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Abstract

The slow convergence rate and pathological curvature issues of first-order gradient methods
for training deep neural networks, initiated an ongoing effort for developing faster second-order
optimization algorithms beyond SGD, without compromising the generalization error. Despite
their remarkable convergence rate (independent of the training batch size n), second-order algo-
rithms incur a daunting slowdown in the cost per iteration (inverting the Hessian matrix of the
loss function), which renders them impractical. Very recently, this computational overhead was
mitigated by the works of [ZMG19, CGH' 19], yielding an O(mn?)-time second-order algorithm
for training two-layer overparametrized neural networks of polynomial width m.

We show how to speed up the algorithm of [CGHT19], achieving an O(mn)-time backpropa-
gation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in
the dimension (mn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is
to reformulate the Gauss-Newton iteration as an £s-regression problem, and then use a Fast-JL
type dimension reduction to precondition the underlying Gram matrix in time independent of
M, allowing to find a sufficiently good approximate solution via first-order conjugate gradi-
ent. Our result provides a proof-of-concept that advanced machinery from randomized linear
algebra—which led to recent breakthroughs in convex optimization (ERM, LPs, Regression)—
can be carried over to the realm of deep learning as well.

*A preliminary version of this paper appeared in the Proceedings of the 12th Innovations in Theoretical Computer
Science (ITCS 2021).

t janvdb@kth.se. KTH Royal Institute of Technology. This project has received funding from the European
Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme under grant
agreement No 715672.

fpp2601@columbia.edu. Columbia University. Research supported by NSF I1IS-1838154, NSF CCF-1703925 and
NSF CCF-1763970

$zhaos@ias.edu. Princeton University and Institute for Advanced Study. Part of the work done while visiting
Columbia University and hosted by Omri Weinstein. Research supported by Special Year on Optimization, Statistics,
and Theoretical Machine Learning (being led by Sanjeev Arora) at Institute for Advanced Study.

Tomri@cs.columbia.edu. Columbia University. Research supported by NSF CAREER award CCF-1844887.


http://arxiv.org/abs/2006.11648v2

1 Introduction

Understanding the dynamics of gradient-based optimization of deep neural networks has been a
central focal point of theoretical machine learning in recent years [LY17, ZSJ*17, ZSD17, LL18,
DZPS19, AZLS19a, AZLS19b, AZLL19, BJW19, OS19, ADH*19b, SY19, Dan20, JT20, BELM20].
This line of work led to a remarkable rigorous understanding of the generalization, robustness
and convergence rate of first-order (SGD-based) algorithms, which are the standard choice for
training DNNs. By contrast, the computational complexity of implementing gradient-based training
algorithms (e.g., backpropagation) in such non-convex landscape is less understood, and gained
traction only recently due to the overwhelming size of training data and complexity of network
design [MG15, DHS11, LJHT19, CGH'19, ZMG19].

The widespread use first-order methods such as (stochastic) gradient descent in training DNNs
is explained, to a large extent, by its computational efficiency — recalculating the gradient of the
loss function at each iteration is simple and cheap (linear in the dimension of the full gradient), let
alone with the advent of minibatch random sampling [HRS16, CGH19]. Nevertheless, first-order
methods have a slow rate of convergence in non-convex settings (typically Q(poly(n)log(1/¢)) for
overparametrized networks, see e.g., [ZMG19]) for reducing the training error below €, and it is
increasingly clear that SGD-based algorithms are becoming a real bottleneck for many practical
purposes. This drawback initiated a substantial effort for developing fast training methods beyond
SGD, aiming to improve its convergence rate without compromising the generalization error [BLCSS,
Mar10, MG15, DHS11, KB15, PW17, CGH'19, ZMG19].

Second-order gradient algorithms (which employ information about the Hessian of the loss func-
tion), pose an intriguing computational tradeoff in this context: On one hand, they are known
to converge extremely fast, at a rate independent of the input size (i.e., only O(log1/e) iterations
[ZMG19]), and offer a qualitative advantage in overcoming pathological curvature issues that arise
in first-order methods, by exploiting the local geometry of the loss function. This feature implies
another practical advantage of second order methods, namely, that they do not require tuning the
learning rate [CGH'19, ZMG19]. On the other hand, second-order methods have a prohibitive
cost per iteration, as they involve inverting a dynamically-changing dense Hessian matrix. This
drawback explains the scarcity of second order methods in large scale non-conver optimization, in
contrast to its popularity in the convex setting.

The recent works of [CGHT19, ZMG19| addressed the computational bottleneck of second-order
algorithms in optimizing deep neural nets, and presented a training algorithm for overparametrized
neural networks with smooth (resp. ReLU) activations, whose running time is O(mn?), where m is
the width of the neural network, and n is the size of the training data in R¢. The two algorithms,
which achieve essentially the same running time, are based on the classic Gauss-Newton algorithm
(resp. ‘Natural gradient’ algorithm) combined with the recent introduction of Neural Tangent
Kernels (NTK) [JGH18]. The NTK formulation utilizes a local-linearization of the loss function
for overparametrized neural networks, which reduces the optimization problem of DNNs to that of
a kernel regression problem: The main insight is that when the network is overparametrized, i.e.,
sufficiently wide m > n* ([SY19]), the neural network becomes locally convex and smooth, hence the
problem is equivalent to a kernel regression problem with respect to the NTK function [JGH18], and
therefore solving the latter via (S)GD is guaranteed to converge to a global minimum. The training
algorithm of [CGHT19] draws upon this equivalence, by designing a second-order variation of the
Gauss-Newton algorithm (termed ‘Gram-Gauss-Newton’), yielding the aforementioned runtime for
smooth activation functions.



Single vs. Multilayer Network Training Following [CGH™19, ZMG19], we focus on two-layer
(i.e., single hidden-layer) neural networks. While our algorithm extends to the multilayer case (with
a slight comprise on the width dependence), we argue that, as far as training time, the two-layer
case is not only the common case, but in fact the only interesting case for constant training error:
Indeed, in the multilayer case (L > 2), we claim that the mere cost of feed-forward computation
of the network’s output is already € (m?nL). Indeed, the total number of parameters of L-layer
networks is M = (L —1)m? +md, and as such, feed-forward computation requires, at the very least,
computing a single product of m x m (dense) matrices W with a m x 1 vector for each training
data, which already costs m?n time:
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Therefore, sublinear-time techniques (as we present) appear futile in the case of multi-layer
overparametrized networks, where it is possible to achieve linear time (in M) using essentially direct
(lossless) computation (see next subsection). It may still be possible to use sublinear algorithms to
improve the running time to O(m?nL + poly(n)), though in for overparametrized DNNs this seems
a minor saving.

