.

Next we prove that before entering Query, we always have |S ∪ ∂S| ≤ 2na, so that all L, Lc,
Lr, L∗ operators are well-defined. Note that

S = supp(ṽ − v) (by Part 5 of Assumption D.1),
∂S = supp(wappr − ṽ) (by Part 4 of Definition D.2).

61

Algorithm 12 Data structure : Query()
1: data structure . Theorem C.9
2:
3: procedure Query(wappr, happr) . Lemma D.7, Lemma E.3
4: ∂∆, ∂Γ, ∂ξ, ∂S,∆new,_,_, Snew, S′ ← ComputeLocalVariables(wappr, g̃new) . Algorithm 11
5: r1 ← β1[l] . r1 ∈ Rnb

6: r2 ← Q[l]ξ +R[l]γ2 +R[l]∂ΓM(ξ + ∂ξ) +
(
Q[l] +R[l]ΓM

)
∂ξ . r2 ∈ Rnb

7: r3 ← R[l](Γ + ∂Γ)β2 . r3 ∈ Rnb

8: ∂γ ← B · (Lr[(β2)∂S\S]− Lr[(β2)S′]) +B · (Lr[(M∂S\S)>]− Lr[(MS′)
>]) · (ξ + ∂ξ) + E · ∂ξ

9: . local variable ∂γ ∈ R6na

10: (U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)

11: . Decompose is defined in Lemma C.4. U ′, U ∈ R6na×3|∂S|, C ∈ R3|∂S|×3|∂S|

12: ∂E ← E∂S −B(∂S∩S) ·M(∂S∩S),∂S

13: (∂E)S′ ← −(∂E)S′ , (∂E)(S∩∂S)\S′ ← 0 . local variable ∂E ∈ R6na×|∂S|

14: U tmp ← [B∂S , B∂S , ∂E]
15: . local variable U tmp ∈ R6na×3|∂S|, U tmp = BU ′ (Corollary C.7)
16: γtmp ← U tmp(C−1 + U>U tmp)−1U> · (γ1 + ∂γ) . local variable, γtmp ∈ R6na

17: r4 ←
(
Lc[(Q[l])Snew] + F [l] +R[l]Γ(Lc[M∂S\S]− Lc[MS′]) +R[l]∂ΓLc[MSnew]

)
(γtmp − γ1 − ∂γ)

18: r ← R[l]>(r1 + r2 + r3 + r4) . r ∈ Rn
19: l← l + 1
20: return r
21: end procedure
22:
23: end data structure

Algorithm 13 Data structure : MatrixUpdate()
1: data structure . Theorem C.9
2:
3: procedure MatrixUpdate(wappr) . Lemma D.17, Lemma E.12, Lemma F.19
4: _,_,_,_,∆new,Γnew,_, Snew,_← ComputeLocalVariables(wappr,_) . Algorithm 11
5: M tmp ←M −MSnew · ((∆new

Snew,Snew)−1 +MSnew,Snew)−1 · (MSnew)>

6: Qtmp ← Q+R(ΓnewM tmp) +R
√
V (M tmp −M)

7: βtmp
1 ← Qtmp

√
W apprf(g)

8: βtmp
2 ←M tmp

√
W apprf(g)

9: ξtmp ←
√
W appr(f(g̃)− f(g))

10: . We start to refresh variables in the memory of data structure
11: Q← Qtmp, M ←M tmp

12: β1 ← βtmp
1 , β2 ← βtmp

2 , ξ ← ξtmp

13: v ← ṽ ← wappr

14: B ← I, F ← 0, E ← 0
15: S ← ∅, ∆← Γ← 0, γ1 ← γ2 ← 0
16: end procedure
17:
18: end data structure

By Part 1 of Lemma D.13, we have ‖wappr − ṽ‖0 ≤ nã, so |∂S| ≤ nã. By Corollary D.15, we have
‖ṽ − v‖0 ≤ na, so |S| ≤ na. Therefore

|S ∪ ∂S| ≤ |S|+ |∂S| ≤ na + nã ≤ 2na,

where we use the fact that ã ≤ a.

62

Algorithm 14 Data structure : PartialMatrixUpdate().
1: data structure . Theorem C.9
2:
3: procedure PartialMatrixUpdate(wappr) . Lemma D.21, Lemma E.18, Lemma F.30
4: _, ∂Γ,_, ∂S,∆new,Γnew,_, Snew,_← ComputeLocalVariables(wappr,_) . Algorithm 11
5: (U ′, C, U)← Decompose

(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)

6: . Decompose is defined in Lemma C.4
7: Btmp ← B −BU ′(C−1 + U>BU ′)−1U>B
8: F tmp ← F +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew]

9: Etmp ← E +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])−BU ′(C−1 + U>BU ′)−1U>E

10: ξtmp ←
√
W apprf(g̃)−

√
V f(g)

11: γtmp
1 ← Btmp · Lr[β2,Snew] +Btmp · Lr[(MSnew)>]ξtmp

12: γtmp
2 ← γ2 + (Γ + ∂Γ)M(

√
W appr −

√
Ṽ)f(g̃) + ∂ΓM(

√
Ṽ f(g̃)−

√
V f(g))

13: . We start to refresh variables in the memory of data structure
14: B ← Btmp, F ← F tmp, E ← Etmp

15: ξ ← ξtmp γ1 ← γtmp
1 , γ2 ← γtmp

2

16: ṽ ← wappr, S ← Snew, ∆← ∆new, Γ← Γnew

17: end procedure
18:
19: end data structure

Algorithm 15 Data structure : VectorUpdate().
1: data structure . Theorem C.9
2:
3: procedure VectorUpdate(happr) . Lemma D.25, Lemma E.27, Lemma F.35
4: βtmp

1 ← β1 +Q
√
V (f(happr)− f(g))

5: βtmp
2 ← β2 +M

√
V (f(happr)− f(g))

6: ξtmp ← (
√
Ṽ −

√
V)f(happr)

7: γtmp
1 ← B · Lr[(βtmp

2)S] +B · Lr[(MS)>] · ξtmp

8: γtmp
2 ← ΓM · ξtmp

9: . We start to refresh variables in the memory of data structure
10: β1 ← βtmp

1 , β2 ← βtmp
2 , ξ ← ξtmp, γ1 ← γtmp

1 , γ2 ← γtmp
2

11: g ← g̃ ← happr,
12: T ← ∅
13: end procedure
14:
15: end data structure

Now the two conditions of Lemma D.7 are both satisfied, so we have

r = R[l]>R[l]
√
W apprMnew

√
W apprf(happr),

where Mnew = A>(AW apprA>)−1A.

D.1 Correctness of Query

In this section we follow the notation of the procedure Query (Algorithm 12). Note that v, ṽ, g, g̃,
M , Q, R, β1, β2, γ1, γ2, B, E, F , ∆, Γ, S are all members of the data structure (See Algorithm 4).
Query (Algorithm 12) takes wappr and happr as input, and uses the inputs and members of the
data structure to compute the following local variables: ∂∆, ∂Γ, ∂ξ, ∂S, ∂γ, ∆new, Snew, S′, U ′,

63

Algorithm 16 Data structure : PartialVectorUpdate().
1: data structure . Theorem C.9
2:
3: procedure PartialVectorUpdate(happr) . Lemma D.29, Lemma E.33, Lemma F.36
4: ξtmp ←

√
Ṽ f(happr)−

√
V f(g)

5: γtmp
1 ← γ1 +B · Lr[(MS)>] ·

√
Ṽ
(
f(happr)− f(g̃)

)

6: γtmp
2 ← γ2 + ΓM

√
Ṽ
(
f(happr)− f(g̃)

)

7: . We start to refresh variables in the memory of data structure
8: ξ ← ξtmp, γ1 ← γtmp

1 , γ2 ← γtmp
2

9: T ← supp(happr − g)
10: g̃ ← g̃new

11: end procedure
12:
13: end data structure

Procedure Lemma Section
UpdateQuery Theorem D.6 –
Query Lemma D.7 Section D.1
UpdateV Lemma D.13 Section D.2
UpdateG Lemma D.14 Section D.2
MatrixUpdate Lemma D.17 Section D.3
PartialMatrixUpdate Lemma D.21 Section D.4
VectorUpdate Lemma D.25 Section D.5
PartialVectorUpdate Lemma D.29 Section D.6
Initialize Lemma D.33 Section D.7

Table 10: Summary of the section that proves the correctness of the data structure.

C, U , ∂E, U tmp, γtmp, r1, r2, r3, r4. Finally, Query (Algorithm 12) outputs r. The goal of this
section is to prove Lemma D.7 which gives a close-form formula of the output r.

Lemma D.7 (Correctness of Query). Before entering Query (Algorithm 12), if we have the
following two guarantees: |S ∪ ∂S| ≤ 2na, and all the invariants of Assumption D.1 are satisfied,
then the output r is

r = R[l]>R[l]
√
W apprMnew

√
W apprf(happr),

where Mnew = A>(AW apprA>)−1A.

This lemma is proved in Claim D.12 using the following:

1. r1 = Q[l]
√
V f(g) (Claim D.8)

2. r2 = (Q[l] +R[l](Γ + ∂Γ)M) · (
√
W apprf(happr)−

√
V f(g)) (Claim D.9)

3. r3 = R[l](Γ+∂Γ)M
√
V f(g) (Claim D.10)

4. r4 = −R[l]
√
W apprMSnew((∆new

Snew,Snew)−1+MSnew,Snew)−1(MSnew)>
√
W apprf(happr) (Claim D.11)

Now we prove these claims one by one. In the following we assume that |S ∪ ∂S| ≤ 2na and all the
invariants of Assumption D.1 are satisfied. Note that when |S ∪ ∂S| ≤ 2na, all of the L, Lc, Lr,
and L∗ are well-defined, and the Decompose function is also well-defined.

Claim D.8 (Close-form formula for r1). We have r1 = Q[l]
√
V f(g).

64

Proof. From the assignment of r1 (Line 5 of Algorithm 12), we have

r1 = β1[l] = Q[l]
√
V f(g).

where the last step follows from β1 = Q
√
V f(g) (Part 2 of Assumption D.1).

Claim D.9 (Close-form formula for r2). We have

r2 = (Q[l] +R[l](Γ + ∂Γ)M) · (
√
W apprf(happr)−

√
V f(g)).

Proof. From the assignment of r2 (Line 6 of Algorithm 12), we have

r2 = Q[l]ξ +R[l]γ2 +R[l]∂ΓM(ξ + ∂ξ) + (Q[l] +R[l]ΓM)∂ξ

= (Q[l] +R[l]ΓM)ξ +R[l]∂ΓM(ξ + ∂ξ) + (Q[l] +R[l]ΓM)∂ξ

=
(
Q[l] +R[l](Γ + ∂Γ)M

)
· (ξ + ∂ξ)

=
(
Q[l] +R[l](Γ + ∂Γ)M

)
· (
√
W apprf(happr)−

√
V f(g)),

where the second step follows from γ2 = ΓM · ξ (Part 14 of Assumption D.1), the third step follows
from merging terms, and the fourth step follows from the invariant ξ =

√
Ṽ f(g̃)−

√
V f(g) (Part 9 of

Assumption D.1) and the definition ∂ξ =
√
W apprf(happr)−

√
Ṽ f(g̃) (Part 3 of Definition D.2).

Claim D.10 (Close-form formula for r3). We have r3 = R[l](Γ + ∂Γ)M
√
V f(g).

Proof. From the assignment of r3 (Line 7 of Algorithm 12), we have

r3 = R[l](Γ + ∂Γ)β2 = R[l](Γ + ∂Γ)M
√
V f(g),

where the second step follows from the invariant β2 = M
√
V f(g) (Part 4 of Assumption D.1).

Claim D.11 (Close-form formula for r4). We have

r4 = −R[l]
√
W apprMSnew · ((∆new

Snew,Snew)−1 +MSnew,Snew)−1 · (MSnew)>
√
W apprf(happr).

Proof. First note that the left part of r4 is

Lc[(Q[l])Snew] + F [l] +R[l]Γ · (Lc[M∂S\S]− Lc[MS′]) +R[l]∂Γ · Lc[MSnew]

= Lc[(Q[l])Snew] +R[l]Γ · Lc[MS] +R[l]Γ · (Lc[M∂S\S]− Lc[MS′]) +R[l]∂Γ · Lc[MSnew]

= Lc[(Q[l])Snew] +R[l]Γ · Lc[MSnew] +R[l]∂Γ · Lc[MSnew]

= Lc[(Q[l])Snew] +R[l](Γ + ∂Γ) · Lc[MSnew]

= R[l]
√
V Lc[MSnew] +R[l](Γ + ∂Γ) · Lc[MSnew]

= R[l]
√
W apprLc[MSnew], (37)

where the first step follows from F = RΓ · Lc[MS] (Part 12 of Assumption D.1), the second step
follows from S′ = (S ∪ ∂S)\Snew (Part 9 of Definition D.2) and thus Lc[MS′] + Lc[MSnew] =
Lc[MS∪∂S] = Lc[MS] + Lc[M∂S\S] by Part 2 of Remark C.3, the fourth step follows from Q =

R
√
VM (Part 2 of Assumption D.1) and Part 3 of Remark C.3, and the fifth step follows from

Γ =
√
Ṽ −

√
V (Part 8 of Assumption D.1) and ∂Γ =

√
W appr −

√
Ṽ (Part 2 of Assumption D.2).

We also have

γ1 + ∂γ = B · Lr[(β2)S] +B · Lr[(MS)>] · ξ+

65

B · (Lr[(β2)∂S\S]− Lr[(β2)S′]) +B · (Lr[(M∂S\S)>]− Lr[(MS′)
>]) · (ξ + ∂ξ) + E · ∂ξ

= B · Lr[(β2)S] +B · (Lr[(β2)∂S\S]− Lr[(β2)S′])︸ ︷︷ ︸
a1

+

B · Lr[(MS)>] · ξ +B · (Lr[(M∂S\S)>]− Lr[(MS′)
>]) · (ξ + ∂ξ) + E · ∂ξ

︸ ︷︷ ︸
a2

, (38)

where the first step follows from γ1 = B · Lr[(β2)S] +B · Lr[(MS)>] · ξ (Part 13 of Assumption D.1)
and the assignment of ∂γ on Line 8 of Algorithm 12, the second step follows from changing the
order of terms. And

a1 = B · Lr[(β2)Snew], (39)

which follows from S′ = (S∪∂S)\Snew (Part 9 of Definition D.2) and thus Lc[(β2)S′]+Lc[(β2)Snew] =
Lc[(β2)S∪∂S] = Lc[(β2)S] + Lc[(β2)∂S\S] by Part 2 of Remark C.3. And also

a2 = B · Lr[(MS)>] · ξ +B · (Lr[(M∂S\S)>]− Lr[(MS′)
>]) · (ξ + ∂ξ) +B · Lr[(MS)>] · ∂ξ

= B ·
(
Lr[(MS)>] + Lr[(M∂S\S)>]− Lr[(MS′)

>]
)
· (ξ + ∂ξ)

= B · Lr[(MSnew)>] · (ξ + ∂ξ), (40)

where the first step follows from E = B · Lr[(MS)>], the second step follows from merging terms,
and the third step follows from S′ = (S∪∂S)\Snew (Part 9 of Definition D.2) and thus Lr[(MS′)

>]+
Lr[(MSnew)>] = Lr[(MS∪∂S)>] = Lr[(MS)>] + Lr[(M∂S\S)>] by Part 2 of Remark C.3.

Combining Eq. (38), (39), and (40) together, we have

γ1 + ∂γ = B · Lr[(β2)Snew] +B · Lr[(MSnew)>] · (ξ + ∂ξ)

= B · Lr[(MSnew)>]
√
V f(g) +B · Lr[(MSnew)>] · (

√
W apprf(happr)−

√
V f(g))

= B · Lr[(MSnew)>] ·
√
W apprf(happr), (41)

where the second step follows from β2 = M
√
V f(g) (Part 4 of Assumption D.1) and using Part 3

of Remark C.3, and ξ + ∂ξ =
√
W apprf(happr)−

√
V f(g) (Part 9 of Assumption D.1 and Part 3 of

Definition D.2), and the third step follows from merging terms.
Therefore,

γtmp − γ1 − ∂γ = − (I − U tmp(C−1 + U>U tmp)−1U>) · (γ1 + ∂γ)

= − (I −BU ′(C−1 + U>BU ′)−1U>) · (γ1 + ∂γ)

= − (I −BU ′(C−1 + U>BU ′)−1U>) ·B · Lr[(MSnew)>] ·
√
W apprf(happr)

= − L∗[((∆new
Snew,Snew) +MSnew,Snew)−1] · Lr[(MSnew)>] ·

√
W apprf(happr), (42)

where the first step is by assignment of γtmp on Line 16 of Algorithm 12, the second step is by
U tmp = BU ′(Corollary C.7), the third step follows by Eq. (41), the fourth step is by B−BU(C−1 +
U>BU)−1U>B = L∗[((∆new

Snew,Snew) +MSnew,Snew)−1] (Lemma C.6),
Then from the assignment of r4 on Line 17 of Algorithm 12, we have

r4 =
(
Lc[(Q[l])Snew] + F [l] +R[l]Γ · (Lc[M∂S\S]− Lc[MS′]) +R[l]∂Γ · Lc[MSnew]

)
· (γtmp − γ1 − ∂γ)

= R[l]
√
W apprLc[MSnew] · (γtmp − γ1 − ∂γ)

66

= −R[l]
√
W apprLc[MSnew] · L∗[((∆new

Snew,Snew) +MSnew,Snew)−1] · Lr[(MSnew)>] ·
√
W apprf(happr)

= −R[l]
√
W apprMSnew · ((∆new

Snew,Snew) +MSnew,Snew)−1 · (MSnew)> ·
√
W apprf(happr), (43)

where the second step follows from Eq. (37), the third step follows from Eq.(42), the fourth step
follows from the property of L operators (Part 4 of Remark C.3).

Claim D.12 (Close-form formula for r).

r = R[l]>R[l]
√
W apprMnew

√
W apprf(happr),

where Mnew = A>(AW apprA>)−1A.

Proof. From Claim D.8, we have r1 = Q[l]
√
V f(g).

From Claim D.9, we have r2 = (Q[l] +R[l](Γ + ∂Γ)M) · (
√
W apprf(happr)−

√
V f(g)).

From Claim D.10, we have r3 = R[l](Γ + ∂Γ)M
√
V f(g).

From Claim D.11, we have

r4 = −R[l]
√
W apprMSnew · ((∆new

Snew,Snew)−1 +MSnew,Snew)−1 · (MSnew)>
√
W apprf(happr).

The proof sketch is as follows: we first compute r1 + r3, then compute (r1 + r3) + r2, and finally
we compute (r1 + r2 + r3) + r4. First we compute r1 + r3 as follows:

r1 + r3 = Q[l]
√
V f(g) +R[l](Γ + ∂Γ)M

√
V f(g) = R[l]

√
VM
√
V f(g) +R[l](Γ + ∂Γ)M

√
V f(g)

= R[l](
√
V + (Γ + ∂Γ))M

√
V f(g) = R[l]

√
W apprM

√
V f(g), (44)

where the first step follows from Claim D.8 and D.10, the second step follows from Q = R
√
VM

(Part 2 of Assumption D.1), the third step follows from merging terms, and the fourth step follows
from Γ+∂Γ = (

√
Ṽ −
√
V)+(

√
W appr−

√
Ṽ) =

√
W appr−

√
V , (Γ from Part 8 in Assumption D.1,

∂Γ from Part 2 in Definition D.2).
Secondly, we can compute (r1 + r3) + r2,

(r1 + r3) + r2 = R[l]
√
W apprM

√
V f(g) + (Q[l] +R[l](Γ + ∂Γ)M)(

√
W apprf(happr)−

√
V f(g))

= R[l]
√
W apprM

√
V f(g) + (R[l]

√
VM +R[l](Γ + ∂Γ)M)(

√
W apprf(happr)−

√
V f(g))

= R[l]
√
W apprM

√
V f(g) +R[l]

√
W apprM(

√
W apprf(happr)−

√
V f(g))

= R[l]
√
W apprM

√
W apprf(happr), (45)

where the first step follows from Eq. (44) and Claim D.9, the second step follows from Q = R
√
VM

(Part 2 of Assumption D.1), the third step follows from Γ+∂Γ = (
√
Ṽ −
√
V)+(

√
W appr−

√
Ṽ) =√

W appr−
√
V (Γ from Part 8 in Assumption D.1, ∂Γ from Part 2 in Definition D.2), and the fourth

step follows from merging terms.
Finally, we can compute r1 + r2 + r3 + r4.

(r1 + r2 + r3) + r4 = R[l]
√
W apprM

√
W apprf(happr)−

R[l]
√
W apprMSnew

(
(∆new

Snew,Snew)−1 +MSnew,Snew

)−1
(MSnew)>

√
W apprf(happr)

= R[l]
√
W appr

(
M −MSnew

(
(∆new

Snew,Snew)−1 +MSnew,Snew

)−1
(MSnew)>

)√
W apprf(happr)

= R[l]
√
W apprMnew

√
W apprf(happr), (46)

where the first step follows from Eq. (45) and Claim D.11, the second step follows from merging
terms, and the third step follows from Lemma C.8 (by setting the parameters in the lemma statement
as ∆← ∆new, S ← Snew, ṽ ← wappr) and the definition that Mnew = A>(AW apprA>)−1A.

Therefore, from the assignment of r on Line 18 of Algorithm 12, we have

r = R[l]>(r1 + r2 + r3 + r4) = R[l]>R[l]
√
W apprMnew

√
W apprf(happr).

67

D.2 Correctness of UpdateV and UpdateG

Lemma D.13 (Correctness of UpdateV). After executing the procedure UpdateV, the following
properties are satisfied:

1. ‖wappr − v‖0 ≤ na, ‖wappr − ṽ‖0 ≤ nã.

2. If all invariants of Assumption D.1 are satisfied before entering the procedure UpdateV (Al-
gorithm 9), then all invariants are still satisfied after UpdateV.

Proof. Part 1. The procedure UpdateV could exit in three places: Line 22, 19 and 12. We discuss
them case by case.

(a. Line 22). wappr is assigned to be ṽnew. The algorithm avoids the if branches on Line 6 and
the if branch on Line 14. Therefore, both of the conditions of the if branches are false, so we have
‖ṽnew − v‖0 < na and ‖ṽnew − ṽ‖0 < nã.

(b. Line 19). wappr is assigned to be ṽnew. The algorithm avoids the if branch on Line 6, so
we have ‖ṽnew − v‖0 < na. Then the algorithm enters procedure PartialMatrixUpdate (see
Line 16) to update ṽ ← ṽnew (see Line 16 of Algorithm 14), so ‖ṽnew − ṽ‖0 = 0 < nã.

(c. Line 12). wappr is assigned to be vnew. The algorithm enters the procedure MatrixUpdate
(see Line 9) to update v ← ṽ ← wappr (see Line 13 of Algorithm 13). Thus ‖vnew − v‖0 = 0 < na

and ‖vnew − ṽ‖0 = 0 < nã.
Part 2. We first prove that |S ∪ ∂S| ≤ 2na is satisfied if we enter PartialMatrixUpdate. Note
that the input wappr of PartialMatrixUpdate is ṽnew (Line 16), so ∂S = supp(wappr − ṽ) =
supp(ṽnew − ṽ) (Part 4 of Definition D.2). We have

|S ∪ ∂S| = |S|+ |∂S\S| ≤ na + |∂S\S| = na + |{i ∈ [n] : vi = ṽi, ṽ
new
i 6= ṽi}|

= na + |{i ∈ [n] : ṽnew
i 6= vi}| ≤ 2na,

where the second step follows from |S| ≤ na which is a direct implication of Part 1 of this lemma (see
proof of Corollary D.15), the third step follows from S = supp(v − ṽ) (Part 5 of Assumption D.1)
and ∂S = supp(ṽnew − ṽ), and the fifth step follows from | supp(ṽnew − v)| < na since the if-clause
of Line 6 of UpdateV (Algorithm 9) has to be false to enter PartialMatrixUpdate.

In procedure UpdateV, the data structure members are modified only by procedure Matrix-
Update (on Line 9) and procedure PartialMatrixUpdate (on Line 16). Since all invariants are
satisfied before entering MatrixUpdate or PartialMatrixUpdate, and |S ∪ ∂S| ≤ 2na is also
satisfied before entering PartialMatrixUpdate, from Lemma D.17 and Lemma D.21 we know
that all the invariants are still satisfied after MatrixUpdate and PartialMatrixUpdate.

Lemma D.14 (Correctness of UpdateG). After executing the procedure UpdateG, the following
properties are satisfied:

1. ‖happr − g‖0 ≤ na, ‖happr − g̃‖0 ≤ nã.

2. If all invariants of Assumption D.1 are satisfied before entering the procedure UpdateG (Al-
gorithm 10), then all invariants are still satisfied after UpdateG.

Proof. Part 1. The proof is analogous to that of Part 1 of Lemma D.14.
Part 2. In procedure UpdateG, the data structure members are modified only by procedure Vec-
torUpdate (see Line 9) and procedure PartialVectorUpdate (see Line 15). So this directly
follows from the fact that all the invariants are satisfied after VectorUpdate (Lemma D.25) and
PartialVectorUpdate (Lemma D.29).

68

By the same reasoning, we immediately have the following corollary:

Corollary D.15 (Sparsity of ṽ − v and g̃ − g). Throughout the algorithm the following is always
satisfied:

‖ṽ − v‖0 ≤ na, ‖g̃ − g‖0 ≤ na.

Corollary D.16 (Sparsity guarantees when entering the procedures). . Let k and k̃ be the output
returned by UpdateV (Line 4 in Algorithm 8). Let p, p̃ be the output returned by UpdateG
(Line 5 in Algorithm 8).

1. When entering the procedure MatrixUpdate (Algorithm 13), we have

‖wappr − v‖0 = k.

2. When entering the procedure PartialMatrixUpdate (Algorithm 14), we have

‖wappr − v‖0 ≤ na, ‖wappr − ṽ‖0 = k̃ ≤ 2na.

3. When entering the procedure VectorUpdate (Algorithm 15), we have

‖wappr − v‖0 ≤ na, ‖wappr − ṽ‖0 ≤ nã, ‖happr − g‖0 = p.

4. When entering the procedure PartialVectorUpdate (Algorithm 16), we have

‖wappr − v‖0 ≤ na, ‖wappr − ṽ‖0 ≤ nã, ‖happr − g‖0 ≤ na, ‖happr − g̃‖0 = p̃ ≤ 2na.

5. When entering the procedure Query (Algorithm 12), we have

‖wappr − v‖0 ≤ na, ‖wappr − ṽ‖0 ≤ nã, ‖happr − g‖0 ≤ na, ‖happr − g̃‖0 ≤ nã.

Proof. All line number mentioned in the proof is in UpdateV (Algorithm 9).
Part 1. MatrixUpdate is entered in Line 9, and its input wappr is vnew, which is defined on
Line 7. So ‖wappr − v‖0 = ‖vnew − v‖0 = k directly follows from the definition of k.
Part 2. PartialMatrixUpdate is entered in Line 16, and its input wappr is ṽnew, which is
defined on Line 4. ‖wappr − v‖0 ≤ na is because the algorithm bypass the if-branch in Line 6. And
‖wappr − ṽ‖0 = ‖ṽnew − v‖0 = k̃ directly follows from the definition of k̃. And ‖wappr − ṽ‖0 ≤
‖wappr − v‖0 + ‖v − ṽ‖0 ≤ 2na follows from triangle inequality and Corollary D.15.
Part 3,4. The guarantee that ‖wappr−v‖0 ≤ na, ‖wappr− ṽ‖0 ≤ nã is from Part 1 of Lemma D.13.
The remaining proof is the same as Part 1 and Part 2.
Part 5. This directly follows from Part 1 of Lemma D.13 and Part 1 of Lemma D.14.

D.3 Correctness of MatrixUpdate

Lemma D.17 (Correctness of MatrixUpdate). If all invariants of Assumption D.1 are satisfied
before entering the procedure MatrixUpdate (Algorithm 13), then after the procedure Matrix-
Update we have the following guarantees:

1. v = ṽ = wappr.

2. g and g̃ both remain the same.

69

3. All invariants of Assumption D.1 are still satisfied.

Part 1 and 2 are proved in Claim D.18, and Part 3 is proved in Claim D.20 by using Claim D.19.

Claim D.18 (Part 1 and 2 of Lemma D.17). After the procedure MatrixUpdate (Algorithm 13),
we have v = ṽ = wappr, and g and g̃ remain the same.

Proof. This follows directly from the value assignment of v and ṽ on Line 13 of Algorithm 13, and
the fact that g and g̃ are not modified by Algorithm 13.

Claim D.19. In the procedure MatrixUpdate (Algorithm 13), before we refresh variables in the
memory of data structure, we have the following:

1. M tmp = A>(AW apprA>)−1A,

2. Qtmp = R
√
W apprM tmp,

3. βtmp
1 = Qtmp

√
W apprf(g),

4. βtmp
2 = Mnew

√
W apprf(g),

5. ξtmp =
√
W apprf(g̃)−

√
W apprf(g).

Proof. Part 1. On Line 5 of Algorithm 13 we assigned M tmp as

M tmp = M −MSnew · ((∆new
Snew,Snew)−1 +MSnew,Snew)−1 · (MSnew)>.

Since M = A>(AV A>)−1A (Part 1 of Assumption D.1), ∆new = W appr − V (Part 7 of Assump-
tion D.1), and S = supp(wappr − v) (Part 5 of Assumption D.1), from Lemma C.8 we have

M tmp = A>(AW apprA>)−1A.

