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Abstract

We consider sketched approximate matrix
multiplication and ridge regression in the
novel setting of localized sketching, where at
any given point, only part of the data matrix
is available. This corresponds to a block diag-
onal structure on the sketching matrix. We
show that, under mild conditions, block diag-
onal sketching matrices require only O(sr/e?)
and O(sd) /e) total sample complexity for ma-
trix multiplication and ridge regression, re-
spectively. This matches the state-of-the-art
bounds that are obtained using global sketch-
ing matrices. The localized nature of sketch-
ing considered allows for different parts of
the data matrix to be sketched independently
and hence is more amenable to computation
in distributed and streaming settings and re-
sults in a smaller memory and computational
footprint.

1 Introduction

Efficient linear algebraic computations are of funda-
mental importance in machine learning and signal pro-
cessing applications. This has led to a rise in ran-
domized linear algebraic methods that aim to solve
large problems only approximately, but with much less
time complexity compared to standard methods (see
[Woodruff, 2014, Wang et al., 2017, Yang et al., 2016,
Chowdhury et al., 2018] and references therein). In
this work, we consider two specific examples: sketched
matrix multiplication [Cohen et al., 2015] and ridge
regression [Avron et al., 2016] but with additional con-
straints on the sketching matrices that arise in the
context of distributed data acquisition. Formally, if
W € RV*™ and Y € RVY*P, computing the product
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WY takes O(mpN) time, which can be prohibitive
for large N. The sketched version then aims to find
matrices S € RM*N such that

[(SW)T(SY) - WTY || < e|[W[[[Y]|. (1)

Computing the sketched matrix product (SW)?(SY)
then takes only O(mpM ) time (not accounting the time
to compute SW and SY themselves). State-of-the-
art bounds show that M = O(max(sr(W),sr(Y))/€?)
suffices, where sr(-) is the stable rank of a matrix
(defined in Section 2 and is a stable alternative for the
rank). Similarly, given A € RN¥*d with N > d and
b e RN , the ridge regression problem is

x, = arg min f(x) := |[Ax — b||® + A||x|° (2)
xcR4d

and can be solved in O(]Vdg) time. The sketched

problem instead seeks to find matrices S € RM*N guch
that solving

% = arg min fs(x) := [[SAx — Sb|* + A[x|* (3)
x€ER?

yields
fX) < (T4 e)f(x). (4)

The state-of-the-art bounds show that for small e,
M = O(sdy/e) suffices, where sd) is the statistical
dimension and is again a more stable alternative to the
rank of A, as defined in Section 2.

With this background in place, let us consider a sce-
nario where the data matrix A is naturally divided into
J blocks that are not all available at a single location.
Let each block then be of size N x d, where N = JN.
Such partitioning of data into different blocks occurs
naturally in many applications. For example, dynamic
systems produce data that evolve over time. To store
the entire data before sketching it would require large
amounts of memory [9]. It would be of use to sketch the
system as it evolves, leading to a natural partition. In
yet another application, consider the square kilometer
array [11]. This array consists of antennas distributed
across the continents of Australia and Africa. To han-
dle the massive data rates (157 TB/s), it is desirable to
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sketch the data locally at each antenna and then trans-
mit to the central processing location. In distributed
systems that use edge-cloud architecture, edge nodes
collect data that needs to be communicated to the
cloud for inference. The communication requirements
can be made smaller if the data at each edge node is
compressed to an “optimal” dimension.

A feature of existing sketching methods (including
those that use fast Johnson-Lindenstrauss matrices
such as Subsampled Randomized Hadamard Trans-
form (SRHT) [Ailon and Chazelle, 2006] and sparse
sketching matrices [Clarkson and Woodruff, 2017]) is
that they need access to all or an arbitrary subset of
the rows of A (See Figure 1). Clearly, this is unsuitable
for an application with distributed data. This leads us
to ask the following questions: Is there a way to adapt
sketching techniques to such applications? What is the
best way to model dimensionality reduction for such
applications? Two naive ways are readily available:
i) Since each block is of size N x d, its rank is upper
bounded by d. One could obtain a subspace embedding
for each block and communicate these sketched blocks
to the central node. The resulting dimension of the
aggregated data is then O(Jd/€?), since each block
needs to be sketched to O(d/€?), ii) Sketch each data
block separately, and add the resulting sketches at the
central node instead of aggregating them. In fact, this
results in a sketch of the entire data matrix A. Using
existing bounds, one can conclude that the final sketch
needs to be O(d/e?), which again requires each data
block also to be sketched to O(d/e?).