1.1 Our Result

Our main result is a quadratic speedup to the algorithm of [CGHT19|, yielding an essentially
optimal training algorithm for overparametrized two-layer neural networks. Moreover, in contrast
to [CGHT™19], our algorithm applies to the more complex and realistic case of ReLU activation
functions. Our main result is shown below (For a more comprehensive comparison, see Table 1
below and references therein).

Theorem 1.1. Suppose the width of a two layer ReL U neural network satisfies
m = Q(max{\"*n*, \"2n2dlog(n/8)}),

where X\ > 0 denotes the minimum eigenvalue of the Gram matriz (see Eq. (5) below), n is the
number of training data, d is the input dimension. Then with probability 1 — § over the random
initialization of neural network and the randomness of the training algorithm, our algorithm achieves

1
| fre1 —yll2 < =l1fe — yll2.

The computational cost of each iteration is 5(mnd +n3), and the running time for reducing the
training loss to € is O((mnd+n®)log(1/e€)). Using fast matriz-multiplication, the total running time
can be further reduced to O((mnd + n*)log(1/e)).t

Remark 1.2. We stress that that our algorithm runs in (near) linear time even for networks with
width m 2 n? and in fact, under the common belief that w = 2, this is true so long as m = n (/).
This means that the bottleneck for linear-time training of small-width DNNs is not computational,
but rather analytic: The overparametrization requirements (m > n*) in Theorem 1.1 stems from
current-best analysis of the convergence guarantees of (S)GD-based training of ReLU networks, and
any improvement on these bounds would directly yield linear-time training for thinner networks using
our algorithm.

Here, w < 2.373 denotes the fast matrix-multiplication (FMM) constant for multiplying two n x m matrices
[Will2, LG14].



Ref. Method #Iters Cost/iter | Width | ReLU?
[DZPS19] | Gradient descent O(n?log(1/e)) | O(mn) Q(n®) | Yes
[SY19] Gradient descent O(n?log(1/e)) | O(mn) Q(nt) | Yes
[WDW19] | Adaptive gradient descent O(nlog(1/e)) | O(mn) Q(n®) | Yes
[CGHT19] | Gram-Gaussian-Newton (GGN) | O(loglog(1/€)) | O(mn?) Q(n*) | No
[CGHT19] | Batch-GGN O(n?log(1/€)) | O(m) Qn'®) | No
[ZMG19] | Natural gradient descent O(log(1/€)) O(mn?) Q(nt) | Yes
Ours O(log(1/€)) O(mn) Q(nt) | Yes

Table 1: Summary of state-of-art algorithms for training two-layer neural networks. n denotes the
training batch size (number of input data points in RY) and e denote the desired accuracy of the
training loss. For simplicity, here we assume d = O(1) and omit poly(logn,1/)) terms. The result
of [CGH'19] applies only to smooth activation gates and not to ReLU networks. Comparison to
SGD algorithms is omitted from this table since they require a must stronger assumption on the
width m for convergence, and have slower convergence rate than GD [LL18, AZLS19a, AZLS19b|.

Techniques The majority of ML optimization literature on overparametrized network training is
dedicated to understanding and minimizing the number of iterations of the training process [ZMG19,
CGHT™19] as opposed to the cost per iteration, which is the focus of our paper. Our work shows
that it is possible to harness the toolbox of randomized linear algebra— which was heavily used in
the past decade to reduce the cost of convexr optimization tasks— in the nonconvex setting of deep
learning as well. A key ingredient in our algorithm is linear sketching, where the main idea is to
carefully compress a linear system underlying an optimization problem, in a way that preserves a
good enough solution to the problem yet can be solved much faster in lower dimension. This is
the essence of the celebrated Sketch-and-Solve (S&S) paradigm [CW13|. As we explain below, our
main departure from the classic S&S framework (e.g., [PW17]) is that we cannot afford to directly
solve the underlying compressed regression problem (as this approach turns out to be prohibitively
slow for our application). Instead, we use sketching (or sampling) to facilitate fast preconditioning
of linear systems (in the spirit of [ST04, KOSZ13, RT08, Wool4]), which in turn enables to solve
the compressed regression problem to very high accuracy via first-order conjugate gradient descent.
This approach essentially decouples the sketching error from the final precision error of the Gauss-
Newton step, enabling a much smaller sketch size. We believe this (somewhat unconventional)
approach to non-convex optimization is the most enduring message of our work.

1.2 Related Work

Second-order methods in non-convex optimization Despite the prevalence of first order
methods in deep learning applications, there is a vast body of ongoing work [BRB17, BLHIS,
MG15, GM16, GKS18, CGH™19, ZMG19| aiming to design more scalable second-order algorithms
that overcome the limitations of (S)GD for optimizing deep models. Grosse and Martens [MG15,
GM16] designed the K-FAC method, where the idea is to use Kronecker-factors to approximate
the Fisher information matrix, combined with natural gradient descent. This approach has been
further explored and extended by [WMG*17, GLB'18, MBJ18]. Gupta et al. [GKS18| designed
the “Shampoo method”, based on the idea of structure-aware preconditioning. Anil et al. [AGK™20]
further validate the practical perfromance of Shampoo and incorporated it into hardware. However,
despite sporadic empirical evidence of such second-order methods (e.g., K-FAC and Shampoo), these
methods generally lack a provable theoretical guarantee on the performance when applied to deep
neural networks. Furthermore, in the overparametrized setting, their cost per-iteration in general



is at least Q(mn?).

We remark that in the conver setting, theoretical guarantees for large-scale second-order al-
gorithms have been established (e.g.,[ABH17, PW17, MNJ16, Bubl15]), but such rigorous analysis
in non-convex setting was only recently proposed ([CGH'19, ZMG19]). Our algorithm bears some
similarities to the NewtonSketch algorithm of [PW17], which also incorporates sketching into second
order Newton methods. A key difference, however, is that the algorithm of [PW17| works only for
convex problems, and requires access to (V2f(x))"/? (i.e., the square-root of the Hessian). Most
importantly, though, [PW17| use the standard (black-box) Sketch-and-Solve paradigm to reduce
the computational cost, while this approach incurs large computation overhead in our non-convex
setting. By contrast, we use sketching as a subroutine for fast preconditioning. As a by-product, in
Section D we show how to apply our techniques to give a substantial improvement over [PW17] in
the convex setting.