Part 2. We have

Qtmp = Q+R(ΓnewM tmp) +R
√
V (M tmp −M) = R

√
VM +R(ΓnewM tmp) +R

√
V (M tmp −M)

= R(Γnew +
√
V)M tmp = R(Γ + ∂Γ +

√
V)M tmp

= R((
√
Ṽ −

√
V) + (

√
W appr −

√
Ṽ) +

√
V)M tmp = R

√
W apprM tmp,

where the first step follows from the assigned value for Qtmp on Line 6 of Algorithm 13, the second
step follows from Q = R

√
VM (Part 2 of Assumption D.1), the third step is by merging terms,

the fourth step follows from Γnew = Γ + ∂Γ (Part 6 of Definition D.2), the fifth step follows from
Γ =

√
Ṽ −

√
V (Part 8 of Assumption D.1) and ∂Γ =

√
W appr −

√
Ṽ (Part 2 of Definition D.2),

and the last step is by merging terms.
Part 3, 4 and 5. These directly follow from the assignment of βtmp

1 on Line 7 of Algorithm 13,
the assignment of βtmp

2 on Line 8, and the assignment of ξtmp on Line 9.

Claim D.20 (Part 3 of Lemma D.17). All invariants of Assumption D.1 are satisfied after the
procedure MatrixUpdate (Algorithm 13).

70

Proof. First note that g, g̃, and T all remain the same after MatrixUpdate. Note that v and ṽ
are both assigned the value wappr (Line 13 of Algorithm 13). Then using Claim D.19, and since we
assigned M tmp to M , Qtmp to Q, βtmp

1 to β1, β
tmp
2 to β2, and ξtmp to ξ, we have

M = A>(AV A>)−1A, Q = R
√
VM,

β1 = Q
√
V f(g), β2 = M

√
V f(g),

ξ =
√
Ṽ f(g̃)−

√
V f(g).

We prove the other invariants directly from the assignment on Line 15 of Algorithm 13:

S = ∅ = supp(ṽ − v), ∆ = 0 = Ṽ − V,

Γ = 0 =
√
Ṽ −

√
V , B = I = L∗[(∆−1

S,S +MS,S)−1],

γ1 = 0 = B · Lr[β2,S] +B · Lr[(MS)>] · ξ, γ2 = 0 = ΓM · ξ,
E = 0 = B · Lr[(M∅)>] = B · Lr[(MS)>], F = 0 = RΓ · Lc[M∅] = RΓ · Lc[MS].

D.4 Correctness of PartialMatrixUpdate

Lemma D.21 (Correctness of PartialMatrixUpdate). If all invariants of Assumption D.1 are
satisfied before entering the procedure PartialMatrixUpdate (Algorithm 14), and |S∪∂S| ≤ 2na,
then after the procedure PartialMatrixUpdate we have the following guarantees:

1. ṽ = wappr, and v remains the same.

2. g, g̃ both remain the same.

3. All invariants of Assumption D.1 are still satisfied.

Note that since we have the guarantee that |S ∪ ∂S| ≤ 2na, all Lr,Lc,L∗ operators that appear
in the procedure PartialMatrixUpdate are well-defined. And the Decompose function used in
PartialMatrixUpdate is also well-defined.

Part 1 and 2 are proved in Claim D.22, and Part 3 is proved in Claim D.24 by using Claim D.23.

Claim D.22 (Part 1 and 2 of Lemma D.21). After the procedure PartialMatrixUpdate (Algo-
rithm 14), we have ṽ = wappr, and v, g, g̃ all remain the same.

Proof. ṽ = wappr follows directly from the value assignment of ṽ on Line 16 of Algorithm 14.
The procedure PartialMatrixUpdate (Algorithm 14) does not modify v, g, g̃, so they all

remain the same.

Claim D.23. In the procedure PartialMatrixUpdate (Algorithm 14) before we refresh variables
in the memory of the data structure, we have the following:

1. Btmp = L∗[((∆new
Snew,Snew)−1 +MSnew,Snew)−1],

2. ξtmp =
√
W apprf(g̃)−

√
V f(g),

3. γtmp
1 = Btmp · Lr[β2,Snew] +Btmp · Lr[(MSnew)>] · ξtmp,

4. γtmp
2 = ΓnewM · ξtmp,

71

5. F tmp = RΓnew · Lc[MSnew],

6. Etmp = Btmp · Lr[(MSnew)>].

Proof. Part 1. On Line 7 of Algorithm 14, we assigned Btmp as

Btmp ← B −BU ′(C−1 + U>BU ′)−1U>B,

where (U ′, C, U) = Decompose(L∗[(∆new
Snew,Snew)−1 + MSnew,Snew] − L∗[∆−1

S,S + MS,S]), then using
Lemma C.6 we have that Btmp = L∗[((∆new

Snew,Snew)−1 +MSnew,Snew)−1].
Part 2 and 3. Part 2 directly follows from the assignment of ξtmp on Line 10 of Algorithm 14.

And Part 3 directly follows from the assignment of γtmp
1 on Line 11 of Algorithm 14.

Part 4. We have

γtmp
2 = γ2 + (Γ + ∂Γ)M(

√
W appr −

√
Ṽ)f(g̃) + ∂ΓM(

√
Ṽ f(g̃)−

√
V f(g))

= ΓM · (
√
Ṽ f(g̃)−

√
V f(g)) + (Γ + ∂Γ)M(

√
W appr −

√
Ṽ)f(g̃) + ∂ΓM(

√
Ṽ f(g̃)−

√
V f(g))

= ΓM · (
√
W apprf(g̃)−

√
V f(g)) + ∂ΓM(

√
W apprf(g̃)−

√
V f(g))

= (Γ + ∂Γ)M · (
√
W apprf(g̃)−

√
V f(g))

= ΓnewM · (
√
W apprf(g̃)−

√
V f(g))

= ΓnewM · ξtmp,

where the first step follows from the assignment of γnew
2 (Line 12 of Algorithm 14), the second step

follows from γ2 = ΓMξ = ΓM(
√
Ṽ f(g̃) −

√
V f(g)) (Part 14 and 9 of Assumption D.1), the third

and the fourth step both follow from merging terms, the fifth step follows from Γnew = Γ + ∂Γ
(Part 2 of Definition D.2), and the sixth step follows from the Part 2 of this claim.
Part 5.

F tmp = F +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew]

= RΓ · Lc[MS] +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew]

= RΓ · Lc[MSnew] +R∂Γ · Lc[MSnew]

= RΓnew · Lc[MSnew],

where the first step follows from the assignment of F tmp(Line 8 of Algorithm 14), the second
step follows from F = RΓ · Lc[MS] (Part 12 of Assumption D.1), the third step follows from
S′ = (S ∪ ∂S)\Snew (Part 9 of Definition D.2) and thus Lc[MS′] + Lc[MSnew] = Lc[MS∪∂S] =
Lc[MS] + Lc[M∂S\S] by Part 2 of Remark C.3, and the fourth step follows from Γnew = Γ + ∂Γ
(Part 6 of Definition D.2).
Part 6

Etmp = E +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])−BU ′(C−1 + U>BU ′)−1U>E

= B · Lr[(MS)>] +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])−BU ′(C−1 + U>BU ′)−1U>B · Lr[(MS)>]

= (B −BU ′(C−1 + U>BU ′)−1U>B) · Lr[(MS)>] +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])

= BtmpLr[(MS)>] +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])

= BtmpLr[(MSnew)>]

where the first step follows from the assignment of Etmp(Line 9 of Algorithm 14), the second step
follows from E = B · Lr[(MS)>] (Part 11 of Assumption D.1), the fourth step follows from the

72

definition of Btmp, and the fifth step follows from S′ = (S ∪ ∂S)\Snew (Part 9 of Definition D.2)
and thus Lr[(MS′)

>] + Lr[(MSnew)>] = Lr[(MS∪∂S)>] = Lr[(MS)>] + Lr[(M∂S\S)>] by Part 2 of
Remark C.3, and the fourth step follows from Γnew = Γ + ∂Γ (Part 6 of Definition D.2).

Claim D.24 (Part 3 of Lemma D.21). All invariants of Assumption D.1 are satisfied after the
procedure PartialMatrixUpdate (Algorithm 14).

Proof. First note that the value of v, g, g̃, T , M , Q, β1 and β2 all remain the same after the
procedure PartialMatrixUpdate (Algorithm 14). Also note that ṽ is assigned the value wappr

(Line 16 in Algorithm 14).
From the assignment of S, ∆, and Γ on Line 16 of Algorithm 14, we have

S = Snew = supp(wappr − v) = supp(ṽ − v),

∆ = ∆new = W appr − V = Ṽ − V,

Γ = Γnew =
√
W appr −

√
V =

√
Ṽ −

√
V .

Then using Claim D.23, and since we assigned Btmp to B, ξtmp to ξ, γnew
1 to γ1, and γnew

2 to
γ2, Etmp to E, F tmp to F , we have

B = L∗[((∆S,S)−1 +MS,S)−1], ξ =
√
Ṽ f(g̃)−

√
V f(g),

γ1 = B · Lr[β2,S] +B · Lr[(MS)>] · ξ, γ2 = ΓM · ξ,
E = B · Lr[(MS)>], F = RΓ · Lc[MS].

D.5 Correctness of VectorUpdate

Lemma D.25 (Correctness of VectorUpdate). If all invariants of Assumption D.1 are satis-
fied before entering the procedure VectorUpdate (Algorithm 15), then after the procedure Vec-
torUpdate we have the following guarantees:

1. v, ṽ both remain the same.

2. g = g̃ = happr.

3. All invariants of Assumption D.1 are still satisfied.

First note that from Corollary D.15 we have that |S| ≤ na, so all Lr operators that appear in
the procedure VectorUpdate are well-defined.

Part 1 and 2 are proved in Claim D.26, and Part 3 is proved in Claim D.28 by using Claim D.27.

Claim D.26 (Part 1 and 2 of Lemma D.25). After the procedure VectorUpdate (Algorithm 15),
v and ṽ both remain the same, and g = g̃ = happr.

Proof. The procedure VectorUpdate does not modify v or ṽ, so they both remain the same. And
g = g̃ = happr follows directly from the value assignment of g and g̃ on Line 11 of Algorithm 15.

Claim D.27. In the procedure VectorUpdate (Algorithm 15) before we refresh variables in the
memory of the data structure, we have the following:

73

1. βtmp
1 = Q

√
V f(happr),

2. βtmp
2 = M

√
V f(happr),

3. ξtmp = (
√
Ṽ −

√
V)f(happr),

4. γtmp
1 = B · Lr[βtmp

2,S] +B · Lr[(MS)>] · ξtmp,

5. γtmp
2 = ΓM · ξtmp.

Proof. Part 1. From the assignment of βtmp
1 on Line 4 of Algorithm 15, we have

βtmp
1 = β1 +Q

√
V (f(happr)− f(g)) = Q

√
V f(g) +Q

√
V (f(happr)− f(g)) = Q

√
V f(happr),

where the second step follows from β1 = Q
√
V f(g) (Part 3 of Assumption D.1).

Part 2. From the assignment of βtmp
2 on Line 5 of Algorithm 15, we have

βtmp
2 = β2 +M

√
V (f(happr)− f(g)) = M

√
V f(g) +M

√
V (f(happr)− f(g)) = M

√
V f(happr),

where the second step follows from β2 = M
√
V f(g) (Part 4 of Assumption D.1).

Part 3, 4 and 5. These directly follow from the assignment of ξtmp (Line 6), γtmp
1 (Line 7), and

γtmp
2 (Line 8) in Algorithm 15.

Claim D.28 (Part 3 of Lemma D.25). All invariants of Assumption D.1 are satisfied after the
procedure VectorUpdate (Algorithm 15).

Proof. First note that v, ṽ, M , Q, B, ∆, Γ, and S all remain the same after the procedure Vec-
torUpdate. Also note that g and g̃ are both assigned the value happr (Line 11 of Algorithm 15).

Then using Claim D.27, and since we assigned βtmp
1 to β1, β

tmp
2 to β2, ξtmp to ξ, γtmp

1 to γ1,
and γtmp

2 to γ2, we have

β1 = Q
√
V f(g), β2 = M

√
V f(g),

γ1 = B · Lr[β2,S] +B · Lr[(MS)>] · ξ, γ2 = ΓM · ξ,

ξ = (
√
Ṽ −

√
V)f(happr) =

√
Ṽ f(g̃)−

√
V f(g).

Also, from the assignment of T on Line 12 of Algorithm 15, we have T = ∅ = supp(g̃ − g).

D.6 Correctness of PartialVectorUpdate

Lemma D.29 (Correctness of PartialVectorUpdate). If all invariants of Assumption D.1
are satisfied before entering the procedure PartialVectorUpdate (Algoritm 16), then after the
procedure PartialVectorUpdate we have the following guarantees:

1. v, ṽ both remain the same.

2. g̃ = happr, and g remains the same.

3. All invariants of Assumption D.1 are still satisfied.

First note that from Corollary D.15 we have that |S| ≤ na, so all Lr operators that appear in
the procedure PartialVectorUpdate are well-defined.

Part 1 and 2 are proved in Claim D.30, and Part 3 is proved in Claim D.32 by using Claim D.31.

Claim D.30 (Part 1 and 2 of Lemma D.29). After the procedure PartialVectorUpdate (Algo-
rithm 16), we have g̃ = happr, and v, ṽ, g all remain the same.

74

Proof. g̃ = happr follows directly from the value assignment of g̃ on Line 10 of Algorithm 16.
The procedure PartialVectorUpdate (Algorithm 16) does not modify v, ṽ, g, so they all

remain the same.

Claim D.31. In the procedure PartialVectorUpdate (Algorithm 16) before we refresh variables
in the memory of the data structure, we have the following:

1. ξtmp =
√
Ṽ f(happr)−

√
V f(g),

2. γtmp
1 = B · Lr[β2,S] +B · Lr[(MS)>] · ξtmp,

3. γtmp
2 = ΓM · ξtmp.

Proof. Part 1. This directly follows from the assignment of ξtmp on Line 4 of Algorithm 16.
Part 2. From the assignment of γtmp

1 on Line 5 of Algorithm 16, we have

γtmp
1 = γ1 +B · Lr[(MS)>] ·

√
Ṽ
(
f(happr)− f(g̃)

)

= B · Lr[β2,S] +B · Lr[(MS)>](
√
Ṽ f(g̃)−

√
V f(g)) +B · Lr[(MS)>]

√
Ṽ
(
f(happr)− f(g̃)

)

= B · Lr[β2,S] +B · Lr[(MS)>] ·
(

(
√
Ṽ f(g̃)−

√
V f(g)) +

√
Ṽ (f(happr)− f(g̃))

)

= B · Lr[β2,S] +B · Lr[(MS)>] · (
√
Ṽ f(happr)−

√
V f(g))

= B · Lr[β2,S] +B · Lr[(MS)>] · ξtmp,

where the second step follows from the invariant of γ1 (Part 13 in Assumption D.1), the third and
the fourth steps follow from merging terms, and the last step follows from Part 1 of this lemma.
Part 3. From the assignment of γtmp

2 on Line 6 of Algorithm 16, we have

γtmp
2 = γ2 + ΓM

√
Ṽ
(
f(happr)− f(g̃)

)
= ΓM(

√
Ṽ f(g̃)−

√
V f(g)) + ΓM

√
Ṽ
(
f(happr)− f(g̃)

)

= ΓM(
√
Ṽ f(happr)−

√
V f(g)) = ΓM · ξtmp,

where the second step follows from the invariant of γ2 (Part 14 in Assumption D.1), the third step
follows from merging terms, and the last step follows from Part 1 of this lemma.

Claim D.32 (Part 3 of Lemma D.29). All invariants of Assumption D.1 are satisfied after the
procedure PartialVectorUpdate (Algorithm 16).

Proof. First note that v, ṽ, g, M , Q, B, ∆, Γ, S, β1, and β2 all remain the same after the procedure
VectorUpdate. Also note that g̃ is assigned the value happr (Line 10 of Algorithm 16).

Then using Claim D.27, and since we assigned ξtmp to ξ, γtmp
1 to γ1, and γ

tmp
2 to γ2, we have

γ1 = B · Lr[β2,S] +B · Lr[(MS)>] · ξ, γ2 = ΓM · ξ,

ξ =
√
Ṽ f(happr)−

√
V f(g) =

√
Ṽ f(g̃)−

√
V f(g).

Finally, from the assignment of T on Line 9, we have T = supp(happr − g) = supp(g̃ − g).

75

D.7 Correctness of Initialize

Lemma D.33 (Correctness of Initialize). When initialized, all the invariants of the data structure
members stated in Assumption D.1 are satisfied.

Proof. Since in the beginning v and ṽ are both assigned the value w0, and g and g̃ are both assigned
the value h0, it is obvious that S = ∅, T = ∅, ∆ = 0, Γ = 0, ξ = 0, γ1 = 0, γ2 = 0 all satisfy
their invariant requirement of Assumption D.1. Also, B = I = L∗[0] also satisfies the invariant
requirement. Finally note that the initial assignment of M , Q, β1, β2 directly satisfy their invariant
requirement of Assumption D.1.

E Data structure : time per call

In Section E we provide a worst-case analysis of the running time per call for the five major pro-
cedures MatrixUpdate, PartialMatrixUpdate, VectorUpdate, PartialVectorUpdate,
Query. We prove the amortized running time of these procedures later in Section F. In Section E,
we ignore the running time of adding two vectors since it is only O(n).

Procedure Time per Call Amortized Time Lemma
Query Tmat(n

ã, na, nã) + n1+b Tmat(n
ã, na, nã) + n1+b Lemma E.3

MatrixUpdate Tmat(k, n, n) Õ(nω−1/2 + n2−a/2) Lemma E.12, F.19
PartialMatrixUpdate Tmat(k̃, n

a, n) Õ(n1+(ω−3/2)a + n1+a−ã/2) Lemma E.18, F.30
VectorUpdate pn+ n2a Õ(n1.5) Lemma E.27, F.35
PartialVectorUpdate p̃na + n2a Õ(n2a−ã/2) Lemma E.33, F.36

Table 11: Time for different procedures. Summary of Section E and Section F.

E.1 Sparsity guarantees

We first present some sparsity bounds that will be useful in the time analysis.

Procedure ‖wappr − v‖0 ‖wappr − ṽ‖0 ‖happr − g‖0 ‖happr − g̃‖0 ‖ṽ − v‖0 ‖g̃ − g‖0
MatrixUpdate = k / / / ≤ na ≤ na
P.MatrixUpdate ≤ na = k̃ ≤ 2na / / ≤ na ≤ na
VectorUpdate ≤ na ≤ nã = p / ≤ na ≤ na
P.VectorUpdate ≤ na ≤ nã ≤ na = p̃ ≤ 2na ≤ na ≤ na
Query ≤ na ≤ nã ≤ na ≤ nã ≤ na ≤ na

Table 12: Sparsity guarantees of wappr, ṽ, v, happr, g̃, g when entering the procedures (Part 1 of
Lemma E.1). We say some vector x ∈ Rn is k-sparse, it means that supp(x) = k.

Lemma E.1 (Sparsity guarantees). The members of data structure presented in Table 12 and
Table 13 all follow the invariants of Assumption D.1, and the local variables presented in Table 13
all follow the definition of Definition D.2. We have the following sparsity guarantees.

1. When entering the procedures MatrixUpdate, PartialMatrixUpdate, VectorUpdate,
PartialVectorUpdate, and Query, we have the sparsity bounds on ‖wappr−v‖0, ‖wappr−
ṽ‖0, ‖happr − g‖0, ‖happr − g̃‖0, ‖ṽ − v‖0, and ‖g̃ − g‖0 as presented in Table 12.

76

Procedure ‖∆ + ∂∆‖0,
‖Γ + ∂Γ‖0

‖∂∆‖0,
‖∂Γ‖0, |∂S|

‖ξ + ∂ξ‖0 ‖∂ξ‖0 ‖∆‖0, ‖ξ‖0,
‖Γ‖0, |S|

|S ∪ ∂S|

MatrixUpdate = k / / / ≤ na ≤ 3k

P.MatrixUpdate ≤ na = k̃ ≤ 2na / / ≤ na ≤ 3na

VectorUpdate ≤ na ≤ nã = p / ≤ na /
P.VectorUpdate ≤ na ≤ nã ≤ na = p̃ ≤ 2na ≤ na /
Query ≤ na ≤ nã ≤ na ≤ nã ≤ na ≤ 2na

Table 13: Sparsity guarantees of other local variables (Definition D.2) when entering the procedures
(Part 2 of Lemma E.1). We say some vector x ∈ Rn is k-sparse, it means that supp(x) = k.

2. When entering the procedures MatrixUpdate, PartialMatrixUpdate, VectorUpdate,
PartialVectorUpdate, and Query, we have the sparsity bounds on ∆ + ∂∆, Γ + ∂Γ,
S ∪ ∂S, ∂∆, ∂Γ, ∂S, ξ + ∂ξ, ∂ξ, ∆, Γ, S, ξ as presented in Table 13.

Proof. Part 1. The first four columns follow from Corollary D.16, and the last two columns follow
from Corollary D.15.
Part 2. For Col. 1, we have

‖∆ + ∂∆‖0 = ‖W appr − V ‖0 = ‖wappr − v‖0,
‖Γ + ∂Γ‖0 = ‖

√
W appr −

√
V ‖0 = ‖wappr − v‖0,

the bounds of this column then follow from Col. 1 of Table 12.
For Col. 2, we have

‖∂∆‖0 = ‖W appr − Ṽ ‖0 = ‖wappr − ṽ‖0,

‖∂Γ‖0 = ‖
√
W appr −

√
Ṽ ‖0 = ‖wappr − ṽ‖0,

|∂S| = ‖W appr − Ṽ ‖0 = ‖wappr − ṽ‖0,

the bounds of this column then follow from Col. 2 of Table 12.
For Col. 3 we have

‖ξ + ∂ξ‖0 = ‖
√
W apprf(happr)−

√
V f(g)‖0 ≤ max{‖

√
W appr −

√
V ‖0, ‖f(happr)− f(g)‖0}

= max{‖wappr − v‖0, ‖happr − g‖0},

the bounds of this column then follow from Col. 1 and Col. 3 of Table 12 and the fact p ≥ na (since
we have the equivalent fact for p as of Fact F.10 for k).

For Col. 4 we have

‖∂ξ‖0 = ‖
√
W apprf(happr)−

√
Ṽ f(g̃)‖0 ≤ max{‖

√
W appr −

√
Ṽ ‖0, ‖f(happr)− f(g̃)‖0}

= max{‖wappr − ṽ‖0, ‖happr − g̃‖0},

the bounds of this column then follow from Col. 2 and Col. 4 of Table 12 and the fact p̃ ≥ nã (since
we have the equivalent fact for p̃ as of Fact F.11 for k̃).

For Col. 5 we have

‖∆‖0 = ‖Ṽ − V ‖0 = ‖ṽ − v‖0,

‖Γ‖0 = ‖
√
Ṽ −

√
V ‖0 = ‖ṽ − v‖0,

77

|S| = | supp(ṽ − v)| = ‖ṽ − v‖0,

‖ξ‖0 = ‖
√
Ṽ f(g̃)−

√
V f(g)‖0 ≤ max{‖ṽ − v‖0, ‖g̃ − g‖0},

the bounds of this column then follow from Col. 5 and Col. 6 of Table 12.
For the first part (MatrixUpdate) of Col. 6, we have

|S ∪ ∂S| ≤ |S|+ |∂S| ≤ | supp(v − ṽ)|+ | supp(wappr − ṽ)|
≤ | supp(v − ṽ)|+ | supp(wappr − v)|+ | supp(v − ṽ)| ≤ na + k + na ≤ 3k,

where the first and the third steps both follow from triangle inequality, the second step follows from
S = supp(v − ṽ) (part 5 Assumption D.1) and ∂S = supp(wappr − ṽ) (Part 4 of Definition D.2),
the fourth step follows from Col. 1 and Col. 5 of Table 12, the last step follows from the fact that
k ≥ na (Fact F.10).

For the second part (PartialMatrixUpdate) of Col. 6, we have

|S ∪ ∂S| ≤ |S|+ |∂S| ≤ | supp(v − ṽ)|+ | supp(wappr − ṽ)| ≤ na + 2na = 3na,

where the first two steps are the same as previous inequality, and the third step follows from Col. 2
and Col. 5 of Table 12.

For the fifth part (Query) of Col. 6, we have

|S ∪ ∂S| ≤ |S|+ |∂S| ≤ | supp(v − ṽ)|+ | supp(wappr − ṽ)| ≤ na + nã ≤ 2na,

where the first two steps are the same as previous inequality, the third step follows from Col. 2 and
Col. 5 of Table 12.

Procedure Lemma Section
Query Lemma E.3 Section E.2
MatrixUpdate Lemma E.12 Section E.3
PartialMatrixUpdate Lemma E.18 Section E.4
VectorUpdate Lemma E.27 Section E.5
PartialVectorUpdate Lemma E.33 Section E.6
Initialize Lemma E.37 Section E.7

Table 14: Summary of the section that proves running time per call.

E.2 Running time of Query

The goal of this section is to prove Lemma E.3. We will use the following sparsity guarantees that
are proved in Lemma E.1.

Fact E.2 (Sparsity guarantees for Query). When entering Query we have the following sparsity
guarantee (from Table 13):

1. ‖Γ + ∂Γ‖0 ≤ na,

2. ‖∂Γ‖0 ≤ nã,

3. ‖Γ‖0 ≤ na,

4. ‖ξ + ∂ξ‖0 ≤ na,

5. ‖∂ξ‖0 ≤ nã,

6. |∂S| ≤ nã,

7. |S| ≤ na.

78

Lemma E.3 (Running time of Query). In procedure Query (Algorithm 12), it takes

1. O(n1+b + na+ã) time to compute

r2 ← Q[j]ξ +R[j]γ2 +R[j]∂ΓM(ξ + ∂ξ) +
(
Q[j] +R[j]ΓM

)
∂ξ,

2. O(n1+b) time to compute
r3 ← R[j](Γ + ∂Γ)β2,

3. O(na+ã) time to compute

∂γ ← B · Lr[(β2)∂S\S] +B · Lr[(M∂S\S)>] · (ξ + ∂ξ) + E · ∂ξ,

4. O(na+ã) time to compute

(U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)
,

5. O(Tmat(n
a, nã, nã)) time to compute

Etmp ←E∂S −B(∂S\S)M(∂S\S),∂S , E
tmp
S′ ← −E

tmp
S′ , E

tmp
(S∩∂S)\S′ ← 0, and

U tmp ←[B∂S , B∂S , E
tmp],

6. O(Tmat(n
ã, na, nã)) time to compute

γtmp ← U tmp(C−1 + U>U tmp)−1U> · (γ1 + ∂γ),

7. O(nã+a + n1+b) time to compute

r4 ←
(
Lc[(Q[j])Snew]+F [j]+R[j]Γ·(Lc[M∂S\S]−Lc[MS′])+R[j]∂Γ·Lc[MSnew]

)
·(γtmp−γ1−∂γ).

Overall, the time to compute r (which is r1 + r2 + r3 + r4) is

O(n1+b + Tmat(n
ã, na, nã)).

Claim E.4 (Part 1 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(n1+b + na+ã)
time to compute

r2 ← Q[j]ξ +R[j]γ2 +R[j]∂ΓM(ξ + ∂ξ)︸ ︷︷ ︸
a1

+
(
Q[j] +R[j]ΓM

)
∂ξ︸ ︷︷ ︸

a2

.

Proof. The running time of this step can be split into the following parts:
The first part is to compute Q[j]ξ by multiplying a nb × n matrix Q[j] with a n × 1 vector ξ.

It takes O(n1+b) time. The second part is to compute R[j]γ2 by multiplying a nb × n matrix R[j]
with a n× 1 vector γ2. It takes O(n1+b) time.

The third part is to compute a1 as follows:

1. We multiply a nã-sparse n×n diagonal matrix ∂Γ (Part 2 of Fact E.2) with a n×n matrixM
and then with a na-sparse n× 1 vector (ξ + ∂ξ) (Part 4 of Fact E.2). It takes O(na+ã) time.

79

2. We multiply a nb × n matrix R[j] and a n× 1 vector (∂ΓM(ξ + ∂ξ)). It takes O(n1+b) time.

So computing a1 takes O(na+ã + n1+b) time in total.
The fourth part is to compute a2 as follows:

1. We multiply a na-sparse n×n diagonal matrix Γ (Part 3 of Fact E.2) with a n×n matrix M
and then with a nã-sparse n× 1 vector ∂ξ (Part 5 of Fact E.2). It takes O(na+ã) time.

2. We multiply a nb × n matrix R[j] with a n× 1 vector (ΓM∂ξ). It takes O(n1+b) time.

3. We multiply a nb × n matrix Q[j] and a nã-sparse n × 1 vector ∂ξ (Part 5 of Fact E.2). It
takes O(nã+b) time.

So computing a2 takes O(na+ã + n1+b) time in total since ã ≤ 1.
Thus the total running time is O(n1+b + na+ã).

Claim E.5 (Part 2 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(n1+b) time to
compute r3 ← R[j](Γ + ∂Γ)β2.

Proof. The running time of this step can be split into the following parts.

1. We multiply a na-sparse n × n diagonal matrix (Γ + ∂Γ) (Part 1 of Fact E.2) and a n × 1
vector β2. It takes O(na) time.

2. We multiply a nb × n matrix R[j] and a n× 1 vector ((Γ + ∂Γ)β2). It takes O(n1+b) time.

The total running time is O(na + n1+b) = O(n1+b) since a ≤ 1.

Claim E.6 (Part 3 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(na+ã) time to
compute ∂γ ← B · Lr[(β2)∂S\S] +B · Lr[(M∂S\S)>] · (ξ + ∂ξ) + E · ∂ξ.

Proof. The running time of this step can be split into the following parts.

1. We multiply a 6na×6na matrix B with a nã-sparse 6na×1 vector Lr[(β2)∂S\S] (since |∂S\S| ≤
|∂S| ≤ nã by Part 6 of Fact E.2). It takes O(na+ã) time.