A major drawback of both of the above approaches is
that they do not take advantage of the inherent low
dimensionality of the entire matrix A, resulting in a
sketch size of O(d/e?) for each data block. Our obser-
vation is that it should be possible to lose information
locally, while still retaining all the information about A
globally. This is exactly what we address in this paper:
we show theoretically that it is possible for the each of
the blocks to be sketched to O(d/Je?). This implies
that the sketch obtained from a single block may not
be big enough to provide a subspace embedding for
that block. Yet, an embedding of the entire matrix A
can be obtained, once the sketches from the individual
blocks are aggregated. Hence, our work aims to ini-
tiate a study of how to extend sketching methods to
distributed data acquisition scenarios.

Our proposal is to impose a block diagonal structure
on the sketching matrix S. We denote such a sketching
matrix as Sp. We then partition the data matrices W,
Y and A analogously. This results in sketches of the

form
Sl 0 0 A1 SlAl
0 Sy -+ 0] |As So A,
SpA=|. . . . = .
0 0 Ss| Ay SsA,;

(5)
We assume that A; € RV*d where N = JN and
S, € RMi*N guch that > M= M, although our re-
sults extend to the case where the A;’s are of different
sizes. Further, in our paper we assume that the non-
zero entries of the matrix Sp are drawn from the Gaus-
sian distribution. Our goal is to study the sample com-
plexities M, required to achieve similar guarantees as
those in [Cohen et al., 2015] and [Avron et al., 2016]
for dense (non-block diagonal) sketching matrices.

Apart from the structural advantages described above,
computing the product Sp A can also be much cheaper
when compared to an unstructured random projection.
For generic S;, the sketch SpA can be computed in

time O(NdM), as compared to the O(ﬁdﬂ) required
for a dense, unstructured sketch. Second, the computa-
tion is trivial to parallelize into J blocks, each requiring
O(NdM;) time. For large problems with low effective
rank, when we can take M; = O(log N), this gives
us a sketch with structured randomness competitive
with methods that use SRHT and sparse embedding
matrices [Woodruff, 2014]. Furthermore, the blocks
themselves could be designed to be fast transforms.
Owing to these computational advantages, blocking
could be a strategy by itself.

1.1 Related work

There is a vast and growing literature on sketching
techniques. Here we briefly review some of the work
most relevant to ours in the context of our setting.
Note that while sketching can also be used as a pre-
conditioning method [Yang et al., 2016], here we will
only address “sketch and solve” methods where the
original problem is (approximately) solved in a reduced
dimension.

Sketching methods for solving ordinary least squares
problems are well summarized in [Woodruff, 2014].
However, as noted in [Avron et al., 2016], solutions
for sketched ridge regression problems are more rele-
vant in practice since regularization is often necessary.
Similar to [Avron et al., 2016], we address this prob-
lem but in the setting where the sketching matrix is
block diagonal. We provide conditions on the matrix
[A b] under which such structured matrices can have
the same sample complexity as [Avron et al., 2016].

Our work is closely related to that of
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[Eftekhari et al., 2015] which studies the restricted
isometry property (RIP) of block diagonal matrices.
These results can be used to directly obtain subspace
embedding guarantees for block diagonal matrices.
However, this approach requires a sample complexity
dependent on the rank of A and not its approximate
rank. For large matrices with fast spectral decay,
this dependency can lead to sub-optimal sample
complexity. Another difference is that we consider
block diagonal matrices that have different sized
blocks, while [Eftekhari et al., 2015] assumes that all
the blocks are of the same size. One of the main
conclusions of our paper is that choosing the block
sizes in a data dependent fashion leads to improved
(optimal) sample complexity.

A statistical analysis of sketched ridge regression in a
distributed setting is provided in [Wang et al., 2017].
This work considers the ridge regression problem in
the multivariate setting (where b and x are matrices)
and analyzes model averaging in the case of distributed
computation of the sketched ridge regression solution.
In this setting, various processors each solve the prob-
lem with a part of the data and the estimators are
then communicated to a central agent. In contrast, we
consider a scenario where the estimate is computed by
the central agent with only sketched data sent from
various nodes.