The aforementioned works of [ZMG19] and [CGH'19] are most similar in spirit to ours. Zhang
et al. [ZMG19] analyzed the convergence rate of Natural gradient descent algorithms for two-layer
(overparametrized) neural networks, and showed that the number of iterations is independent of
the training data size n (essentially log(1/¢)). They also demonstrate similar results for the conver-
gence rate of K-FAC in the overparametrized regime, albeit with larger requirement on the width
m. Another downside of K-FAC is the high cost per iteration (~ mn?). Cai et al. [CGHT19] an-
alyzed the convergence rate of the so-called Gram-Gauss-Newton algorithm for training two-layer
(overparametrized) neural network with smooth activation gates. They proved a quardratic (i.e.,
doubly-logarithnmic) convergence rate in this setting (log(log(1/¢))) albeit with O(mn?) cost per
iteration. It is noteworthy that this quadratic convergence rate analysis does not readily extend to
the more complex and realistic setting of ReLU activation gates, which is the focus of our work.
[CGHT19] also prove bounds on the convergence of ‘batch GGN’, showing that it is possible to
reduce the cost-per-iteration to m, at the price of O(n?log(1/¢)) iterations, for very heavily over-
parametrized DNNs (currently m = Q(n'8)).

Sketching The celebrated ‘Sketch and Solve’ (S&S) paradigm [CW13] was originally developed
to speed up the cost of solving linear regression and low-rank approximation problems. This
dimensionality-reduction technique has since then been widely developed and applied to both con-
vex and non-convex numerical linear algebra problems [BWZ16, RSW16, WZ16, ALST18, BW18,
BCW19, WW19, DJS*19, SWY'19, Son19, BWZ20|, as well as machine-learning applications
[AKM*17, AKM*™19, LPPW20, WZ20]. The most direct application of the sketch-and-solve tech-
nique is overconstrained regression problems, where the input is a linear system [A,b] € R7x(d+1)
with n > d, and we aim to find an (approximate) solution Z € R? so as to minimize the residual
error |AZ — bl|o.

In the classic S&S paradigm, the underlying regression solver is treated as a black boz, and the
computational savings comes from applying it on a smaller compressed matrix. Since then, sketching
(or sampling) has also been used in a non-black-box fashion for speeding-up optimization tasks, e.g.,
as a subroutine for preconditioning [Wool4, RT08, ST04, KOSZ13| or fast inverse-maintenance in
Linear Programming solvers, semi-definite programming, cutting plane methods, and empirical-risk

minimization [CLS19, JSWZ20, JKL 120, JLSW20, LSZ19].

Overparametrization in neural networks A long and active line of work in recent deep learn-
ing literature has focused on obtaining rigorous bounds on the convergence rate of various local-

search algorithms for optimizing DNNs [LL18, DZPS19, AZLS19a, AZLS19b, ADH"19a, ADHT19b,



SY19, JT20]. The breakthrough work of Jacob et al. [JGH18] and subsequent developments? intro-
duced the notion of neural tangent kernels (NTK), implying that for wide enough networks (m > n*),
(stochastic) gradient descent provably converges to an optimal solution, with generalization error
independent of the number of network parameters.

2 Technical Overview

We now provide a streamlined overview of our main result, Theorem 1.1. As discussed in the
introduction, our algorithm extends to multi-layer ReLLU networks , though we focus on the two-
layer case (one-hidden layer), which is the most interesting case where one can indeed hope for
linear training time.

The main, and most expensive step, of the GGN (or natural gradient descent) algorithms
[CCGHT19, ZMG19] is multiplying, in each iteration ¢, the inverse of the Gram matrix Gy := J;.J,"
with the Jacobian matrix J; € R™ " whose ith row contains the gradient of the m = md network
gates w.r.t the ith datapoint x; (in our case, under ReL.U activation).

Naiively computing Gy would already take mdn? time, however, the tensor product structure of
the Jacobian J in fact allows to compute Gy in n - Trae(m, d, n) < mn? time, where Tpq¢(m,d, n)
is the cost of fast rectangular matrix multiplication|Wil12, LG14, GU18].? Since the Gram-Gauss-
Newton (GGN) algorithm requires O(loglog 1/¢) iterations to converge to an e-global minimum of
the ¢ loss [CGH™19], this observation yields an O(n - Tpqt(m, d, n) loglog 1/€) total time algorithm
for reducing the training loss below €. While already nontrivial, this is still far from linear running
time (> mdn). N

We show how to carry out each Gauss-Newton iteration in time O(mnd + n?), at the price
of slightly compromising the number of iterations to O(log1/¢), which is inconsequential for the
natural regime of constant dimension d and constant €*. Our first key step is to reformulate the
Gauss-Newton iteration (multiplying G, ! by the error vector) as an fy-regression problem:

min ] g1~ (fe = )l (1)

where (f; — y) is the training error with respect to the network’s output and the training labels y.
Since the Gauss-Newton method is robust to small perturbation errors (essentially [Vai89b, Vai89al),
our analysis shows that it is sufficient to find an approximate solution g, such that J,' g, satisfies

17" g, — yll2 < Yllyll2, for v~ 1/n. (2)

The benefit of this reformulation is that it allows to use linear sketching to first compress the linear
system, significantly reducing the dimension of the optimization problem and thereby the cost of
finding a solution, at the price of a small error in the found solution (this is the essence of the
sketch-and-solve paradigm [CW13]). Indeed, a (variation of) the Fast-JL sketch [AC06, LDFU13]
guarantees that we can multiply the matrix J,” € R™ " by a much smaller O(n/§%) x m matrix
S, such that (i) the multiplication takes near-linear time O(mn) time (using the FFT algorithm),

2For a complete list of references, we refer the readers to [ADH"19a, ADHT19b].

3To see this, observe that the kronecker-product structure of J (here J € R™*™? can be constructed from an nxm
matrix and an n X d matrix) allows computing Jh for any h € R™¢ using fast rectangular matrix multiplication in
time Tmat(m, d,n) which is near linear time in the dimension of J and h (that is, n X m +n x d for J and md for h)
so long as d < n® = n%3' [QU18|, hence computing G = JJ ' can be done using n independent invocations of the
aforementioned subroutine, yielding n - Tmat(m, d,n) as claimed.

4We also remark that this slowdown in the convergence rate is also a consequence of a direct extension of the
analysis in [CGH™ 19] to ReLU activation functions.



and (ii) SJ," is a d-spectral approximation of J," (i.e., |/;S"SJ, x| = (1 £ 9)||Gyz||2 for every z).
Since both computing and inverting the matrix Gy := J,STSJ,| takes O(n3/82) time, the overall
cost of finding a J-approximate solution to the regression problem becomes at most O(mn +n?/6%).
Alas, as noted in Equation (2), the approximation error of the found solution must be polynomially
small v ~ 1/n in order to guarantee the desired convergence rate (i.e., constant decrease in training
error per iteration). This means that we must set § ~ v ~ 1/n, hence the cost of the naiive “sketch-
and-solve” algorithm would be at least O(n3/6%) = O(n%), which is a prohibitively large overhead
in both theory and practice (and in particular, no longer yields linear runtime whenever m < n*
which is the current best overparametrization guarantee [SY19]). Since the O(1/§2) dependence
of the JL embedding is known to be tight in general [LN17], this means we need to take a more
clever approach to solve the regression (1). This is where our algorithm departs from the naiive
sketch-and-solve method, and is the heart of our work.