2. We multiply a 6na × n matrix Lr[(M∂S\S)>] that only has nã non-zero rows (since |∂S\S| ≤
|∂S| ≤ nã by Part 6 of Fact E.2) with a na-sparse n× 1 vector (ξ + ∂ξ) (Part 4 of Fact E.2).
It takes O(na+ã) time.

3. We multiply a 6na × 6na matrix B with a nã-sparse 6na × 1 vector (Lr[(M∂S\S)>](ξ + ∂ξ))

(since |∂S\S| ≤ |∂S| ≤ nã by Part 6 of Fact E.2). It takes O(na+ã) time.

4. We multiply a 6na × n matrix E with a nã-sparse vector ∂ξ (Part 5 of Fact E.2). It takes
O(na+ã) time.

Thus the total running time is O(na+ã).

Claim E.7 (Part 4 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(na+ã) time to
compute

(U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)
.

And the size of the computed matrices are U ′, U ∈ Rna×c, C ∈ Rc×c, where c ≤ O(nã).

80

Proof. For ease of notation, we denote N := L∗[(∆new
Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1

S,S +MS,S].
From Lemma C.5 we know that the non-zero entries ofN can be split into three parts: N∂S,(S\∂S),

N(S\∂S),∂S , and N∂S,∂S . Thus we don’t need to compute N explicitly, but only compute the non-zero
entries of N , which takes O(|∂S| · |S\∂S|+ |∂S| · |∂S|) = O(na+ã) time (from Part 7 and Part 6 of
Fact E.2 and since ã ≤ a).

Then N satisfies the requirement of Lemma C.4 with S1 = S\∂S, S2 = ∂S, so the function
Decompose can be computed in O(na|S2|) = O(na|∂S|) = O(na+ã) time (Part 6 of Fact E.2).
Also using Lemma C.4, we know that the computed matrix C has size c × c = (3|S2|) × (3|S2|) =
(3|∂S|)× (3|∂S|), thus c ≤ O(nã) (Part 6 of Fact E.2).

Thus the total running time is O(na+ã).

Claim E.8 (Part 5 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(Tmat(n
a, nã, nã))

time to compute

Etmp ← E∂S −B(∂S∩S)M(∂S∩S),∂S ; Etmp
S′ ← −E

tmp
S′ ; Etmp

(S∩∂S)\S′ ← 0; U tmp ← [B∂S , B∂S , E
tmp].

Proof. To compute the initial Etmp ← E∂S−B(∂S∩S)M(∂S∩S),∂S , we need to multiply a 6na×|∂S∩S|
matrix B(∂S∩S) with a |∂S ∩S|× |∂S| matrix M(∂S∩S),∂S , and this takes Tmat(6n

a, |∂S ∩S|, |∂S|) =

O(Tmat(n
a, nã, nã)) time (Part 6 of Fact E.2).

Finally note that the other two steps Etmp
S′ ← −E

tmp
S′ and Etmp

(S∩∂S)\S′ ← 0 to adjust Etmp takes
the same time as the size of Etmp, which is na × |∂S| = O(na+ã) (Part 6 of Fact E.2). Computing
U tmp only needs to copy entries from the already computed B and Etmp, so it also takes the same
time as the size of U tmp, which is na × 3|∂S| = O(na+ã). Thus the total running time is

O(Tmat(n
a, nã, nã) + na+ã) = O(Tmat(n

a, nã, nã)).

Claim E.9 (Part 6 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(Tmat(n
ã, na, nã))

time to compute

γtmp ← U tmp (C−1 + U>U tmp)−1

︸ ︷︷ ︸
N

U> · (γ1 + ∂γ).

Proof. First note that from Lemma E.7 we have that the sizes of U ′ and U are 6na × 3|∂S|, and
the size of C is 3|∂S| × 3|∂S|. From the assignment of U tmp on Line 15, we know that the size of
U tmp is also 6na × 3|∂S|. The running time of this step can be split into the following parts:

The first part is to compute the 3|∂S| × 3|∂S| matrix N .

1. Computing the inverse of a 3|∂S| × 3|∂S| matrix C takes O(nãω) time (Part 6 of Fact E.2).

2. We multiply a 3|∂S| × 6na rectangular matrix U> with a 6na × 3|∂S| matrix U tmp, which
takes Tmat(3|∂S|, 6na, 3|∂S|) = O(Tmat(n

ã, na, nã)) time (|∂S| ≤ nã from Part 6 of Fact E.2).

3. We add a 3|∂S| × 3|∂S| matrix C−1 with a 3|∂S| × 3|∂S| matrix U>U tmp and calculate its
inverse. It takes O(|∂S|ω) = O(nãω) time (Part 6 of Fact E.2).

Thus in total computing N takes time O(Tmat(n
ã, na, nã)+nãω) = O(Tmat(n

ã, na, nã)), sinnce ã ≤ a
and thus nãω = Tmat(n

ã, nã, nã) ≤ Tmat(n
ã, na, nã).

The second part is to compute the 6na × 1 vector γtmp.

81

1. We multiply the 3|∂S|×6na matrix U> with a 6na×1 vector (γ1+∂γ). This takesO(na·|∂S|) =
O(na+ã) time (Part 6 of Fact E.2).

2. We multiply the 3|∂S| × 3|∂S| matrix N with a 3|∂S| × 1 vector U>(γ1 + ∂γ). This takes
O(|∂S|2) = O(n2ã) time (Part 6 of Fact E.2).

3. We multiply the 6na × 3|∂S| matrix U tmp with a 3|∂S| × 1 vector NU>(γ1 + ∂γ). This takes
O(na · |∂S|) = O(na+ã) time (Part 6 of Fact E.2).

Thus this part takes O(na+ã) time since ã ≤ a.
Thus the total time to compute γtmp is

O(Tmat(n
ã, na, nã) + na+ã) = O(Tmat(n

ã, na, nã)).

Claim E.10 (Part 7 of Lemma E.3). In procedure Query (Algorithm 12), it takes O(nã+a +n1+b)
time to compute

r4 ←
(
Lc[(Q[j])Snew] + F [j] +R[j]Γ · (Lc[M∂S\S]− Lc[MS′]) +R[j]∂Γ · Lc[MSnew]

)
· (γtmp − γ1 − ∂γ).

Proof. The running time can be split into the following parts:

1. We multiply a nã-sparse n×n diagonal matrix ∂Γ (Part 2 of Fact E.2) with a n× 6na matrix
Lc[MSnew] with a 6na × 1 vector (γtmp − γ1 − ∂γ). It takes O(nã+a) time.

2. We multiply a nb×n matrix R[j] with a n×1 vector (∂ΓLc[MSnew](γtmp−γ1−∂γ)). It takes
O(n1+b) time.

3. We multiply a na-sparse n× n diagonal matrix Γ (Part 3 of Fact E.2) with a n× 6na matrix
Lc[M∂S\S] that only has nã non-zero columns (since |∂S\S| ≤ |∂S| ≤ nã by Part 6 of Fact E.2)
and then with a 6na × 1 vector (γtmp − γ1 − ∂γ). It takes O(na+ã) time.

4. We multiply a nb×n matrix R[j] with a n×1 vector (Γ(Lc[M∂S\S]−Lc[MS′])(γ
tmp−γ1−∂γ)).

It takes O(n1+b) time.

5. We multiply a nb × 6na matrix F [j] with a 6na × 1 vector (γtmp − γ1 − ∂γ). It takes O(n1+b)
time.

6. We multiply a nb× 6na matrix Lc[(Q[j])Snew] with a 6na× 1 vector (γtmp− γ1− ∂γ). It takes
O(nb+a) time.

Thus this part takes O(nã+a + n1+b + nb+a) = O(nã+a + n1+b) time, since a ≤ 1.
Thus, the total running time to compute r4 is O(nã+a + n1+b).

Proof of Lemma E.3. Summing over the time to compute r2, r3, (U ′, C, U), ∂γ, r4,1, r4,2, r4,3, U tmp,
and r4,4, the total running time of computing r is

O(n1+b + na+ã + na+b + Tmat(n
ã, na, nã)) = O(n1+b + Tmat(n

ã, na, nã)),

which follows by a ≤ 1 and na+ã ≤ Tmat(n
ã, na, nã)).

82

E.3 Running time of MatrixUpdate

The goal of this section is to prove Lemma E.12. We will use the following sparsity guarantees that
are proved in Lemma E.1.

Fact E.11 (Sparsity guarantees for MatrixUpdate). When entering MatrixUpdate we have
the following sparsity guarantee (from Table 13):

1. |Snew| ≤ |S ∪ ∂S| ≤ 3k, 2. ‖Γnew‖0 = ‖Γ + ∂Γ‖0 = k.

Lemma E.12 (Running time of MatrixUpdate). In the procedure MatrixUpdate (in Algo-
rithm 13) it takes

1. O(kω+o(1) + Tmat(n, k, n)) time to compute

M tmp ←M −MSnew · ((∆new
Snew,Snew)−1 +MSnew,Snew)−1(MSnew)>,

2. O(kω+o(1) + Tmat(n
1+o(1), k, n)) time to compute

Qtmp ← Q+R(ΓnewM tmp) +R
√
V (M tmp −M),

3. O(n2+o(1)) time to compute

β1 ← Qtmp
√
W apprf(happr),

4. O(n2) time to compute

β2 ←M tmp
√
W apprf(happr).

Further, it takes O(n) time to do all other computation. So the overall running time of the procedure
MatrixUpdate is O(Tmat(n

1+o(1), k, n)).

Claim E.13 (Part 1 of Lemma E.12). In procedure MatrixUpdate, it takes O(kω+o(1)+Tmat(n, k, n))
time to compute

M tmp ←M −MSnew · ((∆new
Snew,Snew)−1 +MSnew,Snew)−1(MSnew)>.

Proof. The running time of computing Mnew can be split into the following parts:

1. Computing the inverse of a O(k)×O(k) matrix ((∆new
Snew,Snew)−1 +MSnew,Snew) (the size follows

from |Snew| = O(k), see Part 1 of Fact E.11), this part takes O(kω+o(1)) time.

2. Computing the multiplication of a n × O(k) matrix MSnew with a O(k) × O(k) matrix
((∆new

Snew,Snew)−1 +MSnew,Snew)−1, this part takes O(Tmat(n, k, k)) time.

3. Computing the multiplication of a n × O(k) matrix MSnew((∆new
Snew,Snew)−1 + MSnew,Snew)−1

with a O(k)× n matrix (MSnew)>, this part takes O(Tmat(n, k, n)) time.

4. Subtracting a n× n matrix MSnew · ((∆new
Snew,Snew)−1 +MSnew,Snew)−1(MSnew)> from the n× n

matrix M , this part takes O(n2) time.

83

So in total computing M tmp takes time

O(kω+o(1) + Tmat(n, k, k) + Tmat(n, k, n) + n2) = O(kω+o(1) + Tmat(n, k, n)).

Claim E.14 (Part 2 of Lemma E.12). In MatrixUpdate, it takes O(kω+o(1) +Tmat(n
1+o(1), k, n))

time to compute
Qtmp ← Q+R(ΓnewM tmp)︸ ︷︷ ︸

N1

+R
√
V (M tmp −M)︸ ︷︷ ︸

N2

.

Proof. The running time of computing Qtmp can be split into the following parts:
The first part is to compute the n× n matrix N1:

1. Multiplying a k-sparse n× n diagonal matrix Γnew (Part 2 of Fact E.11) with a n× n matrix
M tmp takes O(kn) time.

2. Multiplying a n1+o(1)× n matrix Qtmp with a k-row-sparse n× n matrix (ΓnewM tmp) (Part 1
of Fact) takes O(Tmat(n

1+o(1), k, n)) time.

So in total computing N1 takes O(Tmat(n
1+o(1), k, n)) time.

The second part is to compute the n× n matrix N2. By the definition of M tmp we have

N2 = R
√
V (M tmp −M) = R

√
VMSnew · ((∆new

Snew,Snew)−1 +MSnew,Snew)−1(MSnew)>
︸ ︷︷ ︸

N3

.

And we computes N2 as follows:

1. Multiplying a n1+o(1) × n matrix R with a n× n diagonal matrix
√
V takes O(n2+o(1)) time.

2. Multiplying a n1+o(1) × n matrix R
√
V with a n× O(k) matrix MSnew (Part 1 of Fact E.11)

takes O(Tmat(n
1+o(1), n, k)) time.

3. The O(k)× n matrix N3 is already computed when we were computing M tmp (Claim E.13),
and this takes O(kω+o(1) + Tmat(k, k, n)) time.

4. Multiplying a n1+o(1)×O(k) matrix (R
√
VMSnew) with aO(k)×nmatrixN3 takesO(Tmat(n

1+o(1), k, n))
time.

So in total computing Qtmp takes time

O(n2+o(1) + kω+o(1) + Tmat(k, k, n) + Tmat(n
1+o(1), k, n)) = O(kω+o(1) + Tmat(n

1+o(1), k, n)).

Claim E.15 (Part 3 of Lemma E.12). In MatrixUpdate, it takes O(n2+o(1)) time to compute

β1 ← Qtmp
√
W apprf(happr).

Proof. To compute β1, we first multiply a n1+o(1) × n matrix Qtmp with a n × n diagonal matrix√
W appr, which takes O(n2+o(1)) time. Then we multiply a n1+o(1) × n matrix Qtmp

√
W appr with a

n× 1 vector, which takes O(n2+o(1)) time. So in total computing β1 takes time O(n2+o(1)).

84

Claim E.16 (Part 4 of Lemma E.12). In procedure MatrixUpdate, it takes O(n2) time to compute

β2 ←M tmp
√
W apprf(happr).

Proof. To compute β2, we first multiply a n×n matrixM tmp with a n×n diagonal matrix
√
W appr,

which takes O(n2) time. Then we multiply a n1×n matrixM tmp
√
W appr with a n×1 vector, which

takes O(n2) time. So in total computing β1 takes time O(n2).

Proof of Lemma E.12. Overall time. The running time of procedure MatrixUpdate is
O(kω+o(1) + Tmat(n

1+o(1), k, n) + n2+o(1)) = O(Tmat(n
1+o(1), k, n)).

E.4 Running time of PartialMatrixUpdate

The goal of this section is to prove Lemma E.18. We will use the following sparsity guarantees that
are proved in Lemma E.1.

Fact E.17 (Sparsity guarantees for PartialMatrixUpdate). When entering PartialMatrix-
Update (Algorithm 14) we have the following sparsity guarantee (from Table 12 and Table 13):

1. ‖
√
W appr −

√
V ‖0 ≤ na,

2. ‖∂Γ‖0 ≤ k̃ ≤ 2na,

3. ‖Γ + ∂Γ‖0 ≤ na,

4. ‖f(g̃)− f(g)‖0 ≤ na,

5. ‖ξ‖0 ≤ na,

6. |S| ≤ na,

7. |∂S| ≤ k̃ ≤ 2na.

Lemma E.18 (Running time of PartialMatrixUpdate). In the procedure PartialMatrixUp-
date (Algorithm 14) it takes

1. O(k̃na) time to compute

(U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)
,

2. O(Tmat(k̃, n
a, na)) time to compute

Btmp ← B −BU ′(C−1 + U>BU ′)−1U>B,

3. O(n) time to compute

ξtmp ←
√
W apprf(g̃)−

√
V f(g),

4. O(n2a) time to compute

γtmp
1 ← Btmp · Lr[β2,Snew] +Btmp · Lr[(MSnew)>]ξtmp,

5. O(k̃na) time to compute

γtmp
2 ← γ2 + (Γ + ∂Γ)M(

√
W appr −

√
Ṽ)f(g̃) + ∂ΓM(

√
Ṽ f(g̃)−

√
V f(g)).

6. O(Tmat(n
1+o(1), na, k̃)) time to compute

F tmp ← F +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew].

85

7. O(Tmat(n, n
a, k̃)) time to compute

Etmp = E +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])−BU ′(C−1 + U>BU ′)−1U>E.

Further, it takes O(n) time to do all other computation. So the overall running time of the procedure
PartialMatrixUpdate is O(Tmat(n

1+o(1), na, k̃)).

Claim E.19 (Part 1 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(k̃na) time to compute

(U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)
.

And the size of the computed matrices are U ′, U ∈ R6na×c, C ∈ Rc×c, where c = O(k̃).

Proof. The analysis for the Decompose function in PartialMatrixUpdate is the same as the
analysis in Query (Claim E.7). We still have |S| ≤ na (Part 6 of Fact E.17), but the bound on ∂S
is different and now we have |∂S| = k̃ ≤ 2na (Part 7 of Fact E.17). So c = O(|∂S|) = O(k̃).

And to compute (U ′, C, U) it takes O(k̃na) time.

Claim E.20 (Part 2 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(Tmat(k̃, n

a, na)) time to compute

Btmp ← B −BU ′ (C−1 + U>BU ′)−1

︸ ︷︷ ︸
N

U>B.

Proof. The running time of computing Btmp ∈ R6na×6na can be split into the following parts.
The first part is to compute N ∈ Rc×c as follows:

1. Multiplying a c× 6na matrix U> with a 6na × 6na matrix B takes O(Tmat(c, n
a, na)) time.

2. Multiplying a c× 6na matrix (U>B) with a 6na × c matrix U ′ takes O(Tmat(c, n
a, c)) time.

3. Computing the inverse of a c× c matrix (C−1 + U>BU ′) takes O(cω+o(1)) time.

So the total running time to computeN isO(Tmat(c, n
a, na)+Tmat(c, n

a, c)+cω+o(1)) = O(Tmat(k̃, n
a, na))

(since c = O(k̃) ≤ O(na) by Claim E.19), and k̃ ≤ 2na.
The second part is to compute BU ′NU>B ∈ R6na×6na as follows:

1. Multiplying a 6na × 6na matrix B with a 6na × c matrix U ′ takes O(Tmat(n
a, na, c)) time.

2. Multiplying a c× 6na matrix U> with a 6na × 6na matrix B takes O(Tmat(c, n
a, na)) time.

3. Multiplying a 6na × c matrix BU ′ with a c× c matrix N takes O(Tmat(n
a, c, c)) time.

4. Multiplying a 6na×c matrix BU ′N with a c×6na matrix U>B takes O(Tmat(n
a, c, na)) time.

So the total running time to computeBU ′NU>B isO(Tmat(n
a, na, c)+Tmat(n

a, c, c)) = O(Tmat(n
a, na, k̃))

(since c = O(k̃) ≤ O(na) by Claim E.19), and k̃ ≤ 2na.
Finally, subtracting BU ′NU>B from B takes O(n2a) time since both matrices has size 6na×6na.
So in total computing Btmp ∈ R6na×6na takes time O(Tmat(k̃, n

a, na)+n2a) = O(Tmat(k̃, n
a, na)).

86

Claim E.21 (Part 3 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14), it
takes O(n) time to compute ξtmp ←

√
W apprf(g̃)−

√
V f(g). And the computed vector ξtmp ∈ Rn×1

is na-sparse.

Proof. The O(n) running time follows trivially from the fact that
√
W appr and

√
V are n×n diagonal

matrices, and f(g̃) and f(g) are n× 1 vectors. We also have

‖ξtmp‖0 = ‖
√
W apprf(g̃)−

√
V f(g)‖0 = max{‖

√
W appr −

√
V ‖0, ‖f(g̃)− f(g)‖0} ≤ na,

which follows from Part 1 and 4 of Fact E.17.

Claim E.22 (Part 4 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(n2a) time to compute γtmp

1 ← Btmp · Lr[β2,Snew] +Btmp · Lr[(MSnew)>] · ξtmp.

Proof. The running time of computing γtmp
1 can be split into the following parts:

1. Multiplying a 6na × 6na matrix Btmp with a 6na × 1 vector Lr[β2,Snew] takes O(n2a) time.

2. Multiplying a 6na × n matrix Lr[(MSnew)>] with a na-sparse n× 1 vector ξtmp (Claim E.21)
takes O(n2a) time.

3. Multiplying a 6na × 6na matrix Btmp with a 6na × 1 vector Lr[(MSnew)>]ξtmp takes O(n2a)
time.

So in total computing γtmp
1 takes O(n2a) time.

Claim E.23 (Part 5 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(k̃na) time to compute

γtmp
2 ← γ2 + (Γ + ∂Γ)M (

√
W appr −

√
Ṽ)f(g̃)︸ ︷︷ ︸

a1

+∂ΓM (
√
Ṽ f(g̃)−

√
V f(g))︸ ︷︷ ︸

a2

.

Proof. First note that the n× 1 vectors a1 and a2 can both be computed in O(n) time. Also,

‖a1‖0 = ‖(
√
W appr −

√
Ṽ)f(g̃)‖0 ≤ min{‖

√
W appr −

√
Ṽ ‖0, ‖f(g̃)‖0} ≤ k̃,

where the last step follows from Part 1 of Fact E.17. And

‖a2‖0 = ‖
√
Ṽ f(g̃)−

√
V f(g)‖0 = ‖ξ‖0 ≤ na,

where the last step follows from Part 5 of Fact E.17.
The running time of computing γtmp

2 can be split into the following parts:

1. Multiplying a na-sparse n × n diagonal matrix (Γ + ∂Γ) (Part 3 of Fact E.17) with a n × n
matrix M and then with a k̃-sparse n× 1 vector a1 takes O(k̃na) time.

2. Multiplying a k̃-sparse n × n diagonal matrix ∂Γ (Part 2 of Fact E.17) with a n × n matrix
M and then with a na-sparse n× 1 vector a2 takes O(k̃na) time.

So in total computing γtmp
2 takes time O(k̃na).

Claim E.24 (Part 6 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(Tmat(n

1+o(1), na, k̃)) time to compute

F tmp ← F +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew].

87

Proof. By sparsity guarantee(Part 7, 6 of Fact E.17), we have |∂S| + |S′| ≤ |∂S| ≤ k̃ ≤ 2na. The
running time of computing F tmp can be split into the following parts:

1. Multiplying a n1+o(1) × n matrix R with a na-sparse n× n diagonal matrix Γ and then with
a k̃-column-sparse n× 6na matrix Lc[M∂S\S]− Lc[MS′] takes O(Tmat(n

1+o(1), na, k̃)) time.

2. Multiplying a n1+o(1) × n matrix R with a k̃-sparse n× n diagonal matrix ∂Γ and then with
a n× 6na matrix Lc[MSnew] takes O(Tmat(n

1+o(1), k̃, na) time.

3. Adding two matrices RΓ(Lc[M∂S\S]− Lc[MS′]), R∂ΓLc[MSnew] on the current stored matrix
F takes O(n1+o(1)+a) time.

So in total computing F tmp takes O(Tmat(n
1+o(1), na, k̃) +n1+o(1)+a) = O(Tmat(n

1+o(1), na, k̃)) time
since O(n1+o(1)+a) ≤ O(Tmat(n

1+o(1), na, k̃)).

Claim E.25 (Part 7 of Lemma E.18). In the procedure PartialMatrixUpdate (Algorithm 14),
it takes O(Tmat(n, n

a, k̃)) time to compute

Etmp ← E +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])

︸ ︷︷ ︸
N2

−BU ′ (C−1 + U>BU ′)−1

︸ ︷︷ ︸
N

U>E

︸ ︷︷ ︸
N1

Proof. By sparsity guarantee(Part 7, 6 of Fact E.17), we have |∂S| ≤ k̃ ≤ 2na, |S| ≤ na. So
|Snew| ≤ |S ∪ ∂S| ≤ |S| + |∂S| ≤ 3na. The running time of computing F tmp can be split into the
following parts:

First we compute N1 ∈ R6na×n.

1. We already compute the time of computing N in Claim E.20. It takes O(Tmat(c, n
a, na)) time.

2. Multiplying a 6na × 6na matrix B with a 6na × c matrix U ′ takes O(Tmat(n
a, na, c)) time.

3. Multiplying a 6na × c matrix BU ′ with a c× c matrix N takes O(Tmat(n
a, c, c)) time.

4. Multiplying a c× 6na matrix U> with a 6na × n matrix E takes O(Tmat(c, n
a, n)) time.

5. Multiplying a 6na × c matrix BU ′N with a c× n matrix U>E takes time O(Tmat(n
a, c, n)).

Next, we compute N2 ∈ R6na×n. Multiplying a 6na × 6na matrix Btmp with a k̃-row-sparse
6na × n matrix (Lr[(M∂S\S)>]− Lr[(MS′)

>]) takes O(Tmat(n
a, k̃, n) time.

So in total computing Etmp takes time

O(Tmat(c, n
a, na) + Tmat(n

a, na, c) + Tmat(n
a, c, c) + Tmat(c, n

a, n) + Tmat(n
a, c, n))

= O(Tmat(n, n
a, c)) = O(Tmat(n, n

a, k̃)),

where the first step follows since c = O(k̃) ≤ O(na) by Claim E.19), and k̃ ≤ 2na.

Proof of Lemma E.18. Overall time. So in total the running time of procedure PartialMatrix-
Update (Algorithm 14) is

O(k̃na + Tmat(k̃, n
a, na) + n+ n2a + Tmat(n, n

a, k̃)) = O(Tmat(n, n
a, k̃)).

88

E.5 Running time of VectorUpdate

The goal of this section is to prove Lemma E.27. We will use the following sparsity guarantees that
are proved in Lemma E.1.

Fact E.26 (Sparsity guarantees for VectorUpdate). When entering VectorUpdate (Algo-
rithm 15) we have the following sparsity guarantee (from Table 12 and Table 13):

1. ‖Γ‖0 = ‖
√
Ṽ −

√
V ‖0 ≤ na, 2. ‖f(happr)− f(g)‖0 = p.

Lemma E.27 (Running time of VectorUpdate). The procedure VectorUpdate (Algorithm 15)
takes

1. O(pn1+o(1)) time to compute

βtmp
1 ← β1 +Q

√
V (f(happr)− f(g)), βtmp

2 ← β2 +M
√
V (f(happr)− f(g)),

2. O(n) time to compute

ξtmp ← (
√
Ṽ −

√
V)f(happr),

3. O(n2a) time to compute

γtmp
1 ← B · Lr[βtmp

2,S] +B · Lr[(MS)>] · ξtmp,

4. O(n2a) time to compute

γtmp
2 ← ΓM · ξtmp.

Overall, the running time of procedure VectorUpdate is

O(n2a + pn1+o(1)).

Claim E.28 (Part 1 of Lemma E.27). In the procedure VectorUpdate (Algorithm 15), it takes
O(pn1+o(1)) time to compute

βtmp
1 ← β1 +Q

√
V (f(happr)− f(g)), βtmp

2 ← β2 +M
√
V (f(happr)− f(g)).

Proof. We compute βtmp
1 as follows.

1. Multiplying a n × n diagonal matrix
√
V with a p-sparse vector f(happr) − f(g) (Part 2 of

Fact E.26) takes O(p) time, and the resulting vector
√
V (f(happr)− f(g)) is also p-sparse.

2. Multiplying a n1+o(1)×nmatrixQ with a p-sparse vector
√
V (f(happr)−f(g)) takesO(pn1+o(1))

time.

So the total running time to compute βtmp
1 is O(pn1+o(1)).

Following the same reason and note that M has size n × n, we can compute βtmp
2 in O(pn) ≤

O(pn1+o(1)) time.

Claim E.29 (Part 2 of Lemma E.27). In the procedure VectorUpdate (Algorithm 15), it takes
O(n) time to compute ξtmp ← (

√
Ṽ −
√
V)f(happr). And the computed n×1 vector ξtmp is na-sparse.

89

Proof. ξtmp is computed by multiplying a n × n diagonal matrix (
√
Ṽ −

√
V) with a n × 1 vector

f(happr), and this takes O(n) time. We also have

‖ξtmp‖0 = ‖(
√
Ṽ −

√
V)f(happr)‖0 ≤ min{‖

√
Ṽ −

√
V ‖0, ‖f(happr)‖0} ≤ na,

where the last step follows from Part 1 of Fact E.26.

Claim E.30 (Part 3 of Lemma E.27). In the procedure VectorUpdate (Algorithm 15), it takes
O(n2a) time to compute γtmp

1 ← B · Lr[βtmp
2,S] +B · Lr[(MS)>] · ξtmp.

Proof. The running time of computing γtmp
1 can be split into the following parts:

1. Multiplying a 6na × 6na matrix B with a 6na × 1 vector Lr[βtmp
2,S] takes O(n2a) time.

2. Multiplying a 6na × n matrix Lr[(MS)>] with a na-sparse n × 1 vector ξtmp (Claim E.29)
takes O(n2a) time.

3. Multiplying a 6na × 6na matrix B with a 6na × 1 vector Lr[(MS)>]ξtmp takes O(n2a) time.

The total running time to compute γtmp
1 is O(n2a).

Claim E.31 (Part 4 of Lemma E.27). In the procedure VectorUpdate (Algorithm 15), it takes
O(n2a) time to compute γtmp

2 ← ΓM · ξtmp.

Proof. We compute γtmp
2 ∈ Rn by multiplying a na-sparse n × n diagonal matrix Γ (Part 1 of

Fact E.26) with a n × n matrix M and then with a na-sparse n × 1 vector ξtmp ((Claim E.29)),
which takes O(n2a) time.

Proof of Lemma E.27. Overall, the total running time to compute γtmp
1 is O(pn1+o(1) + n2a) =

O(pn1+o(1)), since we always have p ≥ na.

E.6 Running time of PartialVectorUpdate

The goal of this section is to prove Lemma E.33. We will use the following sparsity guarantees that
are proved in Lemma E.1.

Fact E.32 (Sparsity guarantees for PartialVectorUpdate). When entering PartialVec-
torUpdate (Algorithm 16) we have the following sparsity guarantee (from Table 12 and Table 13):

1. ‖Γ‖0 ≤ na, 2. ‖f(happr)− f(g̃)‖0 = p̃ ≤ 2na.