Another work that is similar in spirit to ours and
addresses sketched regression in a distributed set-
ting is [McWilliams et al., 2014]. The setting con-
sidered in this work lies somewhere between that of
[Wang et al., 2017] and ours. It considers multiple pro-
cessors solving the ridge regression problem with dif-
ferent parts of the data similar to [Wang et al., 2017],
but also assumes that the data used by each processor
is available to all other processors in a sketched form.
In contrast, in our work, the sketched data from all the
nodes is available to only a central computing agent.

A complimentary line of work focuses on the same
problem but where N < d. In [Chen et al., 2015], a
sketching based algorithm is proposed that achieves a
relative error guarantee for the solution vector. This re-
sult is further improved in [Chowdhury et al., 2018].
Sketching has also been applied in the context
of kernel ridge regression, where the data points
are mapped to higher dimensional feature space
before solving the regression problem. Sketching
is used to reduce the number of such high di-
mensional features in [Paul and Drineas, 2016] and
[Avron et al., 2017]. Sampling and rescaling of features
is considered in [Paul and Drineas, 2016]. Random fea-
ture maps are also used to construct pre-conditioners
in [Avron et al., 2017] to solve kernel ridge regression,
where it is shown that a number of random feature maps

proportional to the effective rank of the kernel matrix
suffices to obtain a high quality pre-conditioner. While
our work targets a different setting (where N > d) and
requires a different set of analytical tools, it is notewor-
thy that our guarantees involve a similar dependence
on the stable rank of the underlying data matrix.

2 Main results

Our main contribution is theoretical analysis of the
block model described in (5). A naive strategy to ana-
lyze block diagonal matrices is to treat each block A ;
separately and use a number of random projections
proportional to its effective rank. But this would not
take advantage of the low dimensional structure of the
full matrix A, resulting in a highly suboptimal sample
complexity. Instead, we show that under mild assump-
tions on A, the total sample complexity of M of the
matrix Sp can match the existing bounds mentioned
above.

2.1 Stable rank, statistical dimension and
incoherence

Before we can state our main results, we need to define
a few quantities that characterize the complexity of
matrix multiplication and ridge regression problems.

Stable rank of a matrix: The stable rank of a matrix

W is defined as sr(W) = “'|“’,VV“'|%. Note that sr(W) <

rank(W). For matrices with a flat spectrum, the stable
rank equals the rank of the matrix. However, if the
singular values decay, then the stable rank captures the
effective low dimensionality of the matrix, even when
it is technically full rank.

Statistical dimension of the ridge regression
problem: The ridge regression problem defined in
(2) can be reformulated as

A bl|* . .
Lol = e
The scalar multiple of the identity on the bottom of A
means it will technically be rank d. But in some sense,
a more nuanced notion of rank would count dimensions
in the column space of A that have singular values
greater than v/A differently that those with singular
values less than v/A. One way to make to bring this
distinction out is through the statistical dimension
2

sdy = Z U;j— A

K2

- 112
min ‘Ax—bH .
x€R4

In the sum above, if 01-2 > ), then the contribution
for that term is approximately one, while if o2 < ), it
is essentially zero. This allows us to interpret sdy as
a kind of “effective rank”. Note that sd) < rank(A)
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Figure 1: Existing sketching strategies such as dense sub-Gaussian, SRHT matrices (left) and sparse sketching
matrices (center) assume access to all or a few arbitrarily placed rows of A. However, our localized model (right)
needs access to only well-separated parts of the data matrix.

and can be much lower than rank(A). While making
A very large can of course make sdy very small, this
also introduces a larger bias in the estimates provided
by (2) and (3), driving both of their solutions to zero.
Choosing the A that balances this bias-variance trade-
off is equally important in sketched and non-sketched
ridge regression.

Incoherence of the data matrices: In randomized
sampling schemes, the sampling probability of each row
depends on the corresponding leverage score, which is
the 5 norm of the corresponding row of an orthobasis U
for A. Leverage scores highlight the relative importance
of each row of A.