Our key idea is to use dimension reduction—not to directly invert the compressed matrix—but
rather to precondition it quickly. More precisely, our approach is to use a (conjugate) gradient-
descent solver for the regression problem itself, with a fast preconditioning step, ensuring exponen-
tially faster convergence to very high (polynomially small) accuracy. Indeed, conjugate gradient
descent is guaranteed to find a y-approximate solution to a regression problem min, ||Az — b2 in
O(v/klog(1/v)) iterations, where k(A) is the condition number of A (i.e., the ratio of maximum
to minimum eigenvalue). Therefore, if we can ensure that x(Gy) is small, then we can y-solve the
regression problem in ~ mnlog(1/v) = O(mn) time, since the per-iteration cost of first-order SGD
is linear (~ mmn).

The crucial advantage of our approach is that it decouples the sketching error from the final
precision of the regression problem: Unlike the usual ‘sketch-and-solve’ method, where the sketching
error § directly affects the overall precision of the solution to (2), here § only affects the quality of
the preconditioner (i.e., the ratio of max/min singular values of the sketch G¢), hence it suffices to
take a constant sketching error § = 0.1 (say), while letting the SGD deal with the final precision
(at it has logarithmic dependence on ). See Lemma B.1 for the formal details.

Indeed, by setting the sketching error to § = 0.1 (say), the resulting matrix G, = J,STS J! s
small enough (n x O(n)) that we can afford running a standard (QR) algorithm to precondition
it, at another O(n?) cost per iteration. The output of this step is a matrix G} := Prec(G,) with a
constant condition number x(G}) which preserves Ghx ~, Gy up to (1 4 §)? relative error. At this
point, we can run a (conjugate) gradient descent algorithm, which is guaranteed to find a v ~ 1/n
approximate solution to (1) in time O((mnlog((1 + &)/7) + n3), as desired.

We remark that, by definition, the preconditioning step (on the JL sketch) does not preserve
the eigen-spectrum of Gy, which is in fact necessary to guarantee the fast convergence of the Gauss-
Newton iteration (see Lemma C.3) . The point is that this preconditioning step is only preformed
as a local subroutine so as to solve the regression problem, and does not affect the convergence rate
of the outer loop.

3 Preliminaries

3.1 Model and Problem Setup

We denote by n the number of data points in the training batch, and by d the data dimension /feature-
space (i.e., z; € R?). We denote by m the width of neural network, and by L the number of layers
and by M the number of parameters. We assume the data has been normalized, i.e., ||z|s = 1. We
begin with the two-layer neural network in the following section, and then extend to multilayer net-
works. Consider a two-layer ReLU activated neural network with m neurons in the (single) hidden



layer:
FWe0) = =3 answ] )

where z € R? is the input, wy, - - - , wy, € R* are weight vectors in the first layer, a1, - - , am, € R are
weights in the second layer. For simplicity, we consider a € {—1,41}" is fixed over all the iterations,
this is natural in deep learning theory [LL18, DZPS19, AZLS19a, AZLL19, SY19]. Recall the ReLLU
function ¢(x) = max{z,0}. Therefore for r € [m], we have

of W, z,a) 1

ow,

Given n input data points (x1,y1), (Z2,92), - (T, yn) € R x R. We define the objective function
L as follows

LOV) = 23 i — F(W, )

1=1

We can compute the gradient of £ in terms of w,

- — Z.z:(f(VV,wi,a) — )il 0 W

ow,

We define the prediction function f; : R¥™ — R”™ at time t as follow

Tim Z;mfl ar - d((wy(t), 1))
ﬁ zr:l Qy - ¢(<wr(t)7 .Z'2>)

fi=
\/_lm Yoty ar - (Wi (t), 4))
where Wy = [wi(t) ", wa(t) T, ,wn(t)T]T € R™ and X = [z, 29, -+ ,2,] € R
For each time ¢, the Jacobian matrix J € R"*™¢ is defined via the following formulation:

012] Ly (9,21)20 @271 Liuwy(0)2)>0 ~ @m&1 Ly, (6),01)20

10123 Ly (0,02)>0 223 Lluy(0),02)>0 *** Gm®3 Ly (1),22)>0

Jp=—= : :
vm :
T T T
1%y Loy (1),2,)>0 0280 Ly (8),2,)>0 -+ @mTp Liw,, (£),20)>0

The Gram matrix G is defined as G; = J;J,', whose (4,)-th entry is <f(g/‘§[’/mi), f(‘g%xj)>. The
crucial observation of [JGH18, DZPS19] is that the asymptotic of the Gram matrix equals a positive
semidefinite kernel matrix K € R™*", where

Kpz) = E |2 212050000 } 5
(‘T ‘T]) U)EN(OJ) Ly .Z'] (w,2i)>0,( 7J>20 ( )
Assumption 3.1. We assume the least eigenvalue A of the kernel matriz K defined in Eq. (5)
satisfies A > 0.



3.2 Subspace embedding

Subspace embedding was first introduced by Sarlos [Sar06], it has been extensively used in numerical
linear algebra field over the last decade [CW13, NN13, BW14, SWZ19|. For a more detailed survey,
we refer the readers to [Wool4]. The formal definition is:

Definition 3.2 (Approximate subspace embedding, ASE [Sar06]). A (1+¢€) lo-subspace embedding
for the column space of an N x k matriz A is a matriz S for which for all x € RF, ||SAz|2 =
(1+e)||Az||2. Equivalently, ||[I —UTSTSU||s < ¢, where U is an orthonormal basis for the column
space of A.

Combining Fast-JL sketching matrix [AC06, DMMO06, Troll, DMIMWI12, LDFU13, PSW17]

with a classical e-net argument [Wool4| gives subspace embedding,

Lemma 3.3 (Fast subspace embedding [LDFU13, Wool4|). Given a matriz A € RN*k with N =
poly(k), then we can compute a S € Rkpoly(log(k/8))/* <k ¢pq¢ gives a subspace embedding of A with
probability 1 — 6, i.e., with probability 1 — &, we have :

[SAz[]2 = (1 £ €)[|Az||2

holds for any x € R™, ||z|l2 = 1. Moreover, SA can be computed in O(Nk - polylog k) time.