Lemma E.33 (Running time of PartialVectorUpdate). In the procedure PartialVectorUp-
date (in Algorithm 16) it takes

1. O(n) time to compute

ξtmp ←
√
Ṽ f(happr)−

√
V f(g),

2. O(n2a + p̃na) time to compute

γtmp
1 ← γ1 +B · Lr[(MS)>] ·

√
Ṽ
(
f(happr)− f(g̃)

)
,

90

3. O(p̃na) time to compute

γtmp
2 ← γ2 + ΓM

√
Ṽ
(
f(happr)− f(g̃)

)
.

Overall, the procedure PartialVectorUpdate takes O(n2a + p̃na) time.

Claim E.34 (Part 1 of Lemma E.33). In the procedure PartialVectorUpdate (Algorithm 16),
it takes O(n) time to compute ξtmp ←

√
Ṽ f(happr)−

√
V f(g).

Proof. ξtmp is computed by multiplying the n × n diagonal matrices
√
Ṽ and

√
V with the n × 1

vectors f(happr) and f(g) respectively, and this takes O(n) time.

Claim E.35 (Part 2 of Lemma E.33). In the procedure PartialVectorUpdate (Algorithm 16),
it takes O(n2a + p̃na) time to compute γtmp

1 ← γ1 +B · Lr[(MS)>] ·
√
Ṽ
(
f(happr)− f(g̃)

)
.

Proof. The running time of computing γtmp
1 can be split into the following parts:

1. Multiplying a n×n diagonal matrix
√
Ṽ with a p̃-sparse n×1 vector (f(happr)−f(g̃)) (Part 2

of Fact E.32) takes O(p̃) time, and the resulting vector
√
Ṽ (f(happr)− f(g̃)) is also p̃-sparse.

2. Multiplying a 6na × n matrix Lr[(MS)>] with a p̃-sparse n × 1 vector
√
Ṽ (f(happr) − f(g̃))

takes O(p̃na) time.

3. Multiplying a 6na×6na matrix B with a 6na×1 vector Lr[(MS)>]
√
Ṽ (f(happr)−f(g̃)) takes

O(n2a) time.

4. Adding two n× 1 vectors together takes O(n) time.

So in total the running time to compute γtmp
1 is O(n2a + p̃na).

Claim E.36 (Part 3 of Lemma E.33). In the procedure PartialVectorUpdate (Algorithm 16),
it takes O(p̃na) time to compute γtmp

2 ← γ2 + ΓM
√
Ṽ
(
f(happr)− f(g̃)

)
.

Proof. The running time of computing γtmp
2 can be split into the following parts:

1. Multiplying a n×n diagonal matrix
√
Ṽ with a p̃-sparse n×1 vector (f(happr)−f(g̃)) (Part 2

of Fact E.32) takes O(p̃) time, and the resulting vector
√
Ṽ (f(happr)− f(g̃)) is also p̃-sparse.

2. Multiplying a na-sparse n × n diagonal matrix Γ (Part 1 of Fact E.32) with a n × n matrix
M and then with a p̃-sparse n× 1 vector

√
Ṽ (f(happr)− f(g̃)) takes O(p̃na) time.

3. Adding two n× 1 vectors together takes O(n) time.

So in total the running time to compute γtmp
2 is O(p̃na).

Proof of Lemma E.33. Overall, the running time of PartialVectorUpdate (Algorithm 16) is
O(n2a + p̃na).

91

E.7 Running time of Initialize

The goal of this section is to prove Lemma E.37.

Lemma E.37 (Running time of Initialize). The procedure Initialize (in Algorithm 5) takes
O(nω+o(1)) time.

Proof. The bottleneck in Initialize is to compute M = A>(AV A>)−1A and Q = R
√
VM . Other

operations take at most O(n2+o(1)) time.
Computing M involves matrix multiplication of two n × n matrix, and inversion of a n × n

matrix. Both of them can be done in O(nω+o(1)) time.
Computing Q involves matrix multiplication of n1+o(1) × n matrix with a n × n matrix. This

can be done in O(nω+o(1)) time.
Therefore, the total running time is O(nω+o(1)).

F Data structure : amortized time

In this section we provide an amortized analysis of the four procedures MatrixUpdate, Partial-
MatrixUpdate, VectorUpdate, and PartialVectorUpdate. Our amortized analysis builds
upon the amortized analysis of [CLS19].

F.1 Definitions and Preliminaries

Our algorithm makes T calls to the procedure UpdateQuery. For clarity, we define some notations
with superscripts that represent the number of iterations. For the input diagonal matrix W and its
approximations V and Ṽ , we define the following notations:

Definition F.1 (Definitions of sequences {w(j)}Tj=0, {v(j)}Tj=0 and {ṽ(j)}Tj=0). When initializing,
we use v(0) and ṽ(0) to denote the initial values of the data structure members v and ṽ. Note that
v(0) = ṽ(0) = w(0).

In the j-th iteration, we use w(j+1) to denote the input wnew of UpdateQuery. Since the
procedure Update might update both v and ṽ, we use v(j+1) and ṽ(j+1) to denote the new values of
v and ṽ respectively.

We define similar notations for the input query vector h and its approximations g and g̃:

Definition F.2 (Definitions of sequences {h(j)}Tj=0, {g(j)}Tj=0 and {g̃(j)}Tj=0). When initializing,
we use g(0) and g̃(0) to denote the initial values of the data structure members g and g̃. Note that
g(0) = g̃(0) = h(0).

In the j-th iteration, we use h(j+1) to denote the input hnew of UpdateQuery. Since the
procedure Update might update both g and g̃, we use g(j+1) and g̃(j+1) to denote the new values of
g and g̃ respectively.

The following four notations will be helpful to prove the amortized cost of the procedures:

Definition F.3 (Definition of k, k̃, p, and p̃). In the j-th iteration, we define the following notations:

1. kj and k̃j denote outputs k and k̃ of UpdateV on Line 4 of UpdateQuery (Algorithm 8).

2. pj and p̃j denote outputs p and p̃ of UpdateG on Line 5 of UpdateQuery (Algorithm 8),

92

We also define a function ψ that approximates absolute function |x| around 0. It will be used
to define the potential functions for amortized analysis.

Definition F.4 (Definition of ψ function). Let εmp ∈ (0, 1/10). Let ψ : R→ R be defined by

ψ(x) =





|x|2
2εmp

, |x| ∈ [0, εmp];

εmp − (2εmp−|x|)2

2εmp
, |x| ∈ (εmp, 2εmp];

εmp, |x| ∈ (2εmp,+∞).

We also make the following assumption about the values of εmp and εfar:

Assumption F.5. The error parameters satisfy 0 < εmp < 1/10 and 0 < εfar <
εmp

100 logn .

F.2 Facts based on Adjust and two level of SoftThreshold

The following facts are direct results from the algorithms, and they are proved solely based on the
algorithms. They will be useful when proving the lemmas of amortized running time.

Fact F.6 (Characterization of k̃ (Line 4), ṽtmp (Line 4), ṽnew (Line 5) of UpdateV). In the j-th
iteration, ∀i ∈ [n], let yi = |w(j+1)

i /ṽ
(j)
i −1|. Let π : [n]→ [n] be the sorting such that yπ(i) ≥ yπ(i+1).

We have the following guarantees from the description of procedures SoftThreshold(Algorithm 7)
and Adjust (Algorithm 6).

1. {i ∈ [n] : ψ(w
(j+1)
i /ṽ

(j)
i − 1) ≥ εmp/2} ⊆ π([k̃])

2. ṽtmp
i =

{
w

(j+1)
i , if i ∈ π([k̃]);

ṽ
(j)
i , otherwise.

3. ṽnew
i =





v
(j)
i , if i ∈ π([k̃]) and w

(j+1)
i ∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

w
(j+1)
i , if i ∈ π([k̃]) but w

(j+1)
i /∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

ṽ
(j)
i , otherwise.

4. ∀i /∈ π([k̃]), |w(j+1)
i /ṽnew

i − 1| < εmp.

Proof. Part 1 and 2. In Line 4 in Procedure UpdateV(Algorithm 9), we create ṽtmp, k̃ by calling
procedure SoftThreshold(yi ← ψ(w

(j+1)
i /ṽ

(j)
i − 1), w(j+1), ṽ(j), εmp/2, n

ã).
From the initial assignment of k̃ on Line 5 of SoftThreshold(Algorithm 7), and the fact that

the repeat-loop (Line 7 to 9) only increases k, we know that for any i such that yi = ψ((wnew
i −

ṽi)/ṽi) ≥ εmp/2, i ∈ π([k̃]).
By how we calculate ṽtmp in SoftThreshold (Line 11 of Algorithm 7), Part 2 follows directly.

Part 3. We get ṽnew by calling procedure Adjust
(
ṽtmp, ṽ(j), v(j), εfar

)
(Line 5 in Procedure Up-

dateV, Algorithm 9). By Part 2 and the rule of how we calculate ṽnew
i (see Line 5 to 8 in Proce-

dure Adjust(Algorithm 6)):

ṽnew
i ← ṽtmp

i

if ṽtmp
i 6= ṽ

(j)
i and ṽtmp

i ∈ [(1− εfar)v
(j)
i , (1 + εfar)v

(j)
i] then

ṽnew
i ← v

(j)
i

It is easy to see that for i /∈ π([k̃]), ṽtmp
i = ṽ

(j)
i , so ṽnew

i = ṽtmp
i = ṽ

(j)
i . And for i ∈ π([k̃]), if

w
(j+1)
i ∈ [(1−εfar)v

(j)
i , (1+εfar)v

(j)
i], then ṽnew

i is adjusted to be v(j)
i , otherwise ṽnew

i = ṽtmp
i = w

(j+1)
i .

93

Part 4. From Part 3, ṽnew
i has three possible values. If ṽnew

i = w
(j+1)
i , we have |w(j+1)

i /ṽnew
i −1| = 0.

If ṽnew
i = v

(j)
i , we have w(j+1)

i ∈ [(1− εfar)v
(j)
i , (1 + εfar)v

(j)
i]. So |w(j+1)

i /ṽnew
i − 1| < εfar < εmp

(Assumption F.5).
If ṽnew

i = ṽ
(j)
i , we have i /∈ π([k̃]), then by Part 1 we know that ψ(w

(j+1)
i /ṽ

(j)
i − 1) < εmp/2. By

definition of ψ function (Definition F.4), if ψ(x) < εmp/2, we have |x| < εmp.

Fact F.7 (Characterization of k (Line 7), vnew (Line 7) of UpdateV). In the j-th iteration,
∀i ∈ [n], let yi = ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1). Let π : [n] → [n] be the sorting

such that yπ(i) ≥ yπ(i+1). We have the following guarantees from the description of procedure
SoftThreshold (Algorithm 7).

1.
{
i ∈ [n] : ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1) ≥ ε2far/(32εmp)

}
⊆ π([k])

2. vnew
i =

{
w

(j+1)
i , if i ∈ π([k]);

v
(j)
i , otherwise.

3. ∀i /∈ π([k]), |w(j+1)
i /vnew

i − 1| < εmp.

Proof. Part 1 and 2. From Line 7 of UpdateV (Algorithm 9) vnew ∈ Rn is the output of

SoftThreshold(yi ← ψ(w
(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1), w(j+1), v(j),

ε2far

32εmp
, na).

The statements then follow from a similar proof as that of Part 1 and 2 of Fact F.6.
Part 3. From Part 2, vnew

i has two possible values. If vnew
i = w

(j+1)
i , we have |w(j+1)

i /vnew
i −1| = 0.

If vnew
i = v

(j)
i , we have i /∈ π([k]), then by Part 1 we know that ψ(w

(j+1)
i /v

(j)
i − 1) <

ε2far/(32εmp) < εmp/2 (Assumption F.5). Then |w(j+1)
i /v

(j)
i − 1| < εmp by Definition F.4.

Fact F.8 (ṽ is far away from v). For any j ∈ {0, ..., T}, for any i ∈ [n], either v(j)
i = ṽ

(j)
i , or

|ṽ(j)
i /v

(j)
i − 1| > εfar.

Proof. We prove it by induction. When initializing, we set v(0) = ṽ(0) (Line 14 of Initialize,
Algorithm 5), so the statement is true when j = 0.

In later iterations, v and ṽ can only be modified by procedure UpdateV. And in UpdateV
(Algorithm 9), the if branch on Line 6 ensures that we can enter at most one of MatrixUpdate
or PartialMatrexUpdate. Now we analyze iteration j by looking into these two cases.
Case 1. When we enter Procedure MatrixUpdate, we always set v ← vnew and ṽ ← vnew (Line 13
of Algorithm 13). So v(j+1) = ṽ(j+1), and the statement holds in this case.
Case 2. When we enter Procedure PartialMatrexUpdate, we know we did not enter Proce-
dure MatrixUpdate due to the else-if branch, and we do not modify v in PartialMatrexUp-
date, so v does not change, i.e., v(j+1) = v(j).

And for ṽ, we set ṽ(j+1) ← ṽnew (Line 16 in Algorithm 14), where ṽnew is defined on Line 5 of
Procedure UpdateV(Algorithm 9). By Part 3 of Fact F.6 we have

ṽ
(j+1)
i ← ṽnew

i =





v
(j)
i , if i ∈ π([k̃]) and w

(j+1)
i ∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

w
(j+1)
i , if i ∈ π([k̃]) but w

(j+1)
i /∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

ṽ
(j)
i , otherwise.

In the first case, we have ṽ(j+1)
i = v

(j)
i = v

(j+1)
i , and the lemma statement holds.

94

In the second case, we have |ṽ(j+1)
i /v

(j+1)
i −1| = |w(j+1)

i /v
(j)
i −1| > εfar, and the lemma statement

is also true.
In the third case we have ṽ(j+1) = ṽ(j). The lemma statement is true by induction hypothesis.

The following corollary follows from the above fact and triangle inequality:

Corollary F.9. For any j ∈ {0, . . . , T} and any i ∈ [n], if v(j)
i 6= ṽ

(j)
i , then ∀x ∈ R, we have

|x− v
(j)
i

v
(j)
i

|+ |x− ṽ
(j)
i

ṽ
(j)
i

| ≥ εfar/2.

Proof. Since v(j)
i 6= ṽ

(j)
i , from Fact F.8, we have

|ṽ(j)
i /v

(j)
i − 1| > εfar. (47)

We consider the following two cases depend on the value of |ṽ(j)
i /v

(j)
i |:

Case 1, |ṽ(j)
i /v

(j)
i | ≤ 1: We have

|x− ṽ
(j)
i

ṽ
(j)
i

|+ |x− v
(j)
i

v
(j)
i

| = |x− ṽ
(j)
i

v
(j)
i

| · |v
(j)
i

ṽ
(j)
i

|+ |x− v
(j)
i

v
(j)
i

| ≥ |x− ṽ
(j)
i

v
(j)
i

|+ |x− v
(j)
i

v
(j)
i

| ≥ | ṽ
(j)
i − v

(j)
i

v
(j)
i

| > εfar.

where the second step follows from the assumption of Case 1 that |ṽ(j)
i /v

(j)
i | ≤ 1, the third step

follows from triangle inequality, and the fourth step follows from Eq. (47).
Case 2, |ṽ(j)

i /v
(j)
i | > 1: We have

| ṽ
(j)
i − v

(j)
i

ṽ
(j)
i

| = |(ṽ
(j)
i − v

(j)
i)/v

(j)
i |

|ṽ(j)
i /v

(j)
i |

≥ |(ṽ(j)
i − v

(j)
i)/v

(j)
i |

|(ṽ(j)
i − v

(j)
i)/v

(j)
i |+ 1

≥ εfar

εfar + 1
≥ εfar/2.

where the second step follows from triangle inequality, the third step follows from Eq. (47) and the
fact that function x

x+1 is monotonically increasing, and the last step follows from εfar ≤ 1.
Then similar as Case 1 we have

|x− ṽ
(j)
i

ṽ
(j)
i

|+ |x− v
(j)
i

v
(j)
i

| = |x− ṽ
(j)
i

ṽ
(j)
i

|+ |x− v
(j)
i

ṽ
(j)
i

| · | ṽ
(j)
i

v
(j)
i

| ≥ |x− ṽ
(j)
i

ṽ
(j)
i

|+ |x− v
(j)
i

ṽ
(j)
i

| ≥ | ṽ
(j)
i − v

(j)
i

ṽ
(j)
i

| > εfar/2.

Fact F.10 (Lower bound on kj). In the j-th iteration, we have that either kj = 0, or kj ≥ na.
Proof. Recall that kj is the second returned value by UpdateV on Line 4 of UpdateQuery
(Algorithm 8). If in UpdateV (Algorithm 9) we do not enter the if-branch on Line 6, then by the
return clauses on Line 19 and Line 22, we have that kj = 0.

Now we only need to prove that when we enter the if-branch on Line 6 of UpdateV (Algo-
rithm 9), the returned value kj = k ≥ na. When the if-clause on Line 6 is true, we have

| supp(ṽnew − v(j))| ≥ na, (48)

where ṽnew is defined on Line 5. ∀i ∈ [n], let yi = ψ(w
(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1). Let

π : [n]→ [n] be the sorting such that yπ(i) ≥ yπ(i+1). From Part 1 of Fact F.7, we have
{
i ∈ [n] : ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1) ≥ ε2far/(32εmp)

}
⊆ π([k]). (49)

95

Now it suffices to prove

supp(ṽnew − v(j)) ⊆
{
i : ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1) ≥ ε2far/(32εmp)

}
, (50)

because then we would have

kj = k = |π([k])| ≥
∣∣∣
{
i : ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1) ≥ ε2far/(32εmp)

}∣∣∣
≥ | supp(ṽnew − v(j))| ≥ na,

where the first step follows from the definition of kj , the third step follows from Eq. (49), the fourth
step follows from Eq. (50), and the fifth step follows from Eq. (48).

Now it remains to prove Eq. (50). We first prove that

supp(ṽnew − v(j)) ⊆
{
i : |w(j+1)

i /v
(j)
i − 1|+ |w(j+1)

i /ṽ
(j)
i − 1| ≥ εfar/2

}
.

Using Part 3 of Fact F.6 we know that ṽnew
i can be v(j)

i , w(j+1)
i , or ṽ(j)

i . So for any i ∈ supp(ṽnew −
v(j)), since ṽnew

i 6= v
(j)
i , we know that ṽnew

i is either ṽ(j)
i or w(j+1)

i . We consider these two cases:

1. ṽnew
i = ṽ

(j)
i 6= v

(j)
i . Using Corollary F.9, and plugging in x ← w

(j+1)
i we directly have that

|w(j+1)
i /v

(j)
i − 1|+ |w(j+1)

i /ṽ
(j)
i − 1| ≥ εfar/2.

2. ṽnew
i = w

(j+1)
i 6= v

(j)
i . By Part 3 of Fact F.6 we have w(j+1)

i /∈ [(1 − εfar)v
(j)
i , (1 + εfar)v

(j)
i],

which then gives us |w(j+1)
i /v

(j)
i − 1| ≥ εfar ≥ εfar/2.

Thus we always have that ∀i ∈ supp(ṽnew − v(j)), |w(j+1)
i /v

(j)
i − 1|+ |w(j+1)

i /ṽ
(j)
i − 1| ≥ εfar/2. So

at least one of the following is true:

|w(j+1)
i /v

(j)
i − 1| ≥ εfar/4 or |w(j+1)

i /ṽ
(j)
i − 1| ≥ εfar/4.

Without loss of generality, assume |w(j+1)
i /v

(j)
i − 1| ≥ εfar

4 . We have

ψ(w
(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1) ≥ ψ(w

(j+1)
i /v

(j)
i − 1) ≥ ψ(εfar/4) = ε2far/(32εmp).

where the first two steps follow from ψ is non-negative and non-decreasing, and the third step follows
from ψ(εfar/4) = ε2far/(32εmp) (see Definition F.4 of ψ). Thus this proves Eq. (50).

Fact F.11 (Lower bound on k̃j). In the j-th iteration, we have that either k̃j = 0, or k̃j ≥ nã.

Proof. Recall that k̃j is the third returned value by UpdateV on Line 4 of UpdateQuery (Algo-
rithm 8). If in UpdateV (Algorithm 9) we do not enter the else-if branch on Line 14, then by the
return clauses on Line 12 and Line 22, we have that k̃j = 0.

Now we only need to prove that when we enter the else-if branch on Line 14 of UpdateV
(Algorithm 9), the returned value k̃j = k̃ ≥ nã. When the if-clause on Line 14 is true, we have

| supp(ṽnew − ṽ(j))| ≥ nã.

From Part 3 of Fact F.6, we have | supp(ṽnew − ṽ(j))| ⊆ π([k̃]). Therefore,

k̃j = k̃ ≥ | supp(ṽnew − ṽ(j))| ≥ nã.

96

Fact F.12 (Characterization of MatrixUpdate). Assume Assumption F.5 is true. In the j-th
iteration, ∀i ∈ [n], let yi = ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1). Let π : [n]→ [n] be the sorting

such that yπ(i) ≥ yπ(i+1). If kj > 0, we have the following:

1. kj satisfies that either kj = n or yπ(kj) < (1− 1/ log n) · yπ(kj/1.5).

2. yπ(kj) ≥ ε2far/(3200εmp).

3. After the procedure MatrixUpdate,
{
ṽ

(j+1)
π(i) = v

(j+1)
π(i) = w

(j+1)
π(i) , ∀i ≤ kj ;

ṽ
(j+1)
π(i) = v

(j+1)
π(i) = v

(j)
π(i) = ṽ

(j)
π(i), ∀i > kj .

4. The running time of MatrixUpdate in the jth iteration is Tmat(kj , n
1+o(1), n).

Proof. Part 1 and Part 2. Note that as long as kj > 0, kj is the k computed in Line 7 in
Procedure UpdateV(Algorithm 9). By Fact F.10 and kj 6= 0, we have kj ≥ na. Therefore, when
calculating k using one call of SoftThreshold (Line 7 in Algorithm 9), we must have entered
the repeat-until branch (Line 7 to 9 in Algorithm 7). So kj must satisfy the end condition of the
repeat-loop that either kj = n or yπ(kj) < (1− 1/ log n) · yπ(kj/1.5). This finishes the proof of Part 1.

Further, let k∗ denote the largest index such that yπ(k∗) ≥ ε2far/(32εmp). We have

yπ(kj) ≥ (1− 1/ log n)log1.5 kj−log1.5 k
∗ · yπ(k∗) ≥ (1− 1/ log n)log1.5 n · ε2far

32εmp
≥ ε2far

3200εmp
,

where the first step follows from the repeat-loop (Line 8 in Algorithm 7), the second step follows
from log1.5 kj − log1.5 k

∗ ≤ log1.5 n and yπ(k∗) ≥ ε2far/(32εmp), and the last step follows from the fact
that for n ≥ 4, (1− 1/ log n)log1.5 n ≥ 1/100. This finishes the proof of Part 2.
Part 3. From Line 13 of MatrixUpdate (Algorithm 13) we have that v(j+1) = ṽ(j+1) = vnew.
Using Part 2 of Fact F.7, we have that

{
vnew
π(i) = w

(j+1)
π(i) , ∀i ≤ kj ;

vnew
π(i) = v

(j)
π(i), ∀i > kj ,

(51)

so we have
{
ṽ

(j+1)
π(i) = v

(j+1)
π(i) = w

(j+1)
π(i) , ∀i ≤ kj ;

ṽ
(j+1)
π(i) = v

(j+1)
π(i) = v

(j)
π(i), ∀i > kj .

Note that by Part 1, either kj = n or yπ(kj) < (1− 1/ log n) · yπ(kj/1.5). If kj = n, there is no i > kj ,
so the proof is already finished.

Otherwise, for any i > kj , we prove that ṽ(j)
π(i) = v

(j)
π(i) by contradiction. If ṽ(j)

π(i) 6= v
(j)
π(i), using

Corollary F.9 and plugging in x ← w
(j+1)
π(i) , we have |w(j+1)

π(i) /v
(j)
π(i) − 1| + |w(j+1)

π(i) /ṽ
(j)
π(i) − 1| ≥ εfar/2,

so at least one of the following is true:

|w(j+1)
π(i) /v

(j)
π(i) − 1| ≥ εfar/4 or |w(j+1)

π(i) /ṽ
(j)
π(i) − 1| ≥ εfar/4.

Thus we have

yπ(i) = ψ(w
(j+1)
π(i) /v

(j)
π(i) − 1) + ψ(w

(j+1)
π(i) /ṽ

(j)
π(i) − 1) ≥ ψ(εfar/4) = ε2far/(32εmp),

97

where the first two steps follow from ψ is non-negative and non-decreasing, and the third step follows
from ψ(εfar/4) = ε2far/(32εmp) (see Definition F.4 of ψ).

Then we have yπ(kj) ≥ yπ(i) ≥ ε2far/(32εmp) since y is decreasingly sorted according to π and
i > kj . But from the initial assignment of kj on Line 5 of SoftThreshold(Algorithm 7), and
that kj can only strictly increase afterwards, we have that yπ(kj) < ε2far/(32εmp). This leads to

contradiction. Thus we have ṽ(j+1)
π(i) = v

(j+1)
π(i) = v

(j)
π(i) = ṽ

(j)
π(i), ∀i > kj .

Part 4. This directly follows from Lemma E.12 which proves the running time of MatrixUpdate
per call.

Fact F.13 (Characterization of PartialMatrixUpdate). Assume Assumption F.5 is true. In
the j-th iteration, ∀i ∈ [n], let yi = ψ(w

(j+1)
i /ṽ

(j)
i − 1). Let π : [n] → [n] be the sorting such that

yπ(i) ≥ yπ(i+1). If k̃j > 0, we have the following:

1. k̃j satisfies that either k̃j = n or y
π(k̃j)

< (1− 1/ log n) · y
π(k̃j/1.5)

.

2. y
π(k̃j)

≥ εmp/100.

3. After the procedure PartialMatrixUpdate, ∀i ∈ π([k̃j]), ṽ
(j+1)
i satisfies

ψ(w
(j+1)
i /ṽ

(j+1)
i − 1) ≤ εmp/(200 log n), (52)

and ∀i /∈ π([k̃j]), ṽ
(j+1)
i = ṽ

(j)
i . Also, ∀i ∈ [n], v(j+1)

i = v
(j)
i .

4. The running time of PartialMatrixUpdate in the j-th iteration is Tmat(k̃j , n
a, na).

Proof. Part 1 and 2. Note that as long as k̃j > 0, k̃j is the k̃ computed in Line 4 in Procedure Up-
dateV (Algorithm 9). By Fact F.11, we have k̃ ≥ nã. So by a similar argument as that of the
proof Part 1 and 2 of Fact F.12, we can prove Part 1 and 2 of this fact.
Part 3. Because we do not modify v in PartialMatrixUpdate, so ∀i ∈ [n], v(j+1)

i = v
(j)
i .

In procedure PartialMatrixUpdate, we set ṽ(j+1) ← ṽnew (Line 16 of Algorithm 14), where
ṽnew is created by one call to SoftThreshold (Line 4 in UpdateV, Algorithm 8). By Part 3 of
Fact F.6, we have

ṽnew
i ←





v
(j)
i , if i ∈ π([k̃]) and w

(j+1)
i ∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

w
(j+1)
i , if i ∈ π([k̃]) but w

(j+1)
i /∈ [(1− εfar)v

(j)
i , (1 + εfar)v

(j)
i];

ṽ
(j)
i , otherwise.

For i /∈ π([k̃j]), ṽ
(j+1)
i = ṽ

(j)
i .

For i ∈ π([k̃j]), if ṽ
(j+1)
i = ṽnew

i = w
(j+1)
i , Eq. (52) is trivially true since ψ(w

(j+1)
i /ṽ

(j+1)
i −1) = 0.

Otherwise ṽ(j+1)
i = ṽnew

i = v
(j)
i and w(j+1)

i ∈ [(1− εfar)v
(j)
i , (1 + εfar)v

(j)
i], we have:

ψ(w
(j+1)
i /ṽ

(j+1)
i − 1) = ψ(w

(j+1)
i /v

(j)
i − 1) ≤ ψ(εfar) = ε2far/(2εmp) ≤ (εmp/(200 log n)),

where the last step is by εfar ≤ εmp/(100 log n) (Assumption F.5).
Part 4. This directly follows from Lemma E.18 which proves the running time of PartialMa-
trixUpdate per call.

Corollary F.14. Assume Assumption F.5 is true. In the j-th iteration, if we enter PartialMa-
trixUpdate, we must have ∀i ∈ [n], ψ(w

(j+1)
i /ṽ

(j+1)
i − 1) ≤ ψ(w

(j+1)
i /ṽ

(j)
i − 1).

98

Proof. If we enter PartialMatrixUpdate, we must have k̃j > 0. By Part 2,3 of Fact F.13, there
is some permutation π such that ∀i ∈ π([k̃j]),

ψ(w
(j+1)
i /ṽ

(j)
i − 1) ≥ εmp/100 and ψ(w

(j+1)
i /ṽ

(j+1)
i − 1) ≤ εmp/(200 log n) < εmp/100.

And also by Part 3 of Fact F.13, ∀i /∈ π([k̃j]), ṽ
(j+1)
i = ṽ

(j)
i . Therefore, ∀i /∈ π([k̃j]), we have that

ψ(w
(j+1)
i /ṽ

(j+1)
i − 1) = ψ(w

(j+1)
i /ṽ

(j)
i − 1).

F.3 Amortized analysis for MatrixUpdate

F.3.1 Definitions

Definition F.15 (x and y for MatrixUpdate). For any j ∈ {0, 1, . . . , T −1}, and for any i ∈ [n],
we define x(j)

i and y(j)
i as follows:

x
(j)
i := ψ(w

(j)
i /v

(j)
i − 1) + ψ(w

(j)
i /ṽ

(j)
i − 1), y

(j)
i := ψ(w

(j+1)
i /v

(j)
i − 1) + ψ(w

(j+1)
i /ṽ

(j)
i − 1),

where v(j), ṽ(j) and w(j) are defined as of Definition F.1.