Block diagonal matrices can be thought of as a gener-
alization of sampling matrices. Instead of a single row,
each block now accesses a submatrix of A. Instead of
using uniformly sized diagonal blocks S;, we show that
a relative importance term associated with each block
A ; similar to leverage scores dictates the number of
random projections M required to attain optimal sam-
ple complexity. Let U be an orthobasis for the column
space of the matrix A. Let U = [U{ UY ... UT|T,
where U; € RV*4, We will show that the correspond-
ing relative importance parameter, which we term as
coherence of Uy, is

I(U;) = min (U2, N, U 3)

Here, ||U,||, denotes the element-wise infinity norm
and ||Uj||, denotes the spectral norm. We can observe
that )

— <maxI'(U,;) < 1. (6)

J J
When the I'(U;)’s are all close to 1/J, the columns of
U are incoherent, or not too aligned with respect to the
standard basis vectors. On the contrary, when they are
close to 1, then there are vectors in the column space
of U which are close (in an inner product sense) to the
standard basis vectors. We describe bases U that have
small coherence parameters as being incoherent. We
will show that as long as the coherence is not too high,

the sample complexity of block diagonal matrices can
match that of generic sketching matrices.

Number of random projections: Low values of the
coherence parameter (highly incoherent bases) indicate
relative uniformity in the importance of the blocks. For
such subspaces, it would be reasonable to expect that
roughly the same number of random projections can
be drawn from each data block A;. On the other hand,
when the coherence parameters I'(U;) have a high dy-
namic range, it can be expected that the number of
random projections from each block should be propor-
tional to the corresponding I'(U;). This is precisely
our proposed strategy to design the number of random
projections M;. We propose that M; can be chosen as

M;j = MoI'(U;) (7)

for some constant M, that we will determine later. Our
theoretical results state that block diagonal sketching
matrices can achieve optimal sample complexity when
M;’s are designed as in (7). This is also reminiscent of
sampling algorithms, where the sampling probability of
each row is proportional to the corresponding leverage
score.

2.2 Sample complexity bounds for localized
sketching

Localized sketching for matrix multiplication

Some of the earlier works that addressed this prob-
lem required S to be of size Q2 (M) x N where

r(-) denotes the rank of the matrix. However, ma-
trices with high ranks can still be approximately low
dimensional, as indicated by their stable rank. In
[Cohen et al., 2015] it is shown that the sample com-
plexity of S in (1) (under certain distributions) depends
only on the stable ranks of the matrices. They describe
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distributions D that satisfy

2, (ISW)TSY) - WY > e[ wi Y]

V(1 +sr(W)/E)/(1 + sr(Y)/k)) <5 (8

for any desired k and a suitable M. When S is a dense
matrix with sub-Gaussian entries, this holds for M =
Q(%M). Then, for k¥ = max(sr(W), sr(Y)), S
satisfies (1). Hence, to achieve a relative error in the
spectral norm, S only needs to have a number of rows
that is proportional to the stable ranks of W and Y.

Our first main result is such a guarantee for block
diagonal sketching matrices. Unlike the distributions
proposed in [Cohen et al., 2015], block diagonal distri-
butions cannot be both oblivious to the data matrices
and have optimal sample complexity. A naive way to
achieve (8) when S is block diagonal is to use triangle
inequality:

[sowW)(85Y) - Wy <

> S WHT(S,Y;) - WY
7

where W and Y are corresponding blocks as in (5).
sr(W; )-;-ST(YJ) )

However, this requires that M; = Q ( "
for each j. This can lead to suboptimal sample com-
plexities, as sr(W;) and sr(Y;) can be as high as
sr(W) and sr(Y) themselves. We show in our analysis
that we can in fact achieve

3 = (SO0

€2

for incoherent matrices. With M; designed as in (7),
we have the following result for computing approximate
matrix products:

Theorem 1 Fix matrices W and Y and let Sp be a
block diagonal matriz as in (5) with the entries of S;
are drawn from the distribution N'(0,1/M;). Let U be
an orthobasis for the matriz [W Y| and I'(U;) be the
corresponding incoherence terms. Then the tail bound
(8) holds with S = Sp when M; are taken as in (7)
with

My = O <klog(2/5)> .