4 Our Algorithm

Our main algorithm is shown in Algorithm 1. We have the following convergence result of our
algorithm.

Theorem 4.1. Suppose the width of a ReLU neural network satisfies
m = Q(max{\"*n? \"2n%dlog(16n/5)}),

then with probability 1 — § over the random initialization of neural network and the randomness of
the training algorithm, our algorithm (procedure FASTERTWOLAYER in Algorithm 1) achieves

1
I fir1 —yll2 < §”ft — 2.

The computation cost in each iteration is 6(mnd + n3), and the running time for reducing the
training loss to € is O((mnd + n®)log(1/€)). Using fast matriz-multiplication, the total running
time can be further reduced to O((mnd + n*)log(1/e)).

The main difference between [CGH'19, ZMG19] and our algorithm is that we perform an ap-
proximate Newton update (see line 6). The crucial observation here is that the Newton method is
robust to small loss, thus it suffices to present a fine approximation. This observation is well-known
in the convex optimization but unclear to the non-convex (but overparameterized) neural network
setting. Another crucial observation is that instead of directly approximating the Gram matrix, it
is suffices to approximate (J; JtT ) lg =Gy Lg,. Intuitively, this follows from

I g~ B(BID) e —y) = (B TV (f — ),

where (J,' J;)T denotes the pseudo-inverse of J," J; and the last term is exactly the Newton update.
This observation allows us to formulate the problem a regression problem (see Eq. (6)), on which
we can introduce techniques from randomize linear algebra and develop fast algorithm that solves
it in near linear time.



Algorithm 1 Faster algorithm for two-layer neural network

1: procedure FASTERTWOLAYER() > Theorem 4.1

2 Wy is a random Gaussian matrix > Wy € Rm4

3: while t < T do

4 Compute the Jacobian matrix J; > J, € Rnxmd

5 Find an ¢y approximate solution using Algorithm 2 > ey € (0, %\//\ /n]
n;in e ge = (fe = »)l2 (6)

6 Update Wiy « Wi — J g

7: t+—t+1

8 end while

9: end procedure

Algorithm 2 Fast regression

1: procedure FASTREGRESSION(A, ¢) > Lemma 4.2
2 > A € RV*F is a full rank matrix, € € (0,1/2) is the desired precision
3: Compute a subspace embedding SA > S € Rbpoly(logk)xk
4: Compute R such that SAR orthonormal columns via QR decomposition > R € RFxk
5 20 < 0 € RF

6 while ||[AT ARz — y|j2 > e do

7 241 < 2 — (RTATAR)T(RTAT ARz — RTy)

8: end while
9: return Rz
10: end procedure

4.1 Fast regression solver

The core component of our algorithm is a fast regression solver (shown in Algorithm 2). The
regression solver provides an approximate solution to min, ||[AT Az — y|| where A € RN** (N > k).
We perform preconditioning on the matrix of AT A (line 3 — 4) and use gradient descent to derive
an approximation solution (line 6 — 8).

Lemma 4.2. Let N = Q(kpoly(logk)). Given a matriz A € RN**_let x denote the condition
number of A °, consider the following regression problem

in [|[A" Az — y||a. 7
min |47 Az -yl (7)

Using procedure FASTREGRESSION (in Algorithm 2), with probability 1 — §, we can compute an
e-approzimate solution ' satisfying

IAT Az" — yll2 < eyl

in O (Nklog(k/e) + k3) time.
55 = O'max(A)/Umin(A)




Speedup in Convex Optimization It should come as no surprise that our techniques can help
accelerating a broad class of solvers in conver optimization problems as well. In the full version of
this paper, we elaborate on this application, and in particular show how our technique improves the
runtime of the “Newton-Sketch” algorithm of [PW17].

5 Conclusion and Open Problems

Our work provides a computationally-efficient (near-linear time) second-order algorithm for train-
ing sufficiently overparametrized two-layer neural network, overcoming the drawbacks of traditional
first-order gradient algorithms. Our main technical contribution is developing a faster regression
solver which uses linear sketching for fast preconditioning (in time independent of the network
width). As such, our work demonstrates that the toolbox of randomized linear algebra can sub-
stantially reduce the computational cost of second-order methods in nmon-convex optimization, and
not just in the convex setting for which it was originally developed (e.g., [PW17, Wool4, CLS19,
JSWZ20, JKL*20, JLSW20, LSZ19]). N

Finally, we remark that, while the running time of our algorithm is O(Mn+n3) (or O(Mn+n*)
using FMM), it is no longer (near) linear for networks with parameters M < n? (resp. M < n@~1).
While it is widely believed that w = 2 [CKSUO05], FMM algorithms are impractical at present, and
it would therefore be very interesting to improve the extra additive term from n? to n2to() (which
seems best possible for dense n x n matrices), or even to n3~¢ using a practically viable algorithm.
Faster preconditioners seem key to this avenue.
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A Appendix

Organization The Appendix is organized as follows. Section A contains notations and some basic
facts. In Section B we present the fast regression solver. In Section C we prove our main result
for two-layer ReLLU networks. Finally, in Section D we show that our optimization framework can
obtain acceleration in classic convex optimization setting, improve over [PW17].

A.1 Notation

For a vector z € R™, we use |z]|2 to denote the £ norm, i.e., ||zl = (320, 22)/2. We use ||z

1=1""1
to denote its ¢; norm, ||z||o to denote its o, norm. For a matrix A, we use ||A| to denote its
spectral norm, i.e., ||A]| = max)g,=1 |Az[]2. We use [|A|r to denote the Frobenius norm, i.e.,

[AllF = 2, >0 A227j)1/2. We AT to denote the transpose of matrix A. We use omin(4) to
denote the minimum singular value of A, i.e., oyin = minjg,—; [Az[2. We define opax to be
the maximum singular value and we have opax(A) = ||A||. We use k(A) to denote the condition
number of A, i.e., K(A) = omax(A)/omin(A). We write z =y + e if z € [y — €,y + €|. For a positive
semidefinite (PSD) matrix A, we sometimes use Amin(A4) (resp. Amax(A4)) to denote the minimum
(resp. maximum) eigenvalue of A.

A.2 Probability Tools

Lemma A.1 (Chernoff bound [Che52|). Let X = > " | X;, where X; = 1 with probability p; and
X; = 0 with probability 1 — p;, and all X; are independent. Let p=E[X] =" p;. Then

1. Pr[X > (14 6)u) < exp(—02u/3), V6 >0 ;

2. Pr[X < (1 —6)u] <exp(—d62u/2), V0O < < 1.

Lemma A.2 (Hoeffding bound [Hoe63|). Let X1,--- , X, denote n independent bounded variables
in [a;,b;]. Let X =31 | X;, then we have

Pr[|X — E[X]| > t] < 2exp (—%) .