Note that the difference between x
(j)
i and y

(j)
i is that w changes from w(j) to w(j+1). The

difference between y(j)
i and x(j+1)

i is that v and ṽ changes from v(j), ṽ(j) to v(j+1), ṽ(j+1).
For convenience, we define permutations of the coordinates that are sorted according to x or y.

Definition F.16 (Sorting permutations for MatrixUpdate). For any j ∈ {0, 1, . . . , T}, let τj be
the permutation such that x(j)

τj(i)
≥ x(j)

τj(i+1), and let πj be the permutation such that y(j)
πj(i)
≥ y(j)

πj(i+1).
When it is clear from the context that we are only arguing about the j-th iteration, for simplicity

we assume the coordinates of vector x(j) ∈ Rn are sorted such that x(j)
i ≥ x

(j)
i+1. And we use τ and

π to denote the permutations such that x(j+1)
τ(i) ≥ x

(j+1)
τ(i+1) and y(j)

π(i) ≥ y
(j)
π(i+1).

Definition F.17 (g for MatrixUpdate). For some a ≤ α, where α is the dual exponent of matrix
multiplication, we define g ∈ Rn as follows:

gi =

{
n−a, if i ≤ na;
i
ω−2
1−a−1 · n−

a(ω−2)
1−a , if i ∈ (na, n].

Note that g is non-increasing. For all kj ∈ (na, n], (kj · gkjn2) = k
ω−2
1−a
j · n2−a(ω−2)

1−a is an upper
bound of the running time Tmat(n, n, kj) of multiplying a n × n matrix with a n × kj matrix. For
more details please refer to [GU18].

Definition F.18 (Potential function Φ for MatrixUpdate). We define the potential function in
the j-th iteration as

Φj =
n∑

i=1

gi · x(j)
τj(i)

.

Note that we always have Φj ≥ 0 since ∀i, gi and x(j)
i are both non-negative.

99

F.3.2 Main result

Lemma F.19 (Amortized time for MatrixUpdate). Let sequences {w(j)}Tj=0, {v(j)}Tj=0, {ṽ(j)}Tj=0

be defined as of Definition F.1, let kj be defined as of Definition F.3, and let {x(j)}Tj=0, {y(j)}Tj=0,
g, Φ be defined as of Definition F.15, F.17 and F.18. If we further have the condition that the input
sequence satisfies the following: ∀j ∈ {0, ..., T − 1}
n∑

i=1

(E[w
(j+1)
i |w(j)]/w

(j)
i − 1)2 ≤ C2

1 ,

n∑

i=1

(E[(w
(j+1)
i /w

(j)
i − 1)2 | w(j)])2 ≤ C2

2 , |w(j+1)
i /w

(j)
i − 1| ≤ 1/4.

Then, we have that in expectation

1

T

T∑

j=1

kjgkj = O
(

(
C1εmp

ε2far

+
C2

ε2far

) · log n · ‖g‖2
)
.

Further, combining with Lemma E.12, the expected amortized running time per iteration of
MatrixUpdate is

O
(

(
C1εmp

ε2far

+
C2

ε2far

) · (n2−a/2 + nω−1/2) log n
)
.

Proof. First note that in the j-th iteration, the value of the potential Φj depends on w(j), v(j) and
ṽ(j). And the value of v(j) and ṽ(j) are affected by both MatrixUpdate and PartialMatrix-
Update. We upper bound how much the potential function can increase due to changing w(j) to
w(j+1) in Section F.3.3, and we also lower bound how much the potential function can decrease
because of changing v(j) to v(j+1) and ṽ(j) to ṽ(j+1) in Section F.3.4.

In the beginning v(0) = ṽ(0) = w(0), so Φ0 = 0. Also note that Φj ≥ 0, ∀j ∈ [T]. Thus we have

0 ≤ E[ΦT]− Φ0 =

T−1∑

j=0

E[Φj+1 − Φj] =

T−1∑

j=0

n∑

i=1

gi · E
[
x

(j+1)
τ(i) − x

(j)
i

]

=
T−1∑

j=0

(
n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

]

︸ ︷︷ ︸
w move

−
n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j+1)
τ(i)

]

︸ ︷︷ ︸
v,ṽ move

)

≤
T−1∑

j=0

(
O(C1 + C2/εmp) · ‖g‖2 − Ω

(
ε2far · kj · gkj/(εmp log n)

))

= T ·O(C1 + C2/εmp)‖g‖2 −
T∑

j=1

Ω
(
ε2far · kj · gkj/(εmp log n)

)
,

where the second step follows from splitting terms and the fact that Φ0 is deterministic, the third
step follows from the definition of Φ (Definition F.18), the fourth step follows from splitting terms,
the fifth step follows from Lemma F.20 which states that ∀w(j), v(j), ṽ(j), we have

n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

∣∣∣ w(j), v(j), ṽ(j)
]
≤ O(C1 + C2/εmp) · ‖g‖2,

then this upper bound also holds for unconditional expectation, the fifth step also follows from
Lemma F.24 which states that

∑n
i=1 gi · (y

(j)
π(i) − x

(j+1)
τ(i)) ≥ Ω(ε2far · kj · gkj/(εmp log n)).

100

Therefore, we have

1

T

T∑

j=1

kjgkj ≤ O
(

(
C1εmp

ε2far

+
C2

ε2far

) · log n · ‖g‖2
)
.

Using Lemma E.12, we have that the expected amortized running time per iteration of Ma-
trixUpdate is

1

T

T∑

j=1

Tmat(n, n, kj) ≤
n2

T

T∑

j=1

kjgkj = O
(

(
C1εmp

ε2far

+
C2

ε2far

) · n2 log n · ‖g‖2
)

= O
(

(
C1εmp

ε2far

+
C2

ε2far

) · (n2−a/2 + nω−1/2) log n
)
,

where the first step follows from the definition of g which gives that Tmat(n, n, kj) ≤ n2kjgkj , and
the third step follows from Lemma F.25 that ‖g‖2 = O(n−a/2 + nω−5/2).

F.3.3 w move

The goal of this section is to prove Lemma F.20.

Lemma F.20 (w move). In the j-th iteration, for any possible values w(j), v(j), and ṽ(j), we have

n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

∣∣∣ w(j), v(j), ṽ(j)
]
≤ O(C1 + C2/εmp)‖g‖2. (53)

Proof. For simplicity, in this proof we write E[·] as a shorthand of E[·|w(j), v(j), ṽ(j)].
Observe that since the non-negative values x(j)

i are sorted in descending order, and g is also
non-increasing, we have

n∑

i=1

gix
(j)
π(i) ≤

n∑

i=1

gix
(j)
i . (54)

We then have
n∑

i=1

gi · E[y
(j)
π(i) − x

(j)
i] ≤

n∑

i=1

gi · E[y
(j)
π(i) − x

(j)
π(i)]

=

n∑

i=1

gi · E[ψ(w
(j+1)
π(i) /v

(j)
π(i) − 1) + ψ(w

(j+1)
π(i) /ṽ

(j)
π(i) − 1)]−

n∑

i=1

gi · E[ψ(w
(j)
π(i)/v

(j)
π(i) − 1) + ψ(w

(j)
π(i)/ṽ

(j)
π(i) − 1)]

=

n∑

i=1

gi · E[ψ(w
(j+1)
π(i) /v

(j)
π(i) − 1)− ψ(w

(j)
π(i)/v

(j)
π(i) − 1)] +

n∑

i=1

gi · E[ψ(w
(j+1)
π(i) /ṽ

(j)
π(i) − 1)− ψ(w

(j)
π(i)/ṽ

(j)
π(i) − 1)]

where the first step follows from Eq.(54), the second step follows from the definitions of x(j) and
y(j) (Definition F.15).

Now
∑n

i=1 gi · E[y
(j)
π(i) − x

(j)
i] ≤ O(C1 + C2/εmp)‖g‖2 directly follows from Lemma F.21 and

Lemma F.22.

It remains to prove the following two lemmas.

101

Lemma F.21. Under Assumption F.5, in the j-th iteration, for any w(j), v(j), and ṽ(j) we have

n∑

i=1

gi · E[ψ(w
(j+1)
π(i) /v

(j)
π(i) − 1)− ψ(w

(j)
π(i)/v

(j)
π(i) − 1) | w(j), v(j), ṽ(j)] = O(C1 + C2/εmp) · ‖g‖2.

Proof. For simplicity, in this proof we write E[·] as a shorthand of E[·|w(j), v(j), ṽ(j)]. And we also
define x and y as

yi = w
(j+1)
i /v

(j)
i − 1, xi = w

(j)
i /v

(j)
i − 1, (55)

and they are only used in this proof. Then the lemma statement becomes

n∑

i=1

gi · E[ψ(yπ(i))− ψ(xπ(i))] = O(C1 + C2/εmp) · ‖g‖2.

Let I be the set of indices such that |xi| ≤ 1. We separate the term into two:

n∑

i=1

gi · E[ψ(yπ(i))− ψ(xπ(i))] =
∑

i∈I
gπ−1(i) · E[ψ(yi)− ψ(xi)] +

∑

i∈Ic
gπ−1(i) · E[ψ(yi)− ψ(xi)].

Case 1: Terms from I. Mean value theorem shows that for any yi, there exist ζ such that

ψ(yi)− ψ(xi) = ψ′(xi)(yi − xi) +
1

2
ψ′′(ζ)(yi − xi)2

≤ ψ′(xi) ·
w

(j+1)
i − w(j)

i

v
(j)
i

+
L2

2
· (w

(j+1)
i − w(j)

i

v
(j)
i

)2,

where the second step follows from plugging in the definition of xi and yi in Eq. (55), and letting
L2 = maxx ψ

′′(x). Taking conditional expectation (over w(j), v(j), and ṽ(j)) on both sides, we get

E[ψ(yi)− ψ(xi)] ≤ ψ′(xi) ·
E[w

(j+1)
i]− w(j)

i

v
(j)
i

+
L2

2

1

(v
(j)
i)2

E[(w
(j+1)
i − w(j)

i)2]

= ψ′(xi) ·
w

(j)
i

v
(j)
i

· βi +
L2

2

(w
(j)
i)2

(v
(j)
i)2

γi,

where βi and γi are defined as βi = E[w
(j+1)
i]/w

(j)
i − 1, γi = E[(w

(j+1)
i /w

(j)
i − 1)2].

This then gives us

∑

i∈I
gπ−1(i) · E[ψ(yi)− ψ(xi)] ≤

∑

i∈I
gπ−1(i) · ψ′(xi) ·

w
(j)
i

v
(j)
i

· βi +
∑

i∈I
gπ−1(i) ·

L2

2
· (w

(j)
i)2

(v
(j)
i)2

· γi. (56)

For the term w
(j)
i /v

(j)
i , we note that for i ∈ I, we have

|w(j)
i /v

(j)
i | = |xi + 1| ≤ |xi|+ 1 ≤ 2, (57)

where the first step follows the definition of xi in Eq. (55), the second step follows from triangle
inequality, and the third step follows from |xi| ≤ 1 for i ∈ I.

102

Using this, we can bound the first term of Eq. (56) by

∑

i∈I
gπ−1(i) · ψ′(xi) ·

w
(j)
i

v
(j)
i

· βi ≤
(∑

i∈I

(
gπ−1(i) · ψ′(xi) ·

w
(j)
i

v
(j)
i

)2 ·
∑

i∈I
β2
i

)1/2

≤
(∑

i∈I
(2L1 · gπ−1(i))

2 ·
∑

i∈I
β2
i

)1/2

≤ O(L1) ·
(n∑

i=1

g2
i · C2

1

)1/2
= O(C1L1‖g‖2), (58)

where L1 = maxx |ψ′(x)|, the first step follows by Cauchy-Schwarz inequality, and the second step
follows by |ψ′(xi)| ≤ L1 and |w(j)

i /v
(j)
i | ≤ 2 by Eq.(57), and the third step follows from

∑n
i=1 β

2
i ≤ C2

1

from the lemma statement of Lemma F.19.
For the second term of Eq. (56), we have

∑

i∈I
gπ−1(i) ·

L2

2
· (w

(j)
i)2

(v
(j)
i)2

· γi ≤ O(L2) ·
n∑

i=1

gπ−1(i) · γi ≤ O(L2) · ‖g‖2 · ‖γ‖2 = O(C2L2‖g‖2), (59)

where the first step follows from |w(j)
i /v

(j)
i | ≤ 2 by Eq.(57), the second step follows from Cauchy-

Schwarz inequality, and the third step follows from
∑n

i=1 γ
2
i ≤ C2

2 from the lemma statement of
Lemma F.19.

Now, plugging the bound of Eq. (58) and Eq. (59) into Eq. (56) and using that L1 = O(1),
L2 = O(1/εmp) (from Part 4 of Lemma F.37), we have that

∑

i∈I
gπ−1(i) · E[ψ(yi)− ψ(xi)] ≤ O(C1 + C2/εmp) · ‖g‖2.

Case 2: Terms from Ic. For all i ∈ Ic, we have |xi| > 1. Note that ψ(x) is a constant for
x ≥ 2εmp, and from Assumption F.5 we assume that εmp ≤ 1/4. Therefore, if |yi| ≥ 1/2, we have
that ψ(yi)− ψ(xi) = 0. Hence, we only need to consider the i ∈ Ic such that |yi| < 1/2. For these
i, we have that

|yi − xi| ≥ |xi| − |yi| > 1/2, (60)

where the first step follows by triangle inequality, and the second step follows from the assumptions
|xi| > 1 and |yi| < 1/2. We also have

|yi − xi| =
∣∣∣(w(j+1)

i − w(j)
i)/v

(j)
i

∣∣∣ =
∣∣∣w(j+1)
i /v

(j)
i

∣∣∣ ·
∣∣∣(w(j+1)

i − w(j)
i)/w

(j+1)
i

∣∣∣ ≤ 3

2

∣∣∣1− w(j)
i /w

(j+1)
i

∣∣∣ , (61)

where the first step follows from the definition of yi and xi in Eq. (55), the third step follows from
|yi| = |w(j+1)

i /v
(j)
i − 1| < 1/2 and thus |w(j+1)

i /v
(j)
i | < 3/2.

Combining Eq. (60) and Eq. (61), we have that |1−w(j)
i /w

(j+1)
i | > 1/3 and hence |w(j)

i /w
(j+1)
i | <

2/3 or |w(j)
i /w

(j+1)
i | > 4/3, which then gives us |w(j+1)

i /w
(j)
i − 1| > 1/4, but this contradicts with

the lemma statement of Lemma F.19, so |yi| < 1/2 is impossible.
Hence, we have

∑

i∈Ic
gπ−1(i) · E[ψ(yi)− ψ(xi)] = 0.

Combining both cases, we have the result.

103

Lemma F.22. In the j-th iteration, for any w(j), v(j), and ṽ(j) we have

n∑

i=1

gi · E
[
ψ(w

(j+1)
π(i) /ṽ

(j)
π(i) − 1)− ψ(w

(j)
π(i)/ṽ

(j)
π(i) − 1)

∣∣∣ w(j), v(j), ṽ(j)
]

= O(C1 + C2/εmp) · ‖g‖2.

Proof. The proof of this lemma is exactly the same as that of Lemma F.21, just replace all v with
ṽ in the proof of Lemma F.21.

Note that in the proof of Lemma F.21 we do not have any requirement on v, so in fact we have
the following more generalized lemma.

Lemma F.23 (Generalized “w move” lemma). Let {w(j)}Tj=0 be a random sequence that satisfies
∀j ∈ {0, ..., T − 1},
n∑

i=1

(
E[w

(j+1)
i |w(j)]/w

(j)
i − 1

)2

≤ C2
1 ,

n∑

i=1

(
E[(w

(j+1)
i /w

(j)
i − 1)2 | w(j)]

)2

≤ C2
2 , |w(j+1)

i /w
(j)
i − 1| ≤ 1/4.

Let {v(j)}Tj=0 be another random sequence such that ∀j ∈ [T], v(j) only depends on w(j) and
v(j−1). Let ψ be defined as of Definition F.4, where the parameter εmp < 1/4. Let g ∈ Rn be
a sequence that is non-increasing, i.e., g1 ≥ g2 ≥ · · · ≥ gn. Let πj : [n] → [n] be the sorting
ψ(w

(j+1)
π(i) /v

(j)
π(i) − 1) ≥ ψ(w

(j+1)
π(i+1)/v

(j)
π(i+1) − 1).

Then ∀j ∈ {0, ..., T − 1}, in the j-th iteration, for any w(j) and v(j) we have

n∑

i=1

gi · E
[
ψ(w

(j+1)
πj(i)

/v
(j)
πj(i)
− 1)− ψ(w

(j)
πj(i)

/v
(j)
πj(i)
− 1)

∣∣∣ w(j), v(j)
]

= O(C1 + C2/εmp) · ‖g‖2.

F.3.4 v, ṽ move

The goal of this section is to prove Lemma F.24.

Lemma F.24 (v, ṽ move). In the j-th iteration, we have,

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥ Ω

(ε2far · kj · gkj
εmp log n

)
,

in which π, τ : [n]→ [n] are permutations such that y(j)
π(i) ≥ y

(j)
π(i+1) and x(j+1)

τ(i) ≥ x
(j+1)
τ(i+1).

Proof. Case 1, kj = 0. When kj = 0, we didn’t enter the MatrixUpdate procedure, so v(j+1) =
v(j). If we further enter the PartialMatrixUpdate procedure and change ṽ, we have that ∀i ∈ [n],

y
(j)
i − x

(j+1)
i = ψ(w

(j+1)
i /ṽ

(j)
i − 1)− ψ(w

(j+1)
i /ṽ

(j+1)
i − 1) ≥ 0,

where the first step follows by the definition of x(j+1)
i and y(j)

i (Definition F.15) and the fact that
v do not change, and the last step follows by Corollary F.14.

Thus y(j)
i ≥ x

(j+1)
i , ∀i ∈ [n]. Since gi and y

(j)
π(i) are both non-increasing, we have

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥

n∑

i=1

gi · (y(j)
τ(i) − x

(j+1)
τ(i)) ≥ 0 = Ω(ε2far · kj · gkj/(εmp log n)),

104

where the last step follows by kj = 0.
Case 2, kj 6= 0. When kj 6= 0, we must have entered MatrixUpdate, and by Fact F.10, we must
have kj ≥ na. By Part 3 of Fact F.12, the difference between x(j+1) and y(j) is that in coordinates
i ∈ π([kj]), x

(j+1)
i is cleared to 0, and in other coordinates x(j+1)

i is the same with y(j)
i . So we have

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) =

n∑

i=1

gi · (y(j)
π(i) − y

(j)
π(i+kj)

). (62)

Note that when the subscripts are out of range, we define y(j)
π(n+1) = · · · = y

(j)
π(n+kj)

= 0.
Part 2 of Fact F.12 shows that

y
(j)
π(kj)

≥ ε2far/(3200εmp). (63)

Part 1 of Fact F.12 shows that either kj = n or y(j)
π(kj)

< (1 − 1/ log n)y
(j)
π(kj/1.5). If kj = n, we let

L = kj = n, otherwise we let L = kj/1.5. The L we choose always satisfied that for all i ∈ [L],

y
(j)
π(i) − y

(j)
π(i+kj)

≥ y
(j)
π(L) − y

(j)
π(1+kj)

≥ ε2far/(3200εmp log n), (64)

where the first step follows by y(j)
π(i) is non-increasing, the second step is true because:

1. In the case of kj = n, we have y(j)
π(L) = y

(j)
π(kj)

≥ ε2far
3200εmp

by Eq. (63) and y(j)
π(kj+1) = y

(j)
π(n+1) = 0.

2. In the case of y(j)
π(kj)

< (1− 1/ log n)y
(j)
π(kj/1.5), we have

y
(j)
π(L) − y

(j)
π(1+kj)

≥ y(j)
π(kj/1.5) − y

(j)
π(kj)

≥ y(j)
π(kj/1.5)/ log n ≥ ε2far/(3200εmp log n),

where the second step follows from the inequality of y(j)
π(kj)

, and the third step follows from

Eq. (63) and the fact that y(j)
π(i) is non-increasing.

Putting it all together, we have
n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥

n∑

i=1

gi · (y(j)
π(i) − y

(j)
π(i+kj)

) ≥
L∑

i=1

gi · (y(j)
π(i) − y

(j)
π(i+kj)

)

≥
L∑

i=1

gi ·
(ε2far

3200εmp log n

)
= Ω

(ε2far · kj · gkj
εmp log n

)
,

where the first step is by Eq. (62), the second step follows from y
(j)
π(i) is non-increasing and thus all

terms ≥ 0, the third step is by Eq. (64), and the last step follows from gL ≥ gkj and L = Ω(kj).

F.3.5 `2-norm of g

Lemma F.25 (`2-norm of g). g ∈ Rn (Definition F.17) satisfies ‖g‖2 = O(n−a/2 + nω−5/2).

Proof. For i ≤ na, we have
∑na

i=1 g
2
i =

∑na

i=1 n
−2a = n−a.

For i > na, note that there exists i ∈ [n] such that i > na implies a < 1, so we have
n∑

i=na+1

g2
i =

n∑

i=na+1

i
2(ω−2)

1−a −2 · n−
2a(ω−2)

1−a = O(1) ·
∫ n

na+1

x
2(ω−2)

1−a −2 · n−
2a(ω−2)

1−a dx

= O(1) ·max{n
2(ω−2)

1−a −1, n
2a(ω−2)

1−a −a} · n−
2a(ω−2)

1−a = O(n2ω−5 + n−a).

Therefore, we have ‖g‖2 = O(n−a/2 + nω−5/2).

105

F.4 Amortized analysis for PartialMatrixUpdate

F.4.1 Definitions

Definition F.26 (x and y for PartialMatrixUpdate). For any j ∈ {0, 1, . . . , T − 1}, and for
any i ∈ [n], we define x(j)

i and y(j)
i as follows:

x
(j)
i := ψ(w

(j)
i /ṽ

(j)
i − 1), y

(j)
i := ψ(w

(j+1)
i /ṽ

(j)
i − 1),

where v(j), ṽ(j) and w(j) are defined as of Definition F.1.

Note that the difference between x(j)
i and y(j)

i is that w is changing. The difference between y(j)
i

and x(j+1)
i is that ṽ is changing.

Definition F.27 (Sorting permutations for PartialMatrixUpdate). For any j ∈ {0, 1, . . . , T},
let τj be the permutation that x(j)

τj(i)
≥ x(j)

τj(i+1), and let πj be the permutation that y(j)
π(i) ≥ y

(j)
π(i+1).

When it is clear from the context that we are only arguing about the j-th iteration, for simplicity
we assume the coordinates of vector x(j) ∈ Rn are sorted such that x(j)

i ≥ x
(j)
i+1. And we use τ and

π to denote the permutations such that x(j+1)
τ(i) ≥ x

(j+1)
τ(i+1) and y(j)

π(i) ≥ y
(j)
π(i+1).

Definition F.28 (g for PartialMatrixUpdate). For some ã ≤ α·a, where α is the dual exponent
of matrix multiplication, and a is the parameter for MatrixUpdate, we define g ∈ Rn as follows:

gi =





n−ã, if i ≤ nã;
i
a(ω−2)
a−ã −1 · n−

aã(ω−2)
a−ã , if i ∈ (nã, na];

0 if i > na.

Note that g is non-increasing. For all k̃j ∈ (nã, na], (k̃j · gk̃jn
2a) = k̃

a(ω−2)
a−ã

j · n2a−aã(ω−2)
a−ã is an

upper bound of Tmat(n
a, na, k̃j) of multiplying a na × na matrix with a na × k̃j matrix. For more

details please refer to [GU18].

Definition F.29 (Potential function Φ for PartialMatrixUpdate). We define the potential func-
tion in the j-th iteration as

Φj =

n∑

i=1

gi · x(j)
τj(i)

.

Note that we always have Φj ≥ 0 since ∀i, gi and x(j)
i are both non-negative.

F.4.2 Main result

Lemma F.30 (Amortized time for PartialMatrixUpdate). Let sequences {w(j)}Tj=0, {v(j)}Tj=0,
{ṽ(j)}Tj=0 be defined as of Definition F.1, let k̃j be defined as of Definition F.3, and let {x(j)}Tj=0,
{y(j)}Tj=0, g, Φ be defined as of Definition F.15, F.28 and F.29. If we further have the condition
that the input sequence satisfies the following: ∀j ∈ {0, ..., T − 1}
n∑

i=1

(E[w
(j+1)
i |w(j)]/w

(j)
i − 1)2 ≤ C2

1 ,

n∑

i=1

(E[(w
(j+1)
i /w

(j)
i − 1)2 | w(j)])2 ≤ C2

2 , |w(j+1)
i /w

(j)
i − 1| ≤ 1/4.

106

Then, we have that in expectation

1

T

T∑

j=1

k̃jgk̃j = O
(

(C1/εmp + C2/ε
2
mp) · log n · ‖g‖2

)
.

Further, combining with Lemma E.18, the expected amortized running time per iteration of
PartialMatrixUpdate is

O
(

(C1/εmp + C2/ε
2
mp) · (n1+a−ã/2 + n1+(ω−3/2)a) log n

)
.

Proof. Similar to the proof of Lemma F.19, we upper bound how much the potential function can
increase due to changing w(j) to w(j+1) (in Section F.4.3), and also lower bound how much the
potential function can decrease because of changing ṽ(j) to ṽ(j+1) (in Section F.4.4).

Similar to Lemma F.19, we have

0 ≤ E[ΦT]− Φ0 =
T−1∑

j=0

(
n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

]

︸ ︷︷ ︸
w move

−
n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j+1)
τ(i)

]

︸ ︷︷ ︸
ṽ move

)

≤
T−1∑

j=0

(
O(C1 + C2/εmp) · ‖g‖2 − Ω(εmpk̃jgk̃j/ log n)

)

= T ·O(C1 + C2/εmp)‖g‖2 −
T∑

j=1

Ω(εmpk̃jgk̃j/ log n),

where the third step follows from Lemma F.31 which states that ∀w(j), v(j), ṽ(j), we have
n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

∣∣∣ w(j), v(j), ṽ(j)
]
≤ O(C1 + C2/εmp) · ‖g‖2,

then this upper bound also holds for unconditional expectation, the third step also follows from
Lemma F.33 which states that

∑n
i=1 gi ·

(
y

(j)
π(i) − x

(j+1)
τ(i)

)
≥ Ω(εmpk̃jgk̃j/ log n).

Therefore, we have

1

T

T∑

j=1

k̃jgk̃j = O
(

(C1/εmp + C2/ε
2
mp) · log n · ‖g‖2

)
.

Using Lemma E.18, we have that the expected amortized running time per iteration of Par-
tialMatrixUpdate is

1

T

T∑

j=1

Tmat(n, n
a, k̃j) ≤

1

T

T∑

j=1

n1−a · Tmat(n
a, na, k̃j) ≤

n1+a

T

T∑

j=1

k̃jgk̃j

= O
(

(C1/εmp + C2/ε
2
mp) · n1+a log n · ‖g‖2

)

= O
(

(C1/εmp + C2/ε
2
mp) · (n1+a−ã/2 + n1+(ω−3/2)a) log n

)
,

where the first step follows from the fact that we can always divide a n × na matrix into n1−a

copies of na × na matrices, the second step follows from Definition F.28 of g which gives that

107

Tmat(n
a, na, k̃j) ≤ n2a · k̃jgk̃j for nã ≤ k̃j ≤ na, and we indeed have k̃j ≥ nã (Fact F.11) and

k̃j ≤ 2na (Lemma E.1) when entering PartialMatrixUpdate. (We ignore the 2 factor since
it can only increase the final amortized time by a constant factor.) The fourth step follows from
Lemma F.34 that ‖g‖2 = O(n−ã/2 + naω−5a/2).

F.4.3 w move

The goal of this section is to prove Lemma F.31.

Lemma F.31 (w move). In the j-th iteration, for any possible values w(j), v(j), and ṽ(j), we have

n∑

i=1

gi · E
[
y

(j)
π(i) − x

(j)
i

∣∣∣ w(j), v(j), ṽ(j)
]
≤ O(C1 + C2/εmp) · ‖g‖2. (65)

Proof. For simplicity, in this proof we write E[·] as a shorthand of E[· | w(j), v(j), ṽ(j)].
Similar to the proof of Lemma F.20, we have

n∑

i=1

gi · E[y
(j)
π(i) − x

(j)
i] ≤

n∑

i=1

gi · E[y
(j)
π(i) − x

(j)
π(i)] =

n∑

i=1

gi · E[ψ(w
(j+1)
π(i) /ṽ

(j)
π(i) − 1)− ψ(w

(j)
π(i)/ṽ

(j)
π(i) − 1)]

where the first step follows from that the non-negative values x(j)
i are sorted in descending order, and

g is also non-increasing, the second step follows from the definitions of x(j) and y(j) (Definition F.26.
Now

∑n
i=1 gi · E[y

(j)
π(i) − x

(j)
i] ≤ O(C1 + C2/εmp)‖g‖2 directly follows from Lemma F.32.

It remains to prove the following Lemma.

Lemma F.32. In the j-th iteration, for any w(j), v(j), and ṽ(j) we have

n∑

i=1

gi · E
[
ψ(w

(j+1)
π(i) /ṽ

(j)
π(i) − 1)− ψ(w

(j)
π(i)/ṽ

(j)
π(i) − 1)

∣∣∣ w(j), v(j), ṽ(j)
]

= O(C1 + C2/εmp) · ‖g‖2.

Proof. The proof of this lemma is exactly the same as that of Lemma F.21, just replace all v with
ṽ in the proof of Lemma F.21.

F.4.4 ṽ move

The goal of this section is to prove Lemma F.33.