€

(9)

We can examine the total sample complexity of Sp.
Consider a highly incoherent basis U: each entry of
such a basis is bounded away from 1. Examples of such
bases include orthobases of matrices with entries drawn
from the Gaussian distribution and any subset of the
Fourier basis. Since each column of U has an ¢9-norm

of 1, for such bases, || U;|| ~1/V N. Then we have

Mj ~ % and M -0 max(sr(W),s;(Y))log(2/5) _ We

see that even though Sp has a block diagonal structure,
it can still have an optimal sample complexity.

Block diagonal sketching of ridge regression

Let us now consider the sketched ridge regression prob-
lem shown in (3). Let U; € RM*X4 comprise the first
n rows of an orthobasis for the matrix | \/%d ]. Then,
(4) holds with constant probability, if S satisfies the
following two conditions:

|uTsTsu, - uTuy| < 1, (10)
[UTsTsr* — UTr|| < Ef(QX*), (11)
where r, = b — Ax* and we recall that f(x*) =

|Ax* — b+ [|lx*||°. These conditions are well known
in the randomized linear algebra community. (See
[Avron et al., 2016] Lemma 9.) Both of the above con-
ditions on S can be re-expressed as approximate ma-
trix product guarantees by choosing the pair of ma-
trices as W =Y = U; for (10) and W = U; and
Y = (b— Ax*) for (11). We now state our main result
for block diagonal sketching of ridge regression prob-
lems. Let A and b be as defined above and let U be an
orthobasis for a basis for the range of [A b] of size at
most N x (d+1) with I'(U,)’s being the corresponding
incoherence terms.

Theorem 2 Let U be an orthobasis for the matrix
[A b] and T'(U;) be the corresponding incoherence
terms. Let Sp be a block diagonal matriz as in (5)
with the entries of S; are drawn from the distribution
N(0,1/M;). Let x, be the solution to (2), and X be
the solution to (3). Then

fx) < (T +e)f(x),

with constant probability when M; obeys (7) with My =
Q ().

As before, if A and b are such that the basis U is
incoherent, then the total sample complexity M =
> M; = O(%42). We are hence able to establish
that though highly structured, block diagonal random
matrices can in fact have optimal sample complexities.

Estimating the incoherence terms An impor-
tant question is about how the coherence parameters
I'(U;)’s can be estimated. Note that the main chal-
lenge is in computing an orthobasis for the data matrix
A. We develop an algorithm to empirically estimate
the I'(U;)’s to within a constant factor of the true
values using a sketching based algorithm. The algo-
rithm uses O(d) fast localized random projections of
the blocks A;’s and computes an estimate of the QR
factorization of A at a central processing unit. Using
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the approximate R factor, the blocks U;’s are estimated
locally. The algorithm is detailed in the supplemen-
tary material and has a worst case time complexity of
O(Ndlog N). Note that this is less than the sketch
compute time O(NdM/J) for N not too large. In
Figure 3, we show the estimated incoherence param-
eters and the true parameters for a test matrix with
J =100, N = 10000. We can see that the estimated
values are within a constant factor of the true I'(Uj)’s.
An important note here is that in many applications,
an estimate of the I'(U;)’s may be obtained using a
priori domain knowledge. Yet another insight is that if
distributional assumptions on the data can be made,
as common in machine learning, then I'(U;)’s can be
very reliably estimated a priori [Eftekhari et al., 2015].
Any such prior information will lead to better sam-
ple complexities as compared to the naive techniques
described in the introduction.

3 Experiments

We demonstrate the effectiveness of block diagonal
sketching matrices by performing experiments on both
synthetic and real data. In our first experiment, we
demonstrate the importance of choosing the size of
the diagonal blocks according to our proposed method
given in (7). We use the following parameters: N =
2000, J = 10, d = 50. We design the singular values
such that for A = 0.15, sdy = 8.5, but rank(A) = 50.
For each trial, we generate S with entries drawn from
N(O,l/\/ﬁ) and Sp with the entries of S; drawn
from N(0,1/,/Mj;). In Figure 2, we plot f(2)/f(z*)
averaged over 10 trials for different values of M. In
particular, we show that when M; = M,I'(U,), Sp
has the same rate of decay for f(z)/f(z*) as S, and
has a worse rate otherwise.