Lemma A.3 (folklore). Let X ~ N(0,0?), that is, the probability density function of X is given
xz
by ¢p(x) = ﬁe_ﬁ, Then

4t
Pr[|X| <t] < ——.
50

A.3 Basic Facts
Fact A.4. For any two matrices A, B, k(B) < k(AB)kr(A).
Proof. We know for any ||z|2 = 1,

Omin(A)[|Bzllz < [[ABz[|2 < omax(AB)|z[l2 = omax(AB).
Hence we have oyax(B) < 0max(AB)/omin(A). Similarly, we have

Omax(A)[| Bz||2 = [|ABz(|2 = omin(AB)|[z[l2 = omin(AB)
i.e., omin(B) = omin(AB)/omax(A). Thus we conclude

k(B) < k(AB)k(A).
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B Fast regression solver

Lemma B.1 (Formal version of Lemma 4.2). Given a matriz A € RV*¥ (N > kpoly(logk)), let x
denote the condition number of A Y, consider the following regression problem

in [|[A" Az — y|lo. 8
min |47 Az -yl (8)

We can compute an e-approximate solution x’ satisfying

AT Az — yll2 < €|yl

in O (Nk: log(k/€) + /<:3) time. Using fast matriz-multiplication, the total running time can be further
reduced to O((mnd + n®)log(1/e)).

Proof. Using lemma 3.3, let S e RFpoly(logk/d)/ *N he a subspace embedding of A, with probability
1 — 6, the following holds for any = € R*

[SAz|]2 = (1 £ o) || Az][2.

Suppose R € RF*k is computed so that SAR has orthonormal columns, e.g., via QR decompo-
sition. We use R as a preconditioner for matrix A. Formally, for any = € R" satisfying ||z|js = 1,
we have

|ARz||2 = (1 £ €)||SARz||2 = (1 £ €9). 9)
Hence, we know for any ||z|2 =1,

(1—€)? <||[RTATARz|s < (1 + €)%
We choose €9 = 0.1, and consider the regression problem

min IRTAT ARz — RTyl|s. (10)
z€R™

By lemma B.2, using gradient descent, after ¢ = log(1/e€) iterations, we can find z; satisfying
IRTATAR(2 — 2%)||]a < €| RT AT AR(20 — 2¥)]Ja, (11)

where 2* = (RTATAR)™'R"y is the optimal solution to Eq. (10). We are going to show that
x¢y = Rz is an 2ke-approximate solution to the original regression problem (8), i.e.,

|AT Az = yll2 < rellyll2
Plugging zp = 0 into Eq. (11), we get
IRTAT Azy — RTyll2 < €| RTy|| < € omax(RT)[lyll2 (12)
On the other hand, we have

IRTAT Azy — RTyll2 = |[RT(AT Azy — )2 > omin(RT) | AT Az — yll2. (13)

6/41 = Umax(A)/Omiﬂ(A)
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Putting it all together, we have
AT Az = ylla < en(R)|lyll2 = en(R)llyll2 < en(AR)R(A)[lyll2 < 2er(A)]yll2

where the first step follows from Eq. (12) (13), the second step follows from R is a square matrix
and thus x(R) = k(R"), the third step follows from Fact A.4 and the last step follows from Eq. (9).

For the running time, the preconditioning time is 5(]\7 k + k%), the number of iteration for
gradient desent is log(/€), the running time per iteration is O(Nk), thus the total running time is

0] (Nklog(k/e) + k%) .

The preconditioning can be reduced to 5(]\7 k+k“) when using fast matrix multiplication to compute

the QR decomposition of SA [DDHO7]. O
Lemma B.2. Consider the the regression problem

min | Bz — y3.

Suppose B is a PSD matriz with 2 < ||Bz|ls < 3 holds for all ||z|2 = 1. Using gradient descent,
after t iterations, we obtain

B2t — a*)]l2 < || B(zo — 2*)|l2
for some constant ¢ € (0,0.9].
Proof. The gradient at time t is B (Bxy — y) and 2441 = 2; — B (Bx; — y), thus we have
|Bzi41 — Bx*||l2 = ||B(z; — BT (B —y)) — Ba*|

= |B(z; — 2*) — BB" Bx; + BB Bx*||2
= |(I = BB")B(x; — a*)|»

< |1 = BBT| - Bz — )]
9 *
o

The second step follows from BT Bx* = B'y. The last step follows from the eigenvalue of BB

belongs to [1%, %] by our assumption. Thus we complete the proof. O

C Our Algorithm

We delicate to prove the following result in this section, which is essentially Theorem 4.1.

Theorem C.1 (Formal version of Theorem 4.1). Suppose the width of the neural network satisfies
m = Q(max{\~4n, A\"2n%dlog(16n/8)}), then with probability 1 — & over the random initialization
of neural network and the randomness of the algorithm, our algorithm achieves

1
I fir1 —yll2 < §”ft — 2.

The computation cost in each iteration is 6(mnd +n3), and the running time for reducing the
training loss to € is O((mnd + n3)log(1/¢)). Using fast matriz multiplication, the running time is

O((mnd + n*)log(1/e)).
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The follow lemmas are standard in literature.

Lemma C.2 (Bounds on initialization, Lemma 2 in [CGH19]). Suppose m = Q(dlog(n/J)), then
with probability 1 — &, we have the following
o f(W,z;) =0O(1), forie€ [n].

o [[Jwo,zllr = O(1), fori & [n].
Lemma C.3 (Bounds on the least eigenvalue at intialization, Lemma 3 in [CGH'19]). Suppose
m = QA "2n2log(n/d)), then with probability at least 1 — &, we have

)\min(GO) 2 %)\

When weights do not change very much, we have

Lemma C.4. Suppose R > 1 and m = ﬁ(n2R2). With probability at least 1 — § over the ran-
dom initialization of Wy, the following holds for any set of weights wi,...w, € RY satisfying

maX,efm [[wr —wr(0)[l2 < R/v/m,
o [W—Wol=0(R),

o [T = Jwoaillz = O(RY2 /m!*) and || Jw — Jwy|lp = O(n'/2RY? fm!14),

e [Jwlr=0/n),
Proof. (1) The first claim follows from

m 1/2
IW = Woll < IW = Wollr = (D llwy —w(0)]3) " < Vm - R/v/m = R.

r=1

(2) For the second claim, we have for any i € [n]