Lemma F.33 (ṽ move). In the j-th iteration, we have,

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥ Ω(εmpk̃jgk̃j/ log n).

Proof. Case 1. If we enter the MatrixUpdate procedure, we have k̃j = 0 since we won’t enter
the else branch in Line 13 of UpdateV (Algorithm 9). From Part 3 of Fact F.12, we know that
∀i ≤ kj , ṽ(j+1)

π(i) = w
(j+1)
π(i) , and ∀i > kj , ṽ

(j+1)
π(i) = ṽ

(j)
π(i). Therefore, ∀i ∈ [n],

x
(j+1)
i = ψ(w

(j+1)
i /ṽ

(j+1)
i − 1) ≤ ψ(w

(j+1)
i /ṽ

(j)
i − 1) = y

(j)
i ,

108

where the first and the third steps follow by the definition of x(j+1) and y(j) (Definition F.26). This
means y(j)

i ≥ x
(j+1)
i , ∀i ∈ [n]. Since gi and y

(j)
π(i) are both non-increasing, we have

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥

n∑

i=1

gi · (y(j)
τ(i) − x

(j+1)
τ(i)) ≥ 0 = Ω(εmpk̃jgk̃j/ log n),

where the last step follows by k̃j = 0.
Case 2. If we do not enter both the MatrixUpdate and the PartialMatrixUpdate procedure,
nothing happens and x(j+1) is the same as y(j), this statement also holds.
Case 3. Now we only need to consider the case where we enter the PartialMatrixUpdate
procedure. By Part 3 of Fact F.13, x(j+1) satisfies that in coordinates i ∈ π([k̃j]), x

(j+1)
i ≤ εmp

200 logn ,
and in coordinates i /∈ π([k̃j]), x(j+1) is the same with y(j). So we decompose x(j+1) into two
pieces x(j+1) = x1 + x2, where x1 copies the values on coordinates i ∈ π([k̃j]) and has 0 on other
coordinates, and x2 copies the values on coordinates i /∈ π([k̃j]) and has 0 on other coordinates.
And when the subscripts are out of range, we define y(j)

π(n+1) = · · · = y
(j)
π(n+kj)

= 0. We have

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) =

n∑

i=1

gi · (y(j)
π(i) − x1,τ(i) − x2,τ(i)) ≥

n∑

i=1

gi · (y(j)
π(i) − x2,τ(i))−

k̃j∑

i=1

gi ·
εmp

200 log n

=

n∑

i=1

gi · (y(j)
π(i) − y

(j)

π(i+k̃j)
)−

k̃j∑

i=1

gi ·
εmp

200 log n

≥
n∑

i=1

gi · (y(j)
π(i) − y

(j)

π(i+k̃j)
)− 1.5

k̃j/1.5∑

i=1

gi ·
εmp

200 log n
, (66)

where the second step follows by x1τ(i) ≤ εmp

200 logn for τ(i) ∈ π([k̃j]) and x1τ(i) = 0 for τ(i) /∈ π([k̃j]),

the third step follows by x2,τ(i) = 0 for τ(i) ∈ π([k̃j]) and x2,τ(i) = y
(j)
τ(i) for i /∈ π([k̃j]), and the last

step follows by g is non-increasing.
Part 2 of Fact F.13 shows that

y
(j)

π(k̃j)
≥ εmp/100 (67)

Part 1 of Fact F.13 shows that either k̃j = n or y(j)

π(k̃j)
< (1− 1/ log n) · y(j)

π(k̃j/1.5)
. If k̃j = n, we let

L = k̃j = n, otherwise we let L = k̃j/1.5. The L we choose always satisfies that for all i ∈ [L],

y
(j)
π(i) − y

(j)

π(i+k̃j)
≥ y

(j)
π(L) − y

(j)

π(1+k̃j)
≥ εmp/(100 log n), (68)

where the first step follows by y(j)
π(i) is non-increasing, the second step is true because:

1. In the case of k̃j = n, we have y(j)
π(L) = y

(j)

π(k̃j)
≥ εmp/100 by Eq. (67) and y(j)

π(k̃j+1)
= y

(j)
π(n+1) = 0.

2. In the case of y(j)

π(k̃j)
< (1− 1/ log n) · y(j)

π(k̃j/1.5)
, we have

y
(j)
π(L) − y

(j)

π(1+k̃j)
≥ y(j)

π(k̃j/1.5)
− y(j)

π(k̃j)
≥ y(j)

π(k̃j)
/ log n ≥ εmp/(100 log n),

where the second step follows from the inequality of y(j)

π(k̃j)
, and the third step follows from

Eq. (67).

109

Putting it all together, we have

n∑

i=1

gi · (y(j)
π(i) − x

(j+1)
τ(i)) ≥

n∑

i=1

gi · (y(j)
π(i) − y

(j)

π(i+k̃j)
)− 1.5

k̃j/1.5∑

i=1

gi ·
εmp

200 log n

≥
L∑

i=1

gi · (y(j)
π(i) − y

(j)

π(i+k̃j)
)− 1.5

k̃j/1.5∑

i=1

gi ·
εmp

200 log n

≥
L∑

i=1

gi · (y(j)
π(i) − y

(j)

π(i+k̃j)
− 1.5

εmp

200 log n
)

≥
L∑

i=1

gi · (
εmp

100 log n
− 1.5

εmp

200 log n
) = Ω(εmp · k̃j · gk̃j/ log n).

where first step is by Eq. (66), the second step follows from y
(j)
π(i) is non-increasing and thus all terms

≥ 0, the third step follows from L ≥ k̃j/1.5, the forth step is by Eq. (68), and the last step follows
from gL ≥ gk̃j and L = Ω(k̃j).

F.4.5 `2-norm of g

Lemma F.34. g ∈ Rn (Definition F.28) satisfies ‖g‖2 = O(n−ã/2 + naω−5a/2).

Proof. The proof is same as that of Lemma F.25. We use na to replace n, and nã to replace na.

F.5 Amortized analysis for VectorUpdate

Lemma F.35 (Amortized time for VectorUpdate). Let sequences {h(j)}Tj=0, {g(j)}Tj=0, {g̃(j)}Tj=0

be defined as of Definition F.2, and let pj be defined as of Definition F.3. If we further have the
condition that the input sequence satisfies the following: ∀j ∈ {0, ..., T − 1}

n∑

i=1

(E[h
(j+1)
i |h(j)]/h

(j)
i − 1)2 ≤ C2

4 ,

n∑

i=1

(E[(h
(j+1)
i /h

(j)
i − 1)2 | h(j)])2 ≤ C2

5 , |h(j+1)
i /h

(j)
i − 1| ≤ 1/4.

Then, we have that in expectation

1. 1
T

∑T
j=1 pjn

1+o(1) = O
(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · n1.5+o(1)

)
,

2. 1
T

∑T
j=1 n

2a · 1pj>0 = O
(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · n1.5a

)
.

Further, combining with Lemma E.27, the expected amortized running time per iteration of
VectorUpdate is

O
(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · n1.5+o(1)

)
.

Proof. Part 1. For the first equation, we define g ∈ Rn to be gi = 1, ∀i ∈ [n]. Note that g is
non-increasing, n1+o(1) · (pjgpj) = pjn

1+o(1), and ‖g‖2 =
√
n. Then we can use the same argument

as Lemma F.19 for MatrixUpdate to prove that

1

T

T∑

j=1

pjn
1+o(1) = O

(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · n1+o(1) · ‖g‖2

)

110

= O
(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · n1.5+o(1)

)
.

Part 2. For the second equation, we define g ∈ Rn to be

gi =

{
n−a, i ≤ na,
i−1, na < i < n.

Note that g is non-increasing, and n2a · 1pj>0 = n2a · 1pj≥na ≤ n2a · (pjgpj) since analogous to
Fact F.10 we have that either pj = 0 or pj ≥ na. We also have

‖g‖22 ≤
na

n2a
+

∫ n

na
x−2dx = n−a + n−a − n−1 = O(n−a).

Then we can use the same argument as Lemma F.19 for MatrixUpdate to prove that

1

T

T∑

j=1

n2a · 1pj>0 = O
(
(C4/εmp + C5/ε

2
mp) log n · n2a‖g‖2

)
= O

(
(C4/εmp + C5/ε

2
mp) · log n · n1.5a

)
.

Combine Part 1 and Part 2. Using Lemma E.27 and note that n1.5a ≤ n1.5+o(1), we have that
the expected amortized running time per iteration of VectorUpdate is

1

T

T∑

j=1

(pjn
1+o(1) + n2a1pj>0) = O

(
(C4/εmp + C5/ε

2
mp) · log n · n1.5+o(1)

)
.

F.6 Amortized analysis for PartialVectorUpdate

Lemma F.36 (Amortized time for PartialVectorUpdate). Let sequences {h(j)}Tj=0, {g(j)}Tj=0,
{g̃(j)}Tj=0 be defined as of Definition F.2, and let p̃j be defined as of Definition F.3. If we further
have the condition that the input sequence satisfies the following: ∀j ∈ {0, ..., T − 1}

n∑

i=1

(E[h
(j+1)
i |h(j)]/h

(j)
i − 1)2 ≤ C2

4 ,

n∑

i=1

(E[(h
(j+1)
i /h

(j)
i − 1)2 | h(j)])2 ≤ C2

5 , |h(j+1)
i /h

(j)
i − 1| ≤ 1/4.

Then, we have that in expectation

1. 1
T

∑T
j=1 p̃jn

1+o(1) = O
(
(C4/εmp + C5/ε

2
mp) · log n · n1.5+o(1)

)
,

2. 1
T

∑T
j=1 n

2a · 1p̃j>0 = O
(
(C4/εmp + C5/ε

2
mp) · log n · n2a−ã/2).

Further, combining with Lemma E.33, the expected amortized running time per iteration of
PartialVectorUpdate is

O
(
(C4εmp/ε

2
far + C5/ε

2
far) · log n · (n1.5+o(1) + n2a−ã/2)

)
.

Proof. First note that we always have p̃j ≤ 2na by Lemma E.1.
Part 1. For the first equation, we define g ∈ Rn to be gi = 1, ∀i ∈ [2na], and gi = 0, ∀i /∈ [2na].
Note that g is non-increasing, na+o(1) · (p̃jgp̃j) = p̃jn

a+o(1), and ‖g‖2 =
√

2na. Then we can use the
same argument as Lemma F.30 for PartialMatrixUpdate to prove that

1

T

T∑

j=1

p̃jn
a+o(1) = O

(
(C4/εmp + C5/ε

2
mp) log n · na+o(1) · ‖g‖2

)
= O

(
(C4/εmp + C5/ε

2
mp) · log n · n1.5a+o(1)

)
.

111

ε2ε ε 2ε

ε/2
ε

ψ(x)

ε2ε ε 2ε

1ψ(x)′

ε2ε ε 2ε

1
ε

− 1
ε

ψ(x)′′

Figure 9: ψ(x), ψ(x)′ and ψ(x)′′. For εmp ∈ (0, 1), and for simplicity we use ε in the figures.

Part 2. For the second equation, we let g ∈ Rn be

gi =





n−ã, i ≤ nã,
i−1, nã < i ≤ 2na,

0, i > 2na.

Note that g is non-increasing, and n2a · 1pj>0 = n2a · 1pj≥nã ≤ n2a · (pjgpj) since analogous to
Fact F.11 we have that either p̃j = 0 or p̃j ≥ nã. We also have

‖g‖22 =
nã

n2ã
+

∫ 2na

nã
x−2dx = n−ã + n−ã − n−a/2 = O(n−ã).

Then we can use the same argument as the Lemma F.30 for PartialMatrixUpdate to prove that

1

T

T∑

j=1

n2a · 1p̃j>0 = O
(
(C4/εmp + C5/ε

2
mp) log n · n2a‖g‖2

)
= O

(
(C4/εmp + C5/ε

2
mp) log n · n2a−ã/2).

Combine Part 1 and Part 2. Using Lemma E.33 and note that n1.5a ≤ n1.5, we have that the
expected amortized running time per iteration of PartialVectorUpdate is

1

T

T∑

j=1

(pjn
1+o(1) + n2a · 1pj>0) = O

(
(C4/εmp + C5/ε

2
mp) · log n · (n1.5+o(1) + n2a−ã/2)

)
.

F.7 Potential function ψ

Lemma F.37 (Properties of function ψ, Lemma 5.10 of [CLS19]). Let function ψ be defined as of
Definition F.4. Then function ψ satisfies the following properties:
1. Symmetric: ψ(−x) = ψ(x) and ψ(0) = 0;
2. ψ(|x|) is non-decreasing;
3. |ψ′(x)| = Ω(1), ∀|x| ≤ 1.5εmp;
4. L1 := maxx ψ

′(x) = 1 and L2 := maxx ψ
′′(x) = 1/εmp;

5. ψ(x) is a constant for |x| ≥ 2εmp.

Proof. We can see that

ψ(x)′ =





|x|
εmp

|x| ∈ [0, εmp]
2εmp−|x|
εmp

|x| ∈ (εmp, 2εmp]

0 x ∈ (2εmp,+∞)

and ψ(x)′′ =





1
εmp

x ∈ [0, εmp] ∪ [−2εmp,−εmp]

− 1
εmp

x ∈ (εmp, 2εmp] ∪ [−εmp, 0]

0 x ∈ (2εmp,+∞)

From the ψ(x)′ and ψ(x)′′, it is not hard to see that ψ satisfies the properties needed.

112

Algorithm 17 Main algorithm
1: procedure Main(A, b, c, δ, a, ã) . Theorem G.3
2: . A, b, c are inputs of LP
3: . δ is the accuracy parameter
4: εmp ← 10−5/ log n, εfar ← εmp/100 log n, ε← 10−7/ log n
5: λ← 40 log n, bsketch ← 1012√n log8 n/ε2mp, Lsketch ← n1/2+o(1)

6: δ ← min{ δ2 , 1
λ}

7: Create Lsketch sketching matrices R1, R2, · · · , RLsketch ∈ Rbsketch×n . Lemma B.14
8: Let R = [R>1 , R

>
2 , · · · , R>Lsketch

]>

9: Modify the linear program and obtain an initial x and s.
10: Let mpt, mpΦ be projection maintenance data structures.
11: Let ft : x 7→ √x, and fΦ : x 7→ λ sinh(λ(x− 1))/

√
x

12: t← 1
13: mpt.Initialize(ft, εmp, εfar, a, ã, bsketch, Lsketch, A,

x
s , xs,R) . Algorithm 5

14: mpΦ.Initialize(fΦ, εmp, εfar, a, ã, bsketch, Lsketch, A,
x
s ,

xs
t , R) . Algorithm 5

15: while t > δ2/(32n3) do
16: tnew ← (1− ε

3
√
n

)t
17: repeat
18: δx, δs ← OneStepCentralPath(mpt,mpΦ, x, s, t, t

new) . Algorithm 3
19: if the Lsketch sketching matrices are used up then
20: re-initialize mpt and mpΦ with new skeching matrices.
21: end if
22: until ‖x−1δx‖∞ ≤ 3ε, ‖s−1δs‖∞ ≤ 3ε
23: xnew ← x+ δx, snew ← s+ δs
24: if Φλ(xnewsnew/t− 1) > n3 then
25: (xnew, snew)← ClassicalStep(x, s, tnew) . Use the central path step of [Vai89].
26: Construct sketching matrices R similar as before.
27: mpt.Initialize(f1, εmp, εfar, a, ã, bsketch, Lsketch, A,

xnew

snew , xnewsnew, R) . Algorithm 5
28: mpΦ.Initialize(f2, εmp, εfar, a, ã, bsketch, Lsketch, A,

xnew

snew ,
xnewsnew

t , R) . Algorithm 5
29: end if
30: x← xnew, s← snew, t← tnew

31: end while
32: Return an approximate solution of the original linear program
33: end procedure

G Combining data structure with optimization

In this section we combine the results of optimization and data structure to prove Theorem 4.1.

Lemma G.1. During the Main algorithm (Algorithm 17), we have the following guarantees:

1. Assumption B.1, B.26, and F.5 about the error parameters are always satisfied.

2. Assumption B.5 that µ̃ ≈εmp µ, w̃ ≈εmp w, and µ ≈0.1 t is always satisfied.

3. The ClassicalStep (line 25 of Algorithm 17) is executed with probability at most 10
n2 in each

iteration.

4. In expectation the repeat-loop on line 17 of Algorithm 17 is executed at most 2 times.

113

Notation ε εmp εfar λ b

Choice 10−7/ log n 10−5/ log n 10−7/ log2 n 40 log n 1022√n log10 n

Table 15: Extension of Table 7. Summary of choice of ε, εmp, εfar, λ and b. Assigned in Main
procedure (Algorithm 17). They are used to prove Theorem G.3.

Proof. Part 1. After plugging in the parameters in Table 15, it is straightforward to see that the
constraints stated in Assumption B.1, B.26, and F.5 are all satisfied.
Part 2. The assumption that µ̃ ≈εmp µ follows from Part (b) of the correctness of UpdateQuery
in Theorem C.9 that happr ≈εmp h

new, and the assumption that w̃ ≈εmp w follows from Part (a) of
the correctness of UpdateQuery in Theorem C.9 that wappr ≈εmp w

new.
Finally, whenever Φλ(xs/t− 1) > n3, the main algorithm runs the procedure ClassicalStep,

and the (x, s) returned by ClassicalStep is guaranteed to satisfy xs ≈0.01 t (see [Vai89]). Also, if
Φλ(xs/t−1) ≤ n3, we have that eλ|xisi/t−1| ≤ n3, and since λ ≥ 30 log n (Part 2 of Assumption B.26),
we have |xisi/t− 1| ≤ 0.1. Thus µ ≈0.1 t is always satisfied as well.
Part 3. Let Φ(i) = Φλ(x

(i)s(i)

t(i)
−1) denote the value of the potential function in the i-th iteration. We

use induction to prove E[Φ(i)] ≤ 10n, for all i. In the beginning of the main algorithm, xisi = 1 = t,
∀i ≤ n. Therefore in the base case, Φ(0) = n < 10n. If the algorithm executes ClassicalStep in
the i-th iteration, ClassicalStep outputs x and s that xs ≈0.01 t, and since λ ≤ 60 log n (Part 7 of
Assumption B.26), Φ(i) ≤ 10n. If the algorithm doesn’t execute ClassicalStep, Lemma B.27 gives
us E[Φ(i)] ≤ (1− λε

15
√
n

)E[Φ(i−1)] + λε
15
√
n

10n. Therefore E[Φ(i)] ≤ 10n since we have E[Φ(i−1)] ≤ 10n

from induction hypothesis. Then using Markov’s inequality we have Pr[Φ(k) > n3] ≤ 10/n2. Thus
the ClassicalStep on line 25 of Algorithm 17 is executed with probability at most 10/n2 in each
iteration.
Part 4. From Part 4 of Lemma B.16 we have that ‖x−1δx‖∞ > 3ε and ‖s−1δs‖∞ > 3ε each happens
with probability at most 1/n4. Thus in expectation the repeat-loop on line 17 of Algorithm 17 is
executed at most 2 times.

Lemma G.2. For ε ∈ (0, 1/10000), εmp ∈ (0, 1/10000), and εfar = εmp/100 log n, each iteration of
Main (Algorithm 17) takes

O∗
(

(ε/εmp) · (nω−1/2 + n2−a/2 + n1+a−ã/2) + n(ω−1)ã+a + n1+b
)

expected amortized time per iteration, where ω is the exponent of matrix multiplication, α is the dual
exponent of matrix multiplication, 0 ≤ a ≤ α and 0 ≤ ã ≤ aα are the thresholds used by the data
structure, and nb is the sketching size. O∗ notation hides all no(1) terms.

Proof. Part 3 of Lemma G.1 shows that in each iteration ClassicalStep is executed with probabil-
ity at most O(1/n2). Since the cost of ClassicalStep is O(n2.5), the amortized cost of executing
ClassicalStep is O(n0.5) for one iteration.

Part 4 of Lemma G.1 shows that in expectation OneStepCentralPath is executed at most
2 times in each iteration. So now we only need to bound the running time of the procedure
OneStepCentralPath (Algorithm 3). In the procedure OneStepCentralPath, we call the
procedure UpdateQuery of the data structures (Algorithm 8) two times. Since the time analysis
of these two data structure is the same, we are going to focus on one of them. Also note that the
running time of UpdateQuery is the sum of that of MatrixUpdate, PartialMatrixUpdate,
VectorUpdate, PartialVectorUpdate, and Query, so we analyze them one by one.

114

From what we proved in Lemma B.28 and Lemma B.29, we have C1 = C4 = Θ(ε) and C2 =
C5 = Θ(ε2) and C3 = C6 = Θ(ε) < 1/4.

By Theorem C.9 and plugging in εfar = εmp/100 log n, the expected amortized cost per iteration
of the following procedures are as follows:

MatrixUpdate = O∗((C1εmp/ε
2
far + C2/ε

2
far) · (n2−a/2 + nω−1/2))

= O∗((ε/εmp) · (n2−a/2 + nω−1/2))

PartialMatrixUpdate = O∗((C1/εmp + C2/ε
2
mp) · (n1+a−ã/2 + n1+(ω−3/2)a))

= O∗((ε/εmp) · (n1+a−ã/2 + n1+(ω−3/2)a))

VectorUpdate = O∗((C4εmp/ε
2
far + C5/ε

2
far) · n1.5)

= O∗((ε/εmp) · n1.5)

PartialVectorUpdate = O∗((C4εmp/ε
2
far + C5/ε

2
far) · (n1.5 + n2a−ã/2))

= O∗((ε/εmp) · (n1.5 + n2a−ã/2))

Query = O∗(Tmat(n
ã, na, nã) + n1+b)

= O∗(n(ω−1)ã+a + n1+b).

So the overall expected amortized cost of one iteration is

MatrixUpdate + PartialMatrixUpdate

+ VectorUpdate + PartialVectorUpdate + Query

= O∗
(

(ε/εmp) · (n2−a/2 + nω−1/2)︸ ︷︷ ︸
MatrixUpdate

+ (ε/εmp) · (n1+a−ã/2 + n1+(ω−3/2)a)︸ ︷︷ ︸
PartialMatrixUpdate

+ (ε/εmp) · n1.5

︸ ︷︷ ︸
VectorUpdate

+ (ε/εmp) · (n1.5 + n2a−ã/2)︸ ︷︷ ︸
PartialVectorUpdate

+n(ω−1)ã+a + n1+b
︸ ︷︷ ︸

Query

)

= O∗
(

(ε/εmp) · (nω−1/2 + n2−a/2 + n1+a−ã/2) + n(ω−1)ã+a + n1+b
)
,

where in the last step we use ω ≥ 2, ã ≤ a ≤ 1 and ω − 1/2 = 1 + (ω − 3/2) ≥ 1 + (ω − 3/2)a.

Now we are ready to prove the main theorem of this paper.

Theorem G.3 (Restate Theorem 4.1, Main result, third improvement). Given a linear program
minAx=b,x≥0 c

>x with no redundant constraints. Assume that the polytope has diameter R in `1
norm, namely, for any x ≥ 0 with Ax = b, we have ‖x‖1 ≤ R.

Then, for any δ ∈ (0, 1], Main(A, b, c, δ) (Algorithm 17) outputs x ≥ 0 such that

c>x ≤ min
Ax=b,x≥0

c>x+ δ‖c‖∞R, and ‖Ax− b‖1 ≤ δ · (R‖A‖1 + ‖b‖1)

in expected time

Õ(nω+o(1) + n2.5−a/2+o(1) + n1.5+a−ã/2+o(1) + n0.5+a+(ω−1)ã) · log(n/δ)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication,
and 0 < a ≤ α.

In the ideal case when ω = 2 and α = 1. The running time is Õ(n2+1/18). For general 2 ≤ ω ≤ 3

and 0 ≤ α ≤ 1, the running time is O∗(nω + n2.5−a/2 + n(8+
√

19)/6) = O∗(nω + n2.5−a/2 + n2.06).

115

Proof. We use the parameters of Table 15 to prove the theorem. Since t is decreasing by a (1− ε
3
√
n

)

factor, the Main algorithm will take O(ε−1√n log(n/δ)) iterations in total.
Thus the total running time is

#iterations · cost per iteration
= O(ε−1√n log(n/δ)) ·O∗

(
(ε/εmp) · (nω−1/2 + n2−a/2 + n1+a−ã/2) + n(ω−1)ã+a + n1+b

)

= O∗
(
ε−1
mp(nω + n2.5−a/2 + n1.5+a−ã/2) + ε−1(n0.5+(ω−1)ã+a + n1.5+b)

)
· log(n/δ).

By plugging in the parameters ε = O(1/ log n), εmp = O(1/ log n), and b =
√
n log10 n (see Table 15),

the above running time becomes

O∗
(
nω + n2.5−a/2 + n1.5+a−ã/2 + n0.5+(ω−1)ã+a

)
· log(n/δ), (69)

and recall that parameters a and ã need to satisfy that a ≤ α and ã ≤ αa.
Therefore, in the ideal case where ω = 2 and α = 1, we can choose a = 8

9 and ã = 2
3 , and we

have 2.5−a/2 = 1.5 +a− ã/2 = 0.5 + (ω− 1)ã+a = 2 + 1/18, so the above running time simplifies
to

O∗(n2+1/18+o(1)) · log(n/δ).

For general ω and α, the parameters are optimized as follows:

a =

{
α, if α ≤ 4w

3(2w−1) ,
4w

3(2w−1) , o.w.
ã =

{
min{α2, 2

2ω−1}, if α ≤ 4ω
3(2ω−1) ,

2
2ω−1 , o.w.

Here we prove the final running time by discussing two cases.

1. In the first case where α ≤ 4ω
3(2ω−1) , we have a = α and ã ≤ α2 = αa.

If ã = α2, then 1.5 + α− ã/2 = 1.5 + α− α2/2 ≤ 2.5− α/2 since α ≤ 1.

If ã = 2
2ω−1 , then 1.5 + α − ã/2 = 1.5 + α − 1/(2ω − 1) ≤ 2.5 − α/2, since α ≤ 4ω

3(2ω−1) and
4ω

3(2ω−1) is the value that balances the two terms. Thus the following inequality holds:

n1.5+a−ã/2 ≤ n2.5−a/2.

We also have 0.5 + (ω − 1)ã + a ≤ 1.5 + a − ã/2, since ã ≤ 2
2ω−1 and 2

2ω−1 is the value that
balances these two terms. Thus the following inequality also holds:

n0.5+(ω−1)ã+a ≤ n1.5+a−ã/2.

Therefore the running time of Eq. (69) is dominated by O(nω + n2.5−α/2) in the first case.

2. In the second case where α > 4ω
3(2ω−1) , we have a = 4ω

3(2ω−1) ≤ α, and ã = 2
2ω−1 ≤ (4ω

3(2ω−1))2 ≤
αa, where the second step follows since ω ≥ 2. With these parameters, we have that

2.5− a/2 = 1.5 + a− ã/2 = 0.5 + (ω − 1)ã+ a =
13

6
− 1

3(2ω − 1)
.

Therefore in the second case the running time of Eq. (69) is dominated by

O(nω + n
13
6
− 1

3(2ω−1)) ≤ O(nω + n(8+
√

19)/6),

where (8 +
√

19)/6 ≈ 2.0598 ≤ 2.06 is the solution of equation ω = 13
6 − 1

3(2ω−1) .

116

Thus the running time in Eq. (69) is always upper bounded by

O∗
(
nω + n2.5−α/2 + n(8+

√
19)/6

)
· log(n/δ).

H Multi-level with more details

In this section we provide more details for Section 2.

H.1 LU-decomposition of Woodbury identity when K = 3

The LU-decomposition of matrix D =



M U2 U3

V >2 −C−1
2 0

V >3 0 −C−1
3


 where the diagonal blocks of L are

identity matrices is

D =




I 0 0
V >2 M−1 I 0
V >3 M−1 0 I


 ·



M U2 U3

0 −C−1
2 − V >2 M−1U2 −V >2 M−1U3

0 −V >3 M−1U2 −C−1
3 − V >3 M−1U3




=




I 0 0
V >2 M−1 I 0
V >3 M−1 0 I


 ·



I 0 0
0 I 0
0 −V >3 M−1U2B

−1 I




︸ ︷︷ ︸
L

·



M U2 U3

0 B −V >2 M−1U3

0 0 −C−1
3 − V >3 M−1U3 − V >3 M−1U2B

−1V >2 M−1U3




︸ ︷︷ ︸
U

, (70)

where B := −C−1
2 − V >2 M−1U2.

H.2 Online low-rank inverse and the oMV conjecture.

The following static data structure problem has received significant attention recently (see [HKNS15,
BNS19] and references therein).

Definition H.1 (Online matrix-vector multiplication (oMV)). Preprocess a (fixed) matrix M ∈
Rn×n so that, given an online sequence of T vectors ht ∈ Rn (arriving one by one), the data
structure can efficiently output Mht (exactly) before the next iteration t+ 1.

The oMV Conjecture [HKNS15] states that with poly(n) preprocessing time, the (amortized)
query time of any word-RAM data structure for oMV is at least tq > n2−o(1). Note that this is in
sharp contrast to the offline setting where the vectors {ht}t∈T are given as a batch, in which case
fast-matrix multiplication can achieve nω−1 < n1.37 query time on average (assuming T = n, say).
Now consider the following static problem:

Definition H.2 (Online low-rank inverse multiplication). Preprocess a fixed matrix M ∈ Rn×n and
a fixed vector h, so that given an online sequence of T pairs of vectors ut, vt ∈ Rn, the data structure
can efficiently output (M + utv

>
t)−1h (exactly) before the next iteration t+ 1.