In our next set of experiments, we study performance
in terms of prediction accuracy on the YearPrediction-
MSD dataset. It contains 89 audio features of a set
of songs and the task is to predict their release year.
The dataset has 463,715 training samples and 51,630
test samples. In this case, we use diagonal blocks of
the same size. Across 10 independent realizations of
S and Sp, we compute the empirical probability of
f(@)/f(x*) < (1+e¢) for various values of € and M. We
show phase transition plots in Figure 4 which demon-
strate that block diagonal matrices are as effective
as dense matrices in terms of accuracy, for the same
sample complexity.

We also seek to highlight the computational advantages
provided by block matrices. To this end, we compare
the sketch compute times for block diagonal matrices
with that of SRHT sketching matrices. We consider
matrices A of sizes 2'® x 40, 220 x 40 and 222 x 40 and

T
-&-Dense Gaussian

-+ Uniform block diagonal
non-uniform block diagonal

0 200 400 600 800 1000
M

Figure 2: f(2)/f(«*) for three sketching matrices: a
dense matrix with standard Gaussian entries, a block
diagonal matrix with equal sized blocks (uniform diag-
onal matrix) and a block diagonal matrix with entries
designed as in (7) (non-uniform diagonal matrix). A
ratio close to 1 indicates that the sketching matrix is
effective in solving (3). When M;’s are chosen appro-
priately, block diagonal matrices can be as effective as
a general matrix.

divide them into J = 210, 212, 214 blocks respectively.
In order to ensure fair comparison, we replace the
SRHT matrix with randomly subsampled Fast Fourier
transform (FFT) matrix, since both have the same
theoretical sketch compute time, but the FFT matrix
has very efficient software implementations. The sketch
compute times are shown in Table 1. Our choice of
J renders each block small enough for very efficient
computations. This results in block diagonal matrices
being much faster compared to the FFT matrix.

4 Proof Sketch

In this section, we provide a sketch of the proof for
both Theorems 1 and 2. Full proofs are provided in the
supplementary material. We first prove Theorem 1 and
the proof for Theorem 2 follows by choosing W and Y
appropriately, as explained in Section 2.2. The funda-
mental property of a distribution of matrices D that
enables any S ~ D to satisfy (8) is the subspace embed-
ding moment property, defined in [Avron et al., 2016]:

T ! l
SgDH(SU) (SU) —1I|| <€, (12)

for some [ > 2, where € and § are tolerance parameters
that determine the sample complexity and U is any
orthobasis for the span of the columns of W and Y.
Thus, our main goal is to prove the subspace embedding
moment property holds for block diagonal sketching
matrices.

Our methods differ from the common e-net argument,
since using union bound for block diagonal matrices
results in a suboptimal sample complexity. The main
tools we use are the estimates for the suprema of
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—True Incoherence parameters
0.3 —Estimated incoherence parameters||

0 20 40 60 80 100
i

Figure 3: For a test matrix with J = 100, N = 10000,
the true incoherence values and the estimated values
are within a constant factor of each other, shown here in
a sorted. Choosing the block sizes M, proportional to
the estimated coherence parameters results in optimal
sample complexities.

chaos processes found in [Krahmer et al., 2014] and
an entropy estimate from the study of restricted isom-
etry properties of block diagonal matrices computed in
[Eftekhari et al., 2015]. We first establish tail bounds
on the spectral norm of the matrix

A = (SpU)T(SpU) -1, (13)

where U is an orthobasis for a subspace of dimension d
and then bound its moments to establish the subspace
embedding moment property.

4.1 Tail bound on the spectral norm of the
matrix A

We first express |A|| as
[All= sup [27(SpU)"(SpU)z — 1]

zcR
lzll=1
= sup ’||SDUz||27EHSDUz||2’. (14)

z€R
llzll=1

For the matrices S;, let (S;) denote their vectorized
versions, obtained by stacking the columns one below
the other. Let S, = [(S1)T (S2)T ---(Ss)T]T be the
vector containing all of the (S;)’s. Note that S, is a
vector with entries drawn from A (0,1). We can then
express (14) as