HJW,%' - JW079E1'||2 Za H‘/ETH2 wr,wl 1(wr(0),mi>20|2
= Z |ty 24)>0 — L (0),20)>01- (14)
r=1

The second equality follows from a, € {—1,1}, ||z;]]2 =1 and
Sir = |1<wr,mi>20 - 1(wr(0),mi)20| € {07 1} (15)
We define the event A;, as
Aip ={30 : |0 —w(0)]| < R/Vm, 15250 # 1w, (0)2:)>0 -

It is easy to see A;, happens if and only if w,(0)"z; € [-R/y/m, R/\/m]. By the anticoncentration
of Gaussian (see Lemma A.3), we have Els; ,] = Pr[4;,] < %R/\/ﬁ. Thus we have

Pr ZS“« > (t+4/5)Rv'm

< Pr [Z(Si,r - [32 r]) > tR\/_

1=1

(16)



holds for any ¢ > 0. The second inequality comes from the Hoeffding bound (see Lemma A.2),
the last inequality comes from R > 1. Taking ¢ = 2log(n/J) and using union bound over i, with
probability 1 — §, we have

1 — 1 _
e, = Tl = =3 sir < = - 2log(n/6)Rv/im = O(R/v/m)
r=1

holds for all @ € [n]. The first equality comes from Eq. (14) and Eq. (15), the second inequality
comes from Eq. (16). Thus we conclude with

1Tz, = Twozillz = O(RY? /m') and (| Jw — Jiwg || = O(n"/*RY? /m!/%).
(3) The thrid claim follows from
1Twlle < 1 Twolle + [ Jw = Jwg | < O(Vi) + O 2 RY? fm!/*) = O(v/m).

The second inequality follows from m = Q(R2n?2).
O

Lemma C.5 (Bounds on the least eigenvalue during optimization, Lemma 4.2 in [SY19]). Suppose
m = Q(n%R%log(n/§)), with probability at least 1 — &, the following holds for any set of weights
wi, ... wy € RY satisfying maX,¢fy |wr — wr(0)|[2 < R/\/m,

IGw — GwyllF < A/2.

We now begin the proof of Theorem C.1

Proof of Theorem C.1. We use induction to prove the following two claims recursively. We take
R ~ n/\ in the proof.

1. ||lwy(t) — w,(0)]]2 < R/+/m holds for any r € [m] and t > 0.
2. Ife —yll2 < %Hft_l — 9|2 holds for any ¢ > 1.

Suppose the above two claims hold up to t, we prove they continue to hold for time ¢ + 1. The
second claim is more delicate, we are going to prove it first and we define

1
Jt,t—i—l = / J<(1 — S)Wt + SWt+1>dS.
0
Hence, we have

Il fer1 — yll2
= |ft =y + (frr1 — fo)ll2
= |ft =y + Jres1 (W1 — W) |2
= Ift — v — Jeer1dy gl
_ T T T
=fe—y—JTJy e+ TeJy 9t — Jeer1dy gell2
< Hft - Y- JtJtTgtHz + H(Jt - Jt,t—l—l)JtTgtH2
< |fe =y = I gellz + (e = Jeeen) T g% 2 + (e = Teeen) Jy (90 — g7 l2s (17)
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where we denote g* = (J;J,')71(f; — y) to be the optimal solution to Eq. (6). The second step
follows from the definiton of J; ;41 and simple calculus. The third step follows from the updating

rule of the algorithm.
For the first term of Eq. (17), we have

1
1 Te ) gt — (fe — y)l2 < EHft —yll2,

since g is an €y(ep < %) approximate solution to regression problem (6).
For the second term in Eq. (17), we have

1(Je = Jees) Ty g% ll2 < 1T = o)l - 1 g% |2
= |(Je = Jeer )| - 1 (BT 7H = )2
< (T = )| - 1T (T H - (e = 9) 2

We bound these term separately. First,

1
Wh—%wﬂéu/Hﬂﬂ—ﬁWHﬂW%ﬁ—Jmﬁws
0

IN

1
| QI = W2+ 51Wia) = TV + 7o) = T(W3) ) s
0
< 6(R1/2n1/2/m1/4).
The third step follows from the second claim in Lemma C.4 and the fact that

(1 = $)wr(t) + swr(t + 1) —wollz < (1 = s)|[wy(t) — wr(0)|l2 + sllwy(t + 1) — w,(0)]]2
< R/y/m.

Furthermore, we have

17 (Je ) = <V2/A

1
Umin(JtT)

The second inequality follows from oyin(J;) = 1/ Amin(J,' Jt) > /A/2 (see Lemma C.5).
Combining Eq. (19), (20) and (21), we have

_ B 1
(e = Jeer) T g 2 < O(R'PAT0 2 fm )| £y — yll2 < gllfe =l
since m = Q(A4n?).

For the third term in Eq. (17), we have

(T = Teaen) T (g6 = g2 < e = Tl - 1711 - lge — 9" 12
Moreover, one has
A
llge = g"ll2 < Amin(Je T )9 = 972
< ey ge = Je T 9" 2
= |91 g = (fr = v)ll2

< VAl =yl

16
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The first step comes from Apmin(J;J;" ) = Amin(G¢) > A/2 (see Lemma C.4) and the last step comes
from g; is an €y approximate solution to Eq. (6). The fourth step follows from Eq. (24) and the fact
that ||(J;J,") 7Y < 2/X. The last step follows from g; is an €y (eg < \/\/n) approximate solution
to the regression (6).

Consequently, we have

(T = Jeee) Iy (9 = 92 < I = Teasa |- 151 Nlge — 9712

~ P
< O(RV2nM2 1Ay . e 2 f —
< O( / )-Vn N\ Il fe — yll2
= O(RYVPATV20 2ty | fr =yl
1
< EHft =yl (25)

The second step follows from Eq. (20) and (24) and the fact that ||J;|| < O(y/n) (see Lemma C.4)
The last step follows from the m > Q(n*A~*). Combining Eq. (17), (18), (22), and (25), we have
proved the second claim, i.e.,

1
1fer1 = yll2 < Sl = ylla- (26)

It remains to show that W; does not move far away from Wy. First, we have

lgell2 < llg*ll2 + llge — 9™l

<N FID) T =)z + llge — g¥l2

< (T M- ”(ft —yll2 + llge — g% l2
N fe = yll2

<

Ife —yll2 + —= \/—
| fe = yll2 (27)

q. (24) and the last step follows from the obvious fact that

S

R i

where the third step follows from

1/vVnA < 1/\

Hence, for any r € [m] and 0 < k < ¢, if we use gj; to denote the it" indice of g, then we have

[wr(k+1) —w,(k)ll2 = ar’ T} L (1) ) 509k,

2

IN

S f oo~ ol
1

< L
N\/m oF

The first step follows from the updating rule, the second step follows from triangle inequalities and
the fact that a, = £1, ||z,.||2 = 1. The third step comes from Cauchy-Schwartz inequality, and
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the fouth step comes from Eq. (26) and Eq. (27). The last inequality comes from the fact that
I fo —yll2 < O(/n) (see Lemma C.2). Consequently, we have

n 1 _ R

Nk

]~

lwe(t+1) = w (0)]l2 < Y wp(k+1) —we (k)2 S
k=0

— \/m\ 2F

B
Il

0

Thus we also finish the proof of the first claim.