117

Perhaps surprisingly, we prove that these problems are essentially equivalent in the word-RAM
model with polynomial preprocessing time. We first show that oMV is at least as hard as the
problem in Definition H.2:

Lemma H.3. If there is a data structure A with polynomial preprocessing time for oMV (Defi-
nition H.1) with worst case query time TA(n, T), then there is a data structure A′ for the online
low-rank inverse problem in Definition H.2 with polynomial preprocessing time and O(TA(n, T))
query time.

Proof. We design A′ as follows. In the preprocessing time, we use O(nω) time to pre-compute the
vector x := M−1 · h ∈ Rn and run the oMV data structure A on the input matrix M−1. Recall in
the query stage, we are given ut, vt ∈ Rn. By Woodbury’s identity, the solution (M + utv

>
t)−1 · h

can be written as

(M + utv
>
t)−1h = M−1h−M−1ut(1 + v>t M

−1ut)
−1v>t M

−1 · h.

Thus, using a single invocation of the query algorithm of A, we can compute the product y :=
M−1 · ut, and the remaining calculation is

M−1h−M−1ut(1 + v>t M
−1ut)

−1v>t M
−1 · h = x− y(1 + v>t · y)−1v>t · x,

which only involves vector inner product calculation and can be done in O(n) time.
Therefore, A′ takes O(TA(n, T)) + O(Tn) worst case query time. The lemma is proved by

observing that TA(n, T) is at least Ω(Tn).

We proceed to the other direction of the proof.

Lemma H.4. Given a word-RAM data structure B with polynomial preprocessing time for the
online low-rank inverse problem, with worst-case query time TB(n, T), there is a data structure B′

for the oMV problem with polynomial preprocessing time and O(TB(n, T)) worst case query time.

Proof. We construct B′ as follows: Given the input M in Definition H.1, the data structure first
compute M−1, and finds an arbitrary vector h for which h>Mh 6= 0, then pre-computes x := Mh
and y := h>M . This takes O(nω) preprocessing time. We can now invoke the preprocessing
function of the data structure B (for online low-rank inverse) with inputs M ← M−1, h ← h. In
each iteration t ∈ [T], given the vector ht of Definition H.1, invoke B with query vector ut ← ht,
vt ← h to get an answer g. Note that by Woodbury’s identity

g = (M−1 + utv
>
t)−1h = Mh−Mut(1 + v>t Mut)

−1v>t M · h = Mh−Mht(1 + h>Mut)
−1h>M · h.

Then B′ outputs the query answer

(x− g) · 1 + y · ht
y · h = (Mh− g) · 1 + (h>M)ht

h>M · h = Mht,

which only involves vector inner product calculation and can be done in O(n) time.
Therefore, B′ takes polynomial preprocessing time and O(TB(n, T)) + O(Tn) worst case query

time. The lemma is proved by observing that TB(n, T) is at least Ω(Tn).

As a corollary, we get that the following problem is at least as hard as the oMV problem:

Definition H.5 (Online cumulative low-rank inverse). Preprocess a fixed matrix M ∈ Rn×n and a
fixed vector h, so that given an online sequence of T pairs of vectors ut, vt ∈ Rn, the data structure
can efficiently output (M +

∑t
i=1 uiv

>
i)−1h (exactly) before the next iteration t+ 1.

118

H.3 Optimizing the parameters of Eq. (3)

Claim H.6. For any positive integer n,K, the following equation holds.

min
n=n1≥n2≥···nK−1≥nK≥1

(
K−1∑

k=1

n · nk/
√
nk+1 + nK−1 · nK

)
= O(K) · n1.5+ 1

6·(2K−1−1) .

Proof. Denote p = 1
6·(2K−1−1)

. Define ak as the exponent of nk such that nk = nak . Then it is
equivalent to finding a1, · · · , aK ∈ R such that the following three conditions hold:

1. 1 = a1 ≥ a2 ≥ · · · ≥ aK−1 ≥ aK ≥ 0.

2. 1 + ai − ai+1/2 ≤ 1.5 + p, ∀i ∈ [K − 1].

3. aK−1 + aK ≤ 1.5 + p.

The optimal solution is given by ai = 1 − 1/(3 · 2K−i) + (2 − 2−K+i+1) · p, ∀i ∈ [K]. Now we
prove that the three conditions are satisfied with this solution.
Condition 1.

a1 = 1− 1

3 · 2K−1
+

2− 2−K+2

6 · (2K−1 − 1)
= 1− 1

3 · 2K−1
+

(2K−1 − 1)/2K−1

3 · (2K−1 − 1)
= 1.

Since ai is decreasing with i, ai ≥ ai+1 is also satisfied. Finally, aK = 2
3 ≥ 0.

Condition 2. For all i ∈ [K − 1],

1 + ai − ai+1/2 = 1 + (1− 1

3 · 2K−i + (2− 2−K+i+1) · p)− (1− 1

3 · 2K−i−1
+ (2− 2−K+i+2) · p)/2

= 1.5− 1

3 · 2K−i + (2− 2−K+i+1) · p+
1

3 · 2K−i − (1− 2−K+i+1) · p
= 1.5 + p.

Condition 3. aK−1 + aK = (1− 1
6 + p) + 2

3 = 1.5 + p.

I A feasible algorithm

In previous sections, we show a fast algorithm calculating an LP solution x. However, x is not
always a feasible solution since we used sketching to calculate δ̂x and hence Aδ̂x is not 0. In this
section we present how to turn the output x of Theorem 4.1 to a feasible LP solution, i.e. ‖Ax−b‖1
is bounded. Our technique is based on the robust central path of [LSZ19], and we extend it to
two level update setting. Our algorithm use G,M, u1, u2, u3, u4 to implicitly maintain the solutions
x = Gu1 + u2 and s = Mu3 + u4. Each iteration, the algorithm updates G,M, u1, u2, u3, u4 so that
x and s change by δ̃x and δ̃s in each iteration (see Definition B.4). In this way, we can postpone the
expensive matrix vector multiplication to every

√
n iterations. The running time of maintaining x

and s is dominated by the pre-existing computations, so our algorithm still achieves the same overall
running time. Also since we do not multiply the sketching matrix on the left when computing δ̃x
and δ̃s, Aδ̃x = 0 is always satisfied and in each iteration we always have Ax = Ax(0) = b.

We introduce a smaller error constant εtiny in this section.

Definition I.1. We define εtiny =
εmp·ε

3200 log3 n
.

119

Algorithm 18 Feasible version of Main (Algorithm 17)
1: procedure Main(A, b, c, δ, a, ã) . Theorem G.3+I.2, A, b, c are inputs of LP, δ is the accuracy

parameter
2: εmp ← 10−5/ log n
3: εfar ← εmp/100 log n
4: ε← 10−7/ log n
5: λ← 40 log n
6: δ ← min{ δ2 , 1

λ}
7: bsketch ← 1012

√
n log8 n/ε2mp

8: Lsketch ← n1/2+o(1)

9: Create Lsketch sketching matrices R1, R2, · · · , RLsketch ∈ Rbsketch×n . Lemma B.14
10: Let R = [R>1 , R

>
2 , · · · , R>Lsketch

]>

11: Modify the linear program and obtain an initial x(0) and s(0).
12: Let mpt and mpΦ be projection maintenance data structures.
13: Let ft : x 7→ √x, fΦ : x 7→ λ sinh(λ(x− 1))/

√
x

14: mpt.Initialize(ft, εmp, εfar, a, ã, bsketch, Lsketch, A,
x(0)

s(0)
, x(0)s(0), R) . Algorithm 21

15: mpΦ.Initialize(fΦ, εmp, εfar, a, ã, bsketch, Lsketch, A,
x(0)

s(0)
, x

(0)s(0)

t , R) . Algorithm 21
16: Global x, s, x, s, t, tnew, wold

17: x← x← x(0), s← s← s(0), wold ← x(0)s(0)

18: told ← t← 1, j ← 0
19: while t > δ2/(32n3) do
20: tnew ← (1− ε

3
√
n

)t, j ← j + 1
21: repeat
22: δ̂x, δ̂s, w

appr ← OneStepCentralPath(mpt,mpΦ, t, t
new) . Algorithm 19

23: if the Lsketch sketching matrices are used up then
24: re-initialize mpt and mpΦ with new ones.
25: end if
26: until ‖x−1δ̂x‖∞ ≤ 5ε, ‖s−1δ̂s‖∞ ≤ 5ε, if this condition is false, revoke the updates of u1, u2, u3, u4

in mpt and mpΦ

27: x← x+ δ̂x, s← s+ δ̂s
28: MakeFeasible(wappr)
29: if j >

√
n or t < told/2 then

30: x← x− (mpt.u1 + mpt.G ·mpt.u2)− (mpΦ.u1 + mpΦ.G ·mpΦ.u2)
31: s← s+ (mpt.u3 + mpt.M ·mpt.u4) + (mpΦ.u3 + mpΦ.M ·mpΦ.u4)
32: mpt.Initialize(εmp, εfar, a, ã, b, L,A,w

appr, happr, R)
33: mpΦ.Initialize(εmp, εfar, a, ã, b, L,A,w

appr, happr/t,R)
34: j ← 1, told ← t
35: end if
36: if Φλ(xs/t− 1) > n3 then
37: (x, s)← ClassicalStep(x, s, tnew) . Use the central path step of [Vai89].
38: x← x, s← s
39: Construct sketching matrices R similar as before.
40: mpt.Initialize(ft, εmp, εfar, a, ã, bsketch, Lsketch, A,

x
s , xs,R) . Algorithm 21

41: mpΦ.Initialize(fΦ, εmp, εfar, a, ã, bsketch, Lsketch, A,
x
s ,

xs
t , R) . Algorithm 21

42: end if
43: t← tnew

44: end while
45: return x
46: end procedure

120

Algorithm 19 Feasible version of OneStepCentralPath (Algorithm 3)
1: procedure OneStepCentralPath(mpt,mpΦ, t, t

new) . Part 1 of Theorem I.2
2: w ← x/s . x, s is global variable
3: µ← xs
4: (qt,x, pt,x, pt,s, w

appr)← mpt.UpdateQuery(w, µ) . Algorithm 23
5: . this data-structure works with function ft(x) =

√
x

6: (qΦ,x, pΦ,x, pΦ,s, w
appr)← mpΦ.UpdateQuery(w, µ/t) . Algorithm 23

7: . this data-structure works with function fΦ(x) = ∇Φ(x− 1)/
√
x

8: δ̂x ← qt,x + qΦ,x − (pt,x + pΦ,x)

9: δ̂s ← pt,s + pΦ,s

10: x← x+ qt,x + qΦ,x

11: return (δ̂x, δ̂s, w
appr)

12: end procedure

Algorithm 20 Data structure : MakeFeasible.
1: data structure
2: procedure MakeFeasible(wappr) . Part 2 of Theorem I.2
3: Ŝ ← {i : |wold

i − wappr
i | > wold

i /2}
4: xŜ ← xŜ − ((mpt.u1)Ŝ + (mpt.G ·mpt.u2)Ŝ)− ((mpΦ.u1)Ŝ + (mpΦ.G ·mpΦ.u2)Ŝ)
5: sŜ ← sŜ + ((mpt.u3)Ŝ + (mpt.M ·mpt.u4)Ŝ) + ((mpΦ.u3)Ŝ + (mpΦ.M ·mpΦ.u4)Ŝ)
6: wold

Ŝ
← wappr

Ŝ
7: end procedure
8: end data structure

Algorithm 21 Data structure : feasible version of members (Algorithm 4), invariants (Assump-
tion D.1), and Initialize (Algorithm 5)
1: data structure
2:
3: members
4: · · · . We continue to have all previous members of Algorithm 4.
5: u1, u2, u3, u4 ∈ Rn
6: G ∈ Rn×n
7: end members
8:
9: invariant
10: · · · . We continue to maintain all previous invariants of Assumption D.1.
11: G = Ṽ A>(AV A>)−1A . G ∈ Rn×n
12: x = u1 +Gu2 . x ∈ Rn
13: s = u3 +Mu4 . x ∈ Rn
14: end invariant
15:
16: procedure initialize(f, εmp, εfar, a, ã, b, L,A,w0, h0, R)
17: · · · . All previous members are initialized as of Algorithm 5.
18: G←W0A

>(AV A>)−1A . G ∈ Rn×n
19: u1, u2, u3, u4 ← 0 . u1, u2, u3, u4 ∈ Rn
20: end procedure
21:
22: end data structure

To make the output feasible, we present in this section the modified algorithms. In Section I.1

121

Algorithm 22 Data structure : ScalarC.
1: procedure ScalarC(happr) . Output a number c ∈ R
2: if self.name = mpt then
3: c← tnew

t − 1
4: end if
5: if self.name = mpΦ then
6: µ̃← happr · t
7: c← − ε

2 · tnew · 1√
t‖∇Φλ(µ̃/t−1)‖2

8: end if
9: return c
10: end procedure

Algorithm 23 Data structure : feasible version of UpdateQuery (Algorithm 8)
1: data structure . Theorem C.9
2:
3: procedure UpdateQuery(wnew, hnew) . Theorem I.2
4: happr, p, p̃← UpdateG(hnew) . Algorithm 10, p and p̃ are only used for analysis.
5: wappr, k, k̃ ← UpdateV(wnew, happr) . Algorithm 9, k and k̃ are only used for analysis.
6: r ← Query(wappr, happr) . Algorithm 24, Lemma D.7, E.3, I.10
7: . Compute r = R[l]>R[l]

√
W apprA>(AW apprA>)−1A

√
W apprf(happr)

8: c← ScalarC(happr)
9: if self.name = mpt then
10: µ̃← happr

11: end if
12: if self.name = mpΦ then
13: µ̃← happr · t
14: end if
15: w̃ ← wappr

16: x̃←
√
µ̃ · w̃, s̃←

√
µ̃/w̃ . µ̃ = x̃s̃ and w̃ = x̃/s̃

17: qx ←
√

x̃
s̃ · c · f(happr)

18: px ←
√

x̃
s̃ · c · r

19: ps ←
√

s̃
x̃ · c · r

20: return qx, px, ps, w
appr

21: end procedure
22:
23: end data structure

we show that the error guarantees of central path method still has the same bound with the mod-
ifications, this section should be seen as a complement of Section B. In Section I.2 we prove the
correctness of this feasible algorithm when implicitly maintaining x and s, this section should be
seen as a complement of Section D. In Section I.4 we bound that the running time of maintaining
x and s, this section should be seen as a complement of Section E.

I.1 Analysis

Consider the j-th iteration. Assume at the beginning of the j-th iteration, we have x(j), s(j), x(j),
s(j). Define w := w(j) = x(j)s(j), µ := µ(j) = x(j)

s(j)
, w := w(j) = x(j)s(j), µ := µ(j) = x(j)

s(j)
, wnew :=

w(j+1) = x(j+1)s(j+1), µnew := µ(j+1) = x(j+1)

s(j+1) . We will prove inductively that the guarantees of

122

Algorithm 24 Data structure : feasible version of Query (Algorithm 12)
1: data structure . Theorem C.9
2:
3: procedure Query(wappr, happr) . Lemma D.7, E.3, I.10
4: ∂∆, ∂Γ, ∂ξ, ∂S,∆new,_,_, Snew, S′ ← ComputeLocalVariables(wappr, g̃new)
5: . Algorithm 11
6: r1 ← β1[l] . r1 ∈ Rnb

7: r2 ← Q[l]ξ +R[l]γ2 +R[l]∂ΓM(ξ + ∂ξ) +
(
Q[l] +R[l]ΓM

)
∂ξ . r2 ∈ Rnb

8: r3 ← R[l](Γ + ∂Γ)β2 . r3 ∈ Rnb

9: ∂γ ← B · (Lr[(β2)∂S\S]− Lr[(β2)S′]) +B · (Lr[(M∂S\S)>]− Lr[(MS′)
>]) · (ξ + ∂ξ) + E · ∂ξ

10: . local variable ∂γ ∈ R6na

11: (U ′, C, U)← Decompose
(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)

12: . Decompose is defined in Lemma C.4. U ′, U ∈ R6na×3|∂S|, C ∈ R3|∂S|×3|∂S|

13: ∂E ← E∂S −B(∂S∩S) ·M(∂S∩S),∂S

14: (∂E)S′ ← −(∂E)S′ , (∂E)(S∩∂S)\S′ ← 0 . local variable ∂E ∈ R6na×|∂S|

15: U tmp ← [B∂S , B∂S , ∂E]
16: . local variable U tmp ∈ R6na×3|∂S|, U tmp = BU ′ (Corollary C.7)
17: γtmp ← U tmp(C−1 + U>U tmp)−1U> · (γ1 + ∂γ) . local variable, γtmp ∈ R6na

18: r4 ←
(
Lc[(Q[l])Snew] + F [l] +R[l]Γ(Lc[M∂S\S]− Lc[MS′]) +R[l]∂ΓLc[MSnew]

)
(γtmp − γ1 − ∂γ)

19: r ← R[l]>(r1 + r2 + r3 + r4) . r ∈ Rn
20: l← l + 1
21: c← ScalarC(happr)

22: u1 ← u1 + c · (W appr − Ṽ)
(
β2 +M ·

(√
W apprf(happr)−

√
V f(g) + 1Snew(γtmp − γ1 − ∂γ)

))

23: . 1Snew ∈ Rn×6na only has ones in positions (i, i) for i ∈ Snew

24: u2 ← u2 + c ·
(√

W apprf(happr) + 1Snew(γtmp − γ1 − ∂γ)
)

25: u4 ← u4 + c ·
(√

W apprf(happr) + 1Snew(γtmp − γ1 − ∂γ)
)

26: return r
27: end procedure
28:
29: end data structure

Section B are still satisfied for the modified algorithm.

Robustness of central path. We first prove the following two statements about the robustness
of central path method:

1. The wappr and happr used in the data structures satisfy wappr ≈2εmp w, and happr ≈2εmp µ.
(This corresponds to Part 1 and 2 of Assumption B.5. We only lose a constant factor here.)

2. µnew ≈0.2 t. (This corresponds to Part 3 of Assumption B.5. We only loose a constant factor
here.)

In Part 3 of Theorem I.2, we prove that in any iteration, x, x, s, s are entry-wise close with high
probability, i.e. x ≈εtiny x and s ≈εtiny s holds with probability 1 − 1/ poly(n). We will use this to
prove that the above two statements are still satisfied in our modified algorithm.

1. The data structure directly ensures wappr ≈εmp w, and happr ≈εmp µ. And since x(j) ≈εtiny x
(j)

and s(j) ≈εtiny s
(j) (Part 3 of Theorem I.2) we directly get the desired result that wappr ≈2εmp w

and happr ≈2εmp µ.

123

Algorithm 25 Data structure : feasible version of MatrixUpdate (Algorithm 13)
1: data structure . Theorem C.9
2:
3: procedure MatrixUpdate(wappr, happr) . Lemma D.17, E.12, I.7
4: _,_,_,_,∆new,Γnew,_, Snew,_← ComputeLocalVariables(wappr,_) . Algorithm 11
5: M tmp ←M −MSnew · ((∆new

Snew,Snew)−1 +MSnew,Snew)−1 · (MSnew)>

6: Qtmp ← Q+R(ΓnewM tmp) +R
√
V (M tmp −M)

7: βtmp
1 ← Qtmp

√
W apprf(g)

8: βtmp
2 ←M tmp

√
W apprf(g)

9: ξtmp ←
√
W appr(f(g̃)− f(g))

10: . We start to refresh variables in the memory of data structure
11: c← ScalarC(happr)
12: G←W apprM tmp

13: u1 ← u1 +Gu2 + c ·W apprM tmp
√
W apprf(happr)

14: u3 ← u3 +Mu4 + c ·M tmp
√
W apprf(happr)

15: u2 ← 0, u4 ← 0
16: Q← Qtmp, M ←M tmp

17: β1 ← βtmp
1 , β2 ← βtmp

2 , ξ ← ξtmp

18: v ← ṽ ← wappr

19: B ← I, F ← 0, E ← 0
20: S ← ∅, ∆← Γ← 0, γ1 ← γ2 ← 0
21: end procedure
22:
23: end data structure

2. Note that previously µ ≈0.1 t was proved in Lemma B.27 by bounding the potential function.
And the proof of Lemma B.27 uses the bounds given by Lemma B.21. We define the potential
function to be Φ(xst − 1) here instead of Φ(xst − 1). Note that conditioned on x(j) and s(j),
x(j+1) and s(j+1) are deterministic. Thus Part 2 and Part 4 of Lemma B.21 are trivial. We
still have an analog of Part 1 and Part 3 of Lemma B.21: ‖µ−1(µnew−µ− δt− δ̃Φ)‖2 ≤ O(εmp

and ‖µ−1(µnew−µ)‖∞ ≤ O(ε) using the fact that x(j) and s(j) are close to x(j) and s(j) (Part
3 of Theorem I.2). Thus we still have an analog of Lemma B.27 that

Φλ(µnew/tnew − 1) ≤ Φλ(µ/t− 1)− λε

15
√
n
· (Φλ(µ/t− 1)− 10n).

Using Part 3 of Theorem I.2 again and the fact that the derivative of cosh(x) function is
constant when x < 2, we have

Φλ(µnew/tnew − 1) ≤ Φλ(µ/t− 1)− Ω(
λε√
n

) · (Φλ(µ/t− 1)−O(n2)).

Thus we can still inductively prove a polynomial upper bound on the potential function
Φλ(xst − 1). Note that we only loose a constant factor in the approximation ratio of µ with t
when the last term is O(n2) instead of O(n).

w and h move slowly. The last part of the inductive analysis is to show that w and µ are both
moving slowly as that of Section B.6 and B.7. Now we only have the guarantee for w and µ, instead
of w and µ, so we use ψ(wi/vi − 1) and ψ(wi/ṽi − 1) in the analysis and use ψ(wi/vi − 1) and
ψ(wi/ṽi − 1) for the algorithm (because the algorithm doesn’t know w and µ). The amortized
analysis of Section F need to be modified accordingly. We have the following two statements:

124

Algorithm 26 Data structure : feasible version of PartialMatrixUpdate (Algorithm 14).
1: data structure . Theorem C.9
2:
3: procedure PartialMatrixUpdate(wappr, happr) . Lemma D.21, E.18, I.8
4: _, ∂Γ,_, ∂S,∆new,Γnew,_, Snew,_← ComputeLocalVariables(wappr,_) . Algorithm 11
5: (U ′, C, U)← Decompose

(
L∗[(∆new

Snew,Snew)−1 +MSnew,Snew]− L∗[∆−1
S,S +MS,S]

)

6: . Decompose is defined in Lemma C.4
7: Btmp ← B −BU ′(C−1 + U>BU ′)−1U>B
8: F tmp ← F +RΓ · (Lc[M∂S\S]− Lc[MS′]) +R∂Γ · Lc[MSnew]

9: Etmp ← E +Btmp(Lr[(M∂S\S)>]− Lr[(MS′)
>])−BU ′(C−1 + U>BU ′)−1U>E

10: ξtmp ←
√
W apprf(g̃)−

√
V f(g)

11: γtmp
1 ← Btmp · Lr[β2,Snew] +Btmp · Lr[(MSnew)>]ξtmp

12: γtmp
2 ← γ2 + (Γ + ∂Γ)M(

√
W appr −

√
Ṽ)f(g̃) + ∂ΓM(

√
Ṽ f(g̃)−

√
V f(g))

13: c← ScalarC(happr)

14: G← G+ (W appr − Ṽ) ·M
15: u1 ← u1 + (W appr − Ṽ) ·Mu2

16: u2 ← u2 + c ·
(√

W apprf(happr)− 1SnewBtmpLr[(MSnew)>]
√
W apprf(happr)

)

17: u4 ← u4 + c ·
(√

W apprf(happr)− 1SnewBtmpLr[(MSnew)>]
√
W apprf(happr)

)

18: . We start to refresh variables in the memory of data structure
19: B ← Btmp, F ← F tmp, E ← Etmp

20: ξ ← ξtmp γ1 ← γtmp
1 , γ2 ← γtmp

2

21: ṽ ← wappr, S ← Snew, ∆← ∆new, Γ← Γnew

22: end procedure
23:
24: end data structure

1. The three bounds of Lemma B.28 and Lemma B.29 hold for wnew/w − 1 and µnew/µ − 1.
(Originally used in subsection F.4.3, F.3.3.)

2. Lemma F.24 and Lemma F.33 still hold for new potential function with use w instead of w.

Proof Sketch.

1. Note that Lemma B.28 and Lemma B.29 only use the relative error bounds stated in Lemma B.16.
We can prove that all x−1, s−1 and µ−1 terms of Lemma B.16 can be replaced by x, s, and
µ since we proved that in iteration j, x(j) ≈εtiny x

(j) and s(j) ≈εtiny s
(j). Following the same

proof of Lemma B.28 and Lemma B.29, and using the error bound of the x and s version of
Lemma B.16, we can prove the desired statement.

2. Since x ≈εtiny x in any iteration (Part 3 of Theorem I.2), we have w(j+1) ≈εtiny w
(j+1), hence

ψ(w
(j+1)
i /v

(j+1)
i −1) is within the range of [ψ(w

(j+1)
i /v

(j+1)
i −1)− εtiny, ψ(w

(j+1)
i /v

(j+1)
i −1)+

εtiny]. So it is fine to use ψ(w
(j+1)
i /v

(j+1)
i − 1) in the analysis while using ψ(w

(j+1)
i /v

(j+1)
i − 1)

in the algorithm. The only problem we need to resolve is that when v and ṽ are updated to
wappr = w, the potential function is not cleared to be 0, but instead remain a small number
εtiny � εmp. But this problem is already solved in Lemma F.33.

125

I.2 Correctness of feasible algorithm

We first present the following main theorem, and prove it using lemmas proved subsequently.

Theorem I.2. In the j-th iteration of the while-loop from Line 19 to Line 44 of Main(Algorithm 18),
let x(j) and s(j) be the values of global variables x and s at the beginning of j-th iteration, and let
x(j+1), s(j+1), x(j+1), s(j+1) be the values of global variables x, s, x, s at the end of j-th iteration. Let
x̃, s̃, P̃ , δ̃t, δ̃Φ, δ̃x, δ̃s be defined as in Definition B.4. Let R ∈ Rb×n be the subsampled randomized
Hadamard matrix we used in our algorithm, defined in Definition B.10.

Then our algorithm guarantees that
1. The output of OneStepCentralPath(Algorithm 19) satisfies

δ̂x =

√
X̃

S̃
(I − (R>R)P̃)

1√
X̃S̃

(δ̃t + δ̃Φ), δ̂s =

√
S̃

X̃
(R>R)P̃

1√
X̃S̃

(δ̃t + δ̃Φ),

δ̂x and δ̂s match the definition in Definition B.6.
2. In each iteration, when the algorithm reaches MakeFeasible(Algorithm 20) on Line 28 of
Main (Algorithm 18), the following holds:

x−
(
(mpt.u1) + (mpt.G) · (mpt.u2)

)
−
(
(mpΦ.u1) + (mpΦ.G) · (mpΦ.u2)

)
= x(0) +

j∑

i=1

δ̃(i)
x

s+
(
(mpt.u3) + (mpt.M) · (mpt.u4)

)
+
(
(mpΦ.u3) + (mpΦ.M) · (mpΦ.u4)

)
= s(0) +

j∑

i=1

δ̃(i)
s .

3. x ≈εtiny x, s ≈εtiny s with high probability.

Proof. For simplicity, we only prove these three statements for x. The case for s follows from similar
reasons. Since we have two data structures sharing the same code, we denote qx,t, qx,Φ, px,t, px,Φ
as the qx and px defined on Line 17 and 18 of UpdateQuery (Algorithm 23) in data structure
mpt and mpΦ respectively. Also, We denote ct as the output of ScalarC (Algorithm 22) of data
structure mpt, and cΦ corresponds to mpΦ. From the description of ScalarC, we have

ct := (
tnew

t
− 1) cΦ := − ε

2
· tnew · 1√

t‖∇Φλ(µ̃/t− 1)‖2
. (71)

And recall ft, fΦ defined in Line 13, Algorithm 18) are

ft(x) :=
√
x fΦ(x) := ∇Φλ(x)/

√
x. (72)

In UpdateQuery (Algorithm 23), the two data structure approximate wappr and happr in the
same way, so their w̃ (Line 10) and µ̃ (Line 10 and 13) are the same. So they also have the same x̃
and s̃ (Line 16). Note that w̃, µ̃, x̃, s̃ calculated in the data structure all matches Definition B.4.

We first show the following that will be used in both Part 1 and 2:

ct · ft(µ̃) + cΦ · fΦ(µ̃/t) = (
tnew

t
− 1) ·

√
µ̃− ε

2
· tnew · 1√

t‖∇Φλ(µ̃/t− 1)‖2
· ∇Φλ(µ̃/t)/

√
µ̃/t

=
1√
µ̃

(
(
tnew

t
− 1) · µ̃− ε

2
· tnew · ∇Φλ(µ̃/t)

‖∇Φλ(µ̃/t− 1)‖2

)

=
1√
µ̃

(δ̃t + δ̃Φ) =
1√
X̃S̃

(δ̃t + δ̃Φ), (73)

126

where the first step is by the definition of c and f (Eq.(71),(72)), the third step is by the definition
of δ̃t and δ̃Φ (Definition B.4), the last step is by µ̃ = x̃s̃.
Part 1. First we calculate qx,t + qx,Φ:

qx,t + qx,Φ =

√
X̃

S̃
(ct · ft(µ̃) + cΦ · fΦ(µ̃/t)) =

√
X̃

S̃

1√
X̃S̃

(δ̃t + δ̃Φ) (74)

where the first step is by assignment of qx (Line 17 of UpdateQuery, Algorithm 23), the second
step is by Eq.(73).

Next, we calculate px,t + px,Φ. Note that the output r of Query is calculated in the same way
as before, so by Lemma D.7 we have

r = R[l]>R[l]
√
W apprA>(AW apprA>)−1A

√
W apprf(happr) = R[l]>R[l]P̃ f(happr). (75)

Therefore,

px,t + px,Φ =

√
X̃

S̃
(ct · rt + cΦ · rΦ) =

√
X̃

S̃

(
ct ·R[l]>R[l]P̃ ft(µ̃) + cΦ ·R[l]>R[l]P̃ fΦ(µ̃/t)

)

=

√
X̃

S̃
R[l]>R[l]P̃ (ct · ft(µ̃) + cΦ · fΦ(µ̃/t)) =

√
X̃

S̃
R[l]>R[l]P̃

1√
X̃S̃
· (δ̃t + δ̃Φ),

where the first step is by assignment of px (Line 18 of UpdateQuery, Algorithm 23), the second
step is by Eq.(75), the last step is by Eq.(73).

Then as we calculate δ̂x in line 8 of OneStepCentralPath (Algorithm 19),

δ̂x = qt,x + qΦ,x − (pt,x + pΦ,x)

=

√
X̃

S̃

1√
X̃S̃

(δ̃t + δ̃Φ)−

√
X̃

S̃
R[l]>R[l]P̃

1√
X̃S̃
· (δ̃t + δ̃Φ)

=

√
X̃

S̃

(
I −R[l]>R[l]P̃

) 1√
X̃S̃
· (δ̃t + δ̃Φ).

Part 2. We prove Part 2 by induction. In the basic case when j = 0, we initialize x ← x(0), so it
is true.

When j > 0, let j1 < j be the last iteration that we call Initialize on Line 32 and 33
of Main (Algorithm 18). In the j1-th iteration, the Main algorithm executes Line 30: x ←
x − (mpt.u1 + mpt.G · mpt.u2) − (mpΦ.u1 + mpΦ.G · mpΦ.u2) , and then re-initialize mpt.u1 ←
mpt.u2 ← mpΦ.u1 ← mpΦ.u2 ← 0. Therefore by induction on j, we have x(j1) = x(0) +

∑j1
i=1 δ̃

(i)
x .

Now apply Part 3 of Lemma I.3, we have that
(
(mpt.u1) + (mpt.G) · (mpt.u2)

)
+
(
(mpΦ.u1) + (mpΦ.G) · (mpΦ.u2)

)

=

j∑

i=j1+1

c
(i)
t ·

√
W appr,(i)P̃ (i)ft(µ̃

(i)) +

j∑

i=j1+1

c
(i)
Φ ·

√
W appr,(i)P̃ (i)fΦ(µ̃(i)/t(i))

=

j∑

i=j1+1

√
X̃(i)

S̃(i)
P̃ (i) 1√

X̃(i)S̃(i)
(δ̃

(i)
t + δ̃

(i)
Φ).

127

where the first step is by Part 3 of Lemma I.3, the second step is by Eq.(73).
Also notice that in every iteration, we add qt,x + qΦ,x to x in OneStepCentralPath (Line 10

of Algorithm 19), so

x(j) − x(j1) =

j∑

i=j1+1

(q
(i)
t,x + q

(i)
Φ,x) =

j∑

i=j1+1

√
X̃(i)

S̃(i)

1√
X̃(i)S̃(i)

(δ̃
(i)
t + δ̃

(i)
Φ).

where the last step is by Eq.(74).
Therefore,

x(j) −
(
(mpt.u1) + (mpt.G) · (mpt.u2)

)
−
(
(mpΦ.u1) + (mpΦ.G) · (mpΦ.u2)

)

= x(j1) +

j∑

i=j1+1



√
X̃(i)

S̃(i)

1√
X̃(i)S̃(i)

(δ̃
(i)
t + δ̃

(i)
Φ)−

√
X̃(i)

S̃(i)
· P̃ (i) · 1√

X̃(i)S̃(i)
(δ̃

(i)
t + δ̃

(i)
Φ)




= x(j1) +

j∑

i=j1+1

δ̃(i)
x

= x(0) +

j∑

i=1

δ̃(i)
x .

Part 3. Consider a fixed coordinate i. We use ji to denote the last iteration that the algorithm
includes i into Ŝ when enter the MakeFeasible procedure on Line 28 of Main (Algorithm 18) or
when re-initialize. We prove the following properties in order to apply Lemma I.5.

1. x(ji)
i = x

(ji)
i . If the algorithm enter the Initialize procedure, we have x(ji)

i = x
(ji)
i . Otherwise

we enter the MakeFeasible procedure, and according to the updating rule x
Ŝ
← x

Ŝ
(Line 4

of MakeFeasible, Algorithm 20), we also have x(ji)
i = x

(ji)
i .

2. t(j) > t(ji)/2 and j − ji ≤
√
n, since the algorithm re-Initialize whenever it passes

√
n

iterations or t changes too much (Line 29 in Main, Algorithm 18).

3. For all l ∈ {ji + 1, · · · , j}, wappr,(l) ∈ [wold/2, 2wold], since the algorithm doesn’t include
coordinate i in S̃ during iteration l.

Then by Lemma I.5, x(j)
i ≈εx x

(j)
i holds with probability at least 1 − δ, where εx = 200n1/4√

b
·

log(n/δ)ε ≤ εmp·ε
3200 log3 n

by our assignment of b = 1012√n log8 n/ε2mp (Line 7 of Main, Algorithm 18)
and δ = 1/ poly(n). This satisfies the requirement of Def. I.1.

By choosing δ to be 1/n10 and union bound on all coordinates i, x(j) ≈εtiny x
(j) holds w.h.p.

The following lemma proves the invariants that are true throughout the algorithm. It is used to
prove Theorem I.2. This lemma should be seen as a complement of Section D, and we directly use
results proved in that section.

Lemma I.3 (Invariants). In the end of the j-th iteration, the following invariants hold:

1. G = Ṽ A>(AV A>)−1A.

2. u3 +Mu4 =
∑j

i=j1+1 c
(i) ·A>(AW appr,(i)A>)−1A

√
W appr,(i)f(happr,(i)),

128

3. u1 +Gu2 =
∑j

i=j1+1 c
(i) ·W appr,(i)A>(AW appr,(i)A>)−1A

√
W appr,(i)f(happr,(i)),

where j1 is the last iteration we call Initialize, and c(j) is defined as in ScalarC:
in data structure mpt,

c := (
tnew

t
− 1),

and in data structure mpΦ,

c := − ε

2
· tnew · 1√

t‖∇Φλ(µ̃/t− 1)‖2
.

Proof. We consider the j-th iteration in this proof. Throughout the proof, we call the updated
version of all date structure members at the end of the j-th iteration as the “new” version, with a
“new” superscript in the notation, e.g. unew

1 .
Part 1. Note that V , Ṽ and G are only updated in MatrixUpdate and PartialMatrixUpdate.

Case 1. MatrixUpdate (Algorithm 25). On Line 12, G is updated to be W apprM tmp,
where W appr is the new value of Ṽ (Line 18), and M tmp is the new value of M (Line 16). We have

Gnew = Ṽ M = Ṽ A>(AV A>)−1A,

since in Lemma D.17 we proved that the invariant of M still holds.
Case 2. PartialMatrixUpdate (Algorithm 26). First note that V and M are not

updated in PartialMatrixUpdate. On Line 14, G is updated to be W apprM , where W appr is
the new value of Ṽ , so the invariant of G still holds.
Part 2. It suffices to prove that the additive term in the j-th iteration is

unew
3 +Mnewunew

4 − (u3 +Mu4) = c ·A>(AW apprA>)−1A
√
W apprf(happr).

Then starting from the j1-th iteration where we re-initialize and set u(j1)
3 = u

(j1)
4 = 0, we can

inductively prove the statement for iterations i ∈ {j1 + 1, · · · , j}.
There are three cases that we update u3 and u4 in the j-th iteration: in MatrixUpdate,

PartialMatrixUpdate, or Query. Note that even though we might enter Query after executing
MatrixUpdate or PartialMatrixUpdate, u3 and u4 won’t change inside Query since they were
already updated in MatrixUpdate or PartialMatrixUpdate. So we can consider the updates
to u3 and u4 in these three procedures separately.

Case 1, MatrixUpdate (Algorithm 25).

unew
3 +Mnewunew

4 − (u3 +Mu4) = u3 +Mu4 + c ·M tmp
√
W apprf(happr) +Mnew · 0− (u3 +Mu4)

= c ·M tmp
√
W apprf(happr)

= c ·A>(AW apprA>)−1A
√
W apprf(happr),

where the first step is by the assignment of unew
3 (Line 14), unew

4 (Line 15), the last step is by
M tmp = A>(AW apprA>)−1A that we already proved in Lemma D.17.

Case 2, PartialMatrixUpdate (Algorithm 26).

unew
3 +Mnewunew

4 − (u3 +Mu4)

= M(unew
4 − u4)

= M · c ·
(√

W apprf(happr)− 1SnewBtmpLr[(MSnew)>]
√
W apprf(happr)

)

129

= c ·
(
M − Lc[MSnew]BtmpLr[(MSnew)>]

)√
W apprf(happr)

= c ·
(
M − Lc[MSnew] · L∗[

(
(∆new

Snew,Snew)−1 +MSnew,Snew

)−1
] · Lr[(MSnew)>]

)√
W apprf(happr)

= c ·A>(AW apprA>)−1A
√
W apprf(happr),

where the first step is by unew
3 = u3 andMnew = M since they are not modified in PartialMatrix-

Update, the second step is by the assignment of unew
4 (Line 17), the fourth step is by the invariant

on Btmp (Part 10 of Assumption D.1), the fifth step is by Woodbury identity (Lemma C.8) and
M = A>(AV A>)−1A.

Case 3, Query (Algorithm 24).

unew
3 +Mnewunew

4 − (u3 +Mu4)

= M(unew
4 − u4)

= M · c ·
(√

W apprf(happr) + 1Snew(γtmp − γ1 − ∂γ)
)

= c ·
(
M − Lc[MSnew] · L∗[((∆new

Snew,Snew) +MSnew,Snew)−1] · Lr[(MSnew)>]
)
·
√
W apprf(happr)

= c ·A>(AW apprA>)−1A
√
W apprf(happr),

where the first step is by unew
3 = u3 andMnew = M since they are not modified in MatrixUpdate,

the second step is by the assignment of unew
4 (Line 25), the third step is by the close-form formula

of γtmp − γ1 − ∂γ (Eq. (42)), the fourth step is by Woodbury identity (Lemma C.8) and M =
A>(AV A>)−1A.
Part 3. The proof for u1+Gu2 =

∑j
i=j1+1 c

(i)·W appr,(i)A>(AW appr,(i)A>)−1A
√
W appr,(i)f(happr,(i))

follows from similar reasons as that of Part 2. We omit the details here.

I.3 Bounding x and x

In this section we prove that the explicit x is always within an error of εtiny with the implicitly
maintained x. This fact is used to prove Part 3 of Theorem I.2. Similar as in previous sections, we
use a superscript (j) to denote the variable at the beginning of the j-th iteration.

Remark I.4. Our entire analysis is an induction-based argument. In the j-th iteration, the induc-
tion hypothesis allows us to assume that Assumption B.5 is true for the (j − 1)-th iteration, it also
allows us to assume the following Lemma I.5 is true for x(j) and x(j).

Using these two induction hypothesis we proved that Assumption B.5 is still true for the j-th
iteration in Section I.1.

Then we further use these two induction hypothesis together with Assumption B.5 for the j-th
iteration to prove the following Lemma I.5.

Lemma I.5 (x and x are close). Consider a fixed coordinate i ∈ [n] and a fixed iteration number
k ≤ √n. Let b denote the size of sketching matrix. If the following are true: (1) x(0)

i = x
(0)
i . (2)

t(k) > t(0)/2. (3) There is a constant w > 0 such that for all j ∈ [k], wappr,(j)
i ∈ [w/2, 2w]. (4)

Inductively Assumption B.5 is true for iterations 1, 2, . . . , k. Then we have:

|(x(k)
i)−1(x

(k)
i − x

(k)
i)| ≤ εx

holds with probability 1− δ over the randomness of sketching matrices R(1), · · · , R(k) ∈ Rb×n, where
εx = 200n1/4√

b
· log(n/δ)ε.

130

Proof. We denote t = t(k). Since t(0) ≤ 2t(k) and the central path iteration will only decrease t(j),
we have t ≤ t(j) ≤ 2t for all j ∈ [k].

From the definition of δ̃x (Definition B.4) and δ̂x (Definition B.6), we have

δ̃x − δ̂x =
X̃√
X̃S̃

(I − P̃)
1√
X̃S̃

δ̃µ −
X̃√
X̃S̃

(I −R>RP̃)
1√
X̃S̃

δ̃µ

=
X̃√
X̃S̃

(P̃ −R>RP̃)
1√
X̃S̃

δ̃µ =
√
W appr(P̃ −R>RP̃)

1√
X̃S̃

δ̃µ. (76)

Then the difference between x(k)
i and x(k)

i can be written as

|x(k)
i − x

(k)
i | =

∣∣∣
(
x

(0)
i +

k∑

j=1

δ̃
(j)
x,i

)
−
(
x

(0)
i +

k∑

j=1

δ̂
(j)
x,i

)∣∣∣ =
∣∣∣
k∑

j=1

(δ̃
(j)
x,i − δ̂

(j)
x,i)
∣∣∣

=
∣∣∣
k∑

j=1

√
wappr,(j)

i

(
(P̃ (j) −R>(j)R(j)P̃ (j))

1√
X̃(j)S̃(j)

δ̃(j)
µ

)
i

∣∣∣, (77)

where the second step is by x(0)
i = x

(0)
i , the third step is by Eq.(76).

We define a random vector Yj for the j-th iteration: Yj =
√
wappr,(j)

i

(
(I−R(j)>R(j))P̃ (j) δ̃

(j)
µ√

X̃(j)S̃(j)

)
i
.

We first bound the `2 norm of the right part δ̃
(j)
µ√

X̃(j)S̃(j)
:

∥∥∥ δ̃
(j)
µ√

X̃(j)S̃(j)

∥∥∥
2
≤ Sup

[1√
X̃(j)S̃(j)

]
· ‖δ̃(j)

µ ‖2 ≤
1.1√
t(j)
· ‖δ̃(j)

µ ‖2 ≤ 2.2ε
√
t(j) ≤ 5ε

√
t,

where the first step is by ‖a ·b‖2 ≤ Sup[a] ·‖b‖2, the second step is by the inductive Assumption B.5
that X̃(j)S̃(j) ≈0.1 t

(j), the third step is by ‖δ̃(j)
µ ‖2 ≤ 2εt(j) (Fact B.9), the last step is by t(j) ≤ 2t.

By Lemma B.14, for each j and with randomness over R(j), and use the fact that wappr,(j)
i ∈

[w/2, 2w] for all j ∈ [k], we have

E[Yj] = 0 and E[(Yj)
2] ≤ w

appr,(j)
i

b

∥∥∥ δ̃
(j)
µ√

X̃(j)S̃(j)

∥∥∥
2

2
≤ (2w) · 25ε2t/b,

and with probability 1− δ/n,

|Yj | ≤
√
w

appr,(j)
i ·

∥∥∥ δ̃
(j)
µ√

X̃(j)S̃(j)

∥∥∥
2
· log(n/δ)√

b
≤ (
√

2w) · 5ε
√
t
log(n/δ)√

b
:= M.

Now, we apply Bernstein inequality on these zero-mean independent random variable {Yj}kj=1

(Lemma A.3), ∀τ > 0,

Pr
[
|
k∑

j=1

(Yj)| > τ
]
≤ 2 exp

(
− τ2/2
∑k

j=1 E[(Yj)2] +Mτ/3

)

Choosing τ = 64
√
wkt√
b

log(n/δ)2ε, we have

Pr
[
|
k∑

j=1

(Yj)| > τ
]
≤ 2 exp

(
− τ2/2

50wkε2t/b+ τ · 5ε
√

2wt log(n/δ)

3
√
b

)
≤ 2 exp(−10 log(n/δ)).

131

Then take a union bound on all events that |Yj | ≤M , we have |∑k
j=1(Yj)| ≤ τ with probability

at least 1− δ. Therefore,

|x(k)
i − x

(k)
i | ≤ |

k∑

j=1

(Yj)| ≤ τ ≤
64
√
wkt√
b
· log(n/δ)2ε

≤ x
(k)
i ·

200
√
k√

b
· log(n/δ)2ε ≤ x(k)

i ·
200n1/4

√
b
· log(n/δ)2ε ≤ x(k)

i εx,

where the first step is by Eq.(77), the fourth step is by wt ≤ 2w
(appr),(k)
i · 2t(k) ≤ (2x

(k)
i /s

(k)
i) ·

(3x
(k)
i s

(k)
i) ≤ 6(x

(k)
i)2 by Assumption B.5, the fifth step is by k ≤ √n.

I.4 Running time of feasible data structure

Lemma I.6. It takes O(n) time to execute ScalarC.

Proof. The proof is straightforward.

Lemma I.7. In the procedure MatrixUpdate, it takes

1. O(n2) time to compute G←W apprM tmp

2. O(n2) time to compute u1 ← u1 +Gu2 + c ·W apprM tmp
√
W apprf(happr)

3. O(n2) time to compute u3 ← u3 +Mu4 + c ·M tmp
√
W apprf(happr)

Overall, refreshing G, u1, u2 takes O(n2) time.

Proof. This lemma directly follows from the algorithm of MatrixUpdate (ALgorithm 25).

Lemma I.8. In the procedure PartialMatrixUpdate, it takes

1. O(n1+a) time to compute G← G+ (W appr − Ṽ) ·M .

2. O(n1+a) time to compute u1 ← u1 + (W appr − Ṽ) ·Mu2.

3. O(n1+a) time to compute u2 ← u2+c
(√

W apprf(happr)− 1SnewBtmpLr[(MSnew)>]
√
W apprf(happr)

)
.

And computing u4 takes the same time.

Overall, refreshing G, u1, u2, u4 takes O(n1+a) time.

Proof. From Lemma E.1, we have that when entering PartialUpdate, ‖wappr− ṽ‖0 ≤ O(na), and
|Snew| ≤ O(na).
Part 1. Since (W appr− Ṽ) is a O(na)-sparse diagonal matrix, multiplying it with a n×n matrixM
takes O(n1+a) time. By memory operation, adding (W appr − Ṽ)M on G also takes O(n1+a) time.
Part 2. Multiplying a O(na)-sparse diagonal matrix (W appr− Ṽ) with a n×n matrix M and then
with a n× 1 vector u2 takes O(n1+a) time.
Part 3. Computing

√
W apprf(happr) takes O(n) time. Multiplying a O(na)×nmatrix Lr[(MSnew)>]

with a n × 1 vector
√
W apprf(happr) takes O(n1+a) time. Multiplying a O(na) × O(na) matrix

Btmp with a O(na) × 1 vector Lr[(MSnew)>]
√
W apprf(happr) takes O(n2a) time. Finally multi-

plying a n × O(na) matrix 1Snew that only has O(na) non-zero entries with a O(na) × 1 vector
Btmp(MSnew)>

√
W apprf(happr) takes O(n) time. Thus in total this step takes O(n1+a) time.

132

Remark I.9. Note that this running time of O(n1+a) is always dominated by the O(Tmat(n, n
a, k̃))

time of other computations of PartialMatrixUpdate (see Lemma E.18).

Lemma I.10. In the procedure Query, it takes

1. O(na+ã) time to compute u1 ← u1 + c · (W appr − Ṽ)
(
β2 +M ·

(√
W apprf(happr)−

√
V f(g) +

1Snew(γtmp − γ1 − ∂γ)
))

.

2. O(n) time to compute u2 ← u2 + c ·
(√

W apprf(happr) + 1Snew(γtmp − γ1 − ∂γ)
)
. And com-

puting u4 takes the same time.

Overall, calculating u1, u2, u4 takes O(na+ã) time.

Proof. When entering Query, from Lemma E.1, we have that ‖wappr − v‖0 ≤ na and ‖happr −
g‖0 ≤ na, thus ‖

√
W

appr
f(happr) −

√
V f(g)‖0 ≤ O(na). From Lemma E.1, we also have that

‖wappr − ṽ‖0 ≤ nã, and |Snew| ≤ O(na).
Part 1. We need to compute the following four parts:

1. Multiplying a n× n diagonal matrix W appr − Ṽ with a n× 1 vector β2 takes O(n) time.

2. Multiplying a nã-sparse n × n diagonal matrix W appr − Ṽ with a n × n matrix M and then
with a O(na)-sparse n× 1 vector (

√
W apprf(happr)−

√
V f(g)) takes O(na+ã) time.

3. Computing 1Snew(γtmp − γ1 − ∂γ) takes O(n) time. Multiplying a nã-sparse n × n diagonal
matrixW appr−Ṽ with a n×nmatrixM and then with aO(na)-sparse n×1 vector 1Snew(γtmp−
γ1 − ∂γ) takes O(na+ã) time.

So overall this step takes O(na+ã) time.
Part 2. Computing

√
W appr · f(happr) takes O(n) time. And multiplying a n×O(na) matrix 1Snew

that only has O(na) non-zero entries with a O(na) × 1 vector (γtmp − γ1 − ∂γ) takes O(n) time.
Thus in total this step takes O(n) time.

Remark I.11. Note that this running time of O(na+ã) is the same as other computations of Query
(see Lemma E.3).

Lemma I.12. The amortized running time of procedure MakeFeasible is

(C1/εmp + C2/ε
2
mp) · n1.5.

Proof. In this proof, we will use superscript notations that are consistent with section F. Let w(j+1)

denote the input wnew of UpdateQuery in the j-th iteration. Let wappr,(j+1) be the output of
UpdateQuery in the j-th iteration. Let wold,(j) be the values of wold at the beginning of the j-th
iteration. Let Ŝ(j) := {i : |wold,(j)

i − wappr,(j+1)
i | > w

old,(j)
i /2}, and we define k̂j := |Ŝ(j)|. Note that

in the j-th iteration, procedure MakeFeasible takes worst-case O(n · k̂j) time. We use a similar
amortized argument as that of Lemma F.19.

We define the following potential function

Φj =
n∑

i=1

ψ(w
(j)
i /w

old,(j)
i − 1),

133

where the function ψ is defined as Definition F.4. We let g ∈ Rn be the all one vector. Applying
Lemma F.23 (set v(j) of the lemma statement to be wold,(j)), we have

(w move)(j) :=

n∑

i=1

gi · E
[
ψ(w

(j+1)
i /w

old,(j)
i − 1)− ψ(w

(j)
i /w

old,(j)
i − 1)

∣∣∣ w(j), wold,(j)
]

= O(C1 + C2/εmp) · ‖g‖2 = O((C1 + C2/εmp) · √n). (78)

From Section I.1, we have wappr,(j+1) ≈εmp w
(j+1). And from Lemma I.5 we have w(j+1) ≈εtiny

w(j+1). So wappr,(j+1) ≈εmp+εtiny w
(j+1). For every i ∈ Ŝ(j), we have |wappr,(j+1)

i /w
old,(j)
i − 1| > 1/2

by definition of Ŝ(j), thus

|w(j+1)
i /w

old,(j)
i − 1| = |(wappr,(j+1)

i /w
old,(j)
i) · (w(j+1)

i /w
appr,(j+1)
i)− 1|

> 1/2− 2εmp − 2εtiny > 2εmp,

where the last step follows from εmp < 1
10 (Assumption F.5) and εtiny <

εmp

1000 (Def. I.1). Thus
ψ(w

(j+1)
i /w

old,(j)
i − 1) > εmp from the definition of ψ. Since for i ∈ Ŝ(j), wold,(j+1)

i is updated to be
w

appr,(j+1)
i , we have

|w(j+1)
i /w

old,(j+1)
i − 1| = |w(j+1)

i /w
appr,(j+1)
i − 1| ≤ εmp + εtiny < 1.1εmp.

Thus ψ(w
(j+1)
i /w

old,(j+1)
i − 1) < 0.6εmp from the definition of ψ (Definition F.4).

So we have

(v move)(j) :=

n∑

i=1

E
[
ψ(w

(j+1)
i /w

old,(j)
i − 1)− ψ(w

(j+1)
i /w

old,(j+1)
i − 1)

∣∣∣ w(j), wold,(j)
]

≥
∑

i∈Ŝ(j)

E
[
ψ(w

(j+1)
i /w

old,(j)
i − 1)− ψ(w

(j+1)
i /w

old,(j+1)
i − 1)

∣∣∣ w(j), wold,(j)
]

≥
∑

i∈Ŝ(j)

(εmp − 0.6εmp) = Ω(εmpk̂j+1). (79)

Combining Eq. (78) and Eq. (79), we have

E[ΦT]− Φ0 =

T−1∑

j=0

((w move)(j) − (v move)(j)) ≤ T · (C1 + C2/εmp) · √n−
T∑

j=1

Ω(εmpk̂j).

Since when initialize we set wold to be w0, we have Φ0 = 0. And since E[ΦT] ≥ 0, we have

T∑

j=1

k̂j ≤ T · (C1/εmp + C2/ε
2
mp) · √n.

Thus the amortized running time of MakeFeasible is (C1/εmp + C2/ε
2
mp) · n1.5.

Remark I.13. Note that the amortized time of MakeFeasible is dominated by the amortized
time of MatrixUpdate (Lemma F.19).

134

J History of Matrix Multiplication and LP

Year Reference ω Reference α
1969 [Str69] 2.808
1978 [Pan78] 2.796
1979 [BCRL79] 2.78
1981 [Sch81] 2.548
1982 [Rom82] 2.517 [Cop82] 0.172
1982 [CW82] 2.496
1986 [Str86] 2.479
1987 [CW87] 2.376
1997 [Cop97] 0.29462
2012 [Wil12] 2.3729
2014 [LG14] 2.37286 [LG14] 0.30298
2018 [GU18] 0.31389

Table 16: The history of exponent of matrix multiplication ω and the dual exponent of matrix
multiplication α.

Year Author Reference Complexity
1947 Dantzig [Dan47] 2O(n)

1979 Khachiyan [Kha80] n6

1984 Karmarkar [Kar84] n3.5

1986 Renegar [Ren88] n3

1987 Vaidya [Vai87] n3

1989 Vaidya [Vai89] n2.5

1994 Nesterov, Nemirovskii [NN94] n2.5

2014 Lee, Sidford [LS14] n2.5

2015 Lee, Sidford [LS15] n2.5

2019 Cohen, Lee, Song [CLS19] nω + n2.5−α/2 + n2+1/6

2019 Lee, Song, Zhang [LSZ19] nω + n2.5−α/2 + n2+1/6

2020 Brand [Bra20] nω + n2.5−α/2 + n2+1/6

2020 Brand, Lee, Sidford, Song [BLSS20] n3

2020 This paper nω + n2.5−α/2 + n2+1/18

Table 17: Let ω denote the exponent of the current matrix multiplication. LP has n variables,
d = Θ(n) constraints, and all number can be encoded in L bits. The running time of all these
algorithms has a nearly linear dependence on L. We consider the case where A is a dense full
rank matrix. ω denotes the exponent of matrix multiplication, and α denotes the dual exponent of
matrix multiplication. We remark that in some previous papers the running time is presented with
explicit d and nnz(A). Here we present the running time assuming d = Θ(n), rank(A) = n and
nnz(A) = n2.

135

	1 Introduction
	2 Bootstrapping low-rank updates via cascading lazy updates
	3 Background
	3.1 Recent developments in LP solvers
	3.2 Optimization: The stochastic central-path algorithm
	3.3 Data structures: Projection maintenance

	4 Detailed Technical Overview
	4.1 Our Query Algorithm
	4.1.1 Technique for removing
	4.1.2 Technique for removing
	4.1.3 Technique for removing

	4.2 Our Update Algorithm
	4.2.1 Cascading updates subroutines
	4.2.2 Synchronizing two-level soft thresholding
	4.2.3 Amortized analysis based on high-order martingales

	4.3 Putting it all together

	References
	A Preliminaries
	B Optimization
	B.1 Definitions
	B.2 Facts
	B.3 Bounding and
	B.4 Bounding
	B.5 Potential martingale
	B.6 Bounding the movement of
	B.7 Bounding the movement of
	B.8 One step of central path

	C Data structure : preliminary
	C.1 Preliminary and Definitions
	C.2 Facts
	C.3 Main result

	D Data structure : correctness
	D.1 Correctness of Query
	D.2 Correctness of UpdateV and UpdateG
	D.3 Correctness of MatrixUpdate
	D.4 Correctness of PartialMatrixUpdate
	D.5 Correctness of VectorUpdate
	D.6 Correctness of PartialVectorUpdate
	D.7 Correctness of Initialize

	E Data structure : time per call
	E.1 Sparsity guarantees
	E.2 Running time of Query
	E.3 Running time of MatrixUpdate
	E.4 Running time of PartialMatrixUpdate
	E.5 Running time of VectorUpdate
	E.6 Running time of PartialVectorUpdate
	E.7 Running time of Initialize

	F Data structure : amortized time
	F.1 Definitions and Preliminaries
	F.2 Facts based on Adjust and two level of SoftThreshold
	F.3 Amortized analysis for MatrixUpdate
	F.3.1 Definitions
	F.3.2 Main result
	F.3.3 move
	F.3.4 move
	F.3.5 -norm of

	F.4 Amortized analysis for PartialMatrixUpdate
	F.4.1 Definitions
	F.4.2 Main result
	F.4.3 move
	F.4.4 move
	F.4.5 -norm of

	F.5 Amortized analysis for VectorUpdate
	F.6 Amortized analysis for PartialVectorUpdate
	F.7 Potential function

	G Combining data structure with optimization
	H Multi-level with more details
	H.1 LU-decomposition of Woodbury identity when
	H.2 Online low-rank inverse and the oMV conjecture.
	H.3 Optimizing the parameters of Eq.

	I A feasible algorithm
	I.1 Analysis
	I.2 Correctness of feasible algorithm
	I.3 Bounding and
	I.4 Running time of feasible data structure

	J History of Matrix Multiplication and LP