2 2
[A]l = sup [[[P.S,[|” — E|P.S,||
P.cP

z

where P is defined as

Pi(z) 0 0
0 Py(2) 0
P = Pz - . :
0 0 P,(2)
(Ulz)T 0 0 T
0 (Ulz)T 0
Pj(z) = \/;7 . .
0 0 (Ulz)T_

where z € R? and |z|| = 1. Observe that ||A] is
then the supremum of the deviation of a Gaussian
quadratic form from its expectation, taken over the
set P. This matches the framework developed in
[Krahmer et al., 2014] to bound such suprema. We
use their result (Theorem 3.1, [Krahmer et al., 2014])
to obtain tail bounds on ||A]|, stated in Lemma 1.
Lemma 1 For any orthonormal matriz U € RN*4
and a block diagonal matriz Sp as in Theorem 1, there
ezists a constant ¢ such that

PlA]<e >1-6  (15)

dlog(2/6)
My

For a desired tolerance ¢, if My = Q (dl%(f/é)),

P(]|A]| <€) > 1 —4. This is similar to a subspace
embedding guarantee. We now show that this tail
bound naturally induces a bound on the moments of
IIA]|, from which the main theorems in section 2 can
be proved.

4.2 Moment bound on |A]|

Tail bounds for certain random variables can be trans-
lated into bounds on their moments using the following
result:

Lemma 2 (7.13, [Foucart and Rauhut, 2013])
Suppose that a random wariable q satisfies
P (\q| > el/'Yom) < Be™""/7 for some vy > 0 and for all

u > 0. Then, for p >0, E|q|P < BaP(ey)?/ T (% + 1)

where T'(+) is the Gamma function.

By choosing ¢ = [|A|, vy =2, 8 =1 and ev/2 = §,
we obtain

Lemma 3 For any orthonormal matriz U € RNxd
and a block diagonal matriz Sp as in Theorem 1, if

My = 0 (L2 then for p = (EG2),
E|A|P < €Ps (16)

Approximate matrix product guarantee Let
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Figure 4: Each plot shows the empirical probability of f(Z) < (14 ¢€)f(x*) for various values of M, computed
using an average over 10 trials. The left pane is for results with dense matrices with sub-Gaussian entries, the

right pane for results with block diagonal sketching matrices.

Sketch compute time in seconds for large scale matrices
N, J M = 600 M = 1400 M = 2200 M = 3000
218 210 | 026:1.4 x 1072 | 0.26;2x 1072 | 0.26;3.88-1072 | 0.26;4.2 x 1072
220 212 | 1.16;2.7 x 1072 | 1.16;3.9 x 1072 | 1.16;5.1 x 1072 | 1.16;6.3 x 1072
222 21 | 58779 x 1072 | 5.87;9.1 x 1072 | 5.87;11 x 102 | 5.86;11 x 102

Table 1: Sketch compute time in sec. for various matrix sizes N and sketch sizes M. In each cell, the left figure
for FFT sketch and the right figure in boldface is for block diagonal matrices.

W and Y be as in (8). As explained
[Cohen et al., 2015], we can assume that they have
orthogonal columns. For a given k as in (8), let W
and Y be partitioned into groups of k£ columns, with
W, and Y denoting the I*" groups. The approach in
[Cohen et al., 2015] then uses the following result in
their argument, which follows from (16):

E[|(SW)"(SYr) = WIYu|” <& [Wi|” [ Yu "5

(17)
for all pairs (I,1’). In their setting, this holds since the
sketching is oblivious to the data matrices. Although
block diagonal matrices are not oblivious, this result
holds with for Mo = © (252/2) ). This is because of
the observation that if U is an orthobasis for the span
of W and Y and U"! is an orthobasis for the span of
W, and Yy, then T(UY") < T(U;) for all pairs (1,1').
Hence, a given block diagonal sketching matrix Sp can
satisfy (17). The rest of the proof remains the same
as in [Cohen et al., 2015]. This concludes the proof for
Theorem 1.

in

5 Conclusion

In this paper, we study a particular model that can be
used while applying sketching techniques to high dimen-
sional data that are available in a distributed fashion.
Our proposed block diagonal sketching model forms
an intermediate model between sampling methods and
random projection methods and is a useful abstraction.
We show theoretically and experimentally that choos-
ing the sketch sizes proportional to a certain coherence
term of the data blocks results in an optimal sample
complexity. While we do not provide formal analysis
of the algorithm to estimate the coherence parameters,
we show empirically that they can be estimated.
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