It remains to give an analysis on the running time of our algorithm. In each iteration, besides
evaluating function value and doing backpropagation, which generally takes O(mnd) time, we also
need to solve the regression problem in (6), which takes O(mndlog(k(JiJ, ) /eo) + n3) time by
Lemma B.1. From Lemma C.4, we know ||J;J," || = [|G¢|| < O(n) and Awin(Ji ;") = Amin(Gy) >
O(\). Moreover, we only need to set ¢ = min{\/A/n,1/6}. Thus the total computation cost in
each iteration is 5(mnd +n?), and the total running time to reduce the trainning loss below ¢ is

O((mnd + n3)log(1/e)). O

D Application: Convex Optimization

We apply our technique to convex optimization problem. We follow the problem formulation
in [PW17] and consider the problem

min f(z)
x
where f is y-strongly convex, S-smooth and its Hessian matrix V2f(z) is L Lipschitz continuous,

Definition D.1 (y-strongly convex). The function f is y-strongly convez if
gl
fy) = @)+ (Vf(2)y = 2) + 5y — =[5

Definition D.2 (8-smooth). The function f is B-strongly convex if

F(w) < J(@) + (T @)y — ) + 5y — ]},

Definition D.3 (L Lipschitz continuous Hessian). The Hessian matriz of function f is L Lipschitz
continuous s

IV2f (@) = V2f()ll < Lz = yll2.
As in [PW17], we further assume we have access to
the square root of Hessian := sz(a:)% e R™"

with m > npoly(logn).

There are many natural and interesting examples that are valid for this assumption. For instance,
suppose the objective function has the form of f(x) = g(Ax) where A € R™ % and the function
g : R — R has the separable form g(Az) = Y | gi({(a;,x)), then the square root of Hessian is
given by

V2f(z)2 = Dy(z)A € R,

18



where Dg(x) € R™" is a diagonal matrix such that the 4, i-th of D,(z) is /g7 ({a;, x)).
For more examples, we refer interested reader to Section 3.3 in [PW17]
Naive implementation of Newton method needs to compute

V2 f(x) = (V2f(2)3)T - (V2f(2)?)
and it costs O(nd?) time. The original analysis of NEWTONSKETCH in [PW17] takes O(nd + d3),
but it requires n > dk?, where & is the condition number defined as x = 3/7. There are many follow
up work [XYR'16, YLZ17, BBN19| intending to get rid of the extra dependence on the condition
number k. We present an alternative approach and improve the running time to 5((11 log(k) +
d?)dlog(1/¢€)) by incorporating the “fast regression solver” introduced in this paper.

Algorithm 3 Fast Newton Update
procedure FASTNEWTONUPDATE( f, () > Theorem D.4
> xp is an initial point that is satisfying ||zo — 2*||2 < O(y/L)

1:

2

3: t+1

4: while t < T do
5 Compute V2f(a:t)% € R™™ and Vf(x) € R™.

6 Find an 1/(4k) approximate solution g; € R™ to the regression problem

. 1 1
Jnin, (V2 f(z)2) T - (V2 f(20)2) - g — V f(2)]|2 (28)
T T4l < Tt — Gt
: t—t+1
9: end while
10: return rr

11: end procedure

Our algorithm is shown in Algorithm 3. Formally, we have

Theorem D.4. Suppose function f is y-strongly convezr, B-smooth and its Hessian is L Lipschitz
continuous. Given an initialization point xy satisfying ||zo — x*||2 < v/(2L), there is an algorithm
(procedure FASTNEWTONUPDATE in Algorithm 3) achieves

1 L
41 = 27l2 < Fllze — 27[l2 + Sl = I3, (29)

Consequently, in order to find an € approxmate optimal solution, the running time is
O ((ndlog(x) + d®)log(1/e)) .

Using fast matriz multiplication, the running time can be further reduced to O ((ndlog(r) + d*)log(1/e)).

Proof. We first analyze the correctness, and then give an analysis on the running time. Denote

G = V2 $ () () = (V40D (P f)D) V). (30)
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We have

V2 f (@) (w41 — 27)l2
= [IV?f (@) (2 — 2 + @31 — 20) |2
= V2 f () (e — &) = V2 f (1) el
= [IV?f (@) (@ — 2*) — V2 f (@) G + V2f (@) — V2 f (@) g2
< |IV2f (o) (@ — %) = V2 F (@) Giell2 + V2 f (20 — V2 f(20) g6l (31)

For the first term

IV2f () (mp — 2%) = V2 F(20) G2
= V2 f (@) (x — 2*) = V()|

= Hv2f(xt)(xt —a) — /;0 V2f(z* 4 s(xs — ) (2 — x*)dsH2
1
- H /8:0 (V2f(xt) — V2 f(a* + s(xy — x*))) (zy — :E*)d8H2
1
: /s:O IV2f () = V2 F (@ + s(ae — a))|lds - ||z — 2*]2

1
g/'La—wm—ﬂmmw@—ﬁm
s=0
< Llze — 2*|I3 (32)

The first step follows from the definition of g; in Eq. (30), the second step follows from V f(z*) = 0.
If the Hessian is L Lipschitz continuous, we have For the second term

IV2 f(z)ge — V2 F(20)gtll2 = IV f(ze)ge — V(@)

1
< —||V
< T IVi@)l2
1
= 1 - Bllee — "l
= 2w — a2 (33)

The first step follows from Eq. (30), the second step holds since g; is an 1/(4x) approximate solution
to Eq. (28). The third step follows from the smoothness of f. Consequently, we have

1
@1 — 2™ < ;HVQf(:vt)(xm — )|
1 Y
< Z(L K )|2 N _x
< 7( lze = 2%l + 7 llee — 27]2)

1 L
< gz =272 + ;th — a3
The first step follows from the convexity of f. The second step follows from Eq. (31), (32), and

(33). Thus we prove the correctness of Eq. (29). Since we know /{(sz(xt)%) = /K, the running
time per iteration is O(ndlog(x) + d®) by Lemma B.1. Thus we conclude the proof. O
